Preparation of Light-weight Spinel Refractories by Foaming-gel Process
FactSage_热力学计算在耐火材料抗渣侵蚀性中的应用
第43卷第3期2024年3月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.43㊀No.3March,2024FactSage 热力学计算在耐火材料抗渣侵蚀性中的应用郭伟杰1,2,朱天彬1,2,李亚伟1,2,廖㊀宁1,2,桑绍柏1,2,徐义彪1,2,鄢㊀文1,2(1.武汉科技大学省部共建耐火材料与冶金国家重点实验室,武汉㊀430081;2.武汉科技大学高温材料与炉衬技术国家地方联合工程研究中心,武汉㊀430081)摘要:商用热力学计算软件FactSage 在耐火材料抗渣侵蚀性研究中起到重要作用,因此在耐火材料研究中应用越来越广泛㊂本文总结了近15年来热力学计算在耐火材料抗渣侵蚀性研究中的应用,重点介绍了耐火材料抗渣侵蚀研究中常用的热力学计算模型,分析了各种模型的原理㊁特点㊁适用情景㊁精确度与局限性,并给出了详细的运用实例㊂此外,本文介绍了热力学计算与其他方法相结合运用的实例,包含ANSYS㊁动力学分析㊁分子动力学模拟等方法,规避热力学计算的局限性,更加全面地分析熔渣对耐火材料的侵蚀行为㊂最后,本文对热力学计算存在的问题进行了归纳,并基于现有研究现状对其发展前景与方向进行了展望㊂关键词:耐火材料;热力学计算;抗渣侵蚀性;FactSage;热力学模型中图分类号:TQ175㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2024)03-1110-13Application of FactSage Thermodynamic Calculation on Slag Corrosion Resistance of RefractoriesGUO Weijie 1,2,ZHU Tianbin 1,2,LI Yawei 1,2,LIAO Ning 1,2,SANG Shaobai 1,2,XU Yibiao 1,2,YAN Wen 1,2(1.The State Key Laboratory of Refractories and Metallurgy,Wuhan University of Science and Technology,Wuhan 430081,China;2.National-Provincial Joint Engineering Research Center of High Temperature Materials and Lining Technology,Wuhan University of Science and Technology,Wuhan 430081,China)Abstract :Commercial thermodynamic calculation software FactSage plays an important role in the analysis of slag corrosion process,therefore it has been widely used in the research of refractories.Application of thermodynamic calculation on slag corrosion resistance of refractories and thermodynamic calculation models which are commonly used in the slag corrosionresistance of refractories were introduced.The mechanisms,characteristics,applicable situations,accuracy and limitations of every model were discussed,and the detailed examples were given.Furthermore,the application examples of FactSage combined with other methods including ANSYS,kinetic analysis and MD simulation were given,aiming to avoid the limitations of thermodynamic calculation and comprehensively analyze the slag corrosion stly,the common problems of thermodynamic calculation were summarized,and the direction of further development was proposed.Key words :refractory;thermodynamic calculation;slag corrosion resistance;FactSage;thermodynamic model 收稿日期:2023-09-27;修订日期:2023-12-06基金项目:国家自然科学基金联合基金重点项目(U21A2058,U1908227,52272071);湖北省自然科学基金项目(2022CFB024)作者简介:郭伟杰(1998 ),男,硕士研究生㊂主要从事耐火材料抗渣性能的研究㊂E-mail:1099255596@通信作者:朱天彬,博士,副教授㊂E-mail:zhutianbin@ 0㊀引㊀言随着计算机技术的高速发展,集成了大量热力学数据的商用热力学计算软件成为研究者的重要工具㊂FactSage [1]最早于1976年提出,2001年加拿大蒙特利尔综合工业大学的FACT-win 软件与德国GTT 公司的ChemSage 软件整合为FactSage,这是目前应用最为广泛的热力学计算软件之一㊂该软件集成了大量热力学数据库,包括溶液㊁化合物㊁纯物质㊁熔盐㊁合金的数据,并整合了以多元相平衡计算为代表的多种功能,是一㊀第3期郭伟杰等:FactSage热力学计算在耐火材料抗渣侵蚀性中的应用1111个综合性集成热力学计算软件[2-3],已在全球800多所大学㊁实验室和企业中应用[4]㊂在耐火材料领域,FactSage热力学计算同样占据着重要地位,已被应用于相图绘制㊁熔渣侵蚀分析㊁液相含量分析㊁黏度计算㊁复杂条件下多元多相体系平衡㊁体系热力学函数计算等诸多方面[5-8]㊂其中,热力学计算能够较好地分析耐火材料抗渣侵蚀性,在熔渣性质㊁热力学平衡相㊁液相组成等方面提供重要参考㊂因此,本文综述了近15年来FactSage热力学计算在耐火材料抗渣侵蚀研究进展,给出了基于热力学计算的抗渣侵蚀性研究案例,以期为相关科研工作者使用热力学计算分析耐火材料抗渣侵蚀机理提供参考和借鉴㊂同时,基于近年来的研究现状,总结FactSage热力学计算在耐火材料抗渣侵蚀性的发展趋势,并对其发展前景进行了展望㊂1㊀耐火材料抗渣侵蚀研究中的热力学计算模型热力学计算中,FactSage的Equilib模块是模拟熔渣与耐火材料反应过程的最常用工具㊂该模块通过原ChemSage的算法,基于吉布斯自由能最低原理[9-10],能够较好地预测熔渣对耐火材料侵蚀过程中的热力学平衡相与液相组成变化㊂使用该模块进行耐火材料抗渣侵蚀性研究的常用过程如图1所示㊂图1㊀使用FactSage的Equilib模块对熔渣-耐火材料侵蚀过程进行分析的主要步骤Fig.1㊀Main steps during the analysis of slag corrosion resistance of refractories using Equilib module of FactSage选择合适的热力学计算模型是获取准确的热力学计算结果的前提㊂不同的热力学计算模型具有不同的侧重点,应当基于当前研究体系的特点,选取合适的模型以达到较好的模拟效果㊂目前,经过国内外研究者的长期研究,以界面反应模型为代表的热力学计算模型被广泛开发,并经过了大量实验验证,具有较高的准确度与可信度㊂下面对常用的热力学计算模型分别进行介绍㊂1.1㊀物相-温度模型图2为物相-温度模型的示意图㊂物相-温度模型是一种常用的计算模型,能够较好地反映物相随温度的变化情况㊂物相-温度模型的示意图如图2(a)所示,熔渣与耐火材料的质量恒定(常设定为100gʒ100g),在该模型中温度是唯一的变量,通过计算得到物相-温度曲线(见图2(b)),从而反映物相随温度的变化过程㊂该模型常用于分析温度对耐火材料抗渣侵蚀性的影响以及高熔点相在耐火材料内的生成温度等情况㊂此外,该模型变量较少㊁上手门槛较低,适用于大多数耐火材料抗渣侵蚀性分析㊂图2㊀物相-温度模型的示意图Fig.2㊀Schematic diagram of phase-temperature thermodynamic model在Gehre等[11]关于含硫渣对尖晶石耐火材料的侵蚀行为的研究中,通过设定30g熔渣与10g耐火材料在强还原气氛下进行反应,得到了尖晶石㊁CaMg2Al16O27相在800~1450ħ的变化趋势(见图3),较好地描述了固相随温度降低逐渐析出的过程㊂类似地,在刚玉尖晶石浇注料体系中,Ramult等[12]在1112㊀耐火材料硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷图3㊀矿物相与熔渣含量与温度的函数关系[11]Fig.3㊀Functional relationship between mineral phase,slag content and temperature [11]1200~1700ħ设定50%(文中均为质量分数)耐火材料与50%钢渣反应,比较了三种不同碱度的熔渣对浇筑料侵蚀后的产物区别㊂该方法同样在铜工业用无铬耐火材料中运用,Jastrzębska 等[13]通过将50g 的不同种类铜渣与50g 的Al 2O 3-MgAl 2O 4耐火材料进行计算,发现尖晶石能够在较大温度范围内稳定存在,证实了该种耐火材料对铜渣具有较好的抵抗能力㊂而在炉渣的固相分数分析中,Anton 等[14]则使用该模型计算了熔渣的完全融化温度,发现碱度不随固体析出而变化㊂物相-温度模型对熔渣-耐火材料体系内固相的析出温度具有良好的精确度,并能够准确判断固相在高温下的稳定情况,且可以确定产生液相的温度点㊂此外,这种热力学模型以温度作为变量,适合于描述较大温度范围内的熔渣侵蚀情况,能够提供从升温到降温的全过程熔渣侵蚀产物分析㊂然而,该种模型具有明显的局限性㊂众所周知,熔渣侵蚀耐火材料的过程中,熔渣含量变化导致系统物相组成不断变化,熔渣侵蚀耐火材料的过程是一个渐进的过程㊂使用温度-物相模型时,由于熔渣与耐火材料组分未引入变量,采用了固定值进行计算,导致其计算结果是对熔渣侵蚀最终结果的预测,而无法渐进㊁全面地展现熔渣对耐火材料的侵蚀过程㊂侵蚀过程描述的缺失使得中间相的产生机理无法较好地被描述(如浇注料体系中二铝酸钙(CA 2)与六铝酸钙(CA 6)相的含量变化),导致复杂体系的精确度较差㊂1.2㊀溶解模型图4为溶解模型示意图,图5为不同气氛下镁铬耐火材料-冰铜渣系统的热力学平衡相㊂溶解模型也是耐火材料抗渣侵蚀研究中一种常用的模型,如图4(a)所示,该模型设定耐火材料的质量恒定不变,熔渣质量线性增加㊂在该模型中,定义质量比A =m S /m R (m S 为熔渣质量,m R 为耐火材料质量),对系统内各组分使用表达式<m R +m S ˑA >进行描述,即随着A 值的增加,在耐火材料质量不变的情况下,熔渣质量从0开始不断线性增加,从而模拟熔渣量从少到多的侵蚀过程㊂如图4(b)所示,该模型较好地反映了组分在熔渣内的溶解速率情况与稳定程度,通过物相质量-A 曲线的斜率定性反映溶解速率,通过曲线归零时所需A 的绝对值反映该物相在熔渣内的稳定程度㊂图4㊀溶解模型示意图Fig.4㊀Schematic diagrams of dissolution model 溶解模型由于具有较好的普适性而被广泛运用于耐火材料抗渣侵蚀研究中㊂在Liu 等[15]㊁王恭一等[16]和程艳俏等[17]针对镁铬质耐火材料抗渣侵蚀性的研究中,根据如图5所示的热力学计算,发现镁铬尖晶石㊁镁铁尖晶石以及镁橄榄石在系统内可以稳定存在;而在还原气氛下(见图5(b)),镁橄榄石的含量明显下㊀第3期郭伟杰等:FactSage热力学计算在耐火材料抗渣侵蚀性中的应用1113降,且生成了Pb(g),从而解释了还原气氛下耐火材料抗渣侵蚀性下降的原因㊂在评价耐火骨料抗渣侵蚀性的研究中,金胜利等[18]分别计算了高炉钛渣对棕刚玉㊁电熔刚玉㊁亚白刚玉㊁镁铝尖晶石以及特级矾土的侵蚀,通过比较刚玉相完全消失时的A值分析了五种常见骨料的抗侵蚀能力㊂桑绍柏等[19]通过热力学计算发现SiC能够与含Ti熔渣反应生成稳定的FeSi与TiC相,且SiC在A=4.5时才完全消耗,证明了SiC在该体系内具有良好的稳定性㊂吕晓东等[20]通过该模型计算发现SiC㊁钛尖晶石在钛渣中具有较好的稳定性,这与静态坩埚法得到的结果一致㊂马三宝等[21]也计算了钢包渣对轻质方镁石-尖晶石耐火材料的侵蚀,得出尖晶石的溶解速率大于方镁石㊂而李真真等[22]使用该模型研究了氧化钛对镁砂抗渣渗透性能的影响,发现生成的CaTiO3在熔渣内比镁砂更加稳定㊂图5㊀不同气氛下镁铬耐火材料-冰铜渣系统的热力学平衡相[15]Fig.5㊀Equilibrium phases of magnesia chromite refractories-matte slag system under different atmospheres[15]该模型对高熔点物相在熔渣体系内的稳定度预测展现出较为良好的精确度㊂由于该模型中引入了变量A=m S/m R,特定物相消失时的A值反映了该物相在熔渣内的稳定程度,因此该模型能够较好地发现特定熔渣体系内的高熔点相(如尖晶石相㊁CaTiO3相与方镁石相),为针对性地开发具有优异抗渣侵蚀性的耐火材料提供依据㊂并且,该种模型能够有效地对比不同耐火材料体系在特定熔渣下的稳定程度,从而针对酸性渣㊁碱性渣㊁富钛渣㊁富锰渣等不同熔渣体系挑选对应的耐火材料,满足特定条件的需求㊂然而,该种模型仍具有一定局限性,虽然能够良好地预测高熔点㊁高稳定相的生成,却缺乏定性地描述这些物相在侵蚀区域相对位置的能力,例如其能够精确地预测刚玉骨料外侧生成CA2与CA6相,但难以定性地描述两相在骨料外侧的位置㊂因此,使用该种模型时需结合SEM㊁EDS等表征手段进行深入分析㊂此外,在真实的熔渣侵蚀过程中,由于耐火材料组分向熔渣中逐渐溶解,熔渣的组分受到耐火材料的影响而不断改变,因此熔渣组分处于 不断更新 的状态㊂而该模型中熔渣组分恒定不变,即恒定保持初始化学组分㊁仅逐步提升熔渣的质量,无法精确地描述熔渣与耐火材料之间的组分交换㊂因此,该种模型适合对静态坩埚抗渣法等熔渣组分变化不大的情景进行分析,对感应炉抗渣㊁回转窑抗渣㊁钢包渣线抗渣等组分交换剧烈㊁熔渣处于动态情景的模拟精确度较低㊂1.3㊀界面反应模型界面反应模型能够有效地模拟熔渣-耐火材料界面处的相互作用过程,被广泛应用于多种耐火材料体系中,其计算结果经过了广泛验证,是目前常用㊁可信的模型之一㊂该模型最早由Berjonneau等[23]于2009年提出,最初用于模拟恒定温度㊁压力条件下二次冶金钢包渣对Al2O3-MgO耐火材料的侵蚀㊂界面反应模型的示意图如图6所示,在该模型中定义了反应度B=w R/(w S+w R),并满足w R+w S=1,其中w R为耐火材料质量分数,w S为熔渣的质量分数,对系统内的组分采用表达式<m S-(m S-m R)ˑB>进行描述㊂B反映了耐火材料-熔渣界面的反应程度,当B接近0时,系统中熔渣比例较高,反应程度较低,反之B接近1时,系统中耐火材料占比较高,反应程度越高㊂如图6(b)所示,反应度B可以近似为熔渣-耐火材料接触的界面层的相对位置,B趋近于1时,生成的物相越接近耐火材料表层,而其趋近于0时物相靠近熔渣侧㊂这一特性使得该模型能较好地反映了侵蚀过程中固相的相对位置与生成量,因此尤其适合模拟保护层的生成情况㊂1114㊀耐火材料硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷图6㊀界面反应模型的示意图[21]Fig.6㊀Schematic diagrams of interlayer reaction model[21]溶解模型在耐火材料抗渣领域得到了广泛应用,并被大量实验证明具有良好的精确度㊂Berjonneau 等[23]通过实验验证了该模型的精确度,计算结果与实际侵蚀区域的微观结构呈良好的对应关系(见图7(a)),并得出了CA2和CA6相的形成机理(图7(b))㊂Tang等[24]使用该模型对Al2O3坩埚的侵蚀行为进行了分析和实验验证,发现热力学计算预测的熔渣㊁CA2㊁CA6㊁尖晶石以及刚玉骨料的位置与实际实验结果一致㊂在蒋旭勇等[25]的研究中,通过该模型计算了铝镁质浇注料对不同Al2O3含量的CaO-SiO2-Al2O3渣的物相生成量,发现高Al2O3含量的熔渣能够促进形成更厚的隔离层㊂在高纯度镁质耐火材料对富铁渣的抗渣侵蚀性研究中,Betsis等[26]利用该模型发现,富铁渣将方镁石转化为MgO-Fe x O,且发现液相中FeO含量上升㊂类似地,Oh等[6]也观测到了MgO-Fe x O层,且MgO㊁FeO相对含量与显微结构观察一致㊂李艳华等[27]使用该模型对LF渣对ρ-Al2O3结合铝镁质浇注料的侵蚀行为进行了分析,通过FactSage软件得到了尖晶石的组成,结果显示生成的尖晶石中含有一定量的MnAl2O4和FeAl2O4,即熔渣中的Mn2+㊁Fe2+生成了复合尖晶石㊂Guo等[28]使用该模型计算了熔渣侵蚀钙镁铝酸盐(CMA)骨料产生的热力学平衡相,发现CMA骨料内的一铝酸钙(CA)㊁CA2相在高温下转化为液相,提高了熔渣的Al2O3含量㊂图7㊀熔渣对刚玉骨料的侵蚀的热力学计算结果[21]Fig.7㊀Thermodynamic calculation results of corrosion of slag to corundum aggregate[21]㊀第3期郭伟杰等:FactSage热力学计算在耐火材料抗渣侵蚀性中的应用1115溶解模型不仅可以预测物相组成的变化,还常用于预测熔渣侵蚀过程中液相组成的变化与黏度变化[29]㊂Wang等[30]使用该模型对ZrO2耐火材料对高碱度精炼渣的侵蚀行为进行了研究,图8为ZrO2耐火材料的侵蚀过程的热力学计算结果㊂EDS线扫描中ZrO2含量从耐火材料到过渡层逐渐降低,CaO含量随着渣层到过渡层逐渐降低,其趋势与热力学计算结果一致㊂鄢文等[31]研究了熔渣对刚玉尖晶石浇注料侵蚀的热力学模型,结果显示,侵蚀层到耐火材料内部SiO2㊁CaO含量逐渐降低,而SiO2的含量则先降低后增加,这与A值介于0.66至0.84之间的曲线相吻合㊂此外,Peng等[32]计算了轻质方镁石-尖晶石浇注料与熔渣反应过程中的液相黏度变化,证明了该种耐火材料优秀的抗渣渗透性能㊂图8㊀ZrO2耐火材料侵蚀过程的热力学计算结果[27]Fig.8㊀Thermodynamic calculation results of corrosion process of ZrO2refractories[27]作为最常用的抗渣模型之一,界面反应模型最大的优势为能够生动地描述物相的生成机理㊁生成位置㊂由于变量B=w R/(w S+w R)的引入,界面反应模型能够细致地描述熔渣对耐火材料侵蚀的全过程,详细地展现各热力学平衡相的含量变化,其良好的精确度与泛用性使得其被广大研究者所使用,助力了许多研究成果的产出,并得到了广泛的实验验证㊂然而,该模型同样具有一定的局限性㊂如前文所述,熔渣对耐火材料侵蚀是一个动态的过程,渣组分会随侵蚀程度的改变不断变化,Zhang等[33]指出,该模型忽略了耐火材料溶解对熔渣化学组分变化,使得其对动态渣蚀的模拟存在一定的误差㊂在真实熔渣侵蚀过程中,耐火材料的损毁常是由溶解㊁化学反应与渗透共同导致的㊂该模型虽然能够较好地描述熔渣-耐火材料界面上的化学反应,却不能很好地胜任熔渣渗透过程的模拟㊂此外,受制于热力学计算的局限性,界面反应模型无法展现耐火材料表面形貌㊁扩散速率㊁熔体冲刷等因素对抗渣侵蚀性的影响㊂1.4㊀逐步迭代模型在实际侵蚀过程中,熔渣化学组分会随着熔渣与耐火材料的反应而发生变化,从而影响熔渣的侵蚀能力,而溶解模型与界面反应模型忽略了这一变化,且两者均不能较好地模拟熔渣的渗透过程㊂针对以上问题,Luz等[34]设计了一个新的模型,迭代模型的示意图如图9所示㊂该模型具有一个迭代程序,其原理如图9(a)所示,设定第一反应阶段初始耐火材料质量与熔渣质量均为100g(S为熔渣,R为耐火材料),将反应后将得到的改性渣(S1)再次与相同质量的耐火材料进行二次迭代计算得到新的改性渣(S2),不断重复该过程直至熔渣量归零或达到饱和,通过该迭代程序,每一次循环后熔渣组分都会改变㊂该模型同样可以用于描述熔渣对耐火材料的渗透过程(图9(b)),即更大的迭代计算次数对应更长的熔渣渗透距离[31]㊂Calvo等[35]在钢包用铝碳质耐火材料的用后分析中使用该模型分析了熔渣对耐火材料的渗透,其热力学计算结果与用后耐火材料的显微结构如图10所示(MA为镁铝尖晶石)㊂热力学计算结果显示,随着熔渣渗透深度的增加,尖晶石和六铝酸钙将会依次生成㊂从侵蚀区图像中可以看出,从工作面到耐火材料内部依次为镁铝尖晶石㊁二铝酸钙和六铝酸钙,基本与热力学计算一致㊂类似地,在Muñoz等[36]对铝镁碳耐火材料抗渣侵蚀性研究中,该模型计算结果与熔渣渗透区的显微结构吻合程度较高㊂此外,该模型仍可以较为精确1116㊀耐火材料硅酸盐通报㊀㊀㊀㊀㊀㊀第43卷地预测物相的生成情况,并非专用于描述熔渣对耐火材料的渗透情况㊂在Luz等[37]针对尖晶石浇注料的熔渣侵蚀研究中,该模型预测了CA2和CA6相的存在,并通过显微结构验证了热力学计算的准确性㊂Han 等[38]使用该模型计算得到了MgO-Fe x O层,这与侵蚀后试样的显微结构一致㊂在Luz等[39]对镁碳质耐火材料的抗渣侵蚀的研究中,通过该模型计算发现MgO溶解量随着熔渣碱度降低而增加,证明了低碱度渣对镁碳质耐火材料的侵蚀更加强烈㊂图9㊀迭代模型的示意图[31]Fig.9㊀Schematic diagram of the iterative corrosion model[31]图10㊀用后铝碳质耐火材料的热力学计算结果[32]Fig.10㊀Thermodynamic calculation results of spent Al2O3-C refractories[32]与溶解模型㊁界面反应模型相比,迭代模型能够模拟耐火材料组分对熔渣侵蚀能力的影响㊂每次迭代时,熔渣组分都会被耐火材料所改变,改性渣再次与新的耐火材料反应,这个过程模拟熔渣组分更新,因此该模型对动态渣蚀具有更加良好的模拟精确度㊂此外,该种模型能够定性地描述渗透过程,反映熔渣渗透过程中熔渣组分的变化与物相的变化,从而为耐火材料用后分析㊁熔渣渗透行为分析提供重要的参考㊂在真实的熔渣渗透过程中,熔渣的渗透行为除了受到熔渣的组分和黏度的影响外,还会受到接触角㊁气孔孔径㊁晶界渗透㊁渗透时间等诸多因素的影响,而该模型仅能从热力学的角度预测熔渣组分变化㊁黏度变化和物相变化,对物理过程缺乏描述的能力㊂因此将该模型用于描述熔渣渗透过程时,迭代次数仅能够定性地反映渗透深度,不能够精确地给出渗透距离㊂此外,随着熔渣深入耐火材料内部,耐火材料工作面与内部之间的温度梯度也会影响熔渣的渗透行为,而该种模型设定耐火材料内外温度恒定,导致对耐火材料深处的物相的预测存在一定的偏差㊂并且,该种模型中引入了迭代程序,使得计算量大幅增加,部分体系中甚至需要十几次以上的循环计算才能使熔渣完全耗尽或达到饱和,对模型使用者造成了较重的负担㊂这些因素制约了该模型的普及与发展,因此较少研究使用该种模型进行热力学模拟㊂1.5㊀其他热力学计算模型除上述四种最常用的热力学计算模型外,国内外研究者针对不同熔渣侵蚀过程的特点,针对性地开发了新的热力学计算模型,从而更加精确地预测耐火材料侵蚀过程㊂㊀第3期郭伟杰等:FactSage热力学计算在耐火材料抗渣侵蚀性中的应用1117针对迭代模型的局限性,Sagadin等[40]使用FactSage与SimuSage[41]开发了一种新型耐火材料侵蚀模型,用于模拟镍铁渣对镁质耐火材料的侵蚀,并对气孔率和温度梯度的影响进行了模拟,具体如图11所示㊂如图11(a)所示,该模型将耐火材料分为了十个区域,温度从外到内线性递减,每个区域均含有定量的耐火材料与气孔㊂图11(b)为该模型单个区域的运算流程,耐火材料与熔渣首先进行计算,产物被 物相分离器 分离为固体与熔体㊂由于耐火材料的气孔仅能允许一部分熔渣向深处渗透,因此研究者使用SimuSage设计了 熔体分离器 ,将熔体分离为可以进入下一区域的熔体A与被阻碍在该区域的熔体B㊂熔体B与固体氧化物组成混合体并在该区域内再次计算,而熔体A则进入下一区域㊂该模型不仅能够描述熔渣化学组分的变化,还考虑了耐火材料气孔率对熔渣渗透的影响[42]㊂并且,由于温度梯度的存在,橄榄石等能够在材料深处的低温区域稳定存在,这在恒定温度的模型中是无法实现的㊂图11㊀基于FactSage与SimuSage的耐火材料侵蚀模型[37]Fig.11㊀Corrosion model based on FactSage and SimuSage[37]在感应炉抗渣法中,熔渣由于电磁场的作用剧烈地冲刷耐火材料,熔渣的组分由于耐火材料的损毁和熔渣的对流运动而不断混合和改变,并且耐火材料基质与骨料的侵蚀速率不同,导致两者对熔渣组分的改变能力不同,因此需要新的热力学计算模型描述动态条件下的熔渣侵蚀过程㊂在轻量化MgO-Al2O3浇注料的抗渣侵蚀性研究中,邹阳[43]提出了一种新的热力学计算模型,这种模型中熔渣组分受到耐火材料侵蚀的影响,并可以反映骨料与基质的侵蚀速率差别㊂该模型将熔渣侵蚀过程分为了n个相等的时间段,在每个Δt内,熔渣分别与骨料㊁基质进行计算,得到新的液相加和,即为 更新 后的熔渣组分㊂图12为动态熔渣侵蚀下的热力学计算模型㊂相较于其他模型,该模型能够形象地显示骨料㊁基质抗侵蚀能力的差异,且由于受到了骨料㊁基质的共同影响而不断 更新 ,其具有更高的精确度,更加符合动态熔渣条件下熔渣受到对流而不断混合的实际情况㊂图12㊀动态熔渣侵蚀下的热力学计算模型[40]Fig.12㊀Thermodynamic calculation model of dynamic slag corrosion condition[40]综合来看,以上模型在现有的经典模型基础上进行了一定程度的改进,使之能够更好地描述熔渣侵蚀过程,展现熔渣侵蚀模型的改进潜力㊂然而,这些改进模型计算方式复杂,或需要使用其他软件,导致其难以掌握㊂同时,这些模型提出较晚,未在大量研究中被广泛使用,缺乏实验数据的验证㊂受制于热力学计算本身的局限性,这些模型还是仅能从热力学角度描述化学反应过程㊁物相变化,对湍流㊁扩散等现象造成的影响无法给出预测㊂。
尖晶石质耐火材料的特性_生产与应用
表 3 尖晶石浇注料的理化指标对比
性 能
研 制 品 日本产品
化学组成 ( %) Al2O3 ( MgO) 体积密度 (g/ cm3) 1500 ℃,3h
90 (6) 2. 86
91 (6) 2. 93
抗折强度 (MPa) 1500 ℃,3h
16. 32
14. 70
耐压强度 (MPa) 1500 ℃,3h
尖晶石质耐火材料的特性 、生产与应用
宫长伟
(本溪冶金高等专科学校冶金工程系 ,辽宁 本溪 117022)
摘 要 :镁铝尖晶石质浇注料是一种新型耐火浇注料 ,近年来已受到国内外的高度重视 。本文介绍了镁铝尖晶石的特 性 、合成方法及尖晶石质耐火材料在国内的应用 。 关键词 :镁铝尖晶石 ;浇注料 ;矾土 ;线膨胀 中图分类号 : T G110 文献标识码 :A
效果 。该种浇注料应用具有一定的发展前景 ,由于受 浇注料开发工艺 、生产设备等因素的限制 ,目前我国 的钢铁企业仍多采用定型耐火材料 ;因此在立足于国 内资源 ,开发应用镁铝质浇注料方面 ,我们仍需做很 多工作 。
参考文献
〔1〕大石泉. 盛钢桶用铝 —尖晶石浇注料的使用结果〔P〕. 国外耐火材料 ,1991 (1) :23. 〔2〕江副正信. 尖晶石的特性及在耐火材料中的应用〔P〕. 国外耐火材料 ,1991 (10) :21. 〔3〕周宁生等. 矾土基高铝 —尖晶石质钢包浇注料的研制与应用〔P〕. 耐火材料 1996 ,30 (4) 207~211. 〔4〕陶新霞等. 钢包用铝 —尖晶石浇注料的研制〔P〕. 耐火材料 1994 (6) :12.
肝移植术后严重门静脉狭窄的三维可视化成像与门静脉支架植入术疗效分析
· 论著·肝移植术后严重门静脉狭窄的三维可视化成像与门静脉支架植入术疗效分析赵洪强 刘影 马建明 李昂 于里涵 童翾 吴广东 卢倩 张跃伟 汤睿【摘要】 目的 分析肝移植术后严重门静脉狭窄的三维成像特征与优势,评估门静脉支架植入术效果。
方法 回顾性分析10例肝移植术后因严重门静脉狭窄接受门静脉支架植入的患者的临床资料,分析严重门静脉狭窄的影像学特征、三维重建的成像优势及介入治疗效果。
结果 10例患者中狭窄类型包括向心性缩窄3例,曲折成角致狭窄2例,受压狭窄2例,长段狭窄和(或)血管闭塞3例。
三维重建图像在狭窄的准确判断、狭窄类型的辨别和狭窄累及长度判断方面具有优势。
所有患者均成功接受门静脉支架植入术,支架植入后门静脉最狭窄处直径较治疗前增加[(6.2±0.9)mm 比(2.6±1.7)mm ,P <0.05],吻合口流速较治疗前下降[(57±19)cm/s 比(128±27)cm/s ,P <0.05],近肝处门静脉主干流速较治疗前增加[(41±6)cm/s 比(18±6)cm/s ,P <0.05]。
1例患者因介入穿刺引起肝内血肿,经保守观察治疗后好转,其余患者均未出现相关并发症。
结论 三维可视化技术可以立体直观展示狭窄部位、特征与严重程度,有利于临床医师进行治疗决策和辅助介入操作。
及时的门静脉支架植入术可以有效逆转病变进程并改善门静脉血流。
【关键词】 肝移植;血管并发症;门静脉狭窄;介入治疗;三维可视化成像;门静脉支架;血流加速;门静脉高压【中图分类号】 R617, R543 【文献标志码】 A 【文章编号】 1674-7445(2024)01-0011-08Analysis of three-dimensional visualization imaging of severe portal vein stenosis after liver transplantation and clinical efficacy of portal vein stent implantation Zhao Hongqiang *, Liu Ying, Ma Jianming, Li Ang, Yu Lihan, Tong Xuan, Wu Guangdong,Lu Qian, Zhang Yuewei, Tang Rui. *Hepatopancreatobiliary Center , Beijing Tsinghua Changgung Hospital Affiliatal to Tsinghua University , Key Laboratory of Digital Intelligence Hepatology of Ministry of Education , School of Clinical Medicine , Tsinghua University , Beijing 102218, ChinaCorresponding author: Tang Rui, Email: ******************【Abstract 】 Objective To analyze three-dimensional imaging characteristics and advantages for severe portal vein stenosis after liver transplantation, and to evaluate clinical efficacy of portal vein stent implantation. Methods Clinical data of 10 patients who received portal vein stent implantation for severe portal vein stenosis after liver transplantation were retrospectively analyzed. Imaging characteristics of severe portal vein stenosis, and advantages of three-dimensional reconstruction imaging and interventional treatment efficacy for severe portal vein stenosis were analyzed.DOI: 10.3969/j.issn.1674-7445.2023201基金项目:国家自然科学基金重点项目(81930119);中国医学科学院医学与健康科技创新工程创新单元(2019-I2M-5-056);北京清华长庚医院青年启动基金资助项目(12019C1012)作者单位: 102218 北京,清华大学附属北京清华长庚医院肝胆胰中心 数智肝胆病学教育部重点实验室 清华大学临床医学院(赵洪强、刘影、李昂、于里涵、童翾、吴广东、卢倩、张跃伟、汤睿);拉萨市人民医院普外科(马建明、汤睿)作者简介:赵洪强(ORCID 0000-0002-8544-2865),博士,住院医师,研究方向为肝脏移植的临床与基础研究,Email :*************************通信作者:汤睿(ORCID 0000-0003-3118-3842),博士,副主任医师,研究方向为肝脏移植的临床与基础研究,Email :******************第 15 卷 第 1 期器官移植Vol. 15 No.1 2024 年 1 月Organ Transplantation Jan. 2024 Results Among 10 patients, 3 cases were diagnosed with centripetal stenosis, tortuosity angulation-induced stenosis in 2 cases, compression-induced stenosis in 2 cases, long-segment stenosis and/or vascular occlusion in 3 cases. Three-dimensional reconstruction images possessed advantages in accurate identification of stenosis, identification of stenosis types and measurement of stenosis length. All patients were successfully implanted with portal vein stents. After stent implantation, the diameter of the minimum diameter of portal vein was increased [(6.2±0.9) mm vs. (2.6±1.7) mm, P<0.05], the flow velocity at anastomotic site was decreased [(57±19) cm/s vs. (128±27) cm/s, P<0.05], and the flow velocity at the portal vein adjacent to the liver was increased [(41±6) cm/s vs. (18±6) cm/s, P<0.05]. One patient suffered from intrahepatic hematoma caused by interventional puncture, which was mitigated after conservative observation and treatment. The remaining patients did not experience relevant complications. Conclusions Three-dimensional visualization technique may visually display the location, characteristics and severity of stenosis, which is beneficial for clinicians to make treatment decisions and assist interventional procedures. Timely implantation of portal vein stent may effectively reverse pathological process and improve portal vein blood flow.【Key words】Liver transplantation; Vascular complication; Portal vein stenosis; Interventional therapy; Three-dimensional visualization imaging; Portal vein stent; Accelerated blood flow; Portal hypertension术后门静脉狭窄是肝移植主要的血管并发症之一,尽管发生率低,但可能造成移植物丢失、患者死亡等严重后果[1]。
微波辅助燃烧法制备镁铝尖晶石纳米粉体的研究_英文_
第26卷 第5期 无 机 材 料 学 报V ol. 26No. 52011年5月Journal of Inorganic Materials May, 2011Received date: 2010-11-24; Modified date: 2011-01-26; Published online: 2011-03-10Biography: Leila Torkian(1971−), female, PhD, associated professor. E-mail: ltorkian@azad.ac.irArticle ID: 1000-324X(2011)05-0550-05 DOI: 10.3724/SP.J.1077.2011.10815Synthesis of Nano Crystalline MgAl 2O 4 Spinel Powder by Microwave Assisted CombustionLeila Torkian 1, Mostafa M Amini 2, Zohreh Bahrami 3(1. Department of Applied Chemistry, Islamic Azad University, South Tehran Branch, Tehran, Iran; 2. Department of Chem-istry, Shahid Beheshti University, G .C., Tehran, Iran; 3. School of Chemistry, Collage of Science, University of Tehran, Te-hran, Iran)Abstract: Stoichiometric MgAl 2O 4 spinel nanoparticles were synthesized by microwave assisted combustion reactionfrom aluminium nitrate nanohydrate (Al(NO 3)3·9H 2O) and Sol-Gel prepared magnesium hydroxide (Mg(OH)2) in the presence of urea ((NH 2)2CO) as a fuel, in about 20 min of irradiation. X-ray diffraction (XRD) studies reveal that mi-crowave assisted combustion synthesis route yields single-phase spinel nanoparticles with larger crystalline size (around 75 nm) than other conventional heating methods. Scanning electronic microscope (SEM) images show nanoparticles with spherical shape and homogenous morphology. The surface area measurements (S BET ) show crystals with 2.11 m 2/g and 0.0033 mL/g pore volume.Key words: MgAl 2O 4 nanoparticles; spinel; microwave assisted reactionThe magnesium aluminate with spinel structure offers an attractive combination of properties such as high me-chanical strength at high temperature, high melting point (2135℃), high chemical inertness and thermal stability [1-3]. Due to these properties, it is greatly desired as a refractory material [4], humidity sensor [5], catalyst or catalyst support and recently as an excellent transparent ceramic material for high temperature arc-enclosing envelopes and al-kali-metal vapor discharge devices [6]. Nowadays this spinel has owned many applications in metallurgical, chemical, electro technical, catalysis, electronic and glass industries [7-8].Over the last few decades various novel techniques have been applied for the synthesis of MgAl 2O 4 spinel including Sol-Gel [9], spray drying [10], freeze-drying [11], mechanical activation [12], organic gel-assisted citrate process [13]. Al-though wet-chemical techniques have successfully been used for the preparation of pure spinel nanoparticles at rela-tively low temperatures, but have not received much com-mercial attention because of the expensive row materials and multiple processing steps [14-17]. The conventional preparation method of MgAl 2O 4 spinel is to calcine the mixture of metal oxides at elevated temperatures (1625℃ for 2 h), which has disadvantages of large aggregates and inhomogeneous compositions [18-19]. Recent works show combustion synthesis for preparation of binary oxides has many advantages including homogeneity, high purity, for-mation of crystalline oxide powders in shorter time periodsand lower amount of external energy [20-23].In our previous work, the coprecipitation and combus-tion methods were applied to prepare MgAl 2O 4 spinel par-ticles with conventional heating [24]. In this paper, applica-tion of microwave-assisted combustion synthesis tech-nique for preparation of MgAl 2O 4 spinel has been reported and physical properties of the synthesized powders are compared with that of prepared by conventional heating method.1 Experimental procedure1.1 Powder synthesisAnalytical grade aluminum nitrate nonahydrate (Al(NO 3)3·9H 2O), magnesium chloride hexahydrate (MgCl 2.6H 2O) and urea (CH 4N 2O) were purchased from Merck (99%) and were used without further purification. A solid mixture containing aluminum nitrate and Sol-Gel synthesized magnesium hydroxide [25] with n (Al 3+)/ n (Mg 2+)= 1:2 and urea with n (urea)/n (metal) = 5:3 was taken in a pyrex glass dish and after complete mixing was irradiated with microwaves in a domestic microwave oven (National, 1000W, input range 210−230V-ac SOHZ, mi-crowave frequency 2.45GHz).1.2 CharacterizationPhase analysis of the samples was carried out by X-ray diffraction (XRD; Bruker's D8 advance system, Bruker's AXS, GmbH, Germany) using CuK α radiation. The crys-第5期 LeilaTorkian, et al: Instant Synthesis of Nano Crystalline MgAl2O4 Spinel Powder 551tallite size of MgAl2O4 spinel was estimated with the aid of Debye-Scherrer equation (L hkl=Kλ/βhkl cosθ, where K is a constant taken as 1 and βhkl is the integral breadth that depends on the width of the particular (hkl) plane, λ = 0.15406 nm, the wavelength of the CuKα source, and θ is the Bragg's angle) using the XRD data of the spinel (311) reflection[26]. A Micromerities analyzer (Gemini 2375 V4/02 Instrument 1D:1) was used for Brunauer-Emmett- Teller (BET) surface area measurements. The BET surface area was measured by nitrogen physisorption at liquid nitrogen temperature −196℃. Prior to measurements, the samples were evacuated (up to 0.133 Pa) at 180℃ for 2 h.A PHILIPS XL-30 scanning electron microscope (SEM) was used to observe the particle morphology of the syn-thesized and ground spinel powders.2 Results and discussionNanoparticles of magnesium aluminate formed by en-dothermic redox reaction during a microwave assisted combustion method. The combustion reaction can be ex-pressed as follow:2Al(NO3)3·9H2O + Mg(OH)2 + 5CH4N2O → MgAl2O4 + 13N2 + 5CO2 + 29 H2OAluminum nitrate is an oxidizer and urea is a fuel[20-21, 27]. Oxidation valences of the Al, Mg, C, N, O, and H are +3, +2, +4, 0, −2 and +1, respectively[28-30]. Therefore, the total oxidizing and the reducing valences of aluminum nitrate, magnesium hydroxide, and urea become −15, 0 and +6, respectively. In order to obtain maximum energy for the spinel formation reaction, and also balance the total oxidizing and reducing valances in the mixture, the stoichiometric mole ratio (2:1) of the Al(NO3)3·9H2O (total valence ‒15) and Mg(OH)2 (total valence 0) and 5 mole urea are required (2(‒15) + 1(0) + n(+6) = 0 or n = 5).The net enthalpy (∆H, 25℃) of the reaction was calcu-lated from the standard enthalpy of formation (∆H f , 25℃) of products and reactants using the following thermody-namic data: Al(NO3)3·9H2O: −897.38 kcal/mol; Mg(OH)2: −924.5kcal/mol; CH4N2O: 79.7kcal/mol; MgAl2O4: −547.38 kcal/mol; N2: 0 kcal/mol; CO2: −94.05kcal/mol; H2O: −57.79 kcal/mol[31-32]. According to these thermody-namic data the combustion reaction is endothermic (∆H°= 425.77 kcal/mol, 25℃).Within 5 min of irradiation, reaction mixture was con-verted into a clear solution and started to boil. After about 20 min of irradiation, the concentrated mixture solution burst into flames and resulted into a foamy white powder. X-ray diffraction pattern of synthesized powder is shown in Fig. 1. This pattern shows that prepared powders are well crystallized with single-phase spinel structure[33]. Table 1 shows the particle size, BET surface area and pore volume of microwave assisted synthesized MgAl2O4 spinel nanoparticles. The size of particles calculated from XRD peaks by using Scherrer’s formula and the (311) plane was considered for the crystallite size calculation (around 75 nm)[26]. For the purpose of comparison, physi-cal properties of magnesium aluminate spinel nanoparti-cles which were produced by recent various methods, i.e. conventional solid state[34], co-precipitation[24], conventional combustion[24], and microwave-assisted solid-state[14] routes, are listeded in Table 1. Although applying microwave ir-radiation results in formation of spinel powders with larger crystallite size, smaller BET surface area and pore volume than other traditional methods, it reduces the duration of whole preparation process. In the conventional solid-state methods metal oxide powders must be milled, granulated, dry-pressed in the form of pellets and sintered at 1625℃ for at least 2h[34-35]. Furthermore, most times mineral-izer[36], additives like ZnO[37] or sintering aids as AlCl3[7, 38] are required. Applying coprecipitation and also conven-tional combustion methods are also require sintering Fig. 1 X-ray diffraction pattern of MgAl2O4 spinel nanoparticlesTable 1 Physical properties of MgAl2O4 spinel nanoparticles produced by the various methodsMethods BET surface area /(m2·g−1)Crystallite size a /nm Pore volume /(mL·g−1) ReferencesMicrowave combustion 2.1 75 0.0033 This workConventional solid state 8.1 44 − [34] Coprecipitation 8.1 15 0.0313[24] Conventional combustion 28.2 27 0.0436 [24]Microwave solid state 36.0 66 −[14]a MgAl2O4 crystallite size is calculated from (311) plane[26]552 无机材料学报第26卷at high temperatures, i.e. 1000℃ for 2 h[24, 39]. In micro-wave assisted solid-state method carbon black has been added to metal oxides as a microwave susceptor up to 50wt% (after activation at 550℃ for 6 h) and also SiC are used as a bottom plate. These precursors must be irradi-ated by microwave for 60 min in order to magnesium alu-minate spinel to form[14]. According to Ganesh et al., a solid mixture of metal nitrates and urea as a fuel will pro-duce the nanoparticles of spinel in 45 min microwave ir-radiation[40]. It seems that replacing magnesium nitrate by active magnesium hydroxide decreased the irradiation time for more than 55% in this work.It is well known that heating mechanism in microwave processing is fundamentally different from conventional processing. Microwave radiation is absorbed and con-verted rapidly to thermal energy from inside the material and therefore a dramatic decrease of processing time and energy consummation will result[41]. Therefore, by apply-ing microwave irradiation and replacing active magnesium hydroxide as a precursor instead of magnesium oxide or nitrate in this combustion method, the time duration for preparation of spinel nanopowders is decreased and elec-trical heating and sintering process is omitted. This method can be regarded as an effective and economic method for preparation of spinel due to its convenient process, simple experimental setup, significant time and energy saving and high purity products. Therefore, this method should be considered as an alternative route for the fabrication of MgAl2O4 nanopowder.Generally, increasing temperature treatment due to the sintering process increases the crystallite sizes of pow-ders[42-45]. Therefore, it can be concluded that microwave assisted combustion synthesized spinel powders are ex-posed to higher temperatures than conventional heating prepared powders. According to the SEM image (Fig. 2) microwave-assisted combustion synthesized sample has spherical shape with homogenous morphology.Fig. 2 SEM image of MgAl2O43 ConclusionMgAl2O4 spinel nanoparticles can be prepared by mi- crowave-assisted combustion method and applying syn-thesized magnesium hydroxide as a reagent in 20 min. Spinel nanoparticles synthesized through this method are exposed to higher temperatures than conventional heating methods and have larger crystallite size (around 75 nm). This method is technically simple, cost effective and time- and energy-saving compared with conventional heating methods.AcknowledgementThe authors thank the Offices of the Vice-President for Research Affairs of South Tehran Branch of Islamic Azad University and also Shahid Beheshti University for sup-porting this work.References:[1] Pati R K, Pramanik P. Low-temperature chemical synthesis ofnanocrystalline MgAl2O4 spinel powder. Journal of the American Ceramic Society, 2000, 83(7): 1822−1824.[2] Salmans J, Galicia J A, Wang J A, et al. Synthesis and characteri-zation of nanocrystallite MgAl2O4 spinels as catalysts support.Journal of Materials Science Letters, 2000, 19(12): 1033−1037. [3] Li G J, Sun Z R, Chen C H, et al. Synthesis of nanocrystallineMgAl2O4 spinel powders by a novel chemical method. Materials Letters, 2007, 61(17): 3585−3588.[4] Mohapatra D, Sarkar D. Preparation of MgO-MgAl2O4 compositefor refractory application. Journal of Materials Processing Tech-nology, 2007, 189(1/2/3): 279−283.[5] Gusmano G, Montesperelli G, Traversa E, et al. Microstructure andelectrical properties of MgAl2O4 thin films for humidity sensing.Journal of the American Ceramic Society, 1993, 76(3): 743−750. [6] Li J G, Ikegami T, Lee J H, et al. Fabrication of translucent magne-sium aluminium spinel ceramics. Journal of the American Ceramic Society, 2000, 83(11): 2866−2868.[7] Ganesh I, Bhattacharjee S, Saha B P, et al. A new sintering aid formagnesium aluminate spinel. Ceramics International, 2001, 27(7):773−779.[8] Adak A K, Sahanthe S K, Pramanik P. Synthesis and characteriza-tion of MgAl2O4 spinel by PV A evaporation technique. Journal of Material Science Letters, 1997, 16(3): 234−235.[9] Naskar M K, Chattarjee M. Magnesium aluminate (MgAl2O4)spinel powders from water-based sols. Journal of the American第5期 LeilaTorkian, et al: Instant Synthesis of Nano Crystalline MgAl2O4 Spinel Powder 553Ceramic Society, 2005, 88(1): 38−44.[10] Bickmore C R, Waldner K F, Treadwell D R. Ultrafine spinelpowders by flame spray pyrolysis of a magnesium aluminum dou-ble alkoxide. Journal of the American Ceramic Society, 1996, 79(5): 1419−1423.[11] Wang C T, Lin L S, Yang S J.Preparation of MgAl2O4 spinel pow-ders via freeze-drying of alkoxide precursors. Journal of the American Ceramic Society, 1992, 75(8): 2240−2243.[12] Tavangarian F, Emadi R.Synthesis and characterization of purenanocrystalline magnesium aluminate spinel powder. Journal of Alloys and Compounds, 2010, 489(2): 600−604.[13] Montolouillour V, Massior D, Douy A. Characterization ofMgAl2O4 precursor powders prepared by aqueous route. Journal of the American Ceramic Society, 1999, 82(12): 3299−3304. [14] Ganesh I, Srinivas B, Johnson R, et al. Microwave assisted solidstate reaction synthesis of MgAl2O4 spinel powders. Journal of the European Ceramic Society, 2004, 24(2): 201−207.[15] Bhaduri S, Bhaduri S B. Microstructural and mechanical propertiesof nanocrystalline spinel and related composites.Ceramics Inter-national, 2002, 28(2): 153−158.[16] Varnier O, Hovnanian N, Larbot A, et al. Sol-Gel synthesis ofmagnesium aluminate spinel from a heterometallic alkoxide.Ma-terials Research Bulletin, 1994, 29: 479−488.[17] Minani T. Instant synthesis of nanoscale spinel aluminates.Journalof Alloys and Compounds, 2001, 315(1/2): 123−128.[18] Domanski D, Urretavizcaya G, Castro F J, et al. Mechanochemicalsynthesis of magnesium aluminate spinel powder at room tem-perature.Journal of the American Ceramic Society, 2004, 87(11): 2020−2024.[19] Angappan S, Berchmans L J, Augustin C O. Sintering behavior ofMgAl2O4-a prospective anode material. Materials Letters, 2004,58(17/18): 2283−2289.[20] Ganesh I, Srinivas B, Johnson R, et al. Effect of fuel type on mor-phology and reactivity of combustion synthesized MgAl2O4 pow-ders. British Ceramic Transactions, 2002, 101(6): 247−256. [21] Ganesh I, Srinivas B, Johnson R, et al. Effect of preparationmethod on sinterability and properties of nano crystalline MgAl2O4and ZrO2_MgAl2O4 materials. British Ceramic Transactions, 2003, 102(3): 119−128.[22] Reveron H, Gutierrez-Campos D, Rodriguez R M, et al. Chemicalsynthesis and thermal evolution of MgAl2O4 spinel precursor pre-pared from industrial gibbsite and magnesia powder. Materials Letters, 2002, 56(1/2): 97−101.[23] Edwin H Walker, Jr. Owens J W, Etienne M, et al. The novel lowtemperature synthesis of nanocrystalline MgAl2O4 spinel using “gel” precursors. Materials Research Bulletin, 2002, 37(6): 1041−1051. [24] Torkian L, Amini M M, Bahrami Z. Synthesis and characterizationof a nanorefractory dimetaloxide spinel. e-Journal of Surface Sci-ence and Nanotechnology, 2010, 8: 1−3.[25] Xu B, Wei J, Wang H, et al. Nano-MgO: novel preparation and ap-plication as support of Ni catalyst for CO2 reforming of methane.Catalysis Today, 2001, 68(1/2/3): 217−225.[26] Klug H P, Alexander L E. X-ray Diffraction Procedures for Poly-crystalline and Amorphous Materials, 2nd ed., John Wiley and Sons, New York, 1974.[27] Bai J H, Liu J C, Li C F, et al. Mixture of fuels approach for solu-tion combustion synthesis of nanoscale MgAl2O4 powders. Ad-vanced Powder Technology, 2011, 22(1): 72−76.[28] Kambalea R C, Shaikha P A, Haralea N S, et al. Structural andmagnetic properties of Co1-x Mn x Fe2O4 (0≤x≤0.4) spinel ferrites synthesized by combustion route. Journal of Alloys and Com-pounds, 2010, 490(1/2): 568−571.[29] Segadaes A M, Morelli M R, Kiminami R H G A. Combustionsynthesis of aluminum titanate. Journal of European Ceramic So-ciety, 1998, 18(7): 771−781.[30] Jain S R, Adiga K C, Pai V R. A new approach to thermochemicalcalculations of condensed fuel-oxidizer mixtures. Combustion and Flame, 1981, 40: 71−79.[31] Dean J A (Ed.), Lange’s Handbook of Chemistry, 12th ed.,McGraw-Hill, New York, 1979.[32] Lie D R (Ed.), CRC Handbook of Chemistry and Physics. 84th ed.,CRC press, London, 2003−2004.[33] Joint Committee of Powder Diffraction, card Number 1−1157.[34] Ganesh I, Bhattacharjee S, Saha B P, et al. An efficient MgAl2O4spinel additive for improved slag erosion and penetration resis-tance of high-Al2O3 and MgO-C refractories. Ceramics Interna-tional, 2002, 28(3): 245−253.[35] Ganesh I, Reddy G J, Sundararajan G, et al. Influence of process-ing route on microstructure and mechanical properties of MgAl2O4spinel. Ceramics International, 2010, 36(2): 473−482.[36] Chen S K, Cheng M Y, Lin S J. Reducing the sintering temperaturefor MgO-Al2O3 mixtures by addition of cryolite (Na3AlF6). Journal of the American Ceramic Society, 2002, 85(3): 540−544.[37] Ghosh A, Dos S K, Biswas J R, et al. The effect of ZnO additionon the densification and properties of magnesium aluminate spinel.Ceramics International, 2000, 26(6): 605−608.[38] Pacurariu C, Lazau I, Ecsedi Z, et al. New synthesis methods ofMgAl2O4 spinel. Journal of the European Ceramic Society, 2007, 27(2/3): 707−710.[39] Guo J, Lou H, Zhao H, et al. Novel synthesis of high surface areaMgAl2O4 spinel as catalyst support. Materials Letters, 2004, 58(12/13): 1920−1923.[40] Ganesh I, Johnson R, Rao G V N, et al. Microwave-assisted com-554 无机材料学报第26卷bustion synthesis of nano crystalline MgAl2O4 spinel powder. Ce-ramics International, 2005, 31(1): 67−74.[41] Sertkol M, Koseoglu Y, Baykal A, et al. Synthesis and magneticcharacterization of Zn0.7Ni0.3Fe2O4 nanoparticles via microwave- assisted combustion route. Journal of Magnetism and Magnetic Materials, 2010, 322(7): 866−871.[42] Singh R C, Singh M P, Singh O, et al. Influence of synthesis andcalcination temperatures on particle size and ethanol sensing be-havior of chemically synthesized SnO2 nanostructures. Sensors and Actuators B: Chemical, 2009, 143(1): 226−232. [43] Udomporn S, Ananta S. Effect of calcination condition on phaseformation and particle size of lead titanate powders synthesized by the solid-state reaction. Materials Letters, 2004, 58(7/8): 1154−1159.[44] Xu C, Tamaki J, Mura N, et al. Grain size effects on gas sensitivityof porous SnO2-based elements. Sensors and Actuators B, 1991, 3(2): 147−155.[45] Saberi A, Golestani-Fard F, Willert-Porada M, et al. A novel ap-proach to synthesis of nanosize MgAl2O4 spinel powder through Sol-Gel citrate technique and subsequent heat treatment. Ceramics International, 2009, 35(3): 933−937.。
钢铁厂常用英文词组汇总
钢铁厂常用英文词组汇总一、炼焦 coking高温炭化 high temperature carbonization塑性成焦机理 plastic mechanism of coke formation中间相成焦机理 mesophase mechanism of coke formation 选煤 coal preparation, coal washing酉己煤 coal blending配煤试验 coal blending test炼焦煤 coking coal气煤 gas coal肥煤 fat coal瘦煤 lean coal焦炉 coke oven焦化室 oven chamber焦饼 coke cake结焦时间coking time周转时间cycle time装煤 coal charging捣固装煤 stamp charging推焦 coke pushing焦炭熄火 coke quenching干法熄焦 dry quenching of coke焦台 coke wharf装煤车 larry car推焦机 pushing machine拦焦机coke guide熄焦车 quenching car焦炉焖炉 banking for coke oven焦炭coke冶金焦 metallurgical coke铸造焦 foundry coke焦炭工业分析 proximate analysis of coke焦炭元素分析 ultimate analysis of coke焦炭落下指数 shatter index of coke焦炭转鼓指数drum index of coke焦炭热强度 hot strength of coke焦炭反应性 coke reactivity焦炭反应后强度 post-reaction strength of coke 焦炭显微强度 microstrength of coke焦炉煤气coke oven gas发热值 calorific value煤焦油coal tar粗苯 crude benzol苯 benzene甲苯 toluene二甲苯 xylene苯并吠喃-茚树脂 coumarone-indene resin精萘 refined naphthalene精蒽 refined anthracene煤[焦油]沥青 coal tar pitch沥青焦 pitch coke针状焦 needle coke型焦 formcoke耐火材料 refractory materials耐火粘土 fireclay高岭土 kaolin硬质粘土 flint clay轻质粘土 soft clay陶土 pot clay蒙脱石 montmorillonite叶蜡石 pyrophyllite膨润土 bentonite鳞石英tridymite方石英 cristobalite砂岩 sandstone耐火石firestone莫来石mullite氧化铝alumina烧结氧化铝sintered alumina电熔氧化铝fused alumina|刚玉 corundum红柱石 andalusite蓝晶石 kyanite,cyanite硅线石 sillimanite橄榄石olivine方镁石periclase镁砂 magnesia合成镁砂 synthetic sintered magnesia电熔镁砂 fused magnesia烧结白云石砂 sintered dolomite clinker合成镁铬砂 synthetic magnesia chromite clinker尖晶石spinel镁铬尖晶石 magnesia chrome spinel,magnesiochromite 硅藻土 diatomaceous earth, infusorial earth蛭石 vermiculite珍珠岩perlite碳化硅 silicon carbide氮化硅 silicon nitride氮化硼 boron nitride粘土熟料chamotte熟料grog轻烧 light burning,soft burning死烧 dead burning,hard burning 成型模注 shaping moulding机压成型 mechanical pressing 等静压成型 isostatic pressing 摩擦压砖机friction press液压压砖机hydraulic press捣打成型 ramming process熔铸成型 fusion cast process砖坯强度 green strength,dry strength隧道窑 tunnel kiln回转窑 rotary kiln倒焰窑 down draught kiln耐火砖 refractory brick标准型耐火砖standard size refractory brick 泡砂石 quartzite sandstone酸性耐火材料 acid refractory [material]硅质耐火材料 siliceous refractory [material] 硅砖 silica brick,dinas brick熔融石英制品 fused quartz product硅酸铝质耐火材料 aluminosillicate refractory 半硅砖 semisilica brick粘土砖 fireclay brick,chamotte brick石墨粘土砖 graphite clay brick高铝砖 high alumina brick硅线石砖 sillimanite brick莫来石砖 mullite brickI刚玉砖 corundum brick铝铬砖 alumina chrome brick熔铸砖 fused cast brick碱性耐火材料 basic refractory [material]镁质耐火材料 magnesia refractory [material] 镁砖 magnesia brick镁铝砖 magnesia alumina brick镁铬砖 magnesia chrome brick镁炭砖 magnesia carbon brick中性耐火材料 neutral refractory [material] 复合砖 composite brick铝炭砖 alumina carbon brick铝镁炭转 alumina magnesia brick锆炭砖 zirconia graphite brick镁钙炭砖 magnesia clacia carbon brick长水口 long nozzle浸入式水口 immersion nozzle,submerged nozzle 定径水口 metering nozzle氧化铝-碳化硅-炭砖 Al2O3-SiC-C brick透气砖 gas permeable brick,porous brick滑动水口 slide gate nozzle水口砖 nozzle brick塞头砖stopper绝热耐火材料 insulating refractory轻质耐火材料 light weight refractory袖砖 sleeve brick格子砖 checker brick,chequer brick陶瓷纤维ceramic fiber耐火纤维 refractory fiber耐火浇注料 refractory castable耐火混凝土 refractory concrete荷重耐火性 refractoriness under load抗渣性 slagging resistance耐磨损性 abrasion resistance[含]碳[元]素材料 carbon materials无定形碳 amorphous carbon金刚石diamond炭相[学]carbon micrography炭黑 carbon black石油沥青 petroleum pitch石油焦炭 petroleum coke石墨化 graphitization石墨化电阻炉 electric resistance furnace for graphitization 石墨纯净化处理 purification treatment of graphite炭砖 carbon brick炭块 carbon block碳化硅基炭块 SiC-based carbon block炭电极 carbon electrode连续自焙电极Soderberg electrode石墨电极 graphite electrode超高功率石墨电极 ultra-high power graphite electrode石墨电极接头 graphite electrode nipple石墨电极接头孔 graphite electrode socket plug电极糊 electrode paste石墨坩埚 graphite crucible石墨电阻棒 graphite rod resistor炭刷 carbon brush高纯石墨 high purity graphite铁合金 ferroalloy硅铁 ferrosilicon硅钙 calcium silicon金属硅 silicon metal锰铁 ferromangnanese低碳锰铁 low carbon ferromanganese硅锰 silicomanganese金属锰 manganese metal铬铁 ferrochromium低碳铬铁 low carbon ferrochromium微碳铬铁 extra low carbon ferrochromium硅铬 silicochromium金属铬 chromium metal钨铁 ferrotunsten钼铁 ferromolybdenum钛铁 ferrotitanium硼铁 ferroboron铌铁 ferroniobium磷铁 ferrophosphorus镍铁 ferronickel锆铁 ferrozirconium硅锆 silicozirconium稀土硅铁 rare earth ferrosilicon稀土镁硅铁 rare earth ferrosilicomagnesium成核剂 nucleater孕育剂 incubater,inoculant球化剂nodulizer蠕化剂 vermiculizer中间铁合金master alloy复合铁合金 complex ferroalloy电碳热法 electro-carbothermic process电硅热法 electro-silicothermic process铝热法 aluminothermic process,thermit process 电铝热法 electro-aluminothermic process开弧炉open arc furnace埋弧炉submerged arc furnace半封闭炉 semiclosed furnace封闭炉 closed furnace矮烟罩电炉 electric furnace with low hood矮炉身电炉 low-shaft electric furnace人造块矿 ore agglomerates烧结矿sinter压块矿briquette球团[矿]pellet针铁矿goethite自熔性铁矿self-fluxed iron ore复合铁矿 complex iron ore块矿lump ore粉矿 ore fines矿石混匀 ore blending酉己矿 ore proportioning矿石整粒 ore size grading返矿 return fines储矿场 ore stockyard矿石堆料机 ore stocker 匀矿取料机ore reclaimer 熔剂flux 消石灰 slaked lime 活性石灰 quickened lime有机粘结剂organic binder烧结混合料sinter mixture烧结铺底料 hearth layer for sinter烧结 sintering烧结热前沿 heat front in sintering烧结火焰前沿 flame front in sintering渣相粘结slag bonding扩散粘结 diffusion bonding带式烧结机 Dwight-Lloyd sintering machine环式烧结机 circular travelling sintering machine烧结梭式布料机shuttle conveyer belt烧结点火料 sintering ignition furnace烧结盘 sintering pan烧结锅 sintering pot烧结冷却机sinter cooler带式冷却机 straight-line cooler环式冷却机 circular cooler,annular cooler生球 green pellet,ball生球长大聚合机理ball growth by coalescence生球长大成层机理ball growth by layering生球长大同化机理ball growth by assimilation精矿成球指数 balling index for iron ore concentrates生球转鼓强度 drum strength of green pellet生球落下强度 shatter strength of green pellet生球抗压强度 compression strength of green pellet生球爆裂温度 cracking temperature of green pellet 圆筒造球机balling drum圆盘造球机balling disc竖炉陪烧球团 shaft furnace for pellet firing带式机陪烧球团 traveling grate for pellet firing 链算机-回转窑陪烧球团grate-kiln for pellet firing 环式机陪烧球团 circulargates for pellet firing 冷固结球团cold bound pellet维式体wustite铁橄榄石fayalite铁尖晶石hercynite铁黄长石 ferrogehlenite铁酸半钙 calcium diferrite铁酸钙 calcium ferrite铁酸二钙 dicalcium ferrite锰铁橄榄石knebelite钙铁橄榄石kirschsteinite钙铁辉石hedenbergite钙铁榴石andradite钙长石anorthite钙镁橄榄石monticellite钙钛矿 perovskite硅灰石 wollastonite硅酸二钙 dicalcium silicate硅酸三钙 tricalcium silicate镁橄榄石forsterite镁黄长石 akermanite镁蔷薇辉石manganolite钙铝黄长石gehlenite钛辉石 titanaugite枪晶石cuspidine预还原球团 pre-reduced pellet金属化球团 metallized pellet转鼓试验 drum test,tumbler test落下试验 shatter test二、炼铁iron making 高炉炼铁[法]blast furnace process高炉 blast furnace鼓风炉 blast furnace炉料 charge, burden矿料 ore charge焦料 coke charge炉料提升 charge hoisting小车上料 charge hoisting by skip吊罐上料 charge hoisting by bucket皮带上料 charge hoisting by belt conveyer装料 charging装料顺序 charging sequence储料漏斗hopper双料钟式装料 two-bells system charging无料钟装料 bell-less charging布料器 distributor炉内料线 stock line in the furnace探料尺 gauge rod利用系数 utilization coefficient冶炼强度 combustion intensity鼓风blast风压 blast pressure风温 blast temperature鼓风量 blast volume鼓风湿度 blast humidity全风量操作full blast慢风 under blowing休风delay喷吹燃料 fuel injection喷煤 coal injection喷油 oil injection富氧鼓风 oxygen enriched blast,oxygen enrichment 置换比 replacement ratio喷射器injector热补偿 thermal compensation焦比 coke ratio,coke rate燃料比 fuel ratio,fuel rate氧化带 oxidizing zone风口循环区raceway蒸汽鼓风 humidified blast混合喷吹 mixed injection脱湿鼓风 dehumidified blast炉内压差 pressure drop in furnace煤气分布 gas distribution煤气利用率 gas utilization rate炉况 furnace condition顺行 smooth running焦炭负荷 coke load,ore to coke ratio软熔带cohesive zone,softening zone渣比 slag to iron ratio,slag ratio上部[炉料]调节 burden conditioning下部[鼓风]调节 blast conditioning高炉作业率 operation rate of blast furnace休风率 delay ratio高炉寿命 blast furnace campaign 悬料 hanging崩料slip沟流 channeling结瘤 scaffolding炉缸冻结 hearth freeze-up开炉blow on停炉 blow off积铁 salamander炉型 profile,furnace lines炉喉throat炉身 shaft,stack炉腰belly炉腹bosh炉缸hearth炉底bottom炉腹角bosh angle炉身角 stack angle有效容积 effective volume工作容积 working bolume铁口 iron notch, slag notch渣口 cinder notch, slag notch 风口 tuyere窥视孔peep hole风口水套 tuyere cooler渣口水套 slag notch cooler风口弯头 tuyere stock热风围管bustle pipe堵渣机stopper泥炮 mud gun,clay gun开铁口机 iron notch drill铁水 hot metal铁[水]罐 iron ladle鱼雷车torpedo car主铁沟sow出铁沟 casting house铁沟 iron runner渣沟 slag runner渣罐 cinder ladle, slag ladle撇渣器skimmer冷却水箱cooling plate冷却壁 cooling stave汽化冷去却 vaporization cooling热风炉 hot blast stove燃烧室 combustion chamber燃烧器burner热风阀 hot blast valve烟道阀 chimney valve冷风阀 cold blast valve助燃风机burner blower切断阀 burner shut-off valve旁通阀 by-pass valve混风阀 mixer selector valve送风期 on blast of stove,on blast燃烧期 on gas of stove, on gas换炉 stove changing放散阀 blow off valve内燃式热风炉Cowper stove外燃式燃烧炉 outside combustion stove 顶燃式热风炉 top combustion stove炉顶放散阀bleeding valve放散管bleeder上升管 gas uptake放风阀 snorting valve均压阀 equalizing valve高压调节阀septum valve炉顶高压 elevated top pressure铸铁机 pig-casting machine铸铁模pig mold冲天炉cupola水渣 granulating slag水渣池 granulating pit渣场 slag disposal pit高炉煤气 top gas,blast furnace gas高炉煤气回收topgas recovery,TGR非焦炭炼铁non-coke iron making直接还原炼铁[法]direct reduction iron making直接还原铁 directly reduced iron,DRI竖炉直接炼铁direct reduction in shaft furnace流态化炼铁 fluidized-bed iron making转底炉炼铁 rotary hearth iron making米德雷克斯直接炼铁[法]Midrex processHYL直接炼铁[法]HYL process克虏伯回转窑炼铁[法]Krupp rotary kiln iron-making 熔态还原 smelting reduction铁溶法 iron-bath process科雷克斯法COREX process生铁 pig iron海绵铁 sponge iron镜铁 spiegel iron清铁法 H-rion process三、炼钢 steelmaking车冈水 liquid steel,molten steel车钢 semisteel沸腾钢 rimming steel,rimmed steel镇静钢 killed steel半镇静钢 semikilled steel压盖沸腾钢capped steel坩埚炼钢法 crucible steelmaking双联炼钢法 duplex steelmaking process连续炼钢法 continuous steelmaking process直接炼钢法 direct steelmaking process混铁炉 hot metal machine装料机 charging machine 装料期 charging machine 加热期 heating period 熔化期 melting period 造渣期 slag forming period 精炼期refining period 熔清 melting down 脱氧 deoxidation预脱氧 preliminary dexidation 还原渣 reducing slag 酸性渣acid slag碱性渣basic slag脱碳 decarburization增碳 recarburization脱磷 dephosphorization 回磷 rephosphorization 脱硫desulfurization 回硫 resulfurization 脱氮 denitrogenation过氧化 overoxidation 出钢 tapping冶炼时间 duration of heat 出钢样 tapping sample 浇铸样 casting sample 不合格炉次off heat熔炼损耗melting loss铁损 iron loss废钢scrap废钢打包 baling of scrap造渣材料 slag making materials 添力口剂 addition reagent 脱氧剂deoxidizer脱硫剂 desulfurizer冷却剂coolant回炉渣 return slag喷枪lance浸入式喷枪submerged lance钢包ladle出钢口 top hole出钢槽 pouring lining炉顶 furnace roof炉衬 furnace lining炉衬侵蚀 lining erosion渣线 slag line炉衬寿命lining life分区砌砖zoned lining补炉 fettling热修 hot repair喷补 gunning火焰喷补flame gunning转炉 converter底吹转炉 bottom-blown converter酸性空气底吹转炉 air bottom-blown acid converter碱性空气底吹转炉 air bottom-blown basic converter侧吹转炉 side-blown converter卡尔多转炉Kaldo converter氧气炼铁 oxygen steelmaking氧气顶吹转炉 top-blown oxygen converter,LI converter氧气底吹转炉 bottom-blown oxygen converter quiet basic oxygen furnace,QBOF顶底复吹转炉 top and bottom combined blown converter喷石灰粉顶吹氧气转炉法oxygen lime process底吹煤氧的复合吹炼法 Klockner-Maxhutte steelmaking process,KMS 住友复合吹炼法 Sumitomo top and bottom blowing process,STB LBE 复吹法 lance bubbling equilibrium process,LBE顶枪喷煤粉炼钢法 Arved lance carbon injection process,ALCI蒂森复合吹炼法 Thyssen Blassen Metallurgical process,TBM 面吹 surface blow软吹 soft blow硬吹 hard blow补吹reblow过吹 overblow后吹 after blow目标碳 aim carbon终点碳 end point carbon高拉碳操作 catch carbon practice增碳操作 recarburization practice单渣操作 single-slag operation双渣操作 double-slag operation渣乳化 slag emulsion二次燃烧 postcombustion吹氧时间 oxygen blow duration吹炼终点blow end point倒炉 turning down喷渣 slopping喷溅 spitting静态控制 static control动态控制 dynamic control氧枪 oxygen lance氧枪喷孔 nozzle of oxygen lance多孔喷枪 multi-nozzle lance转炉炉体 converter body炉帽upper cone炉口 mouth,lip ring装料大面impact pad活动炉底 removable bottom顶吹氧枪 top blow oxygen lance副枪 sublance多孔砖 nozzle brick单环缝喷嘴 single annular tuyere双环缝喷嘴 double annular tuyere挡渣器 slag stopper挡渣塞 floating plug电磁测渣器 electromagnetic slag detector废气控制系统 off gas control system,OGCS平炉 open-hearth furnace平炉炼钢 open-hearth steelmaking冷装法 cold charge practice热装法 hot charge practice碳沸腾 carbon boil石灰沸腾lime boil炉底沸腾bottom boil再沸腾reboil有效炉底面积effective hearth area酸性平炉 acid open-hearth furnace碱性平炉 basic open-hearth furnace固定式平炉 stationary open-hearth furnace倾动式平炉 tilting open-hearth furnace双床平炉 twin-hearth furnace顶吹氧气平炉 open-hearth furnace with roof oxygen lance蓄热室 regenerator沉渣室 slag pocket电炉炼钢 electric steelmaking电弧炉electric arc furnace超高功率电弧炉 ultra-high power electric arc furnace直流电弧炉 direct current electric arc furnace双电极直流电弧炉 double electrode direct current arc furnace 竖窑式电弧炉shaft arc furnace电阻炉 electric resistance furnace工频感应炉 line frequency induction furnace中频感应炉 medium frequency induction furnace高频感应炉 high frequency induction furnace电渣重熔 electroslag remelting,ESR电渣熔铸 electroslag casting,ESC电渣浇注 Bohler electroslag tapping,BEST真空电弧炉重熔 vacuum arc remelting,VAR真空感应炉熔炼 vacuum induction melting,VIM电子束炉重熔 electron beam remelting,EBR等离子炉重炼 plasma-arc remelting,PAR水冷模电弧熔炼cold-mold arc melting等离子感应炉熔炼 plasma induction melting,PIM等离子连续铸锭 plasma progressive casting,PPC等离子凝壳铸造 plasma skull casting,PSC能量优化炼钢炉 energy optimizing furnace,EOF氧燃喷嘴 oxygen-fuel burner氧煤助熔 accelerated melting by coal-oxygen burner氧化期 oxidation period还原期 reduction period长弧泡沫渣操作弧长控制long arc foaming slag operation 白渣 white slag电石渣 carbide slag煤氧喷吹 coal-oxygen injection炉壁热点hot spots on the furnace wall偏弧 arc bias透气塞 porous plug出钢到出钢时间tap-to-tap time虹吸出钢 siphon tapping偏心炉底出钢 eccentric bottom tapping,EBT中心炉底出钢 centric bottom tapping,CBT侧面炉底出钢 side bottom tapping,SBT滑动水口出钢 slide fate tapping四、精炼铁水预处理 hot metalpretreatment机械搅拌铁水脱硫法 KR process torpedo desulfurization鱼雷车铁水脱磷 torpedo dephosphorization二次精炼 secondary refining钢包精炼 ladle refining合成渣 synthetic slag微合金化 microalloying成分微调trimming钢洁净度 steel cleanness钢包炉 ladle furnace,LF直流钢包炉DC ladle furnace真空钢包炉LF-vacuum真空脱气 vacuum degassing真空电弧脱气 vacuum arc degassing,VAD真空脱气炉 vacuum degassing furnace,VDF真空精炼 vacuum refining钢流脱气 stream degassing提升式真空脱气法Dortmund Horder vacuum degassing process,DH 循环式真空脱气法Ruhstahl-Hausen vacuum degassing process,RH 真空浇铸 vacuum casting吹氧 RH 操作 RH-oxygen blowing,RH-OB川崎顶吹氧 RH 操作 RH-Kawasaki top blowing,RH-KTB喷粉 RH 操作 RH-poowder blowing,TH-PB喷粉法 powder injection process喷粉精炼 injection refining蒂森钢包喷粉法 Thyssen Niederhein process,TN瑞典喷粉法 Scandinavian Lancer process,SL君津真空喷粉法 vacuum Kimitsu injection process密封吹氩合金成分调整法 composition adjustment by sealed argon bubbling,CAS吹氧提温 CAS 法 CAS-OB process脉冲搅拌法 pulsating mixing process,PM电弧加热电磁搅拌钢包精炼法ASEA-SKF process真空吹氧脱碳法 vacuum oxygen decarburization process ,VOD 氩氧脱碳法 argon-oxygen decarburization process,AOD 蒸汽氧精炼法Creusot-Loire Uddelholm process,CLU无渣精炼 slag free refining摇包法 shaking ladle process铝弹脱氧法 aluminium bullet shooting,ABS钢锭ingot铸锭 ingot casting坑铸 pit casting车铸 car casting钢锭模ingot mold保温帽hot top下铸 bottom casting上铸 top casting补浇 back pour,back feeding浇注速度 pouring speed脱模 ingot stripping发热渣exoslag防再氧化操作 reoxidation protection连续浇注 continuous casting连铸机 continuous caster,CC,continuous casting machine,CCM弧形连铸机 bow-type continuous caster立弯式连铸机 vertical-bending caster立式连铸机vertical caster水平连铸机 horizontal caster小方坯连铸机billet caster大方坯连铸机bloom caster板坯连铸机slab caster薄板坯连铸机thin-slab casting薄带连铸机strip caster近终型浇铸 near-net-shape casting单辊式连铸机single-roll caster单带式连铸机 single-belt caster双带式连铸机 twin-belt caster倾斜带式连铸机 inclined conveyer type caster[连铸]流 strand铸流间距 strand distance注流对中控制 stream centering control钢包回转台ladle turret中间包tundish回转式中间包 swiveling tundish倾动式中间包tiltable tundish中间包挡墙 weir and dam in tundish弓1锭杆dummy bar刚性引锭杆rigid dummy bar挠性引锭杆 flexible dummy bar结晶器mold直型结晶器straight mold弧形结晶器curved mold组合式结晶器composite mold多级结晶器multi-stage mold调宽结晶器adjustable mold结晶器振动 mold oscillation结晶器内钢液顶面meniscus,steel level钢液面控制技术 steel level control technique 保护渣 casting powder,mold powder凝壳shell液芯liquid core空气隙air gap一次冷却区 peimary cooling zone二次冷却区 secondary cooling zone极限冷却速度 critical cooling rate浇铸半径 casting radius渗漏 bleeding拉坯速度 casting speed拉漏 breaking out振动波纹 oscillation mark水口堵塞 nozzle clogging气水喷雾冷去却 air mist spray cooling 分离环 separating ring 拉辊 withdrawal roll立式导辊 vertical guide roll 弯曲辊 bending roll 夹辊 pinch roll 矫直辊 straightening roll驱动辊 driving roll导向辊装置 roller apron切割定尺装置 cut-to-length device 钢流保护浇注 shielded casting practice 多点矫直multipoint straightening 电磁搅拌electromagnetic stirring,EMS 浇注周期casting cycle 多炉连浇sequence casting 事故溢流槽 emergercy launder 菜花头 cauliflower top 钢锭缩头piped top 表面缺陷 surface defect 内部缺陷 internal defect 缩孔 shrinkage cavity 中心缩孔 center line shrinkage 气孔 blowhole表面气孔 surface blowhole 皮下气孔 subskin blowhole 针孔 pinhole 铸疤 feather 冷隔 cold shut 炼钢缺陷lamination 发裂 flake,hair crack 纵裂 longitudinal crack横裂 transverse crack角部横向裂纹transverse corner crack角部纵向裂纹longitudinal corner crack收缩裂纹 shrinkage crack热裂 hot crack冷裂 cold crack冷脆 cold shortness热脆 hot shortness夹渣 slag inclusion皮下夹杂 subsurface inclusion正偏析 positive segregation负偏析 negative segregation,inverse seregationV 形偏析V -shaped segregation倒 V 形偏析A —shaped segregation中心偏析 center segregation中心疏松 center porosity鼓肚 bulging脱方 rhomboidity连铸一直接轧制 continuous casting-direct rolling 工艺CC-DR9钢铁材料铸铁cast iron熟铁 wrought iron电解铁 electrolytic iron 白口铸铁 white cast iron 灰口铸铁 grey cast iron麻口铸铁变性铸铁孕育铸铁冷硬铸铁mottled cast iron modified cast iron inoculated cast iron chilled cast iron球墨铸铁nodular cast iron蠕墨铸铁 vermicular cast iron可锻铸铁 malleable cast iron半可锻铸铁 semi-malleable cast iron奥氏体铸铁 austenitic cast iron 贝氏体铸铁bainitic cast iron 共晶白口铁 eutectic white iron 亚共晶白口铁 hypoeutectic white iron 过共晶白口铁 hypereutectic white iron 结构钢constructional steel软钢 mild steel普通碳素钢 plain carbon steel正火钢 normalized steel热轧钢 hot rolled steel高强度低合金钢 high-strength low-alloy steel 微合金钢 micro-alloy steel冷轧钢 cold rolled steel深冲钢 deep drawing steel双相钢 dual phase steel渗碳钢 carburizing steel渗氮钢 nitriding steel调质钢 quenched and tempered steel超高强度钢 ultra-high strength steel不锈钢 stainless steel奥氏体不锈钢 austenitic stainless steel 铁素体不锈钢 ferritic stainless steel 马氏体不锈钢martensitic stainless steel 双相不锈钢 duplex stainless steel 马氏体时效钢maraging steel耐蚀钢 corrosion-resisting steel耐热钢 heat-resisting steel弹簧钢 spring steel易切削钢 free-machining steel耐磨钢 abrasion-resistant steel工具钢tool steel高速钢 high-speed steel冷作模具钢 cold-work die steel热作模具钢 hot-work die steel钢筋钢 reinforced bar steel钢轨钢rail steel轮箍钢type steel管线钢 pipe line steel锅炉钢 boiler steel电工车冈 electrical steel五、机械加工厂maching plant 备件车间 spare parts workshop立车区 vertical lathe area划线平台 lineation platform翻转区 turn area待力口工区waiting maching area行车 traveling crane臣卜车区horizontal lathe area镗、铣区 boring &milling machine area钻床区 drill press area铣床区 milling machine area平衡区 balance area半成品区 semi-manufactured goods area磨床区 grinding machine热处理车间heat treatment workshop工件堆放区workpiece pile area工装区professional tools area渗碳淬火区carburizing quenching area预作业区pre-work area高中频区high and intermediate frequency area工件堆放区(铺铸铁板) workpiece pile area (layed cast iron plate) 调质氮化区quenching and tempering nitriding area备件车间 spare parts workshop待装区 waiting assembly area装配平台 assembly platform翻转区 turn area成品区 finished products area采购半成品区 purchasing semi-manufacture goods area齿轮车间gear workshop立车区 vertical lathe area待力口工区waiting maching area臣卜车区horizontal lathe area立体仓库 solid storehouse液插机群 hydraulic sharpping machine area磨床机群 grinding machine area划线平台lineation platform伞齿轮机群 bevel gear machine area钻铣机群 drilling & milling machine area配套件库 parts and components storehouse采购成品区purchasing finished products area线切割机群 line cutting machine area齿轮检测机群gear inspection machine area半成品区 semi-manufacture goods area检验区 inspection area力口工成品区 machining finished products area总装车间 assembly workshop工装区 professional tools area装配平台 assembly platform待力口工区waiting maching area修配区 repairs and supply replacements area翻转区 turn area龙门铣 plano-milling machine龙门镗铣力口工中心 plano-boring &milling machining center镗铣床 boring &milling machine涂装区 painting area其他低跨 low span高跨 high span厂房面积workshop area总装、齿轮车间 24192 平方米 assembly and gear workshop occupied 24,192 square meter热处理车间 5610 平方米heat treatment workshop occupied 5,610 square meter备件、成品车间 13014 平方米 spare parts and finished products workshop occupied 13,014 square meter总计面积:42186 平方米 total area: 42,186 square meter车间平面简易布置图the facility plane layout of workshop六、热处理 heating treatment1.indication 缺陷2.test specimen 试样3.bar棒材4.stock 原料5.billet方钢,钢方坯6.bloom钢坯,钢锭7.section 型材8.steel ingot 车钢锭9.blank坯料,半成品10.cast steel 铸钢11.nodular cast iron 球墨铸铁12.ductile cast iron 球墨铸铁13.bronze 青铜14.brass 黄铜15.copper 合金16.stainless steel 不锈钢17.decarburization 脱碳18.scale氧化皮19.anneal 退火20.process anneal 进行退火21.quenching 淬火22.normalizing 正火23.Charpy impact test 夏比冲击试验24.fatigue 疲劳25.tensile testing 拉伸试验26.solution 固溶处理27.aging时效处理28.Vickers hardness 维氏硬度29.Rockwell hardness 洛氏硬度30.Brinell hardness 布氏硬度31.hardness tester 硬度计32.descale除污,除氧化皮等33.ferrite 铁素体34.austenite 奥氏体35.martensite 马氏体36.cementite 渗碳体37.iron carbide 渗碳体38.solid solution 固溶体39.sorbite 索氏体40.bainite 贝氏体41.pearlite 珠光体42.nodular fine pearlite/ troostite 屈氏体43.black oxide coating 发黑44.grain 晶粒45.chromium 铬46.cadmium 专镉47.tungsten 钨48.molybdenum 钼49.manganese 锰51. silicon 硅53.sulfer/sulphur 硫54.phosphor/ phosphorus 磷55.nitrided 氮化的56.case hardening 表面硬化,表面淬硬57.air cooling 空冷58.furnace cooling 炉冷59.oil cooling 油冷60.electrocladding /plating 电镀61.brittleness 脆性62.strength 强度63.rigidity刚性,刚度64.creep 蠕变65.deflection 挠度66.elongation 延伸率67.yield strength 屈服强度68.elastoplasticity 弹塑性69.metallographic structure 金相组织70.metallographic test 金相试验71.carbon content 含碳量72.induction hardening 感应淬火73.impedance matching 感应淬火74.hardening and tempering 调质75.crack 裂纹76.shrinkage 缩孔,疏松77.forging 锻(件)78.casting 铸(件)79.rolling 轧(件)80.drawing 拉(件)81.shot blasting 喷丸(处理)82.grit blasting 喷钢砂(处理)83.sand blasting 喷砂(处理)84.carburizing 渗碳85.nitriding 渗氮86.ageing/aging 时效87.grain size 晶粒度88.pore 气孔89.sonim 夹砂90.cinder inclusion 夹渣ttice 晶格92.abrasion/abrasive/rub/wear/wearing resistance (property)耐磨性93.spectrum analysis 光谱分析94.heat/thermal treatment 热处理95.inclusion 夹杂物96.segregation 偏析97.picking酸洗,酸浸98.residual stress 残余应力99.remaining stress 残余应力100.relaxation of residual stress 消除残余应力101.stress relief 应力释放vanadium 钒。
胰岛移植即刻经血液介导的炎症反应应对策略
第14卷 第3期2023年5月Vol. 14 No.3May 2023器官移植Organ Transplantation ·移植前沿·胰岛移植即刻经血液介导的炎症反应应对策略杨玉伟 张婷 李万里 陈继冰 高宏君【摘要】 胰岛移植作为治疗1型糖尿病和终末期2型糖尿病的有效手段,可以使患者获得较好的血糖控制能力。
即刻经血液介导的炎症反应(IBMIR )是胰岛移植早期出现的非特异性炎症反应,发生后可迅速出现凝血级联和补体系统激活、炎症细胞聚集等,造成大量移植胰岛丢失,严重影响胰岛移植的疗效。
如何减轻IBMIR 对胰岛造成损伤是目前胰岛移植的研究热点,临床推荐的治疗胰岛移植IBMIR 的药物有肝素和肿瘤坏死因子-α抑制剂依那西普。
新近研究表明多种方法和药物可以减轻IBMIR 对胰岛的损伤,本文就这些临床研究成果和临床前研究成果进行综述,以期为胰岛移植IBMIR 的应对提供参考。
【关键词】 胰岛移植;糖尿病;即刻经血液介导的炎症反应(IBMIR );炎症反应;胰岛丢失;胰岛保护;胰岛封装;凝血【中图分类号】 R617,R587 【文献标志码】A 【文章编号】 1674-7445(2023)03-0005-06【Abstract 】 As an effective procedure for type 1 diabetes mellitus and end-stage type 2 diabetes mellitus, islet transplantation could enable those patients to obtain proper control of blood glucose levels. Instant blood-mediated inflammatory reaction (IBMIR) is a nonspecific inflammation during early stage after islet transplantation. After IBMIR occurs, coagulation cascade, complement system activation and inflammatory cell aggregation may be immediately provoked, leading to loss of a large quantity of transplant islets, which severely affects clinical efficacy of islet transplantation. How to alleviate the islet damage caused by IBMIR is a hot topic in islet transplantation. Heparin and etanercept, an inhibitor of tumor necrosis factor-α, are recommended as drugs for treating IBMIR following islet transplantation. Recent studies have demonstrated that multiple approaches and drugs may be adopted to mitigate the damage caused by IBMIR to the islets. In this article, the findings in clinical and preclinical researches were reviewed, aiming to provide reference for the management of IBMIR after islet transplantation.【Key words 】 Islet transplantation; Diabetes mellitus; Instant blood-mediated inflammatory reaction (IBMIR); Inflammation; Islet loss; Islet protection; Islet encapsulation; CoagulationTherapeutic strategy for instant blood-mediated inflammatory reaction after islet transplantation Yang Yuwei *, Zhang Ting, Li Wanli, Chen Jibing, Gao Hongjun.*Graduate School of Guangxi University of Chinese Medicine, Nanning 530001, China Correspondingauthor:GaoHongjun,Email:***************DOI: 10.3969/j.issn.1674-7445.2023.03.005基金项目:广西科技基地和人才专项(桂科AD22035122);广西研究生教育创新计划项目(YCSW2022355、YCXJ2021091)作者单位:530001 南宁,广西中医药大学研究生院(杨玉伟、李万里);广西中医药大学附属瑞康医院(张婷、陈继冰、高宏君)作者简介:杨玉伟(ORCID :0009-0000-2017-8883),硕士研究生,住院医师,研究方向为器官移植,Email :*****************通信作者:高宏君(ORCID :0000-0003-1451-0725),博士,主任医师,研究方向器官移植与胰岛移植,Email :***************对于疗效欠佳的1型糖尿病和伴有胰岛功能衰竭的2型糖尿病,胰岛移植已成为理想的治疗方法。
钢铁行业专业英语词汇大全 收藏学习
1 炼焦炼焦coking高温炭化high temperature carbonization 塑性成焦机理plastic mechanism of coke formation 中间相成焦机理mesophase mechanism of coke formation 选煤coal preparation, coal washing配煤coal blending配煤试验coal blending test炼焦煤coking coal气煤gas coal肥煤fat coal瘦煤lean coal焦炉coke oven焦化室oven chamber焦饼coke cake结焦时间coking time周转时间cycle time装煤coal charging捣固装煤stamp charging推焦coke pushing焦炭熄火coke quenching干法熄焦dry quenching of coke焦台coke wharf装煤车larry car推焦机pushing machine拦焦机coke guide熄焦车quenching car焦炉焖炉banking for coke oven焦炭coke冶金焦metallurgical coke铸造焦foundry coke焦炭工业分析proximate analysis of coke焦炭元素分析ultimate analysis of coke 焦炭落下指数shatter index of coke焦炭转鼓指数drum index of coke焦炭热强度hot strength of coke焦炭反应性coke reactivity焦炭反应后强度post-reaction strength of coke 焦炭显微强度microstrength of coke焦炉煤气coke oven gas发热值calorific value煤焦油coal tar粗苯crude benzol苯benzene甲苯toluene二甲苯xylene苯并呋喃-茚树脂coumarone-indene resin 精萘refined naphthalene精蒽refined anthracene煤[焦油]沥青coal tar pitch沥青焦pitch coke针状焦needle coke型焦formcoke2 耐火材料耐火材料refractory materials耐火粘土fireclay高岭土kaolin硬质粘土flint clay轻质粘土soft clay陶土pot clay蒙脱石montmorillonite叶蜡石pyrophyllite膨润土bentonite鳞石英tridymite方石英cristobalite砂岩sandstone耐火石firestone莫来石mullite氧化铝alumina烧结氧化铝sintered alumina电熔氧化铝fused alumina刚玉corundum红柱石andalusite蓝晶石kyanite,cyanite硅线石sillimanite橄榄石olivine方镁石periclase镁砂magnesia合成镁砂synthetic sintered magnesia电熔镁砂fused magnesia烧结白云石砂sintered dolomite clinker 合成镁铬砂synthetic magnesia chromite clinker尖晶石spinel镁铬尖晶石magnesia chrome spinel,magnesiochromite 硅藻土diatomaceous earth, infusorial earth蛭石vermiculite珍珠岩perlite碳化硅silicon carbide氮化硅silicon nitride氮化硼boron nitride粘土熟料chamotte熟料grog轻烧light burning,soft burning死烧dead burning,hard burning成型模注shaping moulding机压成型mechanical pressing等静压成型isostatic pressing摩擦压砖机friction press液压压砖机hydraulic press捣打成型ramming process熔铸成型fusion cast process砖坯强度green strength,dry strength隧道窑tunnel kiln回转窑rotary kiln倒焰窑down draught kiln耐火砖refractory brick标准型耐火砖standard size refractory brick 泡砂石quartzite sandstone 酸性耐火材料acid refractory [material]硅质耐火材料siliceous refractory [material]硅砖silica brick,dinas brick熔融石英制品fused quartz product硅酸铝质耐火材料aluminosillicate refractory 半硅砖semisilica brick粘土砖fireclay brick,chamotte brick石墨粘土砖graphite clay brick高铝砖high alumina brick硅线石砖sillimanite brick莫来石砖mullite brick刚玉砖corundum brick铝铬砖alumina chrome brick熔铸砖fused cast brick碱性耐火材料basic refractory [material]镁质耐火材料magnesia refractory [material]镁砖magnesia brick镁铝砖magnesia alumina brick镁铬砖magnesia chrome brick镁炭砖magnesia carbon brick中性耐火材料neutral refractory [material]复合砖composite brick铝炭砖alumina carbon brick铝镁炭转alumina magnesia brick锆炭砖zirconia graphite brick 镁钙炭砖magnesia clacia carbon brick长水口long nozzle浸入式水口immersion nozzle,submerged nozzle 定径水口metering nozzle氧化铝-碳化硅-炭砖Al2O3-SiC-C brick透气砖gas permeable brick,porous brick滑动水口slide gate nozzle水口砖nozzle brick塞头砖stopper绝热耐火材料insulating refractory轻质耐火材料light weight refractory袖砖sleeve brick格子砖checker brick,chequer brick陶瓷纤维ceramic fiber耐火纤维refractory fiber耐火浇注料refractory castable耐火混凝土refractory concrete荷重耐火性refractoriness under load抗渣性slagging resistance耐磨损性abrasion resistance3 碳素材料[含]碳[元]素材料carbon materials无定形碳amorphous carbon金刚石diamond炭相[学]carbon micrography炭黑carbon black石油沥青petroleum pitch石油焦炭petroleum coke石墨化graphitization石墨化电阻炉electric resistance furnace for graphitization 石墨纯净化处理purification treatment of graphite炭砖carbon brick炭块carbon block碳化硅基炭块SiC-based carbon block炭电极carbon electrode连续自焙电极Soderberg electrode石墨电极graphite electrode超高功率石墨电极ultra-high power graphite electrode 石墨电极接头graphite electrode nipple石墨电极接头孔graphite electrode socket plug电极糊electrode paste石墨坩埚graphite crucible石墨电阻棒graphite rod resistor炭刷carbon brush高纯石墨high purity graphite4 铁合金铁合金ferroalloy硅铁ferrosilicon硅钙calcium silicon金属硅silicon metal锰铁ferromangnanese低碳锰铁low carbon ferromanganese硅锰silicomanganese金属锰manganese metal铬铁ferrochromium低碳铬铁low carbon ferrochromium微碳铬铁extra low carbon ferrochromium硅铬silicochromium金属铬chromium metal钨铁ferrotunsten钼铁ferromolybdenum钛铁ferrotitanium硼铁ferroboron铌铁ferroniobium磷铁ferrophosphorus镍铁ferronickel锆铁ferrozirconium硅锆silicozirconium稀土硅铁rare earth ferrosilicon稀土镁硅铁rare earth ferrosilicomagnesium成核剂nucleater孕育剂incubater,inoculant球化剂nodulizer蠕化剂vermiculizer中间铁合金master alloy复合铁合金complex ferroalloy电碳热法electro-carbothermic process电硅热法electro-silicothermic process铝热法aluminothermic process,thermit process 电铝热法electro-aluminothermic process开弧炉open arc furnace埋弧炉submerged arc furnace半封闭炉semiclosed furnace封闭炉closed furnace矮烟罩电炉electric furnace with low hood 矮炉身电炉low-shaft electric furnace5 烧结与球团人造块矿ore agglomerates烧结矿sinter压块矿briquette球团[矿] pellet针铁矿goethite自熔性铁矿self-fluxed iron ore 复合铁矿complex iron ore块矿lump ore粉矿ore fines矿石混匀ore blending配矿ore proportioning矿石整粒ore size grading返矿return fines储矿场ore stockyard矿石堆料机ore stocker匀矿取料机ore reclaimer熔剂flux消石灰slaked lime活性石灰quickened lime有机粘结剂organic binder烧结混合料sinter mixture烧结铺底料hearth layer for sinter烧结sintering烧结热前沿heat front in sintering烧结火焰前沿flame front in sintering渣相粘结slag bonding扩散粘结diffusion bonding带式烧结机Dwight-Lloyd sintering machine 环式烧结机circular travelling sintering machine 烧结梭式布料机shuttle conveyer belt烧结点火料sintering ignition furnace烧结盘sintering pan烧结锅sintering pot烧结冷却机sinter cooler带式冷却机straight-line cooler环式冷却机circular cooler,annular cooler生球green pellet,ball生球长大聚合机理ball growth by coalescence生球长大成层机理ball growth by layering 生球长大同化机理ball growth by assimilation精矿成球指数balling index for iron ore concentrates 生球转鼓强度drum strength of green pellet生球落下强度shatter strength of green pellet生球抗压强度compression strength of green pellet 生球爆裂温度cracking temperature of green pellet圆筒造球机balling drum圆盘造球机balling disc竖炉陪烧球团shaft furnace for pellet firing带式机陪烧球团traveling grate for pellet firing 链算机-回转窑陪烧球团grate-kiln for pellet firing环式机陪烧球团circular gates for pellet firing 冷固结球团cold bound pellet维式体wustite铁橄榄石fayalite铁尖晶石hercynite铁黄长石ferrogehlenite铁酸半钙calcium diferrite铁酸钙calcium ferrite铁酸二钙dicalcium ferrite锰铁橄榄石knebelite钙铁橄榄石kirschsteinite钙铁辉石hedenbergite钙铁榴石andradite钙长石anorthite钙镁橄榄石monticellite钙钛矿perovskite硅灰石wollastonite硅酸二钙dicalcium silicate硅酸三钙tricalcium silicate镁橄榄石forsterite镁黄长石akermanite镁蔷薇辉石manganolite钙铝黄长石gehlenite钛辉石titanaugite枪晶石cuspidine预还原球团pre-reduced pellet金属化球团metallized pellet转鼓试验drum test,tumbler test落下试验shatter test6 高炉炼铁炼铁iron making高炉炼铁[法] blast furnace process 高炉blast furnace鼓风炉blast furnace炉料charge, burden矿料ore charge焦料coke charge炉料提升charge hoisting小车上料charge hoisting by skip吊罐上料charge hoisting by bucket皮带上料charge hoisting by belt conveyer装料charging装料顺序charging sequence储料漏斗hopper双料钟式装料two-bells system charging 无料钟装料bell-less charging布料器distributor炉内料线stock line in the furnace探料尺gauge rod利用系数utilization coefficient冶炼强度combustion intensity鼓风blast风压blast pressure风温blast temperature鼓风量blast volume鼓风湿度blast humidity全风量操作full blast慢风under blowing休风delay喷吹燃料fuel injection喷煤coal injection喷油oil injection富氧鼓风oxygen enriched blast,oxygen enrichment置换比replacement ratio喷射器injector热补偿thermal compensation焦比coke ratio,coke rate燃料比fuel ratio,fuel rate氧化带oxidizing zone风口循环区raceway蒸汽鼓风humidified blast混合喷吹mixed injection脱湿鼓风dehumidified blast炉内压差pressure drop in furnace煤气分布gas distribution煤气利用率gas utilization rate炉况furnace condition顺行smooth running焦炭负荷coke load,ore to coke ratio软熔带cohesive zone,softening zone渣比slag to iron ratio,slag ratio上部[炉料]调节burden conditioning下部[鼓风]调节blast conditioning高炉作业率operation rate of blast furnace休风率delay ratio高炉寿命blast furnace campaign悬料hanging崩料slip沟流channeling结瘤scaffolding炉缸冻结hearth freeze-up开炉blow on停炉blow off积铁salamander炉型profile,furnace lines炉喉throat炉身shaft,stack炉腰belly炉腹bosh炉缸hearth炉底 bottom炉腹角bosh angle炉身角stack angle有效容积effective volume工作容积working bolume铁口iron notch, slag notch 渣口cinder notch, slag notch风口tuyere窥视孔peep hole风口水套tuyere cooler渣口水套slag notch cooler 风口弯头tuyere stock热风围管bustle pipe堵渣机stopper泥炮mud gun,clay gun 开铁口机iron notch drill铁水hot metal铁[水]罐iron ladle鱼雷车torpedo car主铁沟sow出铁沟casting house铁沟iron runner渣沟slag runner渣罐cinder ladle, slag ladle撇渣器skimmer冷却水箱cooling plate冷却壁cooling stave汽化冷却vaporization cooling热风炉hot blast stove燃烧室combustion chamber燃烧器burner热风阀hot blast valve烟道阀chimney valve冷风阀cold blast valve助燃风机burner blower切断阀burner shut-off valve旁通阀by-pass valve混风阀mixer selector valve 送风期on blast of stove,on blast燃烧期on gas of stove, on gas换炉stove changing放散阀blow off valve内燃式热风炉Cowper stove外燃式燃烧炉outside combustion stove 顶燃式热风炉top combustion stove 炉顶放散阀bleeding valve放散管bleeder上升管gas uptake放风阀snorting valve均压阀equalizing valve高压调节阀septum valve炉顶高压elevated top pressure铸铁机pig-casting machine铸铁模pig mold冲天炉cupola水渣granulating slag水渣池granulating pit渣场slag disposal pit高炉煤气top gas,blast furnace gas高炉煤气回收topgas recovery,TGR非焦炭炼铁non-coke iron making 直接还原炼铁[法]direct reduction iron making直接还原铁directly reduced iron,DRI竖炉直接炼铁direct reduction in shaft furnace 流态化炼铁fluidized-bed iron making转底炉炼铁rotary hearth iron making米德雷克斯直接炼铁[法]Midrex processHYL直接炼铁[法] HYL process克虏伯回转窑炼铁[法] Krupp rotary kiln iron-making熔态还原smelting reduction铁溶法iron-bath process科雷克斯法COREX process生铁pig iron海绵铁sponge iron镜铁spiegel iron清铁法H-rion process7 炼钢钢steel炼钢steelmaking钢水liquid steel,molten steel钢semisteel沸腾钢rimming steel,rimmed steel镇静钢killed steel半镇静钢semikilled steel压盖沸腾钢capped steel坩埚炼钢法crucible steelmaking 双联炼钢法duplex steelmaking process 连续炼钢法continuous steelmaking process 直接炼钢法direct steelmaking process混铁炉hot metal machine装料机charging machine装料期charging machine加热期heating period熔化期melting period造渣期slag forming period 精炼期refining period熔清melting down脱氧deoxidation预脱氧preliminary dexidation 还原渣reducing slag酸性渣acid slag碱性渣basic slag脱碳decarburization增碳recarburization脱磷dephosphorization回磷rephosphorization脱硫desulfurization回硫resulfurization脱氮denitrogenation过氧化overoxidation出钢tapping冶炼时间duration of heat 出钢样tapping sample浇铸样casting sample不合格炉次off heat熔炼损耗melting loss铁损iron loss废钢scrap废钢打包baling of scrap造渣材料slag making materials 添加剂addition reagent脱氧剂deoxidizer脱硫剂desulfurizer冷却剂coolant回炉渣return slag喷枪lance浸入式喷枪submerged lance钢包ladle出钢口top hole出钢槽pouring lining炉顶furnace roof炉衬furnace lining炉衬侵蚀lining erosion渣线slag line炉衬寿命lining life分区砌砖zoned lining补炉fettling热修hot repair喷补gunning火焰喷补flame gunning转炉converter底吹转炉bottom-blown converter酸性空气底吹转炉air bottom-blown acid converter碱性空气底吹转炉air bottom-blown basic converter侧吹转炉side-blown converter卡尔多转炉Kaldo converter氧气炼铁oxygen steelmaking氧气顶吹转炉top-blown oxygen converter,LI converter氧气底吹转炉bottom-blown oxygen converter quiet basic oxygenfurnace,QBOF顶底复吹转炉top and bottom combined blown converter 喷石灰粉顶吹氧气转炉法oxygen lime process底吹煤氧的复合吹炼法Klockner-Maxhutte steelmaking process,KMS 住友复合吹炼法Sumitomo top and bottom blowing process,STB LBE复吹法lance bubbling equilibrium process,LBE 顶枪喷煤粉炼钢法Arved lance carbon injection process,ALCI 蒂森复合吹炼法Thyssen Blassen Metallurgical process,TBM面吹surface blow软吹soft blow硬吹hard blow补吹reblow过吹overblow后吹after blow目标碳aim carbon终点碳end point carbon高拉碳操作catch carbon practice 增碳操作recarburization practice 单渣操作single-slag operation 双渣操作double-slag operation 渣乳化slag emulsion二次燃烧postcombustion 吹氧时间oxygen blow duration 吹炼终点blow end point倒炉turning down喷渣slopping喷溅spitting静态控制static control动态控制dynamic control氧枪oxygen lance氧枪喷孔nozzle of oxygen lance多孔喷枪multi-nozzle lance转炉炉体converter body炉帽upper cone炉口mouth,lip ring装料大面impact pad活动炉底removable bottom顶吹氧枪top blow oxygen lance副枪sublance多孔砖nozzle brick单环缝喷嘴single annular tuyere双环缝喷嘴double annular tuyere挡渣器slag stopper挡渣塞floating plug电磁测渣器electromagnetic slag detector 废气控制系统off gas control system,OGCS 平炉open-hearth furnace平炉炼钢open-hearth steelmaking冷装法cold charge practice热装法hot charge practice碳沸腾carbon boil石灰沸腾lime boil炉底沸腾bottom boil再沸腾reboil有效炉底面积effective hearth area酸性平炉acid open-hearth furnace碱性平炉basic open-hearth furnace固定式平炉stationary open-hearth furnace倾动式平炉tilting open-hearth furnace双床平炉twin-hearth furnace顶吹氧气平炉open-hearth furnace with roof oxygen lance蓄热室regenerator沉渣室slag pocket电炉炼钢electric steelmaking电弧炉electric arc furnace超高功率电弧炉ultra-high power electric arc furnace 直流电弧炉direct current electric arc furnace双电极直流电弧炉double electrode direct current arc furnace竖窑式电弧炉shaft arc furnace电阻炉electric resistance furnace工频感应炉line frequency induction furnace中频感应炉medium frequency induction furnace高频感应炉high frequency induction furnace电渣重熔electroslag remelting,ESR电渣熔铸electroslag casting,ESC电渣浇注Bohler electroslag tapping,BEST真空电弧炉重熔vacuum arc remelting,VAR真空感应炉熔炼vacuum induction melting,VIM电子束炉重熔electron beam remelting,EBR等离子炉重炼plasma-arc remelting,PAR水冷模电弧熔炼cold-mold arc melting等离子感应炉熔炼plasma induction melting,PIM等离子连续铸锭plasma progressive casting,PPC 等离子凝壳铸造plasma skull casting,PSC 能量优化炼钢炉energy optimizing furnace,EOF氧燃喷嘴oxygen-fuel burner氧煤助熔accelerated melting by coal-oxygen burner氧化期oxidation period还原期reduction period长弧泡沫渣操作弧长控制 long arc foaming slag operation白渣white slag电石渣carbide slag煤氧喷吹coal-oxygen injection炉壁热点hot spots on the furnace wall偏弧arc bias透气塞porous plug出钢到出钢时间tap-to-tap time虹吸出钢siphon tapping偏心炉底出钢eccentric bottom tapping,EBT中心炉底出钢centric bottom tapping,CBT侧面炉底出钢side bottom tapping,SBT滑动水口出钢slide fate tapping8 精炼、浇铸及缺陷铁水预处理hot metal pretreatment机械搅拌铁水脱硫法KR process torpedo desulfurization 鱼雷车铁水脱磷torpedo dephosphorization二次精炼secondary refining钢包精炼ladle refining合成渣synthetic slag微合金化microalloying成分微调trimming钢洁净度steel cleanness钢包炉ladle furnace,LF直流钢包炉DC ladle furnace真空钢包炉LF-vacuum真空脱气vacuum degassing真空电弧脱气vacuum arc degassing,VAD真空脱气炉vacuum degassing furnace,VDF真空精炼vacuum refining钢流脱气stream degassing提升式真空脱气法 Dortmund Horder vacuum degassing process,DH 循环式真空脱气法 Ruhstahl-Hausen vacuum degassing process,RH真空浇铸vacuum casting吹氧RH操作RH-oxygen blowing,RH-OB川崎顶吹氧RH操作RH-Kawasaki top blowing,RH-KTB喷粉RH操作RH-poowder blowing,TH-PB喷粉法powder injection process喷粉精炼injection refining蒂森钢包喷粉法Thyssen Niederhein process,TN瑞典喷粉法Scandinavian Lancer process,SL君津真空喷粉法vacuum Kimitsu injection process密封吹氩合金成分调整法composition adjustment by sealed argonbubbling,CAS吹氧提温CAS法CAS-OB process脉冲搅拌法pulsating mixing process,PM电弧加热电磁搅拌钢包精炼法ASEA-SKF process 真空吹氧脱碳法vacuum oxygen decarburization process ,VOD 氩氧脱碳法argon-oxygen decarburization process,AOD蒸汽氧精炼法Creusot-Loire Uddelholm process,CLU无渣精炼slag free refining摇包法shaking ladle process铝弹脱氧法aluminium bullet shooting,ABS钢锭ingot铸锭ingot casting坑铸pit casting车铸car casting钢锭模ingot mold保温帽hot top下铸bottom casting上铸top casting补浇back pour,back feeding浇注速度pouring speed脱模ingot stripping发热渣exoslag防再氧化操作reoxidation protection连续浇注continuous casting连铸机continuous caster,CC,continuous casting machine,CCM 弧形连铸机bow-type continuous caster立弯式连铸机vertical-bending caster立式连铸机vertical caster水平连铸机horizontal caster小方坯连铸机billet caster大方坯连铸机bloom caster板坯连铸机slab caster薄板坯连铸机thin-slab casting薄带连铸机strip caster近终型浇铸near-net-shape casting单辊式连铸机single-roll caster单带式连铸机single-belt caster双带式连铸机twin-belt caster倾斜带式连铸机inclined conveyer type caster[连铸]流strand铸流间距strand distance注流对中控制stream centering control钢包回转台ladle turret中间包tundish回转式中间包swiveling tundish倾动式中间包tiltable tundish中间包挡墙weir and dam in tundish引锭杆dummy bar刚性引锭杆rigid dummy bar挠性引锭杆flexible dummy bar结晶器mold直型结晶器straight mold弧形结晶器curved mold组合式结晶器composite mold多级结晶器multi-stage mold调宽结晶器adjustable mold结晶器振动mold oscillation结晶器内钢液顶面meniscus,steel level钢液面控制技术steel level control technique 保护渣casting powder,mold powder凝壳shell液芯liquid core空气隙air gap一次冷却区peimary cooling zone二次冷却区secondary cooling zone极限冷却速度critical cooling rate浇铸半径casting radius渗漏bleeding拉坯速度casting speed拉漏breaking out振动波纹oscillation mark水口堵塞nozzle clogging气水喷雾冷却air mist spray cooling分离环separating ring拉辊withdrawal roll立式导辊vertical guide roll弯曲辊bending roll夹辊pinch roll矫直辊straightening roll驱动辊driving roll导向辊装置roller apron切割定尺装置cut-to-length device钢流保护浇注shielded casting practice 多点矫直multipoint straightening电磁搅拌electromagnetic stirring,EMS 浇注周期casting cycle多炉连浇sequence casting事故溢流槽emergercy launder菜花头cauliflower top钢锭缩头piped top表面缺陷surface defect内部缺陷internal defect缩孔shrinkage cavity中心缩孔center line shrinkage气孔blowhole表面气孔surface blowhole皮下气孔subskin blowhole针孔pinhole铸疤feather冷隔cold shut炼钢缺陷lamination发裂flake,hair crack纵裂longitudinal crack横裂transverse crack角部横向裂纹transverse corner crack角部纵向裂纹longitudinal corner crack收缩裂纹shrinkage crack热裂hot crack冷裂cold crack冷脆cold shortness热脆hot shortness夹渣slag inclusion皮下夹杂subsurface inclusion正偏析positive segregation负偏析negative segregation,inverse seregation V形偏析∨-shaped segregation倒V形偏析∧-shaped segregation中心偏析center segregation中心疏松center porosity鼓肚bulging脱方rhomboidity连铸-直接轧制continuous casting-direct rolling工艺CC-DR9 钢铁材料铸铁cast iron熟铁wrought iron电解铁electrolytic iron白口铸铁white cast iron灰口铸铁grey cast iron麻口铸铁mottled cast iron变性铸铁modified cast iron孕育铸铁inoculated cast iron冷硬铸铁chilled cast iron球墨铸铁nodular cast iron蠕墨铸铁vermicular cast iron可锻铸铁malleable cast iron 半可锻铸铁semi-malleable cast iron 奥氏体铸铁austenitic cast iron贝氏体铸铁bainitic cast iron共晶白口铁eutectic white iron亚共晶白口铁hypoeutectic white iron过共晶白口铁hypereutectic white iron结构钢constructional steel软钢mild steel普通碳素钢plain carbon steel正火钢normalized steel热轧钢hot rolled steel高强度低合金钢high-strength low-alloy steel 微合金钢micro-alloy steel冷轧钢cold rolled steel深冲钢deep drawing steel双相钢dual phase steel渗碳钢carburizing steel渗氮钢nitriding steel调质钢quenched and tempered steel超高强度钢ultra-high strength steel不锈钢stainless steel奥氏体不锈钢austenitic stainless steel铁素体不锈钢ferritic stainless steel马氏体不锈钢martensitic stainless steel 双相不锈钢duplex stainless steel马氏体时效钢maraging steel耐蚀钢corrosion-resisting steel耐热钢heat-resisting steel弹簧钢spring steel易切削钢free-machining steel耐磨钢abrasion-resistant steel工具钢tool steel高速钢high-speed steel冷作模具钢cold-work die steel热作模具钢hot-work die steel钢筋钢reinforced bar steel钢轨钢rail steel轮箍钢type steel管线钢pipe line steel锅炉钢boiler steel电工钢electrical steel10、冶金英语采矿mining地下采矿underground mining露天采矿open cut mining, open pit mining, surface mining采矿工程mining engineering选矿(学)mineral dressing, ore beneficiation, mineral processing矿物工程mineral engineering冶金(学)metallurgy过程冶金(学)process metallurgy提取冶金(学)extractive metallurgy化学冶金(学)chemical metallurgy物理冶金(学)physical metallurgy金属学Metallkunde冶金过程物理化学physical chemistry of process metallurgy 冶金反应工程学metallurgical reaction engineering冶金工程metallurgical engineering钢铁冶金(学)ferrous metallurgy, metallurgy of iron and steel有色冶金(学)nonferrous metallurgy真空冶金(学)vacuum metallurgy等离子冶金(学)plasma metallurgy微生物冶金(学)microbial metallurgy喷射冶金(学)injection metallurgy钢包冶金(学)ladle metallurgy二次冶金(学)secondary metallurgy机械冶金(学)mechanical metallurgy焊接冶金(学)welding metallurgy粉末冶金(学)powder metallurgy铸造学foundry火法冶金(学)pyrometallurgy湿法冶金(学)hydrometallurgy电冶金(学)electrometallurgy氯冶金(学)chlorine metallurgy矿物资源综合利用engineering of comprehensive utilization ofmineralresources中国金属学会The Chinese Society for Metals 中国有色金属学会The Nonferrous Metals Society of China采矿工艺mining technology有用矿物valuable mineral冶金矿产原料metallurgical mineral raw materials矿床mineral deposit特殊采矿specialized mining海洋采矿oceanic mining, marine mining矿田mine field矿山mine露天矿山surface mine地下矿山underground mine矿井shaft矿床勘探mineral deposit exploration矿山可行性研究mine feasibility study矿山规模mine capacity矿山生产能力mine production capacity矿山年产量annual mine output矿山服务年限mine life矿山基本建设mine construction矿山建设期限mine construction period矿山达产arrival at mine full capacity开采强度mining intensity矿石回收率ore recovery ratio矿石损失率ore loss ratio工业矿石industrial ore采出矿石extracted ore矿体orebody矿脉vein海洋矿产资源oceanic mineral resources矿石ore矿石品位ore grade岩石力学rock mechanics岩体力学rock mass mechanics选矿厂concentrator, mineral processing plant 工艺矿物学process mineralogy开路open circuit闭路closed circuit流程flowsheet方框流程block flowsheet产率yield回收率recovery矿物mineral粒度particle size粗颗粒coarse particle细颗粒fine particle超微颗粒ultrafine particle 粗粒级coarse fraction细粒级fine fraction网目mesh原矿run of mine, crude精矿concentrate粗精矿rough concentrate 混合精矿bulk concentrate 最终精矿final concentrate尾矿tailings粉碎comminution破碎crushing磨碎grinding团聚agglomeration筛分screening, sieving分级classification富集concentration分选separation手选hand sorting重选gravity separation, gravity concentration 磁选magnetic separation电选electrostatic separation浮选flotation化学选矿chemical mineral processing自然铜native copper铝土矿bauxite冰晶石cryolite磁铁矿magnetite赤铁矿hematite假象赤铁矿martite钒钛磁铁矿vanadium titano-magnetite铁燧石taconite褐铁矿limonite菱铁矿siderite镜铁矿specularite硬锰矿psilomelane软锰矿pyrolusite铬铁矿chromite黄铁矿pyrite钛铁矿ilmennite金红石rutile萤石fluorite高岭石kaolinite菱镁矿magnesite重晶石barite石墨graphite石英quartz方解石calcite石灰石limestone白云石dolomite云母mica石膏gypsum硼砂borax石棉asbestos蛇纹石serpentine阶段破碎stage crushing 粗碎primary crushing 中碎secondary crushing细碎fine crushing对辊破碎机roll crusher粉磨机pulverizer震动筛vibrating screen筛网screen cloth筛孔screen opening筛上料oversize筛下料undersize粗磨coarse grinding细磨fine grinding球磨机ball mill衬板liner分级机classifier自由沉降free setting沉积sedimentation石灰lime松油pine oil硫化钠sodium sulfide硅酸钠(水玻璃)sodium silicate, water glass过滤filtration过滤机filter给矿,给料feeding给矿机feeder在线分析仪on line analyzer在线粒度分析仪on line size analyzer超声粒度计ultrasonic particle sizer, supersonic particle sizer。
中药对青光眼视神经保护的有效性及作用机制研究进展_米秋霖 (1)
DOI :10.13193/j.issn.1673-7717.2021.01.051中药对青光眼视神经保护的有效性及作用机制研究进展米秋霖,向圣锦,段俊国,赵瑛(成都中医药大学,四川成都610075)摘要:青光眼在世界范围内是第一位不可逆的致盲性眼病,也是继白内障之后的第二位致盲眼病。
由于青光眼最主要的病理基础为神经节细胞(retinal ganglion cells ,RGCs )退行性改变及凋亡,故当前青光眼治疗的重点即保护RGCs 。
目前,降低眼压(Intraocular pressure ,IOP )是唯一经严格证实的有效治疗手段,但即使IOP 降低,视觉功能还是常常恶化。
这决定了为这种疾病开发新疗法的必要性,用作补充或替代疗法。
随着中医药研究的不断发展,中药在保护视网膜神经节细胞方面有很多新的研究。
就中药有效成分保护青光眼视网膜神经节细胞的有效性及其作用机制研究进展进行总结,为将来研制适用于临床青光眼的中药制剂做铺垫。
关键词:中药;青光眼;视网膜神经节细胞;作用机制中图分类号:R276.775文献标志码:A文章编号:1673-7717(2021)01-0210-04Research Progress on Effectiveness and Mechanism of TraditionalChinese Medicine Protecting Optic Nerve in GlaucomaMI Qiulin ,XIANG Shengjin ,DUAN Junguo ,ZHAO Ying(Chengdu University of Traditional Chinese Medicine ,Chengdu 610075,Sichuan ,China )Abstract :Glaucoma is the first irreversible blinding eye disease in the world and the second blinding eye disease after cata-ract.As the main pathological basis of glaucoma is degeneration and apoptosis of retinal ganglion cells (RGCs ),the current focus of glaucoma treatment is to protect RGCs.Currently ,intraocular pressure (IOP )is the only well -proven and effective proce-dure ,but visual function often deteriorates even when IOP is reduced.This determines the need to develop new therapies for the disease as complementary or alternative therapies.With the development of traditional Chinese medicine ,there are many new studies on the protection of retinal ganglion cells.In this paper ,the research progress on the effectiveness and mechanism of ef-fective components of Chinese medicine in protecting retinal ganglion cells of glaucoma was summarized ,so as to pave the way for the development of Chinese medicine preparations suitable for clinical glaucoma in the future.Keywords :Chinese medicine ;glaucoma ;retinal ganglion cells ;mechanism基金项目:国家自然科学基金(81704125)作者简介:米秋霖(1994-),女,四川旺苍人,硕士研究生,研究方向:眼底病。
个人简介英语范文_英文自我介绍_
个人简介英语范文个人简介是人们日常生活中经常使用的文种,个人简介是对某人的简要介绍。
个本文是小编为大家整理的个人的简介英语范文,仅供参考。
个人简介英语范文篇一RESUMEPersonal Information:Name: Hu xiao-lu Sex: MaleDate of Birth: Dec. 28th, 1989 Native Place: Meishan Sichuan, P.R.ChinaHealth: GoodP.R.China 617000Tel: +86 (MP) ,E-mail: Marital Status: Unmarried Address: College of Biology and Chemical Engineering, Panzhihua University, Panzhihua.Objective:Exploitation on teaching, management or research in university or academy;Education: 20xx.9――20xx.6 Sichuan University Bachelor in Biology chemical engineeringPractice Experiences:1997.7――20xx.9 Panzhihua University Teacher as instructor in chemical engineeringdepartment, engaging in courses teaching, experimental teaching and thesis instructing, etc.20xx.9――20xx.10 Participate in many projects and designs, have four-year experiencesSummary of Abilities:Be familiar with basic knowledge and principle ofmetallurgical engineering and chemicalengineering, and be skillful in using Microsoft Office, Origin, Jade, XRD, GC, particle sizeanalyzer software and instruments, etc.Be accomplished in science research and design.Passed CET-4 and CET-6, fluent in English (reading/writing/listening/speaking), especially inspecial English on chemical engineering and process.Self-valuation:Sureness, honest, able-minded, laborious, could cooperate with others well, have strong ability ofpractice.Project List:Synthesis Mechanism and Properties of TiO2 with Ordered Mesoporous Structure through TitaniumSulfate Hydrolysis Process Induced by Supermolecular Template (Chinese Natural NationalFoundation, 50474071)Preparation of nanometer titania via crystal aberration in high density ultrasonic field and thermaldecomposition (Chinese Natural National Foundation, 50274056)Preparation of lithium ion rechargeable battery using cobalt instead of manganese (Sichuanprovince basic application foundation, 02GY029-031)Preparation of No. II preservative agent of Mango (Panzhihua importance science & technologytackle key problem foundation, 20xx1-21 )Basic academic study of SO42-,Cl- on deposition and crystallization of nickelcarbonate (Jinchuan aggregative Co. Ltd. (Sichuan University, 04H433) )Preparation of sub-micronmeter high purity orbicular nickel powder (Jinchuan aggregative Co.个人简介英语范文篇二Good morning !It is really my honor to have this opportunity for a interview,I hope i can make a good performance today. I'm confident that I can succeed. Now i will introduce myself brieflyI am 26 years old,born in shandong province .I was graduated from qingdao university. my major is electronic.and i got my bachelor degree after my graduation in the year of 20xx.I spend most of my time on study,i have passed CET4/6 . and i have acquired basic knowledge of my major during my school time.In July 20xx, I begin work for a small private company as a technical support engineer in QingDao city.Because I'm capable of more responsibilities, so I decided to change my job. And in August 20xx,I left QingDao to BeiJing and worked for a foreign enterprise as a automation software test engineer.Because I want to change my working environment, I'd like to find a job which is more challenging. Morover Motorola is a global company, so I feel I can gain the most from working in this kind of company ennvironment. That is the reason why I come here to compete for this position.I think I'm a good team player and I'm a person of great honesty to others. Also I am able to work under great pressure.That’s all. Thank you for giving me the chance.个人简介英语范文篇三RESUMELtd. (Sichuan University, 04H440))Study of chemical electroless of Ni-Cu-P (Panzhihua University)Preparation and application of coating hydroxylapatite (Panzhihua University)Preparation of newfashioned anode of lithium ion rechargeable battery (Panzhihua University, 20xx-B05); etc.Publication List: Publishing papers 17, conference papers 7, employed papers 3 (EI embody) , Patent 1, magnum opus: ; Zhang, Zhao; He, Jing-Ping; Hou, Jun. Synthesis of ordered mesoporous TiO2 fromindustrial TiOSO4 by composite surfactants template method. Journal of Sichuan University (Engineering Science Edition), 20xx,38(1):63~67;(EI 06139783907); Zhang, Zhao; He, Jing-Ping. Synthesis of ordered mesoporous titania from industrialTiOSO4. Journal of Functional Materials, 20xx,37(1):63~65,69; (EI 06159819667) Zhang, Zhao; He, Jing-Ping; Chen, Yao-Han. Thermal treatment study for theprecursor of mesoporous titania. RARE METAL MATERIALS AND ENGINEERING, 20xx,35(S2):185~189;(SCI、EI embody) ; Zhang, Zhao; Hou, Jun; Li Hai. Synthesis and characterization of non-stoichiometricspinel as anode for rechargeable lithium-ion battery. Journal of Chemical Industry and Engineering (China), 20xx,57(4):937~942;(EI 06269966459)Hou, Jun; Li Hai; Zhang, Zhao. Synthesis and characterization of spinelLiCo0.05Ni0.05 Mn1.9O3.9F0.1 as a cathode for rechargeablelithium-ion battery. RARE METAL MATERIALS AND ENGINEERING, 20xx,34(11):1758~1761;(SCI 991ZN,EI ***********); Zhang, Zhao. Synthesis and characterization of Li1.05Co0.05 Ni0.05Mn1.9O3.9F0.1 spinelas a cathode material for rechargeable lithium-ion battery. Journal of Sichuan University (Engineering Science Edition) ,20xx,37(2):63~66;(EI 0519*******); Hou, Jun; Li Hai; Zhang, Zhao. Synthesis of spinel by supersonic Co-precipitationmethod as an anode for rechargeable lithium-ion battery. Electronic Components & Materials, 20xx,24(3):10~13;(SCI 8397215,EI 8397215(Inspec))Huang, Zai-Chun; Experimental study of the synthesis of hydroxyapatite inwater solution. Journal of the Chengdu Institute of Technology, 20xx,29(3):350~354;(EI 023********) Yang Dong-Ping. A study of additives for electroless plating Ni-Cu-P.Electroplating & pollution control, 20xx,22(6):12~14;; Zhang, Zhao; Hou, Jun; Li Hai. Synthesis and characterization of non-stoichiometricspinel as anode for rechargeable lithium-ion battery. Chinese doctor forum in Tianjin University, 20xx, Tianjin University, 226~227;Shen Jun; Zhang Ming-Jun; Zhang, Zhao. Synthesis and characterization of2-mesoporous TiO2-SO4. Cuihua Xuebao, employed(SCI、EI embody)Patent: You Xian-Gui; Huang Xue-Chao; etc. A method of preparing sub-micronmeter orbicular nickel powder. (Appl. No.20xx10065021.7)。
冶金专业英语
冶金英语采矿mining地下采矿underground mining露天采矿open cut mining, open pit mining, surface mining采矿工程mining engineering选矿(学)mineral dressing, ore beneficiation, mineral processing矿物工程mineral engineering冶金(学)metallurgy过程冶金(学)process metallurgy提取冶金(学)extractive metallurgy化学冶金(学)chemical metallurgy物理冶金(学)physical metallurgy金属学Metallkunde冶金过程物理化学physical chemistry of process metallurgy冶金反应工程学metallurgical reaction engineering冶金工程metallurgical engineering钢铁冶金(学)ferrous metallurgy, metallurgy of iron and steel有色冶金(学)nonferrous metallurgy真空冶金(学)vacuum metallurgy等离子冶金(学)plasma metallurgy微生物冶金(学)microbial metallurgy喷射冶金(学)injection metallurgy钢包冶金(学)ladle metallurgy二次冶金(学)secondary metallurgy机械冶金(学)mechanical metallurgy焊接冶金(学)welding metallurgy粉末冶金(学)powder metallurgy铸造学foundry火法冶金(学)pyrometallurgy湿法冶金(学)hydrometallurgy电冶金(学)electrometallurgy氯冶金(学)chlorine metallurgy矿物资源综合利用engineering of comprehensive utilization of mineral resources中国金属学会The Chinese Society for Metals中国有色金属学会The Nonferrous Metals Society of China2 采矿采矿工艺mining technology有用矿物valuable mineral冶金矿产原料metallurgical mineral raw materials矿床mineral deposit特殊采矿specialized mining海洋采矿oceanic mining, marine mining矿田mine field矿山mine露天矿山surface mine地下矿山underground mine矿井shaft矿床勘探mineral deposit exploration矿山可行性研究mine feasibility study矿山规模mine capacity矿山生产能力mine production capacity矿山年产量annual mine output矿山服务年限mine life矿山基本建设mine construction矿山建设期限mine construction period矿山达产arrival at mine full capacity开采强度mining intensity矿石回收率ore recovery ratio矿石损失率ore loss ratio工业矿石industrial ore采出矿石extracted ore矿体orebody矿脉vein海洋矿产资源oceanic mineral resources矿石ore矿石品位ore grade岩石力学rock mechanics岩体力学rock mass mechanics3 选矿选矿厂concentrator, mineral processing plant 工艺矿物学process mineralogy开路open circuit闭路closed circuit流程flowsheet方框流程block flowsheet产率yield回收率recovery矿物mineral粒度particle size粗颗粒coarse particle细颗粒fine particle超微颗粒ultrafine particle粗粒级coarse fraction细粒级fine fraction网目mesh原矿run of mine, crude精矿concentrate粗精矿rough concentrate混合精矿bulk concentrate最终精矿final concentrate尾矿tailings粉碎comminution破碎crushing磨碎grinding团聚agglomeration筛分screening, sieving分级classification富集concentration分选separation手选hand sorting重选gravity separation, gravity concentration 磁选magnetic separation电选electrostatic separation浮选flotation化学选矿chemical mineral processing自然铜native copper铝土矿bauxite冰晶石cryolite磁铁矿magnetite赤铁矿hematite假象赤铁矿martite钒钛磁铁矿vanadium titano-magnetite铁燧石taconite褐铁矿limonite菱铁矿siderite镜铁矿specularite硬锰矿psilomelane软锰矿pyrolusite铬铁矿chromite黄铁矿pyrite钛铁矿ilmennite金红石rutile萤石fluorite高岭石kaolinite菱镁矿magnesite重晶石barite石墨graphite石英quartz方解石calcite石灰石limestone白云石dolomite云母mica石膏gypsum硼砂borax石棉asbestos蛇纹石serpentine阶段破碎stage crushing粗碎primary crushing中碎secondary crushing细碎fine crushing对辊破碎机roll crusher粉磨机pulverizer震动筛vibrating screen筛网screen cloth筛孔screen opening筛上料oversize筛下料undersize粗磨coarse grinding细磨fine grinding球磨机ball mill衬板liner分级机classifier自由沉降free setting沉积sedimentation石灰lime松油pine oil硫化钠sodium sulfide硅酸钠(水玻璃)sodium silicate, water glass过滤filtration过滤机filter给矿,给料feeding给矿机feeder在线分析仪on line analyzer在线粒度分析仪on line size analyzer超声粒度计ultrasonic particle sizer, supersonic particle sizer5 钢铁冶金5.1 炼焦炼焦coking高温炭化high temperature carbonization塑性成焦机理plastic mechanism of coke formation中间相成焦机理mesophase mechanism of coke formation 选煤coal preparation, coal washing配煤coal blending配煤试验coal blending test炼焦煤coking coal气煤gas coal肥煤fat coal瘦煤lean coal焦炉coke oven焦化室oven chamber焦饼coke cake结焦时间coking time周转时间cycle time装煤coal charging捣固装煤stamp charging推焦coke pushing焦炭熄火coke quenching干法熄焦dry quenching of coke焦台coke wharf装煤车larry car推焦机pushing machine拦焦机coke guide熄焦车quenching car焦炉焖炉banking for coke oven焦炭coke冶金焦metallurgical coke铸造焦foundry coke焦炭工业分析proximate analysis of coke焦炭元素分析ultimate analysis of coke焦炭落下指数shatter index of coke焦炭转鼓指数drum index of coke焦炭热强度hot strength of coke焦炭反应性coke reactivity焦炭反应后强度post-reaction strength of coke焦炭显微强度microstrength of coke焦炉煤气coke oven gas发热值calorific value煤焦油coal tar粗苯crude benzol苯benzene甲苯toluene二甲苯xylene苯并呋喃-茚树脂 coumarone-indene resin精萘refined naphthalene精蒽refined anthracene煤[焦油]沥青 coal tar pitch沥青焦pitch coke针状焦needle coke型焦formcoke5.2 耐火材料耐火材料refractory materials耐火粘土fireclay高岭土kaolin硬质粘土flint clay轻质粘土soft clay陶土pot clay蒙脱石montmorillonite叶蜡石pyrophyllite膨润土bentonite鳞石英tridymite方石英cristobalite砂岩sandstone耐火石firestone莫来石mullite氧化铝alumina烧结氧化铝sintered alumina电熔氧化铝fused alumina刚玉corundum红柱石andalusite蓝晶石kyanite,cyanite硅线石sillimanite橄榄石olivine方镁石periclase镁砂magnesia合成镁砂synthetic sintered magnesia电熔镁砂fused magnesia烧结白云石砂sintered dolomite clinker合成镁铬砂synthetic magnesia chromite clinker尖晶石spinel镁铬尖晶石magnesia chrome spinel,magnesiochromite 硅藻土diatomaceous earth, infusorial earth蛭石vermiculite珍珠岩perlite碳化硅silicon carbide氮化硅silicon nitride氮化硼boron nitride粘土熟料chamotte熟料grog轻烧light burning,soft burning死烧dead burning,hard burning成型模注shaping moulding机压成型mechanical pressing等静压成型isostatic pressing摩擦压砖机friction press液压压砖机hydraulic press捣打成型ramming process熔铸成型fusion cast process砖坯强度green strength,dry strength隧道窑tunnel kiln回转窑rotary kiln倒焰窑down draught kiln耐火砖refractory brick标准型耐火砖standard size refractory brick 泡砂石quartzite sandstone酸性耐火材料acid refractory [material]硅质耐火材料siliceous refractory [material] 硅砖silica brick,dinas brick熔融石英制品fused quartz product硅酸铝质耐火材料aluminosillicate refractory 半硅砖semisilica brick粘土砖fireclay brick,chamotte brick石墨粘土砖graphite clay brick高铝砖high alumina brick硅线石砖sillimanite brick莫来石砖mullite brick刚玉砖corundum brick铝铬砖alumina chrome brick熔铸砖fused cast brick碱性耐火材料basic refractory [material]镁质耐火材料magnesia refractory [material] 镁砖magnesia brick镁铝砖magnesia alumina brick镁铬砖magnesia chrome brick镁炭砖magnesia carbon brick中性耐火材料neutral refractory [material] 复合砖composite brick铝炭砖alumina carbon brick铝镁炭转alumina magnesia brick锆炭砖zirconia graphite brick镁钙炭砖magnesia clacia carbon brick长水口long nozzle浸入式水口immersion nozzle,submerged nozzle定径水口metering nozzle氧化铝-碳化硅-炭砖 Al2O3-SiC-C brick透气砖gas permeable brick,porous brick滑动水口slide gate nozzle水口砖nozzle brick塞头砖stopper绝热耐火材料insulating refractory轻质耐火材料light weight refractory袖砖sleeve brick格子砖checker brick,chequer brick陶瓷纤维ceramic fiber耐火纤维refractory fiber耐火浇注料refractory castable耐火混凝土refractory concrete荷重耐火性refractoriness under load抗渣性slagging resistance耐磨损性abrasion resistance5.3 碳素材料[含]碳[元]素材料 carbon materials无定形碳amorphous carbon金刚石diamond炭相[学]carbon micrography炭黑carbon black石油沥青petroleum pitch石油焦炭petroleum coke石墨化graphitization石墨化电阻炉electric resistance furnace for graphitization 石墨纯净化处理purification treatment of graphite炭砖carbon brick炭块carbon block碳化硅基炭块SiC-based carbon block炭电极carbon electrode连续自焙电极Soderberg electrode石墨电极graphite electrode超高功率石墨电极ultra-high power graphite electrode石墨电极接头graphite electrode nipple石墨电极接头孔graphite electrode socket plug电极糊electrode paste石墨坩埚graphite crucible石墨电阻棒graphite rod resistor炭刷carbon brush高纯石墨high purity graphite5.4 铁合金铁合金ferroalloy硅铁ferrosilicon硅钙calcium silicon金属硅silicon metal锰铁ferromangnanese低碳锰铁low carbon ferromanganese硅锰silicomanganese金属锰manganese metal铬铁ferrochromium低碳铬铁low carbon ferrochromium微碳铬铁extra low carbon ferrochromium硅铬silicochromium金属铬chromium metal钨铁ferrotunsten钼铁ferromolybdenum钛铁ferrotitanium硼铁ferroboron铌铁ferroniobium磷铁ferrophosphorus镍铁ferronickel锆铁ferrozirconium硅锆silicozirconium稀土硅铁rare earth ferrosilicon稀土镁硅铁rare earth ferrosilicomagnesium成核剂nucleater孕育剂incubater,inoculant球化剂nodulizer蠕化剂vermiculizer中间铁合金master alloy复合铁合金complex ferroalloy电碳热法electro-carbothermic process电硅热法electro-silicothermic process铝热法aluminothermic process,thermit process 电铝热法electro-aluminothermic process开弧炉open arc furnace埋弧炉submerged arc furnace半封闭炉semiclosed furnace封闭炉closed furnace矮烟罩电炉electric furnace with low hood矮炉身电炉low-shaft electric furnace5.5 烧结与球团人造块矿ore agglomerates烧结矿sinter压块矿briquette球团[矿] pellet针铁矿goethite自熔性铁矿self-fluxed iron ore 复合铁矿complex iron ore块矿lump ore粉矿ore fines矿石混匀ore blending配矿ore proportioning矿石整粒ore size grading返矿return fines储矿场ore stockyard矿石堆料机ore stocker匀矿取料机ore reclaimer熔剂flux消石灰slaked lime活性石灰quickened lime有机粘结剂organic binder烧结混合料sinter mixture烧结铺底料hearth layer for sinter烧结sintering烧结热前沿heat front in sintering烧结火焰前沿flame front in sintering渣相粘结slag bonding扩散粘结diffusion bonding带式烧结机Dwight-Lloyd sintering machine环式烧结机circular travelling sintering machine烧结梭式布料机shuttle conveyer belt烧结点火料sintering ignition furnace烧结盘sintering pan烧结锅sintering pot烧结冷却机sinter cooler带式冷却机straight-line cooler环式冷却机circular cooler,annular cooler生球green pellet,ball生球长大聚合机理ball growth by coalescence生球长大成层机理ball growth by layering生球长大同化机理ball growth by assimilation精矿成球指数balling index for iron ore concentrates 生球转鼓强度drum strength of green pellet生球落下强度shatter strength of green pellet生球抗压强度compression strength of green pellet生球爆裂温度cracking temperature of green pellet圆筒造球机balling drum圆盘造球机balling disc竖炉陪烧球团shaft furnace for pellet firing带式机陪烧球团traveling grate for pellet firing链算机-回转窑陪烧球团grate-kiln for pellet firing 环式机陪烧球团circular gates for pellet firing冷固结球团cold bound pellet维式体wustite铁橄榄石fayalite铁尖晶石hercynite铁黄长石ferrogehlenite铁酸半钙calcium diferrite铁酸钙calcium ferrite铁酸二钙dicalcium ferrite锰铁橄榄石knebelite钙铁橄榄石kirschsteinite钙铁辉石hedenbergite钙铁榴石andradite钙长石anorthite钙镁橄榄石monticellite钙钛矿perovskite硅灰石wollastonite硅酸二钙dicalcium silicate硅酸三钙tricalcium silicate镁橄榄石forsterite镁黄长石akermanite镁蔷薇辉石manganolite钙铝黄长石gehlenite钛辉石titanaugite枪晶石cuspidine预还原球团pre-reduced pellet金属化球团metallized pellet转鼓试验drum test,tumbler test落下试验shatter test5.6 高炉炼铁炼铁iron making高炉炼铁[法] blast furnace process高炉blast furnace鼓风炉blast furnace炉料charge, burden矿料ore charge焦料coke charge炉料提升charge hoisting小车上料charge hoisting by skip吊罐上料charge hoisting by bucket皮带上料charge hoisting by belt conveyer 装料charging装料顺序charging sequence储料漏斗hopper双料钟式装料two-bells system charging无料钟装料bell-less charging布料器distributor炉内料线stock line in the furnace探料尺gauge rod利用系数utilization coefficient冶炼强度combustion intensity鼓风blast风压blast pressure风温blast temperature鼓风量blast volume鼓风湿度blast humidity全风量操作full blast慢风under blowing休风delay喷吹燃料fuel injection喷煤coal injection喷油oil injection富氧鼓风oxygen enriched blast,oxygen enrichment 置换比replacement ratio喷射器injector热补偿thermal compensation焦比coke ratio,coke rate燃料比fuel ratio,fuel rate氧化带oxidizing zone风口循环区raceway蒸汽鼓风humidified blast混合喷吹mixed injection脱湿鼓风dehumidified blast炉内压差pressure drop in furnace煤气分布gas distribution煤气利用率gas utilization rate炉况furnace condition顺行smooth running焦炭负荷coke load,ore to coke ratio软熔带cohesive zone,softening zone渣比slag to iron ratio,slag ratio上部[炉料]调节burden conditioning下部[鼓风]调节blast conditioning高炉作业率operation rate of blast furnace休风率delay ratio高炉寿命blast furnace campaign悬料hanging崩料slip沟流channeling结瘤scaffolding炉缸冻结hearth freeze-up开炉blow on停炉blow off积铁salamander炉型profile,furnace lines炉喉throat炉身shaft,stack炉腰belly炉腹bosh炉缸hearth炉底 bottom炉腹角bosh angle炉身角stack angle有效容积effective volume工作容积working bolume铁口iron notch, slag notch渣口cinder notch, slag notch风口tuyere窥视孔peep hole风口水套tuyere cooler渣口水套slag notch cooler风口弯头tuyere stock热风围管bustle pipe堵渣机stopper泥炮mud gun,clay gun开铁口机iron notch drill铁水hot metal铁[水]罐iron ladle鱼雷车torpedo car主铁沟sow出铁沟casting house铁沟iron runner渣沟slag runner渣罐cinder ladle, slag ladle撇渣器skimmer冷却水箱cooling plate冷却壁cooling stave汽化冷却vaporization cooling热风炉hot blast stove燃烧室combustion chamber燃烧器burner热风阀hot blast valve烟道阀chimney valve冷风阀cold blast valve助燃风机burner blower切断阀burner shut-off valve旁通阀by-pass valve混风阀mixer selector valve送风期on blast of stove,on blast燃烧期on gas of stove, on gas换炉stove changing放散阀blow off valve内燃式热风炉Cowper stove外燃式燃烧炉outside combustion stove 顶燃式热风炉top combustion stove炉顶放散阀bleeding valve放散管bleeder上升管gas uptake放风阀snorting valve均压阀equalizing valve高压调节阀septum valve炉顶高压elevated top pressure铸铁机pig-casting machine铸铁模pig mold冲天炉cupola水渣granulating slag水渣池granulating pit渣场slag disposal pit高炉煤气top gas,blast furnace gas高炉煤气回收topgas recovery,TGR非焦炭炼铁non-coke iron making直接还原炼铁[法]direct reduction iron making直接还原铁directly reduced iron,DRI竖炉直接炼铁direct reduction in shaft furnace流态化炼铁fluidized-bed iron making转底炉炼铁rotary hearth iron making米德雷克斯直接炼铁[法]Midrex processHYL直接炼铁[法] HYL process克虏伯回转窑炼铁[法] Krupp rotary kiln iron-making 熔态还原smelting reduction铁溶法iron-bath process科雷克斯法COREX process生铁pig iron海绵铁sponge iron镜铁spiegel iron清铁法H-rion process5.7 炼钢钢steel炼钢steelmaking钢水liquid steel,molten steel钢semisteel沸腾钢rimming steel,rimmed steel镇静钢killed steel半镇静钢semikilled steel压盖沸腾钢capped steel坩埚炼钢法crucible steelmaking双联炼钢法duplex steelmaking process连续炼钢法continuous steelmaking process直接炼钢法direct steelmaking process混铁炉hot metal machine装料机charging machine装料期charging machine加热期heating period熔化期melting period造渣期slag forming period精炼期refining period熔清melting down脱氧deoxidation预脱氧preliminary dexidation 还原渣reducing slag酸性渣acid slag碱性渣basic slag脱碳decarburization增碳recarburization脱磷dephosphorization回磷rephosphorization脱硫desulfurization回硫resulfurization脱氮denitrogenation过氧化overoxidation出钢tapping冶炼时间duration of heat出钢样tapping sample浇铸样casting sample不合格炉次off heat熔炼损耗melting loss铁损iron loss废钢scrap废钢打包baling of scrap造渣材料slag making materials 添加剂addition reagent脱氧剂deoxidizer脱硫剂desulfurizer冷却剂coolant回炉渣return slag喷枪lance浸入式喷枪submerged lance钢包ladle出钢口top hole出钢槽pouring lining炉顶furnace roof炉衬furnace lining炉衬侵蚀lining erosion渣线slag line炉衬寿命lining life分区砌砖zoned lining补炉fettling热修hot repair喷补gunning火焰喷补flame gunning转炉converter底吹转炉bottom-blown converter酸性空气底吹转炉air bottom-blown acid converter碱性空气底吹转炉air bottom-blown basic converter侧吹转炉side-blown converter卡尔多转炉Kaldo converter氧气炼铁oxygen steelmaking氧气顶吹转炉top-blown oxygen converter,LI converter氧气底吹转炉bottom-blown oxygen converter quiet basic oxygen furnace,QBOF顶底复吹转炉top and bottom combined blown converter喷石灰粉顶吹氧气转炉法oxygen lime process底吹煤氧的复合吹炼法Klockner-Maxhutte steelmaking process,KMS 住友复合吹炼法Sumitomo top and bottom blowing process,STB LBE复吹法lance bubbling equilibrium process,LBE顶枪喷煤粉炼钢法Arved lance carbon injection process,ALCI蒂森复合吹炼法Thyssen Blassen Metallurgical process,TBM面吹surface blow软吹soft blow硬吹hard blow补吹reblow过吹overblow后吹after blow目标碳aim carbon终点碳end point carbon高拉碳操作catch carbon practice增碳操作recarburization practice单渣操作single-slag operation双渣操作double-slag operation渣乳化slag emulsion二次燃烧postcombustion吹氧时间oxygen blow duration吹炼终点blow end point倒炉turning down喷渣slopping喷溅spitting静态控制static control动态控制dynamic control氧枪oxygen lance氧枪喷孔nozzle of oxygen lance多孔喷枪multi-nozzle lance转炉炉体converter body炉帽upper cone炉口mouth,lip ring装料大面impact pad活动炉底removable bottom顶吹氧枪top blow oxygen lance副枪sublance多孔砖nozzle brick单环缝喷嘴single annular tuyere双环缝喷嘴double annular tuyere挡渣器slag stopper挡渣塞floating plug电磁测渣器electromagnetic slag detector废气控制系统off gas control system,OGCS平炉open-hearth furnace平炉炼钢open-hearth steelmaking冷装法cold charge practice热装法hot charge practice碳沸腾carbon boil石灰沸腾lime boil炉底沸腾bottom boil再沸腾reboil有效炉底面积effective hearth area酸性平炉acid open-hearth furnace碱性平炉basic open-hearth furnace固定式平炉stationary open-hearth furnace倾动式平炉tilting open-hearth furnace双床平炉twin-hearth furnace顶吹氧气平炉open-hearth furnace with roof oxygen lance蓄热室regenerator沉渣室slag pocket电炉炼钢electric steelmaking电弧炉electric arc furnace超高功率电弧炉ultra-high power electric arc furnace直流电弧炉direct current electric arc furnace双电极直流电弧炉double electrode direct current arc furnace 竖窑式电弧炉shaft arc furnace电阻炉electric resistance furnace工频感应炉line frequency induction furnace中频感应炉medium frequency induction furnace高频感应炉high frequency induction furnace电渣重熔electroslag remelting,ESR电渣熔铸electroslag casting,ESC电渣浇注Bohler electroslag tapping,BEST真空电弧炉重熔vacuum arc remelting,VAR真空感应炉熔炼vacuum induction melting,VIM电子束炉重熔electron beam remelting,EBR等离子炉重炼plasma-arc remelting,PAR水冷模电弧熔炼cold-mold arc melting等离子感应炉熔炼plasma induction melting,PIM等离子连续铸锭plasma progressive casting,PPC等离子凝壳铸造plasma skull casting,PSC能量优化炼钢炉energy optimizing furnace,EOF氧燃喷嘴oxygen-fuel burner氧煤助熔accelerated melting by coal-oxygen burner氧化期oxidation period还原期reduction period长弧泡沫渣操作弧长控制 long arc foaming slag operation白渣white slag电石渣carbide slag煤氧喷吹coal-oxygen injection炉壁热点hot spots on the furnace wall偏弧arc bias透气塞porous plug出钢到出钢时间tap-to-tap time虹吸出钢siphon tapping偏心炉底出钢eccentric bottom tapping,EBT中心炉底出钢centric bottom tapping,CBT侧面炉底出钢side bottom tapping,SBT滑动水口出钢slide fate tapping5.8 精炼、浇铸及缺陷铁水预处理hot metal pretreatment机械搅拌铁水脱硫法KR process torpedo desulfurization鱼雷车铁水脱磷torpedo dephosphorization二次精炼secondary refining钢包精炼ladle refining合成渣synthetic slag微合金化microalloying成分微调trimming钢洁净度steel cleanness钢包炉ladle furnace,LF直流钢包炉DC ladle furnace真空钢包炉LF-vacuum真空脱气vacuum degassing真空电弧脱气vacuum arc degassing,VAD真空脱气炉vacuum degassing furnace,VDF真空精炼vacuum refining钢流脱气stream degassing提升式真空脱气法 Dortmund Horder vacuum degassing process,DH循环式真空脱气法 Ruhstahl-Hausen vacuum degassing process,RH 真空浇铸vacuum casting吹氧RH操作RH-oxygen blowing,RH-OB川崎顶吹氧RH操作 RH-Kawasaki top blowing,RH-KTB喷粉RH操作RH-poowder blowing,TH-PB喷粉法powder injection process喷粉精炼injection refining蒂森钢包喷粉法Thyssen Niederhein process,TN瑞典喷粉法Scandinavian Lancer process,SL君津真空喷粉法vacuum Kimitsu injection process密封吹氩合金成分调整法composition adjustment by sealed argon bubbling,CAS吹氧提温CAS法CAS-OB process脉冲搅拌法pulsating mixing process,PM电弧加热电磁搅拌钢包精炼法ASEA-SKF process真空吹氧脱碳法vacuum oxygen decarburization process ,VOD氩氧脱碳法argon-oxygen decarburization process,AOD蒸汽氧精炼法Creusot-Loire Uddelholm process,CLU无渣精炼slag free refining摇包法shaking ladle process铝弹脱氧法aluminium bullet shooting,ABS钢锭ingot铸锭ingot casting坑铸pit casting车铸car casting钢锭模ingot mold保温帽hot top下铸bottom casting上铸top casting补浇back pour,back feeding浇注速度pouring speed脱模ingot stripping发热渣exoslag防再氧化操作reoxidation protection连续浇注continuous casting连铸机continuous caster,CC,continuous casting machine,CCM弧形连铸机bow-type continuous caster立弯式连铸机vertical-bending caster立式连铸机vertical caster水平连铸机horizontal caster小方坯连铸机billet caster大方坯连铸机bloom caster板坯连铸机slab caster薄板坯连铸机thin-slab casting薄带连铸机strip caster近终型浇铸near-net-shape casting单辊式连铸机single-roll caster单带式连铸机single-belt caster双带式连铸机twin-belt caster倾斜带式连铸机inclined conveyer type caster [连铸]流strand铸流间距strand distance注流对中控制stream centering control钢包回转台ladle turret中间包tundish回转式中间包swiveling tundish倾动式中间包tiltable tundish中间包挡墙weir and dam in tundish引锭杆dummy bar刚性引锭杆rigid dummy bar挠性引锭杆flexible dummy bar结晶器mold直型结晶器straight mold弧形结晶器curved mold组合式结晶器composite mold多级结晶器multi-stage mold调宽结晶器adjustable mold结晶器振动mold oscillation结晶器内钢液顶面meniscus,steel level钢液面控制技术steel level control technique 保护渣casting powder,mold powder凝壳shell液芯liquid core空气隙air gap一次冷却区peimary cooling zone二次冷却区secondary cooling zone极限冷却速度critical cooling rate浇铸半径casting radius渗漏bleeding拉坯速度casting speed拉漏breaking out振动波纹oscillation mark水口堵塞nozzle clogging气水喷雾冷却air mist spray cooling分离环separating ring拉辊withdrawal roll立式导辊vertical guide roll弯曲辊bending roll夹辊pinch roll矫直辊straightening roll驱动辊driving roll导向辊装置roller apron切割定尺装置cut-to-length device钢流保护浇注shielded casting practice多点矫直multipoint straightening电磁搅拌electromagnetic stirring,EMS浇注周期casting cycle多炉连浇sequence casting事故溢流槽emergercy launder菜花头cauliflower top钢锭缩头piped top表面缺陷surface defect内部缺陷internal defect缩孔shrinkage cavity中心缩孔center line shrinkage气孔blowhole表面气孔surface blowhole皮下气孔subskin blowhole针孔pinhole铸疤feather冷隔cold shut炼钢缺陷lamination发裂flake,hair crack纵裂longitudinal crack横裂transverse crack角部横向裂纹transverse corner crack角部纵向裂纹longitudinal corner crack收缩裂纹shrinkage crack热裂hot crack冷裂cold crack冷脆cold shortness热脆hot shortness夹渣slag inclusion皮下夹杂subsurface inclusion正偏析positive segregation负偏析negative segregation,inverse seregation V形偏析∨-shaped segregation倒V形偏析∧-shaped segregation中心偏析center segregation中心疏松center porosity鼓肚bulging脱方rhomboidity连铸-直接轧制continuous casting-direct rolling 工艺CC-DR6 钢铁材料铸铁cast iron熟铁wrought iron电解铁electrolytic iron白口铸铁white cast iron灰口铸铁grey cast iron麻口铸铁mottled cast iron变性铸铁modified cast iron孕育铸铁inoculated cast iron冷硬铸铁chilled cast iron球墨铸铁nodular cast iron蠕墨铸铁vermicular cast iron可锻铸铁malleable cast iron半可锻铸铁semi-malleable cast iron奥氏体铸铁austenitic cast iron贝氏体铸铁bainitic cast iron共晶白口铁eutectic white iron亚共晶白口铁hypoeutectic white iron过共晶白口铁hypereutectic white iron结构钢constructional steel软钢mild steel普通碳素钢plain carbon steel正火钢normalized steel热轧钢hot rolled steel高强度低合金钢high-strength low-alloy steel 微合金钢micro-alloy steel冷轧钢cold rolled steel深冲钢deep drawing steel双相钢dual phase steel渗碳钢carburizing steel渗氮钢nitriding steel调质钢quenched and tempered steel超高强度钢ultra-high strength steel不锈钢stainless steel奥氏体不锈钢austenitic stainless steel铁素体不锈钢ferritic stainless steel马氏体不锈钢martensitic stainless steel双相不锈钢duplex stainless steel马氏体时效钢maraging steel耐蚀钢corrosion-resisting steel耐热钢heat-resisting steel弹簧钢spring steel易切削钢free-machining steel耐磨钢abrasion-resistant steel工具钢tool steel高速钢high-speed steel冷作模具钢cold-work die steel 热作模具钢hot-work die steel 钢筋钢reinforced bar steel钢轨钢rail steel轮箍钢type steel管线钢pipe line steel锅炉钢boiler steel电工钢electrical steel。
原位拉伸研究热处理对激光选区熔化GH4169_合金组织及650_℃_力学性能的影响
2024 年第 44 卷航 空 材 料 学 报2024,Vol. 44第 1 期第 93 – 103 页JOURNAL OF AERONAUTICAL MATERIALS No.1 pp.93 – 103引用格式:朱嘉冕,吕国森,姜文祥,等. 原位拉伸研究热处理对激光选区熔化GH4169合金组织及650 ℃力学性能的影响[J]. 航空材料学报,2024,44(1):93-103.ZHU Jiamian,LYU Guosen,JIANG Wenxiang,et al. Effect of heat treatment on microstructure and mechanical properties of selective laser melting GH4169 alloy at 650 ℃: in-situ SEM investigation[J]. Journal of Aeronautical Materials,2024,44(1):93-103.原位拉伸研究热处理对激光选区熔化GH4169合金组织及650 ℃力学性能的影响朱嘉冕1, 吕国森1, 姜文祥1, 程晓鹏1, 贾泽一1, 吕俊霞1*,黄 帅2, 张学军2(1.北京工业大学 材料与制造学部,北京 100124;2.中国航发北京航空材料研究院,北京 100095)摘要:研究热处理制度对激光选区熔化成形GH4169合金组织及高温力学性能的影响。
通过自主研发的SEM原位加热拉伸测试平台,探究热处理前后650 ℃合金力学性能变化与动态组织演变的关系。
结果表明:热处理后合金的晶粒形态由柱状晶转化为等轴晶,Laves相溶解,析出大量γ′和γ′′强化相;在650 ℃下,沉积态合金的屈服强度和抗拉强度分别为574 MPa和740 MPa,热处理态(HSA态)合金的屈服强度和抗拉强度分别为818 MPa和892 MPa,较沉积态分别提升了42.5%和20.1%;沉积态合金表面晶粒起伏更大,协调变形能力更强,塑性流动能力好;裂纹在Laves相周围萌生沿枝状晶向最大切应力方向扩展,样品颈缩后发生剪切断裂;HSA态裂纹在碳化物周围萌生沿晶界扩展,断裂方式为沿晶和穿晶相结合的混合断裂。
反射型蓝色隔热节能涂层的制备及隔热性能
第51卷第3期表面技术2022年3月SURFACE TECHNOLOGY·217·反射型蓝色隔热节能涂层的制备及隔热性能余茂林1,孙皓1,杨雨浛1,邓安仲1,罗盛1,袁旺2(1.中国人民解放军陆军勤务学院,重庆 401311;2.陆军工程防化第84旅,拉萨 850000)摘要:目的针对目前广泛应用的传统型保温隔热建筑材料存在的施工困难、体系过厚、装饰性安全性较差等不足,制备力学性能和装饰性优异的隔热节能涂层。
方法使用KH560对硅溶胶进行改性,与苯丙乳液进行复合制备隔热节能涂料的成膜基料,加入质量分数分别为5%、10%、15%、20%的群青、钴蓝颜浆,制备8种隔热节能涂层。
采用傅里叶红外变换光谱仪、马尔文Zeta电位仪、扫描电镜和热重分析仪分别对硅溶胶的接枝改性效果、粒径分布、微观形貌及热稳定性进行测试。
采用扫描电镜、X射线衍射仪、电子探针分别对2种颜料的微观形貌、晶体特性和元素组成进行分析。
采用紫外/可见/近红外分光光度计测试2种蓝色颜料和节能涂层的太阳光反射比和近红外反射比。
采用红外热像仪对涂层试板隔热性能进行测试。
采用多种涂层力学测试工具和扫描电镜分别对涂层的综合力学性能、微观形貌进行表征。
结果KH560对无机硅溶胶改性效果较好,可以显著降低硅溶胶的团聚,提升硅溶胶的热稳定性及其在有机乳液的分散性。
群青和钴蓝颜料的添加量为5%时,2种涂层的节能隔热效果达到最优。
添加量为5%群青的涂层的太阳光反射比、近红外反射比分别为0.462、0.533,添加量为5%钴蓝的涂层的太阳光反射比、近红外反射比分别为0.311、0.522。
红外热像图显示,添加量为5%群青的涂层和5%钴蓝的涂层的背面热平衡温度分别为68.0、65.5 ℃,较空白板分别降低了4.9、7.4 ℃。
颜料的添加量5%时,2种涂层均具有优异的力学性能,经盐溶液浸泡30 d 后2种涂层均无明显微观和宏观缺陷,能满足实际使用需要。
镁铝尖晶石透明陶瓷的制备与性能研究
10博士学位论文镁铝尖晶石透明陶瓷的制备与性能研究作者姓名:韩丹指导教师: 王士维研究员中国科学院上海硅酸盐研究所章健研究员中国科学院上海硅酸盐研究所学位类别: 工学博士学科专业: 材料学培养单位: 中国科学院上海硅酸盐研究所2018年6 月Preparation and properties of transparent spinel ceramicsA dissertation submitted toUniversity of Chinese Academy of Sciencesin partial fulfillment of the requirementfor the degree ofDoctor of Philosophyin Materials ScienceBy Dan HanProfessor Shiwei WangSupervisor:Professor Jian Zhang[Shanghai Institute of Ceramics, ChineseAcademy of Sciences]June 2018中国科学院大学研究生学位论文原创性声明本人郑重声明:所呈交的学位论文是本人在导师的指导下独立进行研究工作所取得的成果。
尽我所知,除文中已经注明引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的研究成果。
对论文所涉及的研究工作做出贡献的其他个人和集体,均已在文中以明确方式标明或致谢。
本人完全意识到本声明的法律结果由本人承担。
作者签名:日期:中国科学院大学学位论文授权使用声明本人完全了解并同意遵守中国科学院有关保存和使用学位论文的规定,同意中国科学院上海硅酸盐研究所保留并向国家有关部门和机构送交论文的复印件和电子版,允许该论文被查阅和借阅。
本人授权中国科学院上海硅酸盐研究所可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或其他复制手段保存、汇编本学位论文。
Preparation of ultra-fine MgO_Al2O3 spinel powder and its metallurgy behavior in low carbon steel
Preparation of ultra-fine MgO•Al 2O 3 spinel powder and its metallurgybehavior in low carbon steelYang Li a , Shuang-jiang Li b , Ying Zhuang c , Wei-jian Li d , Zhou-hua Jiang eSchool of Material and Metallurgy, Northeastern University, Shenyang, Liaoning, Chinaa liy@,b two_river@,c zyyyykx@,d syy0309@,e jiangzh@Keywords: MgO·Al 2O 3, ultra-fine powder, low carbon steel, mechanical propertyAbstract: Micron, sub-micron and nanometer sized MgO•Al 2O 3 ultra-fine powders were prepared by gel precipitation, solid-phase synthesis, sol-gel and flame throwing pyrogenation methods. XRD analysis showed that all of the ultra-fine powder is pure with the single MgO•Al 2O 3 spinel phase. The powder size was measured by laser granularity analyzer and the average size is 1780, 505 and 60 nm with a quite uniform distribution of particle size. MgO•Al 2O 3 spinel powder with different granularity were sprayed into molten low carbon steel in MgO crucible and MoSi 2 furnace at 1873 K. Quantitative microscopic examination showed that big particle inclusions reduce and small particle inclusions increase, as a result, the average size reduce. Data comparison from spraying powders with different size showed that spraying MgO•Al 2O 3 of nanometer tends to cause more small inclusions in molten steel. The sprayed steel samples were rolled and heat treated for the mechanical properties tests, which showed spraying nanometer MgO•Al 2O 3 is the best way to improve mechanical property of steel.IntroductionThe strengthening mechanism of second-phase particles in steel mainly includes precipitation strengthening and fine grain strengthening. At present, the research of adding ultra-fine particles into molten steel is few. By this way, the demand on the cleanliness of molten steel is not higher; and the process controlling is also easily, moreover, the properties of steel could be improved by adding ultra-fine powders as the second-phase particles. The preparation methods of ultra-fine powders include gel precipitation, solid-phase synthesis, sol-gel and flame throwing pyrogenation, and so on.Solid-phase synthesis method is using manufactured alumina and light burning magnesia as the material, sintered under high temperature to control the size of ultra-fine powder [1]. Gel precipitation method is metal-salt dissolved into solvent, under a certain condition, co-precipitation forming uniform compound hydroxide or oxide gel. The precipitation is jelly, it’s difficult to wash and filter, and precipitator is easy entraining as an impurity [2].At present, the researches of preparing ultra-fine powder mainly focus on the sol-gel method. The advantage is highly homogeneous mixture of raw materials, low temperature synthesis of materials, easily to control the composition and relatively simple equipment. However, there are still inadequacies that the reaction speed of precursor solution is not easy to control for the faster solution and polycondensation of Mg-Al alkoxide; when the colloid in the dehydration, due to the existence of surface tension, easily collapsing the pore structure, particle reunion took place [3]. Flame throwing pyrogenation method is injecting metal-salt solution into the heated reactor, causing the evaporation and calcined of solvent immediately, thereby direct synthesis of oxide powder, which is suitable for continuous operation.As a kind of inclusions in steel, MgO·Al 2O 3 spinel has great effect on the production process and mechanical properties of steel, while the forming of which is inescapability under the current steel-making process. To avoid the harm of MgO·Al 2O 3 spinel, the former works almost focus on decreasing the generation of which by controlling the deoxidizers and refining slags [4-7], whereasspinel inclusions. In the current works, the metallurgy behavior in molten steel and the effect on the mechanical properties of rolled steel were investigated by spaying different sized MgO·Al2O3 spinel powders.Experimental Materials and MethodsThe MoSi2resistance furnace, MgO crucible and PtRh thermocouple were used in spraying experiments under Ar atmosphere at 1600 ºC. The composition of low carbon steel (mass %) contains 0.18 - 0.21 C, 0.10 - 0.20 Si, 0.20 - 0.30 Mn and less than 0.035 S and P. Under an atmosphere pressure, MgO·Al2O3 spinel powder spraying experiments were carried out including micron, sub-micron and nanometer sized powder. Due to comparing the mechanical properties, a contrast heat without spraing powder was also done. The experimental operation was as follows:(1) About 1 kg low carbon steel was added into a MgO crucible, and then it was put into MoSi2 furnace, the protection of argon started at 600 ºC with the flow of 1 L/min, while the argon flow changed to 3 to 5 L/min at 1400 ºC. When the steel temperature reached 1600 ºC, kept it for 10 minutes; (2) Taken 0 # steel sample (original steel sample); (3) Quartz tube inserted into the bottom of molten steel, following a certain volume (about 0.2 L/min) argon as the carrying gas, a certain sized of MgO·Al2O3 spinel powder with 1.0 g was sprayed into the steel; (4) The beginning of time (0min); (5) Taken 1 # steel sample after 1 min; (6) Taken 2 # steel sample after 10 min; (7) In accordance with the above (3) - (6) steps to continue the spraying experiment, the steel samples obtained by sequence number until the total spraying quantity reached to 5 g.Steel samples obtained were cut, grinded and polished, the distribution of inclusions were examined by quantitative microscopic, while the morphology and composition of inclusions were observed by scanning electron microscopy.Experimental Results and DiscussionPreparation Results of Ultra-fine MgO•Al2O3Spinel Powder. Alumina and magnesia were mixing, milling 24 hours in a ball mill, insulated 1 hour at 1250 ºC, then the powder were milling again and insulated 12 hour at 1600 ºC, finally, the micron sized powders was gained by plenty mechanical milling. Fig. 1 is the XRD pattern of micron sized MgO·Al2O3 powders prepared by solid-phase synthesis method, which showed that the perfect spinel structure has formed, the dissociative alumina and magnesia phase can not be found. The size distribution of MgO·Al2O3 powders was measured by laser granularity analyzer (Malvern nano S90), and the average size of which is 1780 nm.NH4OH was chosen as precipitator, the gel could be gained by controlling the quantityand addition speed. Fig. 2 is the XRD pattern of MgO·Al2O3 powders sintered at 1000 ºC prepared by gal precipitation method, and the average size of which is 505 nm.Calcinated the powder at 800 ºC, 900 ºC, 1000 ºC, 1100 ºC, 1200 ºC, its found that the best calcination temperature is 1000 ºC, relatively complete spinel phase and unremarkable agglomeration of spinel powder can be gained at this temperature by sol-gel method.Fig. 3 is SEM photos of powders prepared by the flame throwing pyrogenation method. As can be seen from Figure 3, the spinel powders with the smaller particle size of 60 nm, and spherical particles are distributed evenly, less reunion.Fig. 2 XRD pattern of sub-micron sized powder Fig. 3 SEM photos of nanometer-sized powder Quantitative Microscopic Examination Results. Table 1 is the size distribution of inclusions in terminal samples sparyed MgO·Al2O3 spinel powders with different particle size. The total number of inclusions decreases with the increasing size of sparying powder, and the average particle size of inclusion increases with the increasing size of sparying powder, while the total area of inclusions changes little. Data comparison from spraying different size powders shows that spraying MgO•Al2O3 of nanometer tends to cause more small inclusions in steel.Table 1 Size distribution of inclusion in terminal samples with spraying MgO·Al2O3 powder with different particle size Spraying powderAmount of inclusions Averagediameter [µm]TotalamountTotal area[µm2]0.6<d<1.2µm 1.2<d<2.7µm 2.7<d<5.4µm d>5.4µmNanometer sized 1055 899 244 6 1.708 2204 6847 Sub-micron sized 814 378 78 6 1.835 1276 4321 Micron sized 286 736 108 9 1.959 1139 4237Morphology and Composition Analysis of Inclusions. The inclusions in the 0 # sample mainly are Al2O3and silicate inclusions, and the Al2O3inclusions is irregular shape with the particle size of about 2 µm, while the MgO·Al2O3 spinel inclusions can not be found in the sample.Fig. 4 Morphology of inclusions in steel by SEMWhen sprayed into a certain amount of MgO·Al2O3 spinel powders, a lot of MgO·Al2O3 spinel inclusions can be found instead of the pure Al2O3 inclusions in steel, as shown in Fig. 4 (a), and (b). The shape of the MgO·Al2O3 spinel inclusions is nearly rectangular with the size of about 2 to 8 µm, but the heterogeneous phase, in accordance with energy spectrum analysis, magnesium and aluminum molar ratio of 1 : 2 is not accurate, the mole percentage of aluminum content in the high side. Considering of Al2O3 inclusions in steel reduced, there could be a combining process between the sprayed MgO·Al2O3spinel powder and the original Al2O3inclusions, which leads the composition ratio is not consistent with the pure MgO·Al2O3 spinel phase.Mechanical Properties of steel Sprayed Powders. Small steel ingot was heated to 1150 ºC, keeping for 4 hours. Hot rolled by the 450 mm hot rolling experimental unit, the 3 mm slab was rolled through six passes, and the rolling deformation was 25%. The obtained rolled metal was heated to 920 ºC and normalized treatment after keeping temperature for 20 min.According the requirements of GB/T228-2002, the rolling sample was cut into tensile samples(a) (b)sized MgO·Al 2O 3 spinel powders and the steel without sprayed, respectively. Test results were shown in Table 2.Table 2 Mechanical properties of low carbon steel with different spraying powder conditionsMechanical property Nanometer sized Submicron sized Micron sized Without sprayed Tensile strength [Mpa] 350 295 265 255Extensibility [%] 32.3 35.4 34.3 33.1Table 2 shows that after spraying MgO·Al 2O 3 spinel powder with different particle size, the tensile strength of steel had a certain degree of improvement, and the nanometer size powders could increase substantially in tensile strength, while the extensibility had little variation. That is to say, spraying nanometer sized MgO·Al 2O 3 spinel powders can improve the steel strength. One of the reasons is due to the dispersion of nanometer size spinel particles in steel or the small enough MgO·Al 2O 3 spinel inclusion from the reaction with Al 2O 3 in steel, which played a certain dispersion strengthening or precipitation strengthening; the other is that spraying nanometer size spinel particles provide the opportunity to grow up for the inclusions in steel, some of which gather up and float to the surface of molten steel. Therefore, the molten steel is purified, and which improves the mechanical properties of steel.SummaryUltra-fine MgO•Al 2O 3 spinel powders were prepared by solid-phase synthesis, gel precipitation, sol-gel and flame throwing pyrogenation methods with the average size of 1780, 505 and 60 nm.Compared with the terminal sample of sprayed sub-micron and micro sized powder, spraying nanometer sized MgO•Al 2O 3 powder into steel tends to cause more small inclusions. The shape of the MgO·Al 2O 3 spinel inclusions is nearly rectangular with the size of about 2 to 8 µm, but magnesium and aluminum molar ratio of 1 : 2 is not accurate in the heterogeneous phase.The sprayed steel samples were rolled and heat treated for the mechanical properties tests, which shows spraying nanometer sized MgO•Al 2O 3 is the best way to improve mechanical property. AcknowledgementThe authors acknowledge National Natural Science Foundation of China (No. 50704010) and the Fundamental Research Funds for the Central Universities (N090402019) for the financial support.References[1] D. Lepkova, A. Baatarjav and L. Pavlova: Inter. Ceramic Rev., Vol. 42 (1993), p. 89[2] V.K. Singh and R.K. Sinha: Mater. Lett., Vol. 31 (1997), p. 281[3] O. Varnier, N. Hovnanian and A. Larbot: Mat. Res. Bull., Vol. 39 (1994), p. 479[4] S.K. Saxena, in: 79th Steelmaking Conference Proceedings, edited by Iron & Steel Soc, volume 79 of Steelmaking Proceedings, Iron & Steel Soc AIME (1996)[5] H.X. Wang, Y. Li, Z.B. Li and Z.H. Jiang: Iron and Steel (Peking), Vol. 40 (2005), p. 25[6] J.H. Park, D.S. Kim: Metall. and Mater. Trans. B: Proc. Metall. and Mater. Proc. Sci., Vol. 36 (2005), p. 495[7] M. Jiang, X.H. Wang, B. Chen, W.J. Wang: ISIJ Inter., Vol. 48 (2008), p. 885Advanced Material Science and Technologydoi:10.4028//MSF.675-677Preparation of Ultra-Fine MgO•Al<sub>2</sub>O<sub>3</sub> Spinel Powder and its Metallurgy Behavior in Low Carbon Steeldoi:10.4028//MSF.675-677.291。
摘要的写作要求
第2期高鲁晶,等:热压剥离法制备蜡烛烟灰/弹性体柔性传感器99particlesJj].Materials Chemistry&Physics,2014,148(1—2):134—142.[3]Wang X,Li Q,Wang H.Carbon nano-beads collected from candle soot as an anode material with a highly pscudocapaci-tivc Na+storage capability for dual-ion battcricsjj].Ionics,2020,26(9):45334542.[4]Azad P,Singh V P,Vaish R.Candlesoot-driven performance enhancement in pyroelectric energy conversion Jj].Journalof Electronic Materials,2018,47(8.):47214730.Fabrication of Flexible Strain Sensor for Candle Soot byHot-Pressing-Stripping MethodGAO Lujin g a,b,,WANG Yuan a,b,,XIONG Zhong a,b,(a.College of Chemistry and Chemical Engineering; b.Institute of Marine Biobased Materials;c.State Key Laboratory of Bio-Fibers and Eco-Text.iles,Qingdao University,Qingdao266071,China)Abstract:In order to solve the problems of high manufacturing cost,and complicated manufacturing process of strain sensors,the candle flame burning method is adopted to study the flexible strain sensor of candle soot.The soot,particles are transferred to the surface of the st.yrene-et.hylene-but.ylene-st.yrene block copolymer(SEBS)through the hot pressing-stripping process,and the SEBS/candle soot,flexible sensor is prepared and the mechanical and sensor properties are tested for characterization.The test,results show that, the prepared sensor has good flexibility;the strain has good linearity with respect,to the change of relative resistance;at the same time,the strain sensor still maintains good sensing performance after1000cycles of mechanical stretching.The SEBS/candle soot,strain sensor is applied to human motion detection,which can monitor the bending motion of fingers and wrist,in real time.The research has a good application prospect.for the preparation of low-cost,flexible strain sensor.Keywords:strainsensor;candlesoot;SEBS;wearable;human movementmonitoring科技论文的定义科技论文是由科技工作者对其创造性研究成果进行理论分析和科学总结,并得以公开发表或I 通过答辩的科技写作文体。
氟硅树脂改性紫外光固化易清洁涂层的制备及性能研究
表面技术第52卷第7期表面功能化氟硅树脂改性紫外光固化易清洁涂层的制备及性能研究李志刚,吕朝龙,胡增,刘晓亚,李小杰(江南大学 化学与材料工程学院,江苏 无锡 214122)摘要:目的以聚氨酯丙烯酸酯为基体树脂、氟硅树脂为添加剂,制备一种具有疏水、防涂鸦和耐磨性能的紫外光固化易清洁光滑涂层。
方法首先采用氨基甲酸酯化反应合成一种含硅氧烷结构的三官能度丙烯酸酯单体(TATES)。
然后以1H,1H,2H,2H-全氟辛基三甲氧基硅烷(POTS)、丙基三甲氧基硅烷(MPMS)、TATES 为原料,通过水解-缩聚法制备了一系列氟硅树脂(AFSR)。
最后将AFSR添加到聚氨酯丙烯酸酯树脂中,经紫外光固化得到氟硅树脂改性的聚氨酯易清洁涂层。
系统地研究了AFSR添加量对涂层润湿性、自清洁、防涂鸦及耐磨性的影响。
结果氟含量为92.6%(物质的量分数)的AFSR在PUA中的添加量为2.5%时,涂层表面的水和十六烷的接触角分别为112.6°和66.3°,且拥有很低的水和十六烷滑动角。
随着涂层中AFSR 添加量从0.5%增加到2.5%,防污性能逐渐提高,具有明显的油性记号笔收缩和自清洁效果,并且易清洁涂层经过3 000次的摩擦循环后,仍具有良好的收缩效果和持久的防污性能,表明涂层具有优异的耐磨性能。
结论随着AFSR添加量的增加,涂层中氟硅含量增加,表面能降低,使得涂层拥有高的接触角与低的滑动角。
AFSR添加量为2.5%时,涂层具有最佳的防污性能。
三官能度的TATES的引入与硅树脂三维网络的构建,提高了涂层的硬度,使得涂层具有优异的耐久性防污性能。
关键词:紫外光固化;氟硅树脂;聚氨酯丙烯酸酯;光滑涂层;易清洁涂层;防涂鸦中图分类号:TB34 文献标识码:A 文章编号:1001-3660(2023)07-0250-11DOI:10.16490/ki.issn.1001-3660.2023.07.022Preparation and Performance of UV Light Cured FluorosiliconeModified Easy-cleaning CoatingLI Zhi-gang, LYU Zhao-long, HU Zeng, LIU Xiao-ya, LI Xiao-jie(School of Chemical and Material Engineering, Jiangnan University, Jiangsu Wuxi 214122, China)ABSTRACT: Ultraviolet (UV) light curing technology uses UV light to accomplish the rapid polymerization and crosslinking of active ingredients. UV light cured coatings offer many advantages over conventional coatings, such as rapid ambient curing, minimum equipment space requirements, no need for thermal drying, minimal energy consumption, and volatile organic compounds (VOCs) free. Easy-cleaning coating is a low-energy surface coating prepared by intro-收稿日期:2022–04–29;修订日期:2022–11–01Received:2022-04-29;Revised:2022-11-01作者简介:李志刚(1998—),男,硕士生,主要研究方向为功能涂料。
银杏内酯联合阿替普酶溶栓治疗急性脑梗死的效果
- 43 -①大田县总医院 福建 大田 366100通信作者:陈礼平银杏内酯联合阿替普酶溶栓治疗急性脑梗死的效果柳宗品① 陈礼平①【摘要】 目的:观察银杏内酯联合阿替普酶溶栓治疗急性脑梗死的效果。
方法:选取2019年1月—2022年8月大田县总医院收治的110例急性脑梗死患者。
根据随机数表法将其分为研究组55例和对照组55例。
两组均给予一般治疗,对照组给予注射用阿替普酶溶栓治疗,研究组在对照组的基础上给予银杏内酯注射液。
比较两组治疗前后日常活动能力、肢体运动功能、神经功能缺损、病情、血小板指标,并发症及临床疗效。
结果:治疗后,两组Barthel 指数(BI)评分、Fugl-Meyer 肢体运动功能量表(FMA)评分均高于治疗前,研究组BI 评分、FMA 评分均高于对照组,差异有统计学意义(P <0.05)。
治疗后,两组美国国立卫生院卒中量表(NIHSS)评分、改良Rankin 量表(mRS)评分均低于治疗前,研究组NIHSS 评分、mRS 评分均低于对照组,差异有统计学意义(P <0.05)。
治疗后,两组血小板聚集率、血小板黏附率均低于治疗前,研究组血小板聚集率、血小板黏附率均低于对照组,差异有统计学意义(P <0.05)。
研究组并发症发生率低于对照组,差异有统计学意义(P <0.05)。
研究组总有效率高于对照组,差异有统计学意义(P <0.05)。
结论:银杏内酯联合阿替普酶溶栓在急性脑梗死患者治疗中效果较好,能够显著促进神经系统与肢体功能的恢复,改善血小板聚合状态。
【关键词】 银杏内酯 阿替普酶 急性脑梗死 神经功能 血小板聚集 doi:10.14033/ki.cfmr.2023.34.011 文献标识码 B 文章编号 1674-6805(2023)34-0043-05 Effect of Ginkgolide Combined with Alteplase Thrombolysis in the Treatment of Acute Cerebral Infarction/LIU Zongpin, CHEN Liping. //Chinese and Foreign Medical Research, 2023, 21(34): 43-47 [Abstract] Objective: To observe the effect of Ginkgolide combined with Alteplase thrombolysis in the treatment of acute cerebral infarction. Method: A total of 110 patients with acute cerebral infarction treated in Datian General Hospital from January 2019 to August 2022 were selected. According to the random number table method, they were divided into study group of 55 cases and control group of 55 cases. Both groups were given general treatment, the control group was given thrombolytic therapy with Alteplase for Injection, and the study group was given Ginkgolide Injection on the basis of the control group. The daily activity ability, limb motor function, neural function deficit, disease condition, platelet index before and after treatment, complications and clinical effect were compared between the two groups. Result: After treatment, Barthel index (BI) and Fugl-Meyer limb motor function scale (FMA) scores of both groups were higher than those before treatment, and BI and FMA scores of the study group were higher than those of the control group, and the differences were statistically significant (P <0.05). After treatment, the National Institutes of Health stroke scale (NIHSS) and modified Rankin scale (mRS) scores in both groups were lower than those before treatment, and the NIHSS and mRS scores in the study group were lower than those in the control group, and the differences were statistically significant (P <0.05). After treatment, the platelet aggregation rate and platelet adhesion rate of the two groups were lower than those before treatment, and the platelet aggregation rate and platelet adhesion rate of the study group were lower than those of the control group, and the differences were statistically significant (P <0.05). The incidence of complication of the study group was lower than that of the control group, and the difference was statistically significant (P <0.05). The total effective rate of the study group was higher than that of the control group, and the difference was statistically significant (P <0.05). Conclusion: The effect of Ginkgolide combined with Alteplase thrombolysis in the treatment of patients with acute cerebral infarction is good, which can significantly promote the recovery of nervous system and limb function, improve the platelet aggregation state. [Key words] Ginkgolide Alteplase Acute cerebral infarction Nerve function Platelet aggregation First-author's address: Datian General Hospital, Datian 366100, China 急性脑梗死又称为急性缺血性脑卒中,主要表现为瘫痪、失语、丧失自主生活能力等,患病后不仅会影响患者的生活质量,严重时还会导致脑死亡。
BD细胞固定液
BD Cytofix™Technical Data SheetFixation BufferProduct InformationMaterial Number:554655Size: 100 mlDescriptionBD Cytofix™ Fixation Buffer is comprised of a neutral pH-buffered saline (i.e., Dulbecco's Phosphate-Buffered Saline) that contains 4% w/v paraformaldehyde. This fixation buffer is intended to preserve human and rodent lymphoid cells for the subsequent immunofluorescentstaining of intracellular cytokines. BD Cytofix can also be used to preserve the light-scattering characteristics and fluorescence intensities ofhuman and rodent hematopoietic cells that have been stained by immunofluorescence for subsequent flow cytometric analysis.Preparation and StorageStore at 4° C and protected from prolonged exposure to light.Application NotesRecommended Assay Procedure:BD Cytofix can be used to fix unstained cells for subsequent immunofluorescent staining of intracellular cytokines. The suitability of fixing cellsfor immunofluorescent staining depends on whether the fluorescent antibodies can specifically detect their cognate antigens in a fixed form. Withrespect to intracellular cytokines, Pharmingen offers a large panel of conjugated anti-cytokine antibodies that can be successfully used to stainfixed and permeabilized cells. For the staining of antigens expressed on the surface of fixed cells, several fluorescent antibodies directed againstmouse cell surface antigens have been identified to be useful.BD Cytofix can also be used to fix cells after immunofluorescent staining in order to preserve the light-scattering signals and fluorescentintensities of cells for analysis at a later time. Cell Fixation Buffer may be useful to avoid the capping or shedding of fluorescent antibodies and/orsurface antigens during the period before flow cytometric analysis.Procedure for fixing cells with BD Cytofix™:1. Pellet 10e6 suspended cells (e.g., cytokine-producing cells generated by stimulatory culture) by centrifugation (250 - 300 x g) and carefullyremove supernatants to avoid cell loss.2. Add either 200 µl (for microwell plates) or 500 µl (for tubes) aliquots of cold DPBS containing protein and NaN3, gently resuspend cells,pellet, and remove supernatants.3. Repeat step 2.4. Add either 100 µl (for microwell plates) or 250 µl (for tubes) aliquots of fixation buffer to each cell pellet and resuspend the cells by eitherpipetting or vortexing. Incubate the cells with fixation buffer for 15 to 30 min at 4°C. (Cell aggregation can be avoided by vortexing prior to theaddition of the fixation buffer.)5. Fixed cells should be washed and suspended in a buffer that contains protein and NaN3, e.g., either Stain Buffer (FCS) [Cat. No. 554656] orStain Buffer (BSA) [Cat. No. 554657]. Store the fixed cells at 4°C (protected from light) for subsequent immunofluorescent staining ofintracellular cytokines. It is recommended that fixed cell samples be read as soon as possible, i.e., within one week.For the immunofluorescent staining of intracellular cytokines, cells that have been previously fixed with BD Cytofix™ can be washed two timesin a buffer that contains protein and NaN3 followed by incubating the cells for at least 10 minutes (4°C) in a buffer containing thecell-permeabilizing agent, saponin. BD Perm/Wash™ buffer (Cat. No. 554723) is ideally suited for this purpose. The fixed and permeabilizedcells can then be stained for intracellular cytokines as described in detail in the Immune Function handbook (BD Biosciences. 2003. Techniquesfor Immune Function Analysis, Application Handbook 1st Edition), available:/pdfs/manuals/02-8100055-21A1rr.pdf.Procedure for fixing immunofluorescently-stained cells with BD Cytofix™:Cells stained by immunofluorescence for cell surface antigens can be fixed as described above and stored (4°C, protected from light) forsubsequent analysis by flow cytometry (or fluorescence microscopy).NOTE : BD Cytofix/Cytoperm™ solution (Cat. No. 554722) and the BD Perm/Wash™ buffer (Cat. No. 554723) are included in BDCytofix/Cytoperm Kit (Cat. No. 554714) as well as the BD Cytofix/Cytoperm Plus Kit with GolgiStop™ (containing monensin; Cat. No. 554715)and BD Cytofix/Cytoperm Plus Kit with GolgiPlug™ (containing brefeldin A; Cat. No. 555028).Warnings and Precautions: BD Cytofix Buffer contains formaldehyde.R40Limited evidence of a carcinogenic effect.R43May cause sensitization by skin contact.S2Keep out of reach of children.S13 Keep away from food, drink and animal feedingstuffs.S23Do not breathe gas/fumes/vapour/spray.S36/37Wear suitable protective clothing and gloves.S46If swallowed, seek medical advice immediately and show this container or label.S56Dispose of this material and its container at hazardous or special wasteSuggested Companion ProductsCatalog Number Size CloneName554656Stain Buffer (FBS)500 ml(none) 554657Stain Buffer (BSA)500 ml(none) 554723Perm/Wash Buffer250 tests(none) 554714BD Cytofix/Cytoperm Fixation/Permeablization Kit250 tests(none) Product Notices1.Since applications vary, each investigator should titrate the reagent to obtain optimal results.2.Please refer to /pharmingen/protocols for technical protocols.ReferencesAlaverdi N, Waters JB. Pharmingen's Hotlines. 1997:6-15.(Methodology)BD Biosciences. Techniques for Immune Function Analysis, Application Handbook 1st Edition. 2003; Available:/pdfs/manuals/02-8100055-21A1rr.pdf 2007, Jan. 25.(Methodology)Lanier LL, Warner NL. Paraformaldehyde fixation of hematopoietic cells for quantitative flow cytometry (FACS) analysis. J Immunol Methods. 1981; 47(1):25-30.(Methodology)Sander B, Andersson J, Andersson U. Assessment of cytokines by immunofluorescence and the paraformaldehyde-saponin procedure. Immunol Rev. 1991;119:65-93.(Methodology)。
壮医药熨联合壮医敷贴治疗在前交叉韧带重建术后患者早期功能康复中的应用效果
2023 年第 9 卷第 8 期Vol.9, No.8, 2023中西医结合护理Chinese Journal of Integrative Nursing壮医药熨联合壮医敷贴治疗在前交叉韧带重建术后患者早期功能康复中的应用效果黄碧秋, 蓝阳露, 赵香越, 莫理璐(广西国际壮医医院 骨关节与运动医学科, 广西南宁, 530201)摘要: 目的 观察壮医药熨联合壮医敷贴治疗在前交叉韧带重建术后患者早期康复中的应用效果。
方法 选取2022年1月—12月行关节镜下前交叉韧带重建术患者100例为研究对象,分为观察组和对照组,各50例,对照组患者给予常规的训练联合壮医药熨方法;观察组在对照组的基础上联合壮医敷贴治疗。
观察两组干预后膝关节功能康复效果。
分别于术后第2天、第5天和第7天观察膝关节疼痛、肿胀缓解情况,比较两组干预前后膝关节主动屈伸活动范围改善情况,评价干预效果。
结果 术后第7天,观察组VAS 评分低于对照组,膝关节肿胀度小于对照组,差异有统计学意义(P <0.05);术后第7天,观察组膝关节主动屈曲范围及膝关节伸展范围改善幅度优于对照组,差异有统计学意义(P <0.01)。
结论 关节镜下前交叉韧带重建术后患者早期功能康复中应用壮医药熨联合壮医敷贴治疗,能有效缓解膝关节疼痛,减轻肿胀,改善膝关节活动度,有利于膝关节功能的恢复。
关键词: 前交叉韧带重建; 功能康复; 壮医药熨; 疼痛; 肿胀中图分类号: R 247.9 文献标志码: A 文章编号: 2709-1961(2023)08-0011-05Application of Zhuang medicine ironing therapy andexternal application in early functional rehabilitation of patients after anterior cruciate ligament reconstructionHUANG Biqiu ,LAN Yanglu ,ZHAO Xiangyue ,MO Lilu(Department of Orthopedics and Sports Medicine , Guangxi InternationalZhuang Medical Hospital , Nanning , Guangxi , 530201)ABSTRACT : Objective To explore the effect of Zhuang medicine ironing therapy combinedwith Zhuang medicine external application in the early rehabilitation of patients after anterior cruci⁃ate ligament reconstruction.Methods Totally 100 patients who underwent arthroscopic anterior cruciate ligament reconstruction were selected as the study subjects. All patients underwent ar⁃throscopic single -bundle reconstruction with autogenous semitendinosus tendon and gracilis ten⁃don. They were randomly divided into observation group and control group , with 50 cases in each group. The patients in the control group were given routine training combined with Zhuang medi⁃cine ironing therapy ; On the basis of the control group , the observation group was treated with Zhuang medicine external application. The pain , knee joint swelling and range of motion were ob⁃served from the 2nd , 5th and 7th day after operation , and effect of treatment was evaluated and compared between two groups.Results At the 7th day after operation , the score of Visual Ana⁃DOI : 10.55111/j.issn 2709-1961.202303105· 中医壮瑶医特色护理专栏 ·收稿日期:2023 - 03 - 15基金项目:广西国际壮医医院院级课题(GZ 2021019)第一作者简介:黄碧秋,本科学历,副主任护师,广西中医药大学附属国际壮医医院骨科护士长,兼任广西中医药大学护理学院护理教师。
Denis理论及分类
A
A型:屈曲-旋转型,外力通过椎体或椎间 盘,三柱均破坏
B型:剪切力骨折(后前、前后)
C型:屈曲-分离型
B B
B C
第十四页,编辑于星期二:二十二点 三十六分。
Denis 分型
针对骶骨骨折的分类
A型:单纯骶骨翼骨折,没有伤及骶孔及骶 骨中央管
B型:骶骨孔骨折,折线也经过骶骨翼,但 中央管完好
C型:骶骨中央管骨折,包括横行骨折
Denis 分型
压缩性骨折(Ⅰ)
compression fracture
A型:上下终板骨折(Both endplate fracture) B型:上终板骨折(superior endplate fracture) C型:下终板骨折(inferior endplate fracture) D型:前侧骨皮质挤压,上下终板完整
PLC对骨折的稳定性有重要作用,中柱受损并不能确定造成 脊柱不稳,在简化Denis分类法基础上结合White and Panjabi提出的脊柱运动模式把胸腰椎骨折分为6型
第五页,编辑于星期二:二十二点 三十六分。
背景
Ferguson (1984)认为中柱为椎体 及纤维环的后1/3和后纵韧带。
(Ferguson RL, Allen BL Jr: A mechanistic classification of thoracolumbar spine fractures. Clin Orthop Relat Res 189:77-88, 1984)
Denis与AO分型的比较
AO
A型 (压缩型)
B型 (屈曲牵张型)
C型 (旋转移位型)
A1 嵌亚型
A2 分离型
A3 爆裂型
B1 后方韧带损伤为主