2018年高考数学一轮复习课时跟踪检测65文新人教A版.
2018版高考数学(人教A版文科)一轮复习课时跟踪检测65含解析
课时跟踪检测(六十五)[高考基础题型得分练]1.若(1+i)+(2-3i)=a+b i(a,b∈R,i是虚数单位),则a,b 的值分别等于( )A.3,-2 B。
3,2C.3,-3 D.-1,4答案:A解析:(1+i)+(2-3i)=3-2i=a+b i,∴a=3,b=-2,故选A.2.[2017·江西南昌一模]已知i为虚数单位,则复数z=(-1-2i)i在复平面内对应的点位于()A.第一象限B。
第二象限C.第三象限 D.第四象限答案:D解析:z=(-1-2i)i=2-i,对应的点Z(2,-1)在第四象限.3.[2017·贵州遵义联考]复数错误!的共轭复数为()A.3-4i B。
3+4iC。
错误!-错误!i D。
错误!+错误!i答案:D解析:错误!=错误!=错误!-错误!i,∴错误!=错误!+错误!i。
4.[2017·河北衡水一模]如图,在复平面内,复数z1,z2对应的向量分别是错误!,错误!,则|z1+z2|=()A.2 B.3C.2 2 D.3错误!答案:A解析:z1=-2-i,z1=i,z1+z2=-2,故选A。
5.[2017·陕西西安质检]已知复数z=错误!(i为虚数单位),则z的虚部为()A.-1 B.0C.1 D.i答案:C解析:z=错误!=错误!=i,故选C。
6.[2017·河北名校模拟]已知复数z=错误!的实部与虚部之和为0,则实数m 等于( )A .-3B 。
-1C .1D 。
3 答案:B解析:由已知得z =m +3i-2+i =错误!,则-2m +3-(6+m )=0⇒m =-1.7.[2017·陕西八校联考]已知i 是虚数单位,则错误!=( )A 。
1-i 2B.错误!C.错误!D 。
错误!答案:C解析:错误!=错误!=错误!=错误!=错误!=错误!。
8.已知i 为虚数单位,(z 1-2)(1+i )=1-i ,z 2=a +2i ,若z 1·z 2∈R ,则|z 2|=( )A .4B 。
2018年高考数学一轮复习课时跟踪检测28文新人教A版
课时跟踪检测(二十八)[高考基础题型得分练]1.[2017·广东惠州二调]已知向量AB →=(3,7),BC →=(-2,3),则-12AC →=( )A.⎝ ⎛⎭⎪⎫-12,5B.⎝ ⎛⎭⎪⎫12,5C.⎝ ⎛⎭⎪⎫-12,-5D.⎝ ⎛⎭⎪⎫12,-5 答案:C解析:因为向量AC →=AB →+BC →=(1,10),则-12AC →=⎝ ⎛⎭⎪⎫-12,-5,故选C.2.下列各组向量:①e 1=(-1,2),e 2=(5,7);②e 1=(3,5),e 2=(6,10);③e 1=(2,-3),e 2=⎝ ⎛⎭⎪⎫12,34,能作为表示它们所在平面内所有向量的基底是( )A .①B .①③C .②③D .①②③ 答案:B解析:②中,e 1=12e 2,即e 1与e 2共线,所以不能作为基底.3.已知点A (1,3),B (4,-1),则与向量AB →同方向的单位向量为( ) A.⎝ ⎛⎭⎪⎫35,-45 B.⎝ ⎛⎭⎪⎫45,-35C.⎝ ⎛⎭⎪⎫-35,45D.⎝ ⎛⎭⎪⎫-45,35答案:A解析:∵AB →=OB →-OA →=(4,-1)-(1,3)=(3,-4), ∴与AB →同方向的单位向量为AB →|AB →|=⎝ ⎛⎭⎪⎫35,-45.4.在△ABC 中,点P 在BC 上,且BP →=2PC →,点Q 是AC 的中点,若PA →=(4,3),PQ →=(1,5),则BC →=( )A .(-2,7)B .(-6,21)C .(2,-7)D .(6,-21) 答案:B解析:AQ →=PQ →-PA →=(-3,2),∵Q 是AC 的中点,∴AC →=2AQ →=(-6,4), PC →=PA →+AC →=(-2,7),∵BP →=2PC →,∴BC →=3PC →=(-6,21).5.已知向量a =(1,2),b =(1,0),c =(3,4).若λ为实数,(a +λb )∥c ,则λ的值为( )A.14B.12 C .1 D .2 答案:B解析:∵a +λb =(1+λ,2),c =(3,4), 且(a +λb )∥c ,∴1+λ3=24,∴λ=12,故选B.6.设向量a =(x,1),b =(4,x ),且a ,b 方向相反,则x 的值是( ) A .2 B .-2 C .±2 D .0 答案:B解析:∵a 与b 方向相反,∴b =m a ,m <0,则有(4,x )=m (x,1),∴⎩⎪⎨⎪⎧4=mx ,x =m ,解得m =±2.又m <0,∴m =-2,x =m =-2.7.[2017·江苏杭州五校联盟一诊]已知三个向量m =⎝ ⎛⎭⎪⎫a ,cos A 2,n =⎝ ⎛⎭⎪⎫b ,cos B 2,p=⎝⎛⎭⎪⎫c ,cos C 2共线,其中a ,b ,c ,A ,B ,C 分别是△ABC 的三条边及相对三个角,则△ABC的形状是( )A .等腰三角形B .等边三角形C .直角三角形D .等腰直角三角形答案:B解析:∵m =⎝ ⎛⎭⎪⎫a ,cos A 2与n =⎝ ⎛⎭⎪⎫b ,cos B 2共线,∴a cos B 2=b cos A2,由正弦定理得sin A cos B 2=sin B cos A2,∵sin A =2sin A 2cos A 2,sin B =2sin B 2cos B2,∴2sin A 2cos A 2cos B 2=2sin B 2cos B 2cos A2,化简得sin A 2=sin B2.又0<A 2<π2,0<B 2<π2,∴A 2=B2,可知A =B . 同理,由n =⎝ ⎛⎭⎪⎫b ,cos B 2与p =⎝ ⎛⎭⎪⎫c ,cos C 2共线得到B =C ,∴在△ABC 中,A =B =C ,可得△ABC 是等边三角形.故选B.8.[2017·河南八市质检]已知点M 是△ABC 的边BC 的中点,点E 在边AC 上,且EC →=2AE →,则向量EM →=( )A.12AC →+13AB →B.12AC →+16AB →C.16AC →+12AB →D.16AC →+32AB → 答案:C解析:如图,∵EC →=2AE →, ∴EM →=EC →+CM →=23AC →+12CB →=23AC →+12(AB →-AC →)=12AB →+16AC →. 9.若三点A (2,2),B (a,0),C (0,b )(ab ≠0)共线,则1a +1b的值为________.答案:12解析:AB →=(a -2,-2),AC →=(-2,b -2), 依题意,有(a -2)(b -2)-4=0,即ab -2a -2b =0, 所以1a +1b =12.10.[2017·四川雅安模拟]已知向量a =(3,1),b =(0,-1),c =(k ,3).若a-2b 与c 共线,则k =________.答案:1解析:∵a -2b =(3,3),且(a -2b )∥c , ∴3×3-3k =0,解得k =1.11.已知向量AC →,AD →和AB →在正方形网格中的位置如图所示,若AC →=λAB →+μAD →,则λμ=________.答案:-3解析:建立如图所示的平面直角坐标系xAy , 则AC →=(2,-2),AB →=(1,2),AD →=(1,0),由题意可知,(2,-2)=λ(1,2)+μ(1,0),即⎩⎪⎨⎪⎧2=λ+μ,-2=2λ,解得⎩⎪⎨⎪⎧λ=-1,μ=3,所以λμ=-3.[冲刺名校能力提升练]1.[2017·湖南长沙调研]如图,在△OAB 中,P 为线段AB 上的一点,OP →=xOA →+yOB →,且BP →=2PA →,则( )A .x =23,y =13B .x =13,y =23C .x =14,y =34D .x =34,y =14答案:A解析:由题意知,OP →=OB →+BP →,又BP →=2PA →,所以OP →=OB →+23BA →=OB →+23(OA →-OB →)=23OA →+13OB →,所以x =23,y =13.2.[2016·江西南昌十校联考]已知a =(3,1),若将向量-2a 绕坐标原点逆时针旋转120°得到向量b ,则b 的坐标为( )A .(0,4)B .(23,-2)C .(-23,2)D .(2,-23)答案:B解析:∵a =(3,1),∴-2a =(-23,-2), 易知向量-2a 与x 轴正半轴的夹角α=150°(如图).向量-2a 绕坐标原点逆时针旋转120°得到向量b ,在第四象限,与x 轴正半轴的夹角β=30°,∴b =(23,-2),故选B.3.[2017·甘肃兰州一中期中]如图所示,两个不共线向量OA →,OB →的夹角为θ,M ,N 分别为OA 与OB 的中点,点C 在线段MN 上,且OC →=xOA →+yOB →(x ,y ∈R ),则x 2+y 2的最小值为( )A.24 B.18 C.22 D.12答案:B解析:∵M ,N ,C 三点共线,∴存在实数t 使得NC →=tNM →(0≤t ≤1),∴OC →=ON →+NC →=ON →+tNM →=ON →+t (OM →-ON →)=(1-t )ON →+tOM →=1-t 2OA →+t 2OB →.∴⎩⎪⎨⎪⎧x =1-t2,y =t2,∴x 2+y 2=1-t2+t24=14(2t 2-2t +1)(0≤t ≤1). 令f (t )=2t 2-2t +1(0≤t ≤1),函数f (t )图象开口向上且以t =12为对称轴,∵t =12∈[0,1],∴f (t )min =f ⎝ ⎛⎭⎪⎫12=2×14-2×12+1=12. ∴(x 2+y 2)min =14×12=18,故选B.4.在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM →+μAN →,则λ+μ=________.答案:45解析:解法一:由AB →=λAM →+μAN →,得 AB →=λ·12(AD →+AC →)+μ·12(AC →+AB →),则⎝ ⎛⎭⎪⎫μ2-1AB →+λ2AD →+⎝ ⎛⎭⎪⎫λ2+μ2AC →=0, 得⎝⎛⎭⎪⎫μ2-1AB →+λ2AD →+⎝ ⎛⎭⎪⎫λ2+μ2⎝⎛⎭⎪⎫AD → +12AB →=0, 得⎝ ⎛⎭⎪⎫14λ+34μ-1AB →+⎝ ⎛⎭⎪⎫λ+μ2AD →=0. 又AB →,AD →不共线,∴由平面向量基本定理,得 ⎩⎪⎨⎪⎧14λ+34μ-1=0,λ+μ2=0,解得⎩⎪⎨⎪⎧λ=-45,μ=85.∴λ+μ=45.解法二:(回路法)连接MN 并延长交AB 的延长线于T ,由已知易得AB =45AT ,∴45AT →=AB →=λAM →+μAN →,即AT →=54λAM →+54μAN →,∵T ,M ,N 三点共线,∴54λ+54μ=1.∴λ+μ=45.5.已知O (0,0),A (1,2),B (4,5)及OP →=OA →+tAB →,试问: (1)当t 为何值时,P 在x 轴上?在y 轴上?在第三象限?(2)四边形OABP 能否成为平行四边形,若能,求出相应的t 的值;若不能,请说明理由. 解:(1)∵OA →=(1,2),AB →=(3,3), ∴OP →=OA →+tAB →=(1+3t,2+3t ).若点P 在x 轴上,则2+3t =0,解得t =-23;若点P 在y 轴上,则1+3t =0,解得t =-13;若点P 在第三象限,则⎩⎪⎨⎪⎧1+3t <0,2+3t <0,解得t <-23.(2)若四边形OABP 为平行四边形,则OP →=AB →,∴⎩⎪⎨⎪⎧1+3t =3,2+3t =3.∵该方程组无解,∴四边形OABP 不能成为平行四边形.6.已知A (-2,4),B (3,-1),C (-3,-4).设AB →=a ,BC →=b ,CA →=c ,且CM →=3c ,CN →=-2b .(1)求3a +b -3c ;(2)求满足a =m b +n c 的实数m ,n ; (3)求M ,N 的坐标及向量MN →的坐标.解:由已知,得a =(5,-5),b =(-6,-3),c =(1,8). (1)3a +b -3c =3(5,-5)+(-6,-3)-3(1,8) =(15-6-3,-15-3-24)=(6,-42). (2)∵m b +n c =(-6m +n ,-3m +8n ),∴⎩⎪⎨⎪⎧-6m +n =5,-3m +8n =-5,解得⎩⎪⎨⎪⎧m =-1,n =-1.即所求实数m 的值为-1,n 的值为-1. (3)设O 为坐标原点,∵CM →=OM →-OC →=3c , ∴OM →=3c +OC →=(3,24)+(-3,-4) =(0,20),即M (0,20).又CN →=ON →-OC →=-2b , ∴ON →=-2b +OC →=(12,6)+(-3,-4) =(9,2),即N (9,2),∴MN →=(9,-18).。
2017-2018学年高中数学人教A版必修3:课时跟踪检测(二) 程序框图、顺序结构
课时跟踪检测(二)程序框图、顺序结构[层级一学业水平达标]1.下列关于程序框图的说法正确的是()A.一个程序框图包括表示相应操作的框、带箭头的流程线和必要的文字说明B.输入、输出框只能各有一个C.程序框图虽可以描述算法,但不如用自然语言描述算法直观D.在程序框图中,必须包含判断框解析:选A输入、输出框可以放在算法中任何需要输入、输出的位置,所以不一定各有一个,因此B选项是错误的;相对于自然语言,用程序框图描述算法的优点主要就是直观、形象,容易理解,在步骤表达上简单了许多,所以C选项是错误的;显然D选项是错误.2.在顺序结构中,一定不含有的程序框是()A.终端框B.输入、输出框C.处理框D.判断框解析:选D顺序结构中没有判断框.3.阅读程序框图:若输出结果为15,则①处的执行框内应填的是________.解析:先确定①处的执行框是给x赋值,然后倒着推,b=15时,2a-3=15,a=9,当a=9时,2x+1=9,x=3.答案:x=34.根据所给的程序框图,如图所示,输出的结果是________.解析:由X =Y ,得X =2;由Y =X ,得Y =2;由Z =Y ,得Z =2. 答案:2[层级二 应试能力达标]1.算法共有三种逻辑结构,即顺序结构、条件结构和循环结构,下列说法正确的是( ) A .一个算法只含有一种逻辑结构 B .一个算法最多可以包含两种逻辑结构 C .一个算法必须含有上述三种逻辑结构 D .一个算法可以同时含有上述三种逻辑结构解析:选D 一个算法中含有哪种逻辑结构,主要看解决什么样的问题及解决问题的方法,顺序结构、条件结构和循环结构这三种逻辑结构在一个算法中可以同时出现.2.如图所示的程序框图,已知a 1=3,输出的结果为7,则a 2的值是( )A .9B .10C .11D .12解析:选C 因为输出的结果为7,所以b =7,又b =b2,所以原b =14,即a 1+a 2=14.又a 1=3,所以a 2=11.3.下列是流程图中的一部分,表示恰当的是( )解析:选A B 选项应该用处理框而非输入、输出框,C 选项应该用输入、输出框而不是处理框,D 选项应该在出口处标明“是”和“否”.4.阅读如图所示的程序框图,若输入x =3,则输出y 的值为( )A .33B .34C .40D .45解析:选B x =3,a =2×32-1=17,b =a -15=2,y =ab =17×2=34,则输出y 的值为34.5.如图的程序框图表示的算法的运行结果是________.解析:p =9,∴S =9(9-5)(9-6)(9-7)=6 6. 答案:6 66.已知点P (x 0,y 0),直线l :x +2y -3=0,求点P 到直线l 的距离的一个算法程序框图如图所示,则在①处应填________.解析:应填上点到直线的距离公式. 答案:d =|x 0+2y 0-3|57.如图是求长方体的体积和表面积的一个程序框图,补充完整,横线处应填______________________.解析:根据题意,长方体的长、宽、高应从键盘输入,故横线处应填写输入框.答案:8.利用梯形的面积公式计算上底为4,下底为6,面积为15的梯形的高.请设计出该问题的算法及程序框图.解:根据梯形的面积公式S=12(a+b)h,得h=2Sa+b,其中a是上底,b是下底,h是高,S是面积,只要令a=4,b=6,S=15,代入公式即可.算法如下:第一步,输入梯形的两底a,b与面积S的值.第二步,计算h=2Sa+b.第三步,输出h.该算法的程序框图如图所示:9.如图所示的程序框图,根据该图和下列各小题的条件回答下面问题.(1)该程序框图解决的是一个什么问题?(2)当输入的x的值为0和4时,输出的值相等,问当输入的x的值为3时,输出的值为多大?(3)在(2)的条件下要想使输出的值最大,输入的x的值应为多大?解:(1)该程序框图解决的是求二次函数f(x)=-x2+mx的函数值的问题.(2)当输入的x的值为0和4时,输出的值相等,即f(0)=f(4).因为f(0)=0,f(4)=-16+4m,所以-16+4m=0,所以m=4,所以f(x)=-x2+4x.则f(3)=-32+4×3=3,所以当输入的x的值为3时,输出的f(x)值为3.(3)因为f(x)=-x2+4x=-(x-2)2+4,当x=2时,f(x)最大值=4,所以要想使输出的值最大,输入的x的值应为2.。
2018年高考数学一轮复习 课时跟踪检测61 文 新人教A版
课时跟踪检测(六十一)[高考基础题型得分练]1.(2017·海南海口模拟)某中学举行了一次“环保知识竞赛”,全校学生参加了这次竞赛.为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本进行统计,请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解答下列问题.(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学到广场参加环保知识的志愿宣传活动.①求所抽取的2名同学中至少有1名同学来自第5组的概率;②求所抽取的2名同学来自同一组的概率.解:(1)由题意可知,样本总人数为80.16=50,∴b=250=0.04,∴y =b10=0.004,a =16,x =0.032.(2)①由题意可知,第4组共有4人,记为A ,B ,C ,D ,第5组共有2人,记为X ,Y . 从竞赛成绩是80分以上(含80分)的同学中随机抽取2名同学有AB ,AC ,AD ,BC ,BD ,CD ,AX ,AY ,BX ,BY ,CX ,CY ,DX ,DY ,XY ,共15种情况.设“随机抽取的2名同学中至少有1名同学来自第5组”为事件E ,有AX ,AY ,BX ,BY ,CX ,CY ,DX ,DY ,XY ,共9种情况.∴P (E )=915=35.②设“随机抽取的2名同学来自同一组”为事件F ,有AB ,AC ,AD ,BC ,BD ,CD ,XY ,共7种情况.∴P (F )=715.2.某足球队两名主力队员各进行了5组罚点球训练,每组罚10次,罚中次数如下表:场?(2)若从这两名队员的5组中各随机抽取一组分析罚点球的技术和心理因素,求选出的一组中甲恰好罚中次数多于乙的罚中次数的概率.解:(1)计算甲、乙的罚中次数的平均值得x 甲=6+5+7+9+85=7,x乙=4+8+9+7+75=7,所以两人罚中次数的平均值相等,s 2甲=-2+-2+-2+-2+-25=2,s 2乙=-2+-2+-2+-2+-25=145,s 2甲<s 2乙,甲罚中次数的方差较小,相对更稳定,应派甲队员出场.(2)记甲队员的5组次数分别为A 1,A 2,A 3,A 4,A 5,乙队员的5组次数分别为B 1,B 2,B 3,B 4,B 5,随机抽取各一组所有可能的情况有25种,分别为:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4),(A 1,B 5),(A 2,B 1),…,(A 5,B 5),其中甲恰好罚中次数多于乙的罚中次数的有(A 1,B 1),(A 2,B 1),(A 3,B 1),(A 4,B 1),(A 5,B 1),(A 4,B 2),(A 4,B 4),(A 4,B 5),(A 5,B 4),(A 5,B 5),共10种情况,故所求概率为P =1025=25.3.在等差数列{a n }和等比数列{b n }中,a 1=b 1=1,b 4=8,{a n }的前10项和S 10=55.(1)求a n 和b n ;(2)现分别从{a n }和{b n }的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.解:(1)设数列{a n }的公差为d ,数列{b n }的公比为q . 依题意得S 10=10+10×92d =55,b 4=q 3=8,解得d =1,q =2,所以a n =n ,b n =2n -1.(2)分别从{a n }和{b n }的前3项中各随机抽取一项,得到的基本事件有9个:(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(3,1),(3,2),(3,4).符合题意的基本事件有2个:(1,1),(2,2).故所求的概率P =29.[冲刺名校能力提升练]1.一个均匀的正四面体的四个面上分别涂有1,2,3,4四个数字,现随机抛掷两次,正四面体面朝下的数字分别为b ,c .(1)z =(b -3)2+(c -3)2,求z =4的概率;(2)若方程x 2-bx -c =0至少有一根x ∈{1,2,3,4},就称该方程为“漂亮方程”,求方程为“漂亮方程”的概率.解:(1)因为是抛掷两次,因此基本事件(b ,c ):(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个.当z =4时,(b ,c )的所有取值为(1,3),(3,1), 所以P (z =4)=216=18.(2)①若方程一根为x =1,则1-b -c =0, 即b +c =1,不成立.②若方程一根为x =2,则4-2b -c =0, 即2b +c =4,所以 ⎩⎪⎨⎪⎧ b =1,c =2.③若方程一根为x =3,则9-3b -c =0,即3b +c =9,所以 ⎩⎪⎨⎪⎧b =2,c =3.④若方程一根为x =4,则16-4b -c =0,即4b +c =16,所以 ⎩⎪⎨⎪⎧b =3,c =4.由①②③④知(b ,c )的所有可能取值为(1,2),(2,3),(3,4), 所以方程为“漂亮方程”的概率为P=316.2.某班甲、乙两名同学参加100米达标训练,在相同条件下两人10次训练的成绩(单位:秒)如下:稳定性方面考虑,选派谁参加比赛更好,并说明理由(不用计算,可通过统计图直接回答结论);(2)经过对甲、乙两位同学的若干次成绩的统计,甲、乙的成绩都均匀分布在[11.5,14.5]之间,现甲、乙比赛一次,求甲、乙成绩之差的绝对值小于0.8秒的概率.解:(1)甲、乙两人10次训练的成绩的茎叶图:从统计图中可以看出,乙的成绩较为集中,差异程度较小,所以选派乙同学代表班级参加比赛更好.(2)设甲同学的成绩为x,乙同学的成绩为y,则|x-y|<0.8,得x-0.8<y<0.8+x,如图,阴影部分面积即为3×3-2.2×2.2=4.16,则P (|x -y |<0.8)=P (x -0.8<y <0.8+x )=4.163×3=104225.3.已知集合P ={x |x (x 2+10x +24)=0},Q ={y |y =2n -1,1≤n ≤2,n ∈N *},M =P ∪Q .在平面直角坐标系中,点A 的坐标为(x ′,y ′),且x ′∈M ,y ′∈M ,试计算:(1)点A 正好在第三象限的概率; (2)点A 不在y 轴上的概率;(3)点A 正好落在区域x 2+y 2≤10上的概率. 解:由集合P ={x |x (x 2+10x +24)=0}, 可得P ={-6,-4,0},由Q ={y |y =2n -1,1≤n ≤2,n ∈N *},可得Q ={1,3},则M =P ∪Q ={-6,-4,0,1,3}, 因为点A 的坐标为(x ′,y ′),且x ′∈M ,y ′∈M ,所以满足条件的点A 的所有情况为(-6,-6),(-6,-4),(-6,0),(-6,1),(-6,3),…,(3,3),共25种.(1)点A 正好在第三象限的可能情况为(-6,-6),(-6,-4),(-4,-6),(-4,-4),共4种,故点A 正好在第三象限的概率P 1=425.(2)点A 在y 轴上的可能情况为(0,-6),(0,-4),(0,0),(0,1),(0,3),共5种, 故点A 不在y 轴上的概率P 2=1-525=45.(3)点A 正好落在区域x 2+y 2≤10上的可能情况为(0,0),(1,0),(0,1),(3,1),(1,3),(3,0),(0,3),(1,1),共8种,故点A 落在区域x 2+y 2≤10上的概率P 3=825.。
2018版高考数学(人教A版理科)一轮复习课时跟踪检测70含答案
课时跟踪检测(七十)1.若大前提是:任何实数的平方都大于0,小前提是:a∈R,结论是:a2〉0,那么这个演绎推理出错在( )A.大前提 B.小前提C.推理过程D.没有出错答案:A解析:要分析一个演绎推理是否正确,主要观察所给的大前提、小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.因为大前提是:任何实数的平方都大于0,是不正确的.故选A。
2.观察(x2)′=2x,(x4)′=4x3,(cos x)′=-sin x,由归纳推理可得:若定义在R上的函数f(x)满足f(-x)=f(x),记g(x)为f(x)的导函数,则g(-x)=( )A.f(x)B.-f(x)C.g(x)D.-g(x)答案:D解析:由所给函数及其导数知,偶函数的导函数为奇函数,因此当f(x)是偶函数时,其导函数应为奇函数,故g(-x)=-g(x).3.观察一列算式:1⊗1,1⊗2,2⊗1,1⊗3,2⊗2,3⊗1,1⊗4,2⊗3,3⊗2,4⊗1,…,则式子3⊗5是第()A.22项B.23项C.24项D.25项答案:C解析:两数和为2的有1个,和为3的有2个,和为4的有3个,和为5的有4个,和为6的有5个,和为7的有6个,前面共有21个,3⊗5是和为8的第3项,所以为第24项,故选C.4.已知△ABC中,∠A=30°,∠B=60°,求证:a〈b.证明:∵∠A=30°,∠B=60°,∴∠A〈∠B。
∴a〈b。
其中,画线部分是演绎推理的( )A.大前提 B.小前提C.结论 D.三段论答案:B解析:由三段论的组成可得画线部分为三段论的小前提.5.将圆的一组n等分点分别涂上红色或蓝色,从任意一点开始,按逆时针方向依次记录k(k≤n)个点的颜色,称为该圆的一个“k阶色序",当且仅当两个k阶色序对应位置上的颜色至少有一个不相同时,称为不同的k阶色序.若某国的任意两个“k阶色序”均不相同,则称该圆为“k阶魅力圆".“3阶魅力圆”中最多可有的等分点个数为()A.4 B.6C.8 D.10答案:C解析:因“3阶色序”中每个点的颜色有两种选择,故“3阶色序”共有2×2×2=8种,一方面,n个点可以构成n个“3阶色序”,故“3阶魅力圆”中的等分点的个数不多于8个;另一方面,若n=8,则必须包含全部共8个“3阶色序”,不妨从(红,红,红)开始按逆时针确定其它各点颜色,显然(红,红,红,蓝,蓝,蓝,红,蓝)符合条件.故“3阶魅力圆”中最多有8个等分点,故选C.6.观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=( )A.28 B.76C.123 D.199答案:C解析:从给出的式子特点观察可推知,等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123。
2018年高考数学一轮复习课时跟踪检测31文新人教A版
课时跟踪检测(三十一)[高考基础题型得分练]1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.-1n+12 B .cos n π2C .cosn +12π D .cosn +22π答案:D解析:令n =1,2,3,…,逐一验证四个选项,易得D 正确. 2.设a n =-3n 2+15n -18,则数列{a n }中的最大项的值是( ) A.163 B.133C .4D .0 答案:D解析:∵a n =-3⎝ ⎛⎭⎪⎫n -522+34,由二次函数的性质,得当n =2或3时,a n 最大,最大值为0.3.已知数列{a n },a 1=-14,a n =-1a n -1+1(n >1),则当a n =-14时,n 的值可以为( )A .14B .15C .16D .17答案:C解析:由题意,得a 1=-14,a 2=-43,a 3=3,a 4=-14,…,则a 3m -2=-14(m ∈N *),a 16=-14,故选C.4.[2017·河北保定调研]在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式为a n =( )A .2n-1 B .2n -1+1C .2n -1D .2(n -1) 答案:A解析:解法一:由a n +1=2a n +1,可求a 2=3,a 3=7,a 4=15,…,验证可知a n =2n-1. 解法二:由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n-1. 5.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( ) A .3×44B .3×44+1C .45D .45+1 答案:A解析:当n ≥1时,a n +1=3S n ,则a n +2=3S n +1,∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1,∴该数列从第2项开始是以4为公比的等比数列.又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1,n =1,3×4n -2,n ≥2,∴a 6=3×46-2=3×44,故选A.6.[2016·云南一模]在数列{a n }中,a 1=12,a 2=13,a n a n +2=1,则a 2 016+a 2 017=( )A.56B.52C.72 D .5答案:C解析:因为a 1=12,a 2=13,a n a n +2=1,所以a 3=2,a 4=3,a 5=12,a 6=13,即数列{a n }是周期数列,周期为4,则a 2 016+a 2 017=a 4+a 1=3+12=72,故选C.7.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 015=( ) A .8 B .6 C .4 D .2 答案:D解析:由题意得a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 015=a 335×6+5=a 5=2.8.已知数列{a n }满足a n +1=a n -a n -1(n ≥2),a 1=1,a 2=3,记S n =a 1+a 2+…+a n ,则下列结论正确的是( )A .a 2 014=-1,S 2 014=2B .a 2 014=-3,S 2 014=5C .a 2 014=-3,S 2 014=2D .a 2 014=-1,S 2 014=5 答案:D解析:由a n +1=a n -a n -1(n ≥2),知a n +2=a n +1-a n ,则a n +2=-a n -1(n ≥2),a n +3=-a n ,…,a n +6=a n .又a 1=1,a 2=3,a 3=2,a 4=-1,a 5=-3,a 6=-2,所以当k ∈N 时,a k +1+a k +2+a k +3+a k +4+a k +5+a k +6=a 1+a 2+a 3+a 4+a 5+a 6=0,所以a 2 014=a 4=-1,S 2 014=a 1+a 2+a 3+a 4=1+3+2+(-1)=5.9.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.答案:6116解析:由题意知a 1·a 2·a 3·…·a n -1=(n -1)2, ∴a n =⎝⎛⎭⎪⎫n n -12(n ≥2),∴a 3+a 5=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫542=6116.10.设{a n }是首项为1的正项数列,且(n +1)a 2n +1-na 2n +a n +1·a n =0(n =1,2,3,…),则它的通项公式a n =________.答案:1n解析:∵(n +1)a 2n +1+a n +1·a n -na 2n =0, ∴(a n +1+a n )[(n +1)a n +1-na n ]=0, 又a n +1+a n >0,∴(n +1)a n +1-na n =0, 即a n +1a n =n n +1,∴a 2a 1·a 3a 2·a 4a 3·a 5a 4·…·a n a n -1=12×23×34×45×…×n -1n ,∵a 1=1,∴a n =1n. 11.[2017·山西四校第二次联考]已知{a n }满足a 1=1,a n +1·a n =2n(n ∈N *),则S 2 016=________.答案:3×101 008-3解析:因为a n ·a n +1=2n,所以a n +2·a n +1=2n +1,所以a n +2a n=2,因此a 1,a 3,a 5,…构成一个以1为首项,2为公比的等比数列,a 2,a 4,a 6,…构成一个以2为首项,2为公比的等比数列.从而S 2 016=(a 1+a 3+…+a 2 015)+(a 2+a 4+…+a 2 016)=1-21 0081-2+2×1-21 0081-2=3×21008-3.12.已知a n =n 2+λn ,且对于任意的n ∈N *,数列{a n }是递增数列,则实数λ的取值范围是________.答案:(-3,+∞)解析:因为{a n }是递增数列,所以对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1).(*)因为n ≥1,所以-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3.[冲刺名校能力提升练]1.[2017·山西四校联考]已知数列2 008,2 009,1,-2 008,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 016项之和S 2 016=( )A .1B .4 018C .2 010D .0答案:D解析:依题意,该数列为2 008,2 009,1,-2 008,-2 009,-1,2 008,2 009,1,…,按此规律,可知该数列的周期为6,且这6项之和为0.所以这个数列的前2 016项之和S 2 016=S 336×6=S 6=0.2.[2017·湖北宜昌一模]已知函数f (x )=⎩⎪⎨⎪⎧3-a x -3,x ≤7,a x -6,x >7,若数列{a n }满足a n =f (n ),且数列{a n }是递增数列,则实数a 的取值范围是( )A.⎣⎢⎡⎭⎪⎫94,3B.⎝ ⎛⎭⎪⎫94,3C .(2,3)D .(1,3) 答案:C解析:由已知得a n =f (n )=⎩⎪⎨⎪⎧3-a n -3,n ≤7,a n -6,n >7(n ∈N *),若数列{a n }是递增数列,则⎩⎪⎨⎪⎧3-a >0,a >1,3-a ×7-3<a 8-6,解得2<a <3,故实数a 的取值范围是(2,3).3.[2016·北京海淀期末]若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9 答案:B解析:∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧a k ≥0,a k +1≤0,k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3k +1≤0,∴193≤k ≤223,∵k ∈N *,∴k =7. ∴满足条件的n 的值为7.4.[2016·江西南昌调研]一牧羊人赶着一群羊通过4个关口,每过一个关口,守关人将拿走当时羊的一半,然后退还1只给牧羊人,过完这些关口后,牧羊人只剩下2只羊,则牧羊人在过第一个关口前有________只羊.答案:2解析:记此牧羊人通过第1个关口前、通过第2个关口前、……、通过第4个关口前剩下的羊的只数组成数列{a n }(n =1,2,3,4),则由题意得a 2=12a 1+1,a 3=12a 2+1,a 4=12a 3+1,而12a 4+1=2,解得a 4=2,因此得a 3=2,…,a 1=2. 5.[2017·甘肃天水一模]已知数列{a n }中,a 1=1,且a n +a n +1=2n.求数列{a n }的通项公式.解:∵a n +a n +1=2n,①∴a n +1+a n +2=2n +1,②②-①,得a n +2-a n =2n, 由a 1=1,a 1+a 2=2,得a 2=1. 当n 为奇数时,a n =(a n -a n -2)+(a n -2-a n -4)+…+(a 3-a 1)+a 1=2n -2+2n -4+…+2+1=13×2n +13; 当n 为偶数时,a n =(a n -a n -2)+(a n -2-a n -4)+…+(a 4-a 2)+a 2=2n -2+2n -4+…+22+1=13×2n -13. 故a n=⎩⎪⎨⎪⎧13×2n+13,n 为奇数,13×2n-13,n 为偶数.6.已知数列{a n }中,a n =1+1a +2n -1(n ∈N *,a ∈R ,且a ≠0).(1)若a =-7,求数列{a n }中的最大项和最小项的值; (2)若对任意的n ∈N *,都有a n ≤a 6成立,求a 的取值范围. 解:(1)∵a n =1+1a +2n -1(n ∈N *,a ∈R ,且a ≠0),又∵a =-7,∴a n =1+12n -9.结合函数f (x )=1+12x -9的单调性, 可知1>a 1>a 2>a 3>a 4,a 5>a 6>a 7>…>a n >1(n ∈N *).∴数列{a n }中的最大项为a 5=2,最小项为a 4=0.(2)a n =1+1a +2n -1=1+12n -2-a2.∵对任意的n ∈N *,都有a n ≤a 6成立, 结合函数f (x )=1+12x -2-a 2的单调性,知5<2-a 2<6,∴-10<a <-8.故a 的取值范围为(-10,-8).。
2018年高考数学一轮复习课时跟踪检测49文新人教A版
所以 a 2= 6, b 2= 1, 则 c 2= a 2-b 2= 5.课时跟踪检测(四十九)[高考基础题型得分练]1.椭圆x 2 + my = 1的焦点在y 轴上,长轴长是短轴长的两倍,贝U m 的值为(1A.4B.C. 2D.答案: 解析: 2 1 2由题意知,a = m b = 1,且a = 2b ,1•m=4,X 22.已知实数4, m,9构成一个等比数列,则圆锥曲线-+ y = 1的离心率为(B. .7答案:C解析:因为实数4, m,9构成一个等比数列, 所以可得m = 36, 解得m= 6或m=- 6.当圆锥曲线为椭圆时,即2 2m / =1的方程为x + y =1所以离心率e =a =5 _30 6= 当曲线是双曲线时可求得离心率为 .7. 2 23. [2017 •河北邯郸一模]椭圆12 + 3 = 1 的焦点为F i , F 2,点P 在椭圆上,如果线段PF 2的中点在y 轴上,那么|PB |是|PF |的( A. 7倍 B. 5倍 C. 4倍 D. 3倍答案:A解析:设线段PF 的中点为D,1 则 |0D = 2I PF 1I 且 OD/ PF , ODL x 轴,••• PF 丄 x 轴,••• |PF | = b =△=€•a 2、p 2又••• |PF | + I PF = 4西,• |PE|= 4 .3_f= =-2.■■- | PFJ 是| PF | 的 7倍.2 2x y4•已知椭圆C : ; + £= 1的左、右焦点分别为 F l , F 2,椭圆C 上的点A 满足AF 丄F 1F 2.43若点P 是椭圆C 上的动点,贝U F i P- F 2A 勺最大值为于2贝y c 的方程是()2土=12x 2D -+y =14B.3<3 2_ 9C.4D. 15 ~4答案:B解析:设向量FP, F 2A 的夹角为0 . 由条件知| AR|为椭圆通径的一半,b 2 3即 | AF = - = ©T T 3 T则 F 1P - F 2A = ?| F 1P COS 0 ,于是FP-只需FP 在 F 2A 上的投影值最大,易知此时点P 在椭圆短轴的上顶点,T T 3 T所以 FP- F 2A = x| F 1P |cos 3.3故选B.5. [2017 •陕西西安质量检测 ]已知中心在原点的椭圆 C 的右焦点为F (1,0),离心率等—1,=—1,点与线段AB 中点的直线的斜率为■,则b 的值为( 2 aB.2*3 3 C症C.2D.2,3 27答案:B解析:设 A (X 1, yj , B (X 2, ax 2 + by 1 = 1, ax 2+ by ! = 1,y 2),则即 ax 1 — ax 2=— ( by 2 — by 2), 22by 1 — by 22 2 = ax 1 — ax 2.b y — y 2y 1 + y 2 a X 1 — X 2 X 1 + X 2答案:A解析:设椭圆C 的焦距为2c (c <a ), 由于直线 AB 的方程为bx + ay — ab = 0,ab•/ b 2 = a 2 — c 2,「. 3a 4— 7a 2c 2+ 2c 4= 0,解得a 2= 2c 2或3a 2= c 2(舍去)」e =#答案:C 解析:依题意,所求椭圆的焦点位于c1x轴上,2 2因此其方程是++警=X 故选C.6. [2017 •甘肃兰州诊断]已知椭圆 C:2 2x y 云+令=1( a >b >0)的左、右焦点分别为 F 1, F 2, 右顶点为A,上顶点为B,若椭圆C 的中心到直线AB 的距离为半| F 1F 2I ,则椭圆C 的离心率e =( )B.~2D.7. [2 017 •江西师大附中模拟]椭圆ax 2+ by 21与直线y = 1 — x 交于A , B 两点,过原••• a x(-1)x• b=孚,故选B.2 2& [2017 •山东青岛模拟]设椭圆m2+ £= 1(m>0, n>0)的右焦点与抛物线y2= 8x的焦点1相同,离心率为2,则此椭圆的方程为 ________ .2 2答案:16+务=1解析:抛物线y2= 8x的焦点为(2,0),•吊—n2= 4,①• m= 4,n2= 12,2 2•椭圆方程为~+12= 1.2 29. _________ [2017 •湖南长沙一模]椭圆r :争+碁=1(a>b>0)的左、右焦点分别为F1, F2,焦距为2c,若直线y=J3(x+ c)与椭圆r的一个交点M满足/ MFF2= 2/ MFF,则该椭圆的离心率等于_________________ .答案:3 —1解析:依题意得/ MFF2= 60°,/ MFF1 = 30°,/ RMF= 90°,设| MF| = m则有| MF| = 3m I尸冋=2m该椭圆的离心率是e=丨田_J3_1| MF| + | MI2| = 32x10. 在平面直角坐标系xOy中,已知△ ABC的顶点A( —4,0)和C(4,0),顶点B在椭圆忑5答案:5解析:sin A+ sin C | BQ + | BA 2a a 5 sin B =|AQ = 2c= c = 4.2 2 21 2e= 2=m代入①得,2+ y9 = 1上,则S in A+ Sin C的值为sin Bxv 2 y11. [2017 •山东三校联考]椭圆C:孑+話=1(a>b>0)的右焦点为F,双曲线x -3 = 1的一条渐近线与椭圆C交于A, B两点,且AF丄BF则椭圆C的离心率为____________ .答案:3 —12解析:不妨取双曲线x2—V3 = 1的一条渐近线的方程为y= .3x,记椭圆C的左焦点为F1,由题意得| OA = | OB = | OF = | OF| = c,•••四边形AFBF为矩形,△ AFC是正三角形,••• | AF = c, | AF| = Q3c,c 2c•椭圆C的离心率e=a=亦=l FF l = % = 3_1= |AF + |AF| = c+ 3c = 3_12. 已知椭圆的左焦点为R,右焦点为冃,若椭圆上存在一点P,满足线段PR相切于以椭圆的短轴为直径的圆,切点为线段 __________________________ PF的中点,则该椭圆的离心率为.答案:£设| F1F2| = 2c, |PF| = 2|CM = 2b, 由椭圆的定义,得|PF a| = 2a_ 2b.2 2 2由勾股定理,得4b + (2 a—2b) = 4c ,2 yl5解得b= 3a, c = -ya,所以椭圆的离心率e =靑[冲刺名校能力提升练]2 21. [2017 •广东汕头一模]已知椭圆X +吕=1上有一点P , F i , F 2是椭圆的左、右焦点, 若厶F i PR 为直角三角形,则这样的点P 有( )A. 3个B. 4个C. 6个D. 8个答案:C解析:当/ PF 1F 2为直角时,根据椭圆的对称性知,这样的点 P 有2个;同理当/ PF 2F 1为直角时,这样的点 P 有2个;当P 点为椭圆的短轴端点时,/ F i PR 最大,且为直角,此时这样的点P 有2个.故符合要求的点 P 有6 个.+ y =0的对称点A 是椭圆C 上的点,则椭圆 C 的离心率为( 1 A.- 1 BYC© C.2D. 3 — 1答案:D解析:解法一:设A (m n ),则—/3 =— 1,解得A |,彳-,-2 3-2代入椭圆C 中,有石+ 4b 2=1,.22只 2 2 , 2. 2「•be + 3a - = 4a b ,/ 22、 2 小22 ,2,2 2、/• (a — c )c + 3a c = 4a (a — c ),4介 2 2 ,4…c — 8a c + 4a = 0,二 e — 8e + 4 = 0,2. [2017 •河北唐山模拟m- - n+ 2=0,]椭圆C:2 2F ,若F 关于直线e = 4±2 , 3,•/ 0<e<1,二e= . 3— 1.解法二:借助于椭圆的定义,本题还有如下简捷解法:设F '是椭圆的右焦点,连接 AF, AF . 由已知得厶AFF 是直角三角形,其中/ A = 90°,/ AFF = 30°,2c—— =3— 1,故选D.c + 3c '2 2x y3.已知F 1, F 2是椭圆G 尹^2= 1(a >b >0)的两个焦点,P 为椭圆答案:3••• I FF I = 2c ,. | AF | =0c , |AF | = c , 2c|FF |e= 2a = | AF | + | AF IC 上的一点,且 PF丄PF 2.若厶PFF 2的面积为 9,则 b =解析:设| PF| = r1, | PF| =「2,则r 1+「2= 2a,2,2 2r 1+「2= 4c ,2 22「1「2= (「1 +「2) —(r 1 +r ) =4a2—4c2= 4b2,1 2又S PF_,F2=歹1r2= b = 9,「. b= 3.4. [2017 •河北保定一模]与圆C: (x+ 3)2+ y2= 1外切,且与圆 2 2G: (x —3) + y = 81内切的动圆圆心P的轨迹方解析:设动圆的半径为r,圆心为F(x, y),则有|PG| = r + 1, | PG| = 9- r.所以| PG| + | PG| = 10> | CC ,即P在以2x P的轨迹方程为去+255.已知椭圆G的对称中心为原点O,焦点在x轴上,左、右焦点分别为F1和F2,且|尸冋=2,点1, 2在该椭圆上.(1)求椭圆G的方程;⑵过F1的直线I与椭圆C相交于A, B两点,若△ AFB的面积为^2#,求以F2为圆心且与直线I相切的圆的方程.解:(1)由题意知c = 1,2 a=gj + p gj + 22= 4,解得a= 2,故椭圆G的方程为x(2)①当直线I 丄x 轴时,可取A — 1, — 2 , B — 1, 2 , △ AFB 的面积为3,不符合题意.②当直线I 与x 轴不垂直时,设直线I 的方程为y = k (x + 1),代入椭圆方程得(3 + 4k 3 4 5)x 22 2+ 8k x + 4k — 12= 0,显然△ >0 成立,设 A (X 1, y 1), B (X 2, y 2),3 求椭圆C 的方程;4 在x 轴上是否存在定点经过以 MN 为直径的圆?若存在, 求定点坐标;若不存在,请说明理由.X 1+ X 2= — 8 k 2 3 +4k 2,X 1X 2 = 4k 2— 123+ 4k 2,可得| AB = 1 + k2—X1 + X2 2—4x1X212 k2+l=3 + 4k2,又圆F2的半径r =2| k|_ 1 + k2'•••△ AFB的面积为12| k| .. k2+ 1 12 2 r= 3+ 4k2=十,化简得17k4+ k2—18= 0,得k=± 1,• r = 2,圆的方程为(x —1)2+ y2= 2.2 2x y6. [2017 •湖南四校联考]在平面直角坐标系xOy中,椭圆C:二+ 2= 1(a>b>0)的离心a b率e= 1,且过点(0 , 3),椭圆C的长轴的两端点为A B,点P为椭圆上异于A, B的动点, 1| AB. 2 2 22 c a — b 1解:⑴ a a 4 b 2= 32 2 x y•••椭圆C 的方程为匚+石=1. 4 3y oy o 则 k l =,k 2=x^, 2 y ok i k 2= ―22 X o — 4x o — 42 4 — x o 3X 4 3x 2— 4 =— 4,由 I PA :y = k i (x + 2)知 M 4,6 k i ), 由 l PB : y = k 2(x — 2)知 N (4,2 k 2), • MN 的中点Q4,3总+ k 2),1•••以 MN 为直径的圆的方程为(x — 4)2+ (y — 3k 1— k 2)2=二(6k 1 — 2k ?)2 = (3k 1 — k"2, 4 令y = o ,得x — 8x + 16+ 9k 1 + 6k 〔k 2+ k 2=9k 1— 6k 1 k 2 + k 2,2•- x — 8x + 16+ 12k 1k 2= o , • x 2 — 8x + 16+ 12X-3 = o ,2 即 x — 8x + 7 = o ,解得 x = 7 或 x = 1,•••存在定点(1,o) , (7,o)经过以MN 为直径的圆. ⑵设PA PB 的斜率分别为 k i , k 2, F (x o , y o ),31 - 42 2 T。
2018版高考数学人教A版理科一轮复习课时跟踪检测65 含
课时跟踪检测(六十五)1.在区间⎣⎢⎡⎦⎥⎤-π2,π2上随机取一个数x ,cos x 的值介于0到12之间的概率为( ) A.13 B.2πC.12D.23答案:A解析:若cos x ∈⎣⎢⎡⎦⎥⎤0,12,x ∈⎣⎢⎡⎦⎥⎤-π2,π2,利用三角函数性质,解得x ∈⎣⎢⎡⎦⎥⎤-π2,-π3∪⎣⎢⎡⎦⎥⎤π3,π2,在⎣⎢⎡⎦⎥⎤-π2,π2上随机取一个数是等可能的, 结合几何概型的概率公式可得所求概率为P =2×⎝ ⎛⎭⎪⎫π2-π3π2-⎝ ⎛⎭⎪⎫-π2=13.2.实数m 是上的随机数,则关于x 的方程x 2-mx +4=0有实根的概率为( ) A.14 B.13 C.12 D.23答案:B解析:方程x 2-mx +4=0有实根, 则Δ=m 2-4×4≥0, ∴m ≥4或m ≤-4. 又m ∈,∴4≤m ≤6,∴关于x 的方程x 2-mx +4=0有实根的概率为 6-46-0=13.故选B. 3.若将一个质点随机投入如图所示的长方形ABCD 中,其中AB =2,BC =1,则质点落在以AB 为直径的半圆内的概率是( )A.π2B.π4C.π6D.π8答案:B解析:设质点落在以AB 为直径的半圆内为事件A , 则P (A )=阴影面积长方形面积=12π×121×2=π4.4.如图,大正方形的面积是34,四个全等直角三角形围成一个小正方形,直角三角形的较短边长为3,向大正方形内抛撒一枚幸运小花朵,则小花朵落在小正方形内的概率为()A.117B.217C.317D.417答案:B解析:∵大正方形的面积是34,∴大正方形的边长是34.由直角三角形的较短边长为3,得四个全等直角三角形的直角边分别是5和3,则小正方形边长为2,面积为4,∴小花朵落在小正方形内的概率为P =434=217.故选B.5.在区间⎣⎢⎡⎦⎥⎤-π6,π2上随机取一个数x ,则sin x +cos x ∈的概率是( ) A.12B.34C.38D.58答案:B解析:因为x ∈⎣⎢⎡⎦⎥⎤-π6,π2, 所以x +π4∈⎣⎢⎡⎦⎥⎤π12,3π4.由sin x +cos x =2sin ⎝⎛⎭⎪⎫x +π4∈,得22≤sin ⎝⎛⎭⎪⎫x +π4≤1,所以x ∈⎣⎢⎡⎦⎥⎤0,π2, 故要求的概率为π2-0π2-⎝ ⎛⎭⎪⎫-π6=34.6.已知P 是△ABC 所在平面内一点,PB →+PC →+2PA →=0.现将一粒黄豆随机撒在△ABC 内,则黄豆落在△PBC 内的概率是( )A.14 B.13 C.12 D.23答案:C解析:设点M 是BC 边的中点, 因为PB →+PC →+2PA →=0, 所以点P 是中线AM 的中点, 所以黄豆落在△PBC 内的概率P =S △PBC S △ABC =12,故选C. 7.在区间上任取两个数a ,b ,则函数f (x )=x 2+ax +b 2无零点的概率为( ) A.12 B.23 C.34 D.14答案:C解析:要使该函数无零点,只需a 2-4b 2<0, 即(a +2b )(a -2b )<0.∵a ,b ∈,a +2b >0, ∴a -2b <0.作出⎩⎪⎨⎪⎧0≤a ≤1,0≤b ≤1,a -2b <0的可行域(如图阴影部分所示),易得该函数无零点的概率P =1-12×1×121×1=34.8.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为________.答案:18解析:根据几何概型知识,概率为体积之比,即P = 4-2 343=18. 9.一只昆虫在边长分别为5,12,13的三角形区域内随机爬行,则其在到三角形顶点的距离小于2的地方的概率为________.答案:π15解析:如图所示,该三角形为直角三角形,其面积为12×5×12=30,阴影部分的面积为12×π×22=2π,所以所求概率为2π30=π15.10.AB 是半径为1的圆的直径,M 为直径AB 上任意一点,过点M 作垂直于直径AB 的弦,则弦长大于3的概率是________.答案:12解析:依题意知,当相应的弦长大于3时,圆心到弦的距离小于12-⎝⎛⎭⎪⎫322=12, 因此相应的点M 应位于线段AB 上与圆心的距离小于12的地方,所求的概率等于12.11.已知在圆(x -2)2+(y -2)2=8内有一平面区域E :⎩⎪⎨⎪⎧x -4≤0,y ≥0,mx -y ≤0,m ≥0,点P 是圆内的任意一点,而且点P 出现在任何一点处是等可能的.若使点P 落在平面区域E 内的概率最大,则m =________.答案:0解析:如图所示,当m =0时,平面区域E (阴影部分)的面积最大,此时点P 落在平面区域E 内的概率最大.1.设k 是一个正整数,已知⎝ ⎛⎭⎪⎫1+x k k 的展开式中第四项的系数为116,函数y =x 2与y =kx的图象所围成的区域如图中阴影部分所示,任取x ∈,y ∈,则点(x ,y )恰好落在阴影部分内的概率为( )A.1796B.532C.16D.748答案:C解析:由题意得,C 3k 1k 3=116,解得k =4.阴影部分的面积S 1=⎠⎛04(4x -x 2)d x=⎝⎛⎭⎪⎫2x 2-13x 340=323.∵任取x ∈,y ∈,∴以x ,y 为横、纵坐标的所有可能的点构成的区域面积S 2=4×16=64,∴所求概率P =S 1S 2=16,故选C.2.在区间内随机取两个数分别记为a ,b ,则使得函数f (x )=x 2+2ax -b 2+π有零点的概率为( )A.78B.34 C.12 D.14答案:B解析:若函数f (x )有零点,则4a 2-4(-b 2+π)≥0,即a 2+b 2≥π. 所有事件是Ω={(a ,b )|-π≤a ≤π,-π≤b ≤π}, ∴S =(2π)2=4π2,而满足条件的事件是{(a ,b )|a 2+b 2≥π}, ∴S ′=4π2-π2=3π2, 则概率P =3π24π2 =34.3.已知函数f (x )=x 2-x -2,x ∈,若从区间内随机抽取一个实数x 0,则所取的x 0满足f (x 0)≤0的概率为________.答案:0.3解析:令x 2-x -2≤0,解得-1≤x ≤2, 由几何概型的概率计算公式,得P =2- -1 5- -5 =310=0.3.4.已知正方形ABCD 的边长为2,H 是边DA 的中点.在正方形ABCD 内部随机取一点P ,则满足|PH |<2的概率为________.答案:π8+14解析:如图,设E ,F 分别为边AB ,CD 的中点,则满足|PH |<2的点P 在△AEH ,扇形HEF 及△DFH 内, 由几何概型的概率计算公式知,所求概率为14π 2 2+12×1×1×22×2=π8+14.5.已知向量a =(2,1),b =(x ,y ).(1)若x ∈{-1,0,1,2},y ∈{-1,0,1},求向量a ∥b 的概率; (2)若x ∈,y ∈,求向量a ,b 的夹角是钝角的概率. 解:(1)设“a ∥b ”为事件A ,由a ∥b ,得x =2y .基本事件空间为Ω={(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1),(2,-1),(2,0),(2,1)},共包含12个基本事件;其中A ={(0,0),(2,1)},包含2个基本事件. 则P (A )=212=16,即向量a ∥b 的概率为16.(2)因为x ∈,y ∈,则满足条件的所有基本事件所构成的区域(如图)为矩形ABCD ,面积为S 1=3×2=6. 设“a ,b 的夹角是钝角”为事件B ,由a ,b 的夹角是钝角,可得a ·b <0,即2x +y <0,且x ≠2y.事件B 包含的基本事件所构成的区域为图中四边形AEFD ,面积S 2=12×⎝ ⎛⎭⎪⎫12+32×2=2,则P (B )=S 2S 1=26=13.即向量a ,b 的夹角是钝角的概率是13.6.甲、乙两家商场对同一种商品开展促销活动,对购买该商品的顾客两家商场的奖励方案如下:甲商场:顾客转动如图所示圆盘,当指针指向阴影部分(图中四个阴影部分均为扇形,且每个扇形圆心角均为15°,边界忽略不计)即为中奖.乙商场:从装有3个白球、3个红球的盒子中一次性摸出2个球(球除颜色外不加区分),如果摸到的是2个红球,即为中奖.问:购买该商品的顾客在哪家商场中奖的可能性大?解:如果顾客去甲商场,试验的全部结果构成的区域为圆盘,面积为πR 2(R 为圆盘的半径),阴影区域的面积为4×15πR 2360=πR26.所以在甲商场中奖的概率为P 1=πR26πR =16.如果顾客去乙商场,记盒子中3个白球为a 1,a 2,a 3,3个红球为b 1,b 2,b 3,记(x ,y )为一次摸球的结果,则一切可能的结果有(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a1,b3),(a2,a3),(a2,b1),(a2,b2),(a2,b3),(a3,b1),(a3,b2),(a3,b3),(b1,b2),(b1,b3),(b2,b3),共15种,摸到的2个球都是红球有(b1,b2),(b1,b3),(b2,b3),共3种,所以在乙商场中奖的概率为P2=315=15.由于P1<P2,所以顾客在乙商场中奖的可能性大.。
2018版高考数学(人教A版文科)一轮复习课时跟踪检测31 Word版含解析
课时跟踪检测(三十一)[高考基础题型得分练].数列,-,-,…的一个通项公式是等于( )..π.π答案:解析:令=,…,逐一验证四个选项,易得正确..设=-+-,则数列{}中的最大项的值是( )..答案:解析:∵=-+,由二次函数的性质,得当=或时,最大,最大值为..已知数列{},=-,=-(>),则当=-时,的值可以为( )....答案:解析:由题意,得=-,=-,=,=-,…,则-=-(∈*),=-,故选..[·河北保定调研]在数列{}中,已知=,+=+,则其通项公式为=( ).-+.-.(-).-答案:解析:解法一:由+=+,可求=,=,=,…,验证可知=-.解法二:由题意知++=(+),∴数列{+}是以为首项,为公比的等比数列,∴+=,∴=-..数列{}的前项和为,若=,+=(≥),则=( ).×+.×.+.答案:解析:当≥时,+=,则+=+,∴+-+=+-=+,即+=+,∴该数列从第项开始是以为公比的等比数列.又===,∴=(\\(,=,×-,≥,))∴=×-=×,故选..[·云南一模]在数列{}中,=,=,+=,则+=( ).答案:解析:因为=,=,+=,所以=,=,=,=,即数列{}是周期数列,周期为,则+=+=+=,故选..在数列{}中,已知=,=,+等于+(∈*)的个位数,则=( )....答案:解析:由题意得=,=,=,=,=,=,=,=.所以数列中的项从第项开始呈周期性出现,周期为,故=×+==..已知数列{}满足+=--(≥),=,=,记=++…+,则下列结论正确的是( ).=-,=.=-,=.=-,=。
2018年高考数学一轮复习课时跟踪检测63文新人教A版
课时跟踪检测(六十三)[高考基础题型得分练]1.若a,b,c是不全相等的正数,给出下列判断:①(a-b)2+(b-c)2+(c-a)2≠0;②a>b与a<b及a=b中至少有一个成立;③a≠c,b≠c,a≠b不能同时成立.其中判断正确的个数是( )A.0 B.1C.2 D.3答案:C解析:由于a,b,c不全相等,则a-b,b-c,c-a中至少有一个不为0,故①正确;②显然成立;令a=2,b=3,c=5,满足a≠c,b≠c,a≠b,故③错.2.若a,b∈R,则下面四个式子中恒成立的是( )A.lg(1+a2)>0B.a2+b2≥2(a-b-1)C.a2+3ab>2b2D.ab<a+1 b+1答案:B解析:在B中,∵a2+b2-2(a-b-1)=(a2-2a+1)+(b2+2b+1)=(a-1)2+(b+1)2≥0,∴a2+b2≥2(a-b-1)恒成立.3.已知m>1,a=m+1-m,b=m-m-1,则以下结论正确的是( )A.a>b B.a<bC.a=b D.a,b大小不定答案:B解析:∵a=m+1-m=1m+1+m,b=m-m-1=1m+m-1.而m+1+m>m+m-1>0(m>1),∴1m+1+m<1m+m-1,即a<b.4.分析法又称执果索因法,若用分析法证明:“设a>b>c,且a+b+c=0,求证b2-ac <3a”索的因应是( )A.a-b>0 B.a-c>0C .(a -b )(a -c )>0 D.(a -b )(a -c )<0答案:C解析:由题意知b 2-ac <3a ⇐b 2-ac <3a 2⇐(a +c )2-ac <3a 2 ⇐a 2+2ac +c 2-ac -3a 2<0 ⇐-2a 2+ac +c 2<0 ⇐2a 2-ac -c 2>0⇐(a -c )(2a +c )>0⇐(a -c )(a -b )>0.5.设a =3-2,b =6-5,c =7-6,则a ,b ,c 的大小顺序是( ) A .a >b >c B.b >c >a C .c >a >b D.a >c >b答案:A解析:∵a =3-2=13+2,b =6-5=16+5,c =7-6=17+6,且7+6>6+5>3+2>0,∴a >b >c .6.已知函数f (x )=⎝ ⎛⎭⎪⎫12x ,a ,b 为正实数,A =f ⎝ ⎛⎭⎪⎫a +b 2,B =f (ab ),C =f ⎝ ⎛⎭⎪⎫2ab a +b ,则A ,B ,C 的大小关系为( )A .A ≤B ≤C B.A ≤C ≤B C .B ≤C ≤A D.C ≤B ≤A答案:A 解析:因为a +b2≥ab ≥2ab a +b ,又f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是单调减函数,故f ⎝ ⎛⎭⎪⎫a +b 2≤f (ab )≤f ⎝⎛⎭⎪⎫2ab a +b . 7.①已知p 3+q 3=2,求证p +q ≤2,用反证法证明时,可假设p +q ≥2;②已知a ,b ∈R ,|a |+|b |<1,求证方程x 2+ax +b =0的两根的绝对值都小于1,用反证法证明时可假设方程有一根x 1的绝对值大于或等于1,即假设|x 1|≥1.以下正确的是( )A .①与②的假设都错误B .①与②的假设都正确C .①的假设正确;②的假设错误D .①的假设错误;②的假设正确 答案:D解析:反证法的实质是否定结论,对于①,其结论的反面是p +q >2,所以①不正确;对于②,其假设正确.8.6+7与22+5的大小关系为________. 答案:6+7>22+ 5解析:要比较6+7与22+5的大小,只需比较(6+7)2与(22+5)2的大小, 只需比较6+7+242与8+5+410的大小,只需比较42与210的大小,只需比较42与40的大小,∵42>40,∴6+7>22+5.9.凸函数的性质定理:如果函数f (x )在区间D 上是凸函数,则对于区间D 内的任意x 1,x 2,…,x n ,有f x 1+f x 2+…+f x n n ≤f ⎝ ⎛⎭⎪⎫x 1+x 2+…+x n n ,已知函数y =sin x 在区间(0,π)上是凸函数,则在△ABC 中,sin A +sin B +sin C 的最大值为________.答案:332解析:∵f (x )=sin x 在区间(0,π)上是凸函数,且A ,B ,C ∈(0,π). ∴f A +f B +f C3≤f ⎝⎛⎭⎪⎫A +B +C 3=f ⎝ ⎛⎭⎪⎫π3, 即sin A +sin B +sin C ≤3sin π3=332,所以sin A +sin B +sin C 的最大值为332.10.设a ,b 是两个实数,给出下列条件:①a +b >2;②a 2+b 2>2.其中能推出:“a ,b 中至少有一个大于1”的条件的是________.(填序号)答案:①11.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1,在区间[-1,1]上至少存在一点c ,使f (c )>0,则实数p 的取值范围是________.答案:⎝ ⎛⎭⎪⎫-3,32 解析:解法一:(补集法)当二次函数在区间[-1,1]上不存在一点C ,使f (c )>0时,令⎩⎪⎨⎪⎧f-1=-2p 2+p +1≤0,f1=-2p 2-3p +9≤0,解得p ≤-3或p ≥32,故满足条件的p 的范围为⎝⎛⎭⎪⎫-3,32.解法二:(直接法)依题意有f (-1)>0或f (1)>0, 即2p 2-p -1<0或2p 2+3p -9<0, 得-12<p <1或-3<p <32,故满足条件的p 的取值范围是⎝⎛⎭⎪⎫-3,32.[冲刺名校能力提升练]1.若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A .ac 2<bc 2B.a 2>ab >b 2C.1a <1bD.b a >a b答案:B解析:a 2-ab =a (a -b ),∵a <b <0,∴a -b <0,∴a 2-ab >0, ∴a 2>ab .①又ab -b 2=b (a -b )>0,∴ab >b 2,② 由①②得a 2>ab >b 2.2.如果△A 1B 1C 1的三个内角的余弦值分别等于△A 2B 2C 2的三个内角的正弦值,则( ) A .△A 1B 1C 1和△A 2B 2C 2都是锐角三角形 B .△A 1B 1C 1和△A 2B 2C 2都是钝角三角形C .△A 1B 1C 1是钝角三角形,△A 2B 2C 2是锐角三角形D .△A 1B 1C 1是锐角三角形,△A 2B 2C 2是钝角三角形 答案:D解析:由条件知,△A 1B 1C 1的三个内角的余弦值均大于0,则△A 1B 1C 1是锐角三角形,假设△A 2B 2C 2是锐角三角形.由 ⎩⎪⎨⎪⎧sin A 2=cos A 1=sin ⎝ ⎛⎭⎪⎫π2-A 1,sin B 2=cos B 1=sin ⎝ ⎛⎭⎪⎫π2-B 1,sin C 2=cos C 1=sin ⎝ ⎛⎭⎪⎫π2-C 1,得 ⎩⎪⎨⎪⎧A 2=π2-A 1,B 2=π2-B 1,C 2=π2-C 1.那么,A 2+B 2+C 2=π2,这与三角形内角和为180°相矛盾.所以假设不成立,又显然△A 2B 2C 2不是直角三角形. 所以△A 2B 2C 2是钝角三角形.3.已知点A n (n ,a n )为函数y =x 2+1图象上的点,B n (n ,b n )为函数y =x 图象上的点,其中n ∈N *,设c n =a n -b n ,则c n 与c n +1的大小关系为________.答案:c n +1<c n 解析:由条件得,c n =a n -b n =n 2+1-n =1n 2+1+n,∴c n 随n 的增大而减小,∴c n +1<c n .4.(1)设a >0,b >0,a +b =1,求证:1a +1b +1ab≥8.(2)已知a ,b ,c 是全不相等的正实数,求证:b +c -a a +a +c -b b +a +b -cc>3. 证明:(1)∵a +b =1, ∴1a +1b +1ab =a +b a +a +b b +a +b ab=1+ba+1+a b +a +bab≥2+2b a ·a b +a +b ⎝⎛⎭⎪⎫a +b 22=2+2+4=8,当且仅当a =b =12时,等号成立.(2)∵a ,b ,c 全不相等,且都大于0, ∴b a 与a b ,c a 与a c ,c b 与b c 全不相等, ∴b a +a b>2,c a +a c>2,c b +b c>2, 三式相加得b a +c a +c b +a b +a c +b c>6,∴⎝ ⎛⎭⎪⎫b a +c a -1+ ⎝ ⎛⎭⎪⎫c b +a b -1+ ⎝ ⎛⎭⎪⎫a c +b c-1>3,即b +c -a a +a +c -b b +a +b -cc>3. 5.已知二次函数f (x )=ax 2+bx +c (a >0)的图象与x 轴有两个不同的交点,若f (c )=0,且0<x <c 时,f (x )>0.(1)证明:1a是函数f (x )的一个零点;(2)试用反证法证明1a>c .证明:(1)∵f (x )图象与x 轴有两个不同的交点, ∴f (x )=0有两个不等实根x 1,x 2, ∵f (c )=0,∴x 1=c 是f (x )=0的根,又x 1x 2=c a,∴x 2=1a ⎝ ⎛⎭⎪⎫1a≠c ,∴1a 是f (x )=0的一个根.即1a是函数f (x )的一个零点.(2)假设1a <c ,又1a>0,由0<x <c 时,f (x )>0,知f ⎝ ⎛⎭⎪⎫1a >0与f ⎝ ⎛⎭⎪⎫1a =0矛盾,∴1a≥c ,又∵1a ≠c ,∴1a>c .6.已知点A (1,0),B (0,1)和互不相同的点P 1,P 2,P 3,…,P n ,…,满足OP n →=a n OA →+b n OB →(n ∈N *),其中{a n },{b n }分别为等差数列和等比数列,O 为坐标原点,若P 1是线段AB的中点.(1)求a 1,b 1的值;(2)点P 1,P 2,P 3,…,P n ,…能否在同一条直线上?请证明你的结论. 解:(1)P 1是线段AB 的中点⇒OP 1→=12OA →+12OB →,又OP 1→=a 1OA →+b 1OB →,且OA →,OB →不共线, 由平面向量基本定理,知a 1=b 1=12.(2)由OP n →=a n OA →+b n OB →(n ∈N *)⇒OP n →=(a n ,b n ),设{a n }的公差为d ,{b n }的公比为q , 则由于P 1,P 2,P 3,…,P n ,…互不相同, 所以d =0,q =1不会同时成立. 若d =0,q ≠1,则a n =a 1=12(n ∈N *)⇒P 1,P 2,P 3,…,P n ,…都在直线x =12上;若q =1,d ≠0,则b n =12为常数列⇒P 1,P 2,P 3,…,P n ,…都在直线y =12上;若d ≠0且q ≠1,P 1,P 2,P 3,…,P n ,…在同一条直线上⇔P n -1P n =(a n -a n -1,b n -b n -1)与P n P n +1=(a n +1-a n ,b n +1-b n )始终共线(n ≥2,n ∈N *)⇔(a n -a n -1)(b n +1-b n )-(a n +1-a n )(b n -b n -1)=0 ⇔d (b n +1-b n )-d (b n -b n -1)=0 ⇔b n +1-b n =b n -b n -1 ⇔q =1,这与q ≠1矛盾,所以当d ≠0且q ≠1时,P 1,P 2,P 3,…,P n ,…不可能在同一条直线上.。
2018版高考数学(人教A版理科)一轮复习课时跟踪检测53 Word版含答案
课时跟踪检测(五十三)
.已知抛物线:=的焦点为,(,)是上一点,=,则=( )
.
.
.
.
答案:
解析:由=,得=,即=,因此焦点,准线方程为:=-.
设点到准线的距离为,由抛物线的定义可知=,从而+=,解得=,故选..已知抛物线=与直线=-相交于,两点,若中点的横坐标为,则此抛物线方程为( )
.=
.=
.=
.=-
答案:
解析:设点(,),(,).
由(\\(=,=-))消去,得
-+=,
所以==,即=,
因此所求的抛物线方程是=..过抛物线=(>)的焦点且倾斜角为°的直线与抛物线在第一、四象限分别交于,两点,
则=( )
答案:
解析:记抛物线=的准线为′,如图,
作⊥′,⊥′,⊥,
垂足分别是,,,
则有∠==
=,
即°==,由此得=..已知抛物线=(>)的焦点与双曲线-=的右焦点重合,抛物线的准线与轴的交点为,点
在抛物线上且=,则点的横坐标为( )
.
.
.
.
答案:
解析:记抛物线的焦点为,准线为=-.
双曲线的右焦点为(),所以=,即=,即=.
过作准线的垂线,垂足为,
则==,即=,
设(,),则=+,代入=,解得=.
.已知两点(),().如果抛物线=上存在点,使得△为等边三角形,那么实数=.
答案:或-
解析:依题意,线段的垂直平分线=(>-)与抛物线=的交点满足==-(其中=(+)),
于是有+=(-),
即+(+)=(-),
化简得--=,即(+)(-)=,
解得=或=-.。
2018年高考数学一轮复习课时跟踪检测21文新人教A版
课时跟踪检测(二十一)[高考基础题型得分练]1.[2017·河北张家口模拟]计算:tan 15°+1tan 15°=( )A. 2 B .2 C .4 D .2 2答案:C解析:tan 15°+1tan 15°=sin 15°cos 15°+cos 15°sin 15°=sin 215°+cos 215°sin 15°cos 15°=112sin 30°=4. 2.[2017·江西九江一模]已知tan α=-35,则sin 2α=( )A.1517B .-1517C .-817D.817答案:B解析:sin 2α=2sin αcos αsin 2α+cos 2α=2tan αtan 2α+1=2×⎝ ⎛⎭⎪⎫-35⎝ ⎛⎭⎪⎫-352+1=-1517.3.[2017·山西四校联考]已知sin ⎝ ⎛⎭⎪⎫π2+α=12,-π2<α<0,则cos ⎝ ⎛⎭⎪⎫α-π3的值是( )A.12 B.23 C .-12D .1答案:C解析:由已知,得cos α=12,sin α=-32,cos ⎝⎛⎭⎪⎫α-π3=12cos α+32sin α=-12.4.[2017·山东济宁期末]tan π12-1tanπ12等于( )A .4B .-4C .2 3D .-2 3答案:D解析:∵tan π12=tan ⎝ ⎛⎭⎪⎫π3-π4= tan π3-tanπ41+tan π3·tanπ4=3-11+3=2-3,∴tan π12-1tanπ12=2-3-12-3 =-2 3.5.[2016·广东广州二测]已知cos ⎝ ⎛⎭⎪⎫π12-θ=13,则sin ⎝ ⎛⎭⎪⎫5π12+θ的值是( ) A.13 B.223C .-13D .-223答案:A 解析:sin ⎝⎛⎭⎪⎫5π12+θ=sin ⎣⎢⎡⎦⎥⎤π2-⎝ ⎛⎭⎪⎫π12-θ =cos ( π12-θ )=13.6.[2017·甘肃兰州检测]在斜三角形ABC 中,sin A =-2cos B ·cos C ,且tan B ·tanC =1-2,则角A 的值为( )A.π4B.π3C.π2D.3π4答案:A解析:由题意知,sin A =-2cos B ·cos C =sin(B +C )=sin B ·cos C +cos B ·sinC ,等式-2cos B ·cos C =sin B ·cos C +cos B ·sin C 两边同除以cos B ·cos C ,得tan B +tan C =-2,又tan(B +C )=tan B +tan C1-tan B tan C=-1=-tan A , 即tan A =1,所以A =π4.7.[2016·陕西宝鸡模拟]已知cos ⎝ ⎛⎭⎪⎫π4+θcos ⎝ ⎛⎭⎪⎫π4-θ=14,则sin 4θ+cos 4θ的值为________.答案:58解析:因为cos ⎝ ⎛⎭⎪⎫π4+θcos ⎝ ⎛⎭⎪⎫π4-θ=⎝⎛⎭⎪⎫22cos θ-22sin θ⎝ ⎛⎭⎪⎫22cos θ+22sin θ=12(cos 2θ-sin 2θ)=12cos 2θ=14. 所以cos 2θ=12.故sin 4θ+cos 4θ=⎝⎛⎭⎪⎫1-cos 2θ22+⎝ ⎛⎭⎪⎫1+cos 2θ22=116+916=58.8.已知sin α=12+cos α,且α∈⎝ ⎛⎭⎪⎫0,π2,则cos 2αsin ⎝ ⎛⎭⎪⎫α-π4的值为________.答案:-142解析:解法一:∵sin α=12+cos α,∴sin α-cos α=12,∴2sin ⎝ ⎛⎭⎪⎫α-π4=12, ∴sin ⎝⎛⎭⎪⎫α-π4=24.又∵α∈⎝ ⎛⎭⎪⎫0,π2,∴α-π4∈⎝ ⎛⎭⎪⎫-π4,π4, ∴cos ⎝ ⎛⎭⎪⎫α-π4=144, ∴cos 2α=-sin 2⎝⎛⎭⎪⎫α-π4=-2sin ⎝ ⎛⎭⎪⎫α-π4cos ( α-π4 ) =-2×24×144=-74, ∴cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=-7424=-142.解法二:∵sin α=12+cos α,∴sin α-cos α=12,∴(sin α-cos α)2=1-2sin αcos α=14,∴2sin αcos α=34,∵α∈⎝⎛⎭⎪⎫0,π2,∴sin α+cos α=sin 2α+cos 2α+2sin αcos α =1+34=72, ∴cos 2αsin ⎝ ⎛⎭⎪⎫α-π4=cos α+sin αcos α-sin α22sin α-cos α =-2(sin α+cos α)=-142. 9.[2017·安徽合肥质检]已知cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α=-14,α∈⎝ ⎛⎭⎪⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 解:(1)∵cos ⎝ ⎛⎭⎪⎫π6+α·cos ⎝ ⎛⎭⎪⎫π3-α =cos ⎝ ⎛⎭⎪⎫π6+α·sin ⎝ ⎛⎭⎪⎫π6+α=12sin ⎝ ⎛⎭⎪⎫2α+π3=-14,∴sin ⎝⎛⎭⎪⎫2α+π3=-12.∵α∈⎝⎛⎭⎪⎫π3,π2,∴2α+π3∈⎝ ⎛⎭⎪⎫π,4π3,∴cos ⎝ ⎛⎭⎪⎫2α+π3=-32, ∴sin 2α=sin ⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫2α+π3-π3=sin ⎝ ⎛⎭⎪⎫2α+π3cos π3-cos ⎝ ⎛⎭⎪⎫2α+π3sin π3=12. (2)∵α∈⎝ ⎛⎭⎪⎫π3,π2,∴2α∈⎝ ⎛⎭⎪⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32. ∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin αcos α=-2cos 2αsin 2α=-2×-3212=2 3.10.[2017·湖南常德模拟]已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝ ⎛⎭⎪⎫θ2=65,θ∈⎝ ⎛⎭⎪⎫π4,3π4,求f ⎝ ⎛⎭⎪⎫θ+π8的值.解:(1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角), ∴f (x )min =-2+m 2=-2,∴m = 2. 由题意知函数f (x )的最小正周期为π, ∴2πω=π,∴ω=2.(2)由(1),得f (x )=2sin 2x +2cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4,∴f ⎝ ⎛⎭⎪⎫θ2=2sin ⎝ ⎛⎭⎪⎫θ+π4=65, ∴sin ⎝ ⎛⎭⎪⎫θ+π4=35,∵θ∈⎝⎛⎭⎪⎫π4,3π4,∴θ+π4∈⎝ ⎛⎭⎪⎫π2,π,∴cos ⎝ ⎛⎭⎪⎫θ+π4=-1-sin 2⎝⎛⎭⎪⎫θ+π4=-45,∴sin θ=sin ⎝ ⎛⎭⎪⎫θ+π4-π4=sin ⎝ ⎛⎭⎪⎫θ+π4cos π4-cos ( θ+π4 )sin π4=7210, ∴f ⎝ ⎛⎭⎪⎫θ+π8=2sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫θ+π8+π4=2sin ⎝ ⎛⎭⎪⎫2θ+π2=2cos 2θ=2(1-2sin 2θ)=2×⎣⎢⎡⎦⎥⎤1-2×⎝⎛⎭⎪⎫72102=-4825. [冲刺名校能力提升练]1.[2017·河北模拟]已知θ∈⎝ ⎛⎭⎪⎫0,π4,且sin θ-cos θ=-144,则2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ等于( )A.23 B.43 C.34 D.32答案:D解析:由sin θ-cos θ=-144,得 sin ⎝ ⎛⎭⎪⎫π4-θ=74,∵θ∈⎝ ⎛⎭⎪⎫0,π4,∴π4-θ∈⎝⎛⎭⎪⎫0,π4,∴cos ⎝ ⎛⎭⎪⎫π4-θ=34,∴2cos 2θ-1cos ⎝ ⎛⎭⎪⎫π4+θ=cos 2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin ⎝ ⎛⎭⎪⎫π2-2θsin ⎝ ⎛⎭⎪⎫π4-θ=sin 2⎝ ⎛⎭⎪⎫π4-θsin ⎝ ⎛⎭⎪⎫π4-θ=2cos ⎝ ⎛⎭⎪⎫π4-θ=32.2.[2017·安徽十校联考]已知α为锐角,且7sin α=2cos 2α,则sin ⎝ ⎛⎭⎪⎫α+π3=( )A.1+358 B.1+538 C.1-358D.1-538答案:A解析:由7sin α=2cos 2α,得7sin α=2(1-2sin 2α), 即4sin 2α+7sin α-2=0,解得sin α=-2(舍去)或sin α=14,又由α为锐角,可得cos α=154, ∴sin ⎝ ⎛⎭⎪⎫α+π3=12sin α+32cos α=1+358, 故选A.3.[2017·福建宁德一模]已知α为第二象限角,sin α+cos α=33,则cos 2α=________.答案:-53解析:∵sin α+cos α=33, 两边平方,得1+sin 2α=13,∴sin 2α=-23,∴(sin α-cos α)2=1-sin 2α=53,∵α为第二象限角,∴sin α>0,cos α<0,∴sin α-cos α=153, ∴cos 2α=-(sin α-cos α)(sin α+cos α) =-153×33=-53. 4.[2017·河北承德二模]已知向量m =⎝ ⎛⎭⎪⎫3sin x 4,1,n =⎝ ⎛⎭⎪⎫cos x 4,cos 2x4,函数f (x )=m·n .(1)若f (x )=1,求cos ⎝⎛⎭⎪⎫2π3-x 的值;(2)在锐角△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足a cos C +12c =b ,求f (2B )的取值范围.解:f (x )=3sin x 4cos x 4+cos 2x 4=32sin x 2+12cos x 2+12=sin ⎝ ⎛⎭⎪⎫x 2+π6+12. (1)由f (x )=1,可得sin ⎝ ⎛⎭⎪⎫x 2+π6=12,则cos ⎝⎛⎭⎪⎫2π3-x =-cos ⎝⎛⎭⎪⎫x +π3=2sin 2⎝ ⎛⎭⎪⎫x 2+π6-1=-12.(2)由余弦定理及a cos C +c2=b ,可得b 2+c 2-a 2=bc ,∴cos A =b 2+c 2-a 22bc =12,∴A =π3,∴B +C =2π3.又∵△ABC 是锐角三角形,∴B ∈⎝ ⎛⎭⎪⎫π6,π2, ∴π3<B +π6<2π3, 又f (2B )=sin ⎝⎛⎭⎪⎫B +π6+12,∴1+32<f (2B )≤32.∴f (2B )的取值范围是⎝⎛⎦⎥⎤1+32,32.。
2018版高考数学(人教A版文科)一轮复习课时跟踪检测23Word版含解析
课时跟踪检测(二十三)[高考基础题型得分练]1.函数y =sin ⎝ ⎛⎭⎪⎫2x -π3在区间⎣⎢⎡⎦⎥⎤-π2,π上的简图是( )A BC D答案:A解析:令x =0,得y =sin ⎝ ⎛⎭⎪⎫-π3=-32,排除B ,D.由f ⎝ ⎛⎭⎪⎫-π3=0,f ⎝ ⎛⎭⎪⎫π6=0,排除C. 2.[2017·山东济南模拟]将函数y =cos 2x +1的图象向右平移π4个单位,再向下平移1个单位后得到的函数图象对应的表达式为( ) A .y =sin 2x B .y =sin 2x +2 C .y =cos 2x D .y =cos ⎝ ⎛⎭⎪⎫2x -π4 答案:A解析:将函数y =cos 2x +1的图象向右平移π4个单位得到y =cos 2⎝ ⎛⎭⎪⎫x -π4+1=sin 2x +1,再向下平移1个单位得到y =sin 2x ,故选A. 3.[2017·辽宁丹东二模]函数y =2sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在一个周期内的图象如图所示,则此函数的解析式为( )A .y =2sin ⎝ ⎛⎭⎪⎫2x -π4B .y =2sin ⎝ ⎛⎭⎪⎫2x +π4 C .y =2sin ⎝ ⎛⎭⎪⎫x +3π8 D .y =2sin ⎝ ⎛⎭⎪⎫x 2+7π16 答案:B解析:由题中图象可知,该函数的最小正周期T =2×⎝ ⎛⎭⎪⎫5π8-π8=π,所以ω=2ππ=2.又当x =π8时,y =2sin ⎝⎛⎭⎪⎫2×π8+φ=2,即sin ⎝⎛⎭⎪⎫π4+φ=1,所以π4+φ=π2+2k π,k ∈Z , 解得φ=π4+2k π,k ∈Z ,又因为|φ|<π2,所以φ=π4,所以所求函数解析式为y =2sin ⎝ ⎛⎭⎪⎫2x +π4,故选B.4.函数f (x )=tan ωx (ω>0)的图象的相邻两支截直线y =2所得线段长为π2,则f ⎝ ⎛⎭⎪⎫π6=( )A .- 3 B.33 C .1 D. 3 答案:D解析:由题意可知,该函数的周期为π2, ∴πω=π2,ω=2,f (x )=tan 2x .∴f ⎝ ⎛⎭⎪⎫π6=tan π3= 3. 5.设函数y =A sin(ωx +φ)(A >0,ω>0)在x =π2时,取最大值A ,在x =3π2时,取最小值-A ,则当x =π时,函数y 的值( )A .仅与ω有关B .仅与φ有关C .等于零D .与φ,ω均有关 答案:C解析:π2+3π22=π,根据函数y =A sin(ωx +φ)的图象可知,当x =π时,函数y 的值为0.故选C.6.[2017·广西第一次质检]已知函数f (x )=A sin(ωx +φ)的图象如图所示,则该函数的解析式可能是( )A .f (x )=34sin ⎝⎛⎭⎪⎫32x +π6B .f (x )=45sin ⎝ ⎛⎭⎪⎫45x +15C .f (x )=45sin ⎝⎛⎭⎪⎫56x +π6D .f (x )=45sin ⎝ ⎛⎭⎪⎫23x -15答案:B解析:由题图可以判断|A |<1,T >2π,|ω|<1.f (0)>0,f (π)>0,f (2π)<0,只有选项B 满足上述条件.7.[2017·河北承德一模]已知函数f (x )=2sin ωx 在区间⎣⎢⎡⎦⎥⎤-π3,π4上的最小值为-2,则ω的取值范围是( )A.⎝ ⎛⎦⎥⎤-∞,-92∪[6,+∞) B.⎝ ⎛⎦⎥⎤-∞,-92∪⎣⎢⎡⎭⎪⎫32,+∞ C .(-∞,-2]∪[6,+∞)D .(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞ 答案:D解析:当ω>0时,-π3ω≤ωx ≤π4ω,由题意知,-π3ω≤-π2,即ω≥32;当ω<0时,π4ω≤ωx ≤-π3ω,由题意知π4ω≤-π2,∴ω≤-2.综上可知,ω的取值范围是(-∞,-2]∪⎣⎢⎡⎭⎪⎫32,+∞.8.[2017·山西太原模拟]已知函数f (x )=sin(ωx +φ)⎝ ⎛⎭⎪⎫w >0,|φ|<π2的最小正周期是π,若将f (x )的图象向右平移π3个单位后得到的图象关于原点对称,则函数f (x )的图象( )A .关于直线x =π12对称 B .关于直线x =5π12对称C .关于点⎝ ⎛⎭⎪⎫π12,0对称D .关于点⎝ ⎛⎭⎪⎫5π12,0对称 答案:B解析:∵f (x )的最小正周期为π, ∴2πω=π,ω=2,∴f (x )的图象向右平移π3个单位后得到g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π3+φ=sin ⎝ ⎛⎭⎪⎫2x -2π3+φ的图象, 又g (x )的图象关于原点对称, ∴-2π3+φ=k π,k ∈Z , ∴φ=2π3+k π,k ∈Z , 又|φ|<π2,∴φ=-π3, ∴f (x )=sin ⎝⎛⎭⎪⎫2x -π3.当x =π12时,2x -π3=-π6,∴A ,C 错误; 当x =5π12时,2x -π3=π2, ∴B 正确,D 错误.9.将函数f (x )=sin(ωx +φ) ⎝ ⎛⎭⎪⎫ω>0,-π2≤φ<π2图象上每一点的横坐标缩短为原来的一半,纵坐标不变,再向右平移π6个单位长度得到y =sin x 的图象,则f ⎝ ⎛⎭⎪⎫π6=________.答案:22 解析:―――――――――→纵坐标不变横坐标变为原来的2倍y =sin ⎝ ⎛⎭⎪⎫12x +π6.即f (x )=sin ⎝ ⎛⎭⎪⎫12x +π6,∴f ⎝ ⎛⎭⎪⎫π6=sin ⎝ ⎛⎭⎪⎫π12+π6=sin π4=22. 10.已知函数f (x )=sin(ωx +φ) ⎝ ⎛⎭⎪⎫ω>0,-π2≤φ≤π2的图象上的两个相邻的最高点和最低点的距离为22,且过点⎝⎛⎭⎪⎫2,-12,则函数解析式f (x )=________.答案:sin ⎝ ⎛⎭⎪⎫π2x +π6 解析:据已知两个相邻最高点和最低点距离为22,可得⎝ ⎛⎭⎪⎫T 22+(1+1)2=22,解得T =4,故ω=2πT =π2,即f (x )=sin ⎝ ⎛⎭⎪⎫π2x +φ, 又函数图象过点⎝⎛⎭⎪⎫2,-12, 故f (2)=sin ⎝ ⎛⎭⎪⎫π2×2+φ =-sin φ=-12,又-π2≤φ≤π2,解得φ=π6,故f (x )=sin ⎝ ⎛⎭⎪⎫π2x +π6. 11.[2017·辽宁抚顺一模]函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫A >0,ω>0,0≤φ≤π2,点P (x 1,4)和Q (x 2,4)是函数f (x )图象上相邻的两个最高点,且|x 1-x 2|=π,x =π3是函数f (x )的一个零点,则使函数f (x )取得最大值的最小正数x 0的值是________.答案:π12解析:由题意,可得A =4,2πω=π, 所以ω=2,f (x )=4sin(2x +φ).由f ⎝ ⎛⎭⎪⎫π3=4sin ⎝ ⎛⎭⎪⎫2π3+φ=0, 可得sin ⎝ ⎛⎭⎪⎫2π3+φ=0, 又0≤φ≤π2,所以φ=π3,f (x )=4sin ⎝⎛⎭⎪⎫2x +π3.再根据sin ⎝ ⎛⎭⎪⎫2x 0+π3=1,可得最小正数x 0=π12.12.[2017·皖北协作区联考]已知函数f (x )=sin x +3cos x ,则下列命题正确的是________.(写出所有正确命题的序号)①f (x )的最大值为2;②f (x )的图象关于点⎝ ⎛⎭⎪⎫-π6,0对称;③f (x )在区间⎝ ⎛⎭⎪⎫-5π6,π6上单调递增;④若实数m 使得方程f (x )=m 在[0,2π]上恰好有三个实数解x 1,x 2,x 3,则x 1+x 2+x 3=7π3;⑤f (x )的图象与g (x )=sin ⎝ ⎛⎭⎪⎫x -2π3的图象关于x 轴对称. 答案:①③④⑤解析:f (x )=sin x +3cos x=2⎝ ⎛⎭⎪⎫12sin x +32cos x =2sin ⎝ ⎛⎭⎪⎫x +π3,所以①正确; 将x =-π6代入f (x ),得f ⎝ ⎛⎭⎪⎫-π6=2sin ⎝ ⎛⎭⎪⎫-π6+π3=1≠0, 所以②不正确;由2k π-π2≤x +π3≤2k π+π2,k ∈Z , 得2k π-5π6≤x ≤2k π+π6,k ∈Z ,所以f (x )在区间⎝ ⎛⎭⎪⎫-5π6,π6上单调递增,③正确;若实数m 使得方程f (x )=m 在[0,2π]上恰好有三个实数解,结合函数f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3及y =m 的图象可知,必有x =0,x =2π,此时f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3=3, 另一解为x =π3,即x 1,x 2,x 3满足x 1+x 2+x 3=7π3,④正确;因为f (x )=2sin ⎝ ⎛⎭⎪⎫x +π3=2sin ⎝ ⎛⎭⎪⎫x +π-2π3=-2sin ⎝ ⎛⎭⎪⎫x -2π3,⑤正确. [冲刺名校能力提升练]1.[2017·黑龙江哈尔滨模拟]设函数f (x )=sin ⎝ ⎛⎭⎪⎫2x +π6,则下列结论正确的是( )A .f (x )的图象关于直线x =π3对称B .f (x )的图象关于点⎝ ⎛⎭⎪⎫π6,0对称 C .f (x )的最小正周期为π,且在⎣⎢⎡⎦⎥⎤0,π12上为增函数 D .把f (x )的图象向右平移π12个单位,得到一个偶函数的图象 答案:C解析:对于函数f (x )=sin ⎝⎛⎭⎪⎫2x +π6, 当x =π3时,f ⎝ ⎛⎭⎪⎫π3=sin 5π6=12,故A 错;当x =π6时,f ⎝ ⎛⎭⎪⎫π6=sin π2=1,故⎝⎛⎭⎪⎫π6,0不是函数的对称点,故B错;函数的最小正周期为T =2π2=π,当x ∈⎣⎢⎡⎦⎥⎤0,π12时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,π3,此时函数为增函数,故C 正确; 把f (x )的图象向右平移π12个单位,得到g (x )=sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x -π12+π6=sin 2x ,函数是奇函数,故D 错.2.[2017·江西南昌一模]如图,M (x M ,y M ),N (x N ,y N )分别是函数f (x )=A sin(ωx +φ)(A >0,ω>0)的图象与两条直线l 1:y =m (A ≥m ≥0),l 2:y =-m 的两个交点,记S (m )=|x N -x M |,则S (m )的图象大致是( )A B C D答案:C解析:如图所示,作曲线y =f (x )的对称轴x =x 1,x =x 2,点M 与点D 关于直线x =x 1对称,点N 与点C 关于直线x =x 2对称,所以x M +x D =2x 1,x C +x N =2x 2,所以x D =2x 1-x M ,x C =2x 2-x N .又点M 与点C 、点D 与点N 都关于点B 对称, 所以x M +x C =2x B ,x D +x N =2x B , 所以x M +2x 2-x N =2x B,2x 1-x M +x N =2x B , 则x M -x N =2(x B -x 2)=-T 2, x N -x M =2(x B -x 1)=T2,所以|x N -x M |=T 2=πω(常数),故选C.3.函数f (x )=A sin(ωx +φ),A >0,ω>0,|φ|<π2的部分图象如图所示,若x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A .1 B.12 C.22 D.32 答案:D解析:观察图象可知,A =1,T =π,∴ω=2,f (x )=sin(2x +φ).将⎝ ⎛⎭⎪⎫-π6,0代入上式,得sin ⎝ ⎛⎭⎪⎫-π3+φ=0, 由|φ|<π2,得φ=π3, 则f (x )=sin ⎝ ⎛⎭⎪⎫2x +π3. 函数图象的对称轴为x =-π6+π32=π12.又x 1,x 2∈⎝ ⎛⎭⎪⎫-π6,π3,且f (x 1)=f (x 2),∴x 1+x 22=π12,∴x 1+x 2=π6,∴f (x 1+x 2)=sin ⎝ ⎛⎭⎪⎫2×π6+π3=32.故选D.4.已知f (x )=sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0),f ⎝ ⎛⎭⎪⎫π6=f ⎝ ⎛⎭⎪⎫π3,且f (x )在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,则ω=________.答案:143解析:依题意,x =π6+π32=π4时,y 有最小值, ∴sin ⎝ ⎛⎭⎪⎫π4ω+π3=-1,∴π4ω+π3=2k π+3π2(k ∈Z ), ∴ω=8k +143(k ∈Z ),∵f (x )在区间⎝ ⎛⎭⎪⎫π6,π3上有最小值,无最大值,∴π3-π4≤πω,即ω≤12, 令k =0,得ω=143.5.[2017·重庆巴蜀中学一模]某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝ ⎛⎭⎪⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1) (2)将y =f (x )的图象向左平移π6个单位,得到函数y =g (x )的图象.若关于x 的方程g (x )-(2m +1)=0在⎣⎢⎡⎦⎥⎤0,π2上有两个不同的解,求实数m 的取值范围.解:(1)根据表中已知数据,解得A =5,ω=2,φ=-π6,数据补全如下表:且函数表达式为f (x )=5sin ⎝ ⎭⎪⎫2x -π6.(2)通过平移,g (x )=5sin ⎝ ⎛⎭⎪⎫2x +π6,方程g (x )-(2m +1)=0有两个解可看成函数y =g (x ),x ∈⎣⎢⎡⎦⎥⎤0,π2和函数y =2m +1的图象有两个交点,当x ∈⎣⎢⎡⎦⎥⎤0,π2时,2x +π6∈⎣⎢⎡⎦⎥⎤π6,7π6,为使直线y =2m +1与函数y =g (x )的图象有两个交点,只需52≤2m +1<5,解得34≤m <2.故实数m的取值范围为⎣⎢⎡⎭⎪⎫34,2.。
2018年高考数学一轮复习课时跟踪检测14文新人教A版
课时跟踪检测(十四)[高考基础题型得分练] 1.函数f (x )=(x -3)e x的单调递增区间是( ) A .(-∞,2) B .(0,3) C .(1,4) D .(2,+∞)答案:D解析:函数f (x )=(x -3)e x 的导数为f ′(x )=[(x -3)·e x ]′=e x +(x -3)e x=(x -2)e x.由函数导数与函数单调性的关系,得当f ′(x )>0时,函数f (x )单调递增, 此时由不等式f ′(x )=(x -2)e x>0,解得x >2.2.若函数f (x )=2x 3-3mx 2+6x 在区间(2,+∞)上为增函数,则实数m 的取值范围为( )A .(-∞,2)B .(-∞,2] C.⎝ ⎛⎭⎪⎫-∞,52 D.⎝⎛⎦⎥⎤-∞,52 答案:D解析:∵f ′(x )=6x 2-6mx +6, 当x ∈(2,+∞)时,f ′(x )≥0恒成立, 即x 2-mx +1≥0恒成立,∴m ≤x +1x恒成立.令g (x )=x +1x ,g ′(x )=1-1x2,∴当x >2时,g ′(x )>0,即g (x )在(2,+∞)上单调递增, ∴m ≤2+12=52,故选D.3.[2017·甘肃兰州高三诊断]定义在R 上的函数f (x )的导函数f ′(x ),若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f ⎝ ⎛⎭⎪⎫1e (e 为自然对数的底数),b =f (2),c =f (log 28),则( )A .c <a <bB .c <b <aC .a <b <cD .a <c <b答案:A解析:当x ∈(-∞,1)时,(x -1)f ′(x )<0,解得f ′(x )>0,所以函数f (x )在(-∞,1)上单调递增,因为f (x )=f (2-x ),所以函数f (x )的图象关于直线x =1对称,所以函数f (x )的图象上的点距离直线x =1越近,函数值越大,又log 28=3,所以log 28>2-1e>2>1,得f (2)>f ⎝ ⎛⎭⎪⎫1e >f (log 28),故c <a <b . 4.定义在R 上的函数f (x )满足:f ′(x )>f (x )恒成立,若x 1<x 2,则e x 1f (x 2)与e x 2f (x 1)的大小关系为( )A .e x 1f (x 2) >e x 2f (x 1)B .e x 1f (x 2) <ex 2f (x 1)C .e x 1f (x 2)=e x 2f (x 1) D .ex 1f (x 2)与ex 2f (x 1)的大小关系不确定答案:A 解析:设g (x )=f xex,则g ′(x )=f ′x e x -f x e x ex2=f ′x -f xex,由题意g ′(x )>0, 所以g (x )单调递增, 当x 1<x 2时,g (x 1)<g (x 2),即f x 1ex 1<f x 2ex 2,所以e x 1f (x 2)>e x 2f (x 1).5.函数y =12x 2-ln x 的单调递减区间为( )A .(0,1)B .(0,+∞)C .(1,+∞)D .(0,2)答案:A解析:对于函数y =12x 2-ln x ,易得其定义域为{x |x >0},y ′=x -1x =x 2-1x ,令x 2-1x <0,又x >0,所以x 2-1<0,解得0<x <1,即函数y =12x 2-ln x 的单调递减区间为(0,1).6.已知函数f (x )=x +1ax在(-∞,-1)上单调递增,则实数a 的取值范围是( )A .[1,+∞)B .(-∞,0)∪(0,1]C .(0,1]D .(-∞,0)∪[1,+∞) 答案:D解析:函数f (x )=x +1ax 的导数为f ′(x )=1-1ax2,由于f (x )在(-∞,-1)上单调递增,则f ′(x )≥0在(-∞,-1)上恒成立,即1a≤x 2在(-∞,-1)上恒成立.由于当x <-1时,x 2>1,则有1a≤1,解得a ≥1或a <0.7.若函数f (x )=x 3-12x 在区间(k -1,k +1)上不是单调函数,则实数k 的取值范围是________.答案:(-3,-1)∪(1,3)解析:因为y ′=3x 2-12,由y ′>0,得函数的增区间是(-∞,-2)及(2,+∞);由y ′<0,得函数的减区间是(-2,2).由于函数在(k -1,k +1)上不是单调函数,所以k -1<-2<k +1或k -1<2<k +1,解得-3<k <-1或1<k <3.8.函数f (x )=x -ln x 的单调递减区间为________. 答案:(0,1)解析:函数的定义域是(0,+∞), 且f ′(x )=1-1x =x -1x,令f ′(x )<0,解得0<x <1,所以单调递减区间是(0,1).9.已知a ≥0,函数f (x )=(x 2-2ax )e x,若f (x )在[-1,1]上是单调减函数,则a 的取值范围是________.答案:⎣⎢⎡⎭⎪⎫34,+∞解析:f ′(x )=(2x -2a )e x +(x 2-2ax )e x=[x 2+(2-2a )x -2a ]e x,由题意,当x ∈[-1,1]时,f ′(x )≤0恒成立, 即x 2+(2-2a )x -2a ≤0在x ∈[-1,1]时恒成立. 令g (x )=x 2+(2-2a )x -2a ,则有⎩⎪⎨⎪⎧g -1≤0g1≤0,即⎩⎪⎨⎪⎧-12+2-2a ·-1-2a ≤0,12+2-2a -2a ≤0,解得a ≥34.[冲刺名校能力提升练]1.设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( )A .(1,2]B .[4,+∞)C .(-∞,2]D .(0,3]答案:A解析:∵f (x )=12x 2-9ln x ,∴f ′(x )=x -9x(x >0),当x -9x≤0时,有0<x ≤3,即在(0,3]上函数f (x )是减函数, ∴a -1>0且a +1≤3,解得1<a ≤2.2. f (x ),g (x )(g (x )≠0)分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )<f (x )g ′(x ),且f (-3)=0,则f xg x<0的解集为( )A .(-∞,-3)∪(3,+∞)B .(-3,0)∪(0,3)C .(-3,0)∪(3,+∞)D .(-∞,-3)∪(0,3) 答案:C 解析:f xg x是奇函数, ∵当x <0时,f ′(x )g (x )<f (x )g ′(x ), ∴⎣⎢⎡⎦⎥⎤f x g x ′=f ′x g x -f x g ′x g 2x <0,则f xg x在(-∞,0)上为减函数,在(0,+∞)上也为减函数.又f (-3)=0,则有f -3g -3=0=f 3g 3,可知f xg x<0的解集为(-3,0)∪(3,+∞).故选C.3.[2017·河北衡水中学月考]已知f (x )是可导的函数,且f ′(x )<f (x )对于x ∈R 恒成立,则( )A .f (1)<e f (0),f (2 016)>e 2 016f (0) B .f (1)>e f (0),f (2 016)>e 2 016f (0) C .f (1)>e f (0),f (2 016)<e 2 016f (0) D .f (1)<e f (0),f (2 016)<e2 016f (0)答案:D 解析:令g (x )=f xex,则g ′(x )=⎣⎢⎡⎦⎥⎤f x e x ′=f ′x e x -f x ex′e 2x=f ′x -f xex<0,所以函数g (x )=f xex在R 上是单调减函数,所以g (1)<g (0),g (2 016)<g (0), 即f 1e1<f 01,f 2 016e2 016<f 01,故f (1)<e f (0),f (2 016)<e2 016f (0).4.[2017·河北“五个一”名校联盟一模]已知函数f (x )的定义域为[-2,+∞),且f (4)=f (-2)=1,f ′(x )为f (x )的导函数,函数y =f ′(x )的图象如图所示.则平面区域⎩⎪⎨⎪⎧a ≥0,b ≥0,f 2a +b ≤1的面积是( )A .2B .4C .5D .8答案:B解析:由导函数的图象可知,函数f (x )在[-2,0)上单调递减,在[0,+∞)上单调递增,∵a ≥0,b ≥0,∴2a +b ≥0. 又f (4)=1,f (2a +b )≤1, ∴f (2a +b )≤f (4), ∴0≤2a +b ≤4.由⎩⎪⎨⎪⎧a ≥0,b ≥0,0≤2a +b ≤4,画出图象如图所示,图中阴影部分的面积为S =12×2×4=4,故选B.5.若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.答案:⎝ ⎛⎭⎪⎫-19,+∞解析:对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19. 所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.6.函数f (x )=ax 3+3x 2+3x (a ≠0). (1)讨论函数f (x )的单调性;(2)若函数f (x )在区间(1,2)上是增函数,求a 的取值范围.解:(1)f ′(x )=3ax 2+6x +3,f ′(x )=3ax 2+6x +3=0的判别式Δ=36(1-a ). ①若a ≥1,则f ′(x )≥0,且f ′(x )=0,当且仅当a =1,x =-1,故此时f (x )在R上是增函数.②由于a ≠0,故当a <1时,f ′(x )=0有两个根,x 1=-1+1-aa,x 2=-1-1-a a.若0<a <1,则当x ∈(-∞,x 2)或x ∈(x 1,+∞)时,f ′(x )>0,故f (x )分别在(-∞,x 2),(x 1,+∞)上是增函数;当x ∈(x 2,x 1)时,f ′(x )<0,故f (x )在(x 2,x 1)上是减函数.若a <0,则当x ∈(-∞,x 1)或(x 2,+∞)时,f ′(x )<0,故f (x )分别在(-∞,x 1),(x 2,+∞)上是减函数;当x ∈(x 1,x 2)时,f ′(x )>0,故f (x )在(x 1,x 2)上是增函数.(2)当a >0,x >0时,f ′(x )>0,所以当a >0时,f (x )在区间(1,2)上是增函数.当a <0时,f (x )在区间(1,2)上是增函数,当且仅当f ′(1)≥0且f ′(2)≥0,解得-54≤a <0.综上,a 的取值范围是⎣⎢⎡⎭⎪⎫-54,0∪(0,+∞).。
2018年高考数学一轮复习课时跟踪检测17文新人教A版
课时跟踪检测(十七)[高考基础题型得分练]1.设f (x )=a (x -5)2+6ln x (x >0),其中a ∈R ,曲线y =f (x )在点(1,f (1))处的切线与y 轴相交于点(0,6).(1)确定a 的值;(2)求函数f (x )的单调区间与极值.解:(1)因为f (x )=a (x -5)2+6ln x (x >0), 故f ′(x )=2a (x -5)+6x.令x =1,得f (1)=16a ,f ′(1)=6-8a ,所以曲线y =f (x )在点(1,f (1))处的切线方程为y -16a =(6-8a )(x -1), 由点(0,6)在切线上,可得6-16a =8a -6,解得a =12.(2)由(1)知,f (x )=12(x -5)2+6ln x (x >0),f ′(x )=x -5+6x=x -2x -3x.令f ′(x )=0,解得x 1=2,x 2=3. 当0<x <2或x >3时,f ′(x )>0,故f (x )的单调递增区间是(0,2),(3,+∞); 当2<x <3时,f ′(x )<0, 故f (x )的单调递减区间是(2,3).由此可知f (x )在x =2处取得极大值f (2)=92+6ln 2,在x =3处取得极小值f (3)=2+6ln 3.2.[2017·甘肃兰州模拟]已知函数f (x )=e x-ax (a ∈R ,e 为自然对数的底数). (1)讨论函数f (x )的单调性;(2)若a =1,函数g (x )=(x -m )f (x )-e x+x 2+x 在(2,+∞)上为增函数,求实数m 的取值范围.解:(1)函数f (x )的定义域为R ,f ′(x )=e x -a . 当a ≤0时,f ′(x )>0,∴f (x )在R 上为增函数; 当a >0时,由f ′(x )=0得x =ln a , 则当x ∈(-∞,ln a )时,f ′(x )<0, ∴函数f (x )在(-∞,ln a )上为减函数; 当x ∈(ln a ,+∞)时,f ′(x )>0,∴函数f (x )在(ln a ,+∞)上为增函数.(2)当a =1时,g (x )=(x -m )(e x-x )-e x+x 2+x , ∵g (x )在(2,+∞)上为增函数,∴g ′(x )=x e x-m e x+m +1≥0在(2,+∞)上恒成立, 即m ≤x e x +1e x-1在(2,+∞)上恒成立, 令h (x )=x e x +1e x -1,x ∈(2,+∞),h ′(x )=ex2-x e x-2e xe x -12=exe x-x -2e x -12. 令L (x )=e x -x -2,L ′(x )=e x-1>0在(2,+∞)上恒成立, 即L (x )=e x-x -2在(2,+∞)上为增函数, 即L (x )>L (2)=e 2-4>0,∴h ′(x )>0, 即h (x )=x e x +1e x-1在(2,+∞)上为增函数,∴h (x )>h (2)=2e 2+1e 2-1,∴m ≤2e 2+1e 2-1.∴实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,2e 2+1e 2-1. 3.已知f (x )=ax 2-(a +2)x +ln x .(1)当a =1时,求y =f (x )在(1,f (1))处的切线方程;(2)当a >0时,若f (x )在区间[1,e]上最小值为-2,求实数a 的取值范围. 解:(1)当a =1时,f (x )=x 2-3x +ln x ,f ′(x )=2x -3+1x.因为f ′(1)=0,f (1)=-2,所以曲线y =f (x )在点(1,-2)处的切线方程是y =-2. (2)函数f (x )=ax 2-(a +2)x +ln x 的定义域是(0,+∞). 当a >0时,f ′(x )=2ax -(a +2)+1x=2ax 2-a +2x +1x,令f ′(x )=2ax 2-a +2x +1x=2x -1ax -1x=0,解得x =12或x =1a.当0<1a≤1,即a ≥1时,f (x )在[1,e]上单调递增,所以f (x )在[1,e]上的最小值是f (1)=-2;当1<1a<e 时,f (x )在[1,e]上的最小值f ⎝ ⎛⎭⎪⎫1a <f (1)=-2,不合题意;当1a≥e 时,f (x )在[1,e]上单调递减,此时f (x )在[1,e]上的最小值f (e)<f (1)=-2,不合题意.综上,实数a 的取值范围为[1,+∞). 4.已知函数f (x )=e x-ln(x +m ).(1)设x =0是f (x )的极值点,求m 的值,并讨论f (x )的单调性; (2)当m ≤2时,证明:f (x )>0. (1)解:f ′(x )=e x-1x +m,由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x-ln(x +1),定义域为(-1,+∞),f ′(x )=e x -1x +1.函数f ′(x )=e x-1x +1在(-1,+∞)上单调递增,且f ′(0)=0,因此当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)上单调递减,在(0,+∞)上单调递增.(2)证明:当m ≤2,x ∈(-m ,+∞)时,ln(x +m )≤ln(x +2),故只需证明当m =2时,f (x )>0.当m =2时,函数f ′(x )=e x-1x +2在(-2,+∞)上单调递增. 又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)上有唯一实根x 0,且x 0∈(-1,0).当x ∈(-2,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0,从而当x =x 0时,f (x )取得最小值. 由f ′(x 0)=0得e x 0=1x 0+2,ln(x 0+2)=-x 0, 故f (x )≥f (x 0)=1x 0+2+x 0=x 0+12x 0+2>0.综上,当m ≤2时,f (x )>0.[冲刺名校能力提升练]1.已知a ∈R ,函数f (x )=ax -ln x ,x ∈(0,e](其中e 是自然对数的底数). (1)当a =2时,求f (x )的单调区间和极值; (2)求函数f (x )在区间(0,e]上的最小值.解:(1)当a =2时,f (x )=2x -ln x ,对f (x )求导,得f ′(x )=2-1x =2x -1x.所以f (x )的单调递减区间是⎝ ⎛⎦⎥⎤0,12,单调递增区间是⎣⎢⎡⎦⎥⎤12,e ,由此可知f (x )的极小值为f ⎝ ⎛⎭⎪⎫12=1+ln 2,没有极大值. (2)记g (a )为函数f (x )在区间(0,e]上的最小值. f ′(x )=a -1x =ax -1x.当a ≤0时,f ′(x )<0,所以f (x )在区间(0,e]上单调递减,则g (a )=f (e)=a e -1; 当0<a ≤1e 时,f ′(x )≤0,所以f (x )在区间(0,e]上单调递减,则g (a )=f (e)=a e -1;当a >1e 时,f (x )在区间⎝ ⎛⎦⎥⎤0,1a 上单调递减,在区间⎣⎢⎡⎦⎥⎤1a ,e 上单调递增,则g (a )=f ⎝ ⎛⎭⎪⎫1a =1+ln a .综上所述,g (a )=⎩⎪⎨⎪⎧a e -1,a ≤1e,1+ln a ,a >1e.2.[2017·河南郑州模拟]已知函数f (x )=ax -1+ln x ,其中a 为常数. (1)当a ∈⎝ ⎛⎭⎪⎫-∞,-1e 时,若f (x )在区间(0,e)上的最大值为-4,求a 的值; (2)当a =-1e 时,若函数g (x )=|f (x )|-ln x x -b2存在零点,求实数b 的取值范围.解:(1)f ′(x )=a +1x ,令f ′(x )=0得x =-1a,因为a ∈⎝ ⎛⎭⎪⎫-∞,-1e ,所以0<-1a <e , 由f ′(x )>0得0<x <-1a;由f ′(x )<0得-1a<x <e.从而f (x )的增区间为⎝ ⎛⎭⎪⎫0,-1a ,减区间为⎝ ⎛⎭⎪⎫-1a ,e ,所以f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1-1+ln ⎝ ⎛⎭⎪⎫-1a =-4,解得a =-e 2.(2)函数g (x )=|f (x )|-ln x x -b 2存在零点,即方程|f (x )|=ln x x +b2有实数根,由已知,函数f (x )的定义域为{x |x >0}, 当a =-1e 时,f (x )=-xe -1+ln x ,所以f ′(x )=-1e +1x =-x -ee x,当0<x <e 时,f ′(x )>0;当x >e 时,f ′(x )<0. 所以,f (x )的增区间为(0,e),减区间为(e ,+∞), 所以f (x )max =f (e)=-1,所以|f (x )|≥1. 令h (x )=ln x x +b 2,则h ′(x )=1-ln xx 2.当0<x <e 时,h ′(x )>0;当x >e 时,h ′(x )<0.从而h (x )在(0,e)上单调递增,在(e ,+∞)上单调递减, 所以h (x )max =h (e)=1e +b2,要使方程|f (x )|=ln x x +b2有实数根,只需h (x )max ≥1即可,故b ≥2-2e.即所求实数b 的取值范围是⎣⎢⎡⎭⎪⎫2-2e ,+∞. 3.已知函数f (x )=(x +1)e -x(e 为自然对数的底数). (1)求函数f (x )的单调区间;(2)设函数φ(x )=xf (x )+tf ′(x )+e -x,存在实数x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立.求实数t 的取值范围.解:(1)∵函数的定义域为R ,f ′(x )=-xe x ,∴当x <0时,f ′(x )>0;当x >0时,f ′(x )<0.∴f (x )在(-∞,0)上单调递增,在(0,+∞)上单调递减.(2)假设存在x 1,x 2∈[0,1],使得2φ(x 1)<φ(x 2)成立,则2[φ(x )]min <[φ(x )]max . ∵φ(x )=xf (x )+tf ′(x )+e -x=x 2+1-t x +1ex,∴φ′(x )=-x 2+1+t x -te x=-x -tx -1ex.对于x ∈[0,1],①当t ≥1时,φ′(x )≤0,φ(x )在[0,1]上单调递减, ∴2φ(1)<φ(0),即t >3-e2>1.②当t ≤0时,φ′(x )>0,φ(x )在[0,1]上单调递增, ∴2φ(0)<φ(1),即t <3-2e<0.③当0<t <1时,若x ∈[0,t ),则φ′(x )<0,φ(x )在[0,t )上单调递减;若x ∈(t,1],则φ′(x )>0,φ(x )在(t,1]上单调递增,∴2φ(t )<max{φ(0),φ(1)},即2·t +1e t<max ⎩⎨⎧⎭⎬⎫1,3-t e .(*) 由(1)知,g (t )=2·t +1et在[0,1]上单调递减,故4e ≤2·t +1e t ≤2,而2e ≤3-t e ≤3e , ∴不等式(*)无解.综上所述,t 的取值范围为(-∞,3-2e)∪⎝ ⎛⎭⎪⎫3-e 2,+∞.4.[2017·山东烟台模拟]已知函数f (x )=x 2-ax ,g (x )=ln x ,h (x )=f (x )+g (x ).(1)若函数y =h (x )的单调减区间是⎝ ⎛⎭⎪⎫12,1,求实数a 的值;(2)若f (x )≥g (x )对于定义域内的任意x 恒成立,求实数a 的取值范围;(3)设函数y =h (x )有两个极值点x 1,x 2,且x 1∈⎝ ⎛⎭⎪⎫0,12,若h (x 1)-h (x 2)>m 恒成立,求实数m 的最大值.解:(1)由题意可知,h (x )=x 2-ax +ln x (x >0), 则h ′(x )=2x 2-ax +1x(x >0),若h (x )的单调减区间是⎝ ⎛⎭⎪⎫12,1,则h ′(1)=h ′⎝ ⎛⎭⎪⎫12=0,解得a =3,而当a =3时,h ′(x )=2x 2-3x +1x=2x -1x -1x(x >0).由h ′(x )<0,解得x∈⎝ ⎛⎭⎪⎫12,1,即h (x )的单调减区间是⎝ ⎛⎭⎪⎫12,1时,a =3. (2)由题意知x 2-ax ≥ln x (x >0),∴a ≤x -ln xx(x >0).令φ(x )=x -ln x x(x >0),则φ′(x )=x 2+ln x -1x 2,∵y =x 2+ln x -1在(0,+∞)上是增函数,且当x =1时,y =0.∴当x ∈(0,1)时,φ′(x )<0;当x ∈(1,+∞)时,φ′(x )>0.故φ(x )在(0,1)上是减函数,在(1,+∞)上是增函数,∴φ(x )min =φ(1)=1,故a ≤1.即实数a 的取值范围为(-∞,1].(3)由题意可知,h (x )=x 2-ax +ln x (x >0), 则h ′(x )=2x 2-ax +1x(x >0).可得方程2x 2-ax +1=0(x >0)有两个不相等的实数根x 1,x 2,且x 1∈⎝ ⎛⎭⎪⎫0,12,∵x 1x 2=12,∴x 2=12x 1∈(1,+∞),且ax 1=2x 21+1,ax 2=2x 22+1,h (x 1)-h (x 2)=(x 21-ax 1+ln x 1)-(x 22-ax 2+ln x 2)=[x 21-(2x 21+1)+ln x 1]-[x 22-(2x 22+1)+ln x 2]=x 22-x 21+ln x 1x 2=x 22-14x 22-ln(2x 22)(x 2>1).设L (x )=x 2-14x 2-ln(2x 2)(x >1),则L ′(x )=2x 2-122x3>0(x >1),∴L (x )在(1,+∞)上是增函数,L (x )>L (1)=34-ln 2,即h (x 1)-h (x 2)>34-ln 2,∴m ≤34-ln 2.即m 的最大值为34-ln 2.。
2018版高考数学(人教A版文科)一轮复习课时跟踪检测50 Word版含解析
课时跟踪检测(五十)[高考基础题型得分练].双曲线-=的实轴长是虚轴长的倍,则=( )...答案:解析:双曲线的方程可化为-=,∴实轴长为,虚轴长为,∴=×,解得=..已知双曲线的渐近线方程为=±,且经过点(),则的方程为().-=-=.-=-=答案:解析:由题意,设双曲线的方程为-=λ(λ≠),因为双曲线过点(),则-=λ,解得λ=-,所以双曲线的方程为-=-,即-=..[·吉林长春模拟]已知,是双曲线-=(>,>)的两个焦点,以为直径的圆与双曲线的一个交点是,且△的三条边长成等差数列,则此双曲线的离心率是( )...答案:解析:不妨设点位于第一象限,为左焦点,=-,=,=+,其中>>,则有(-)+=(+),解得=,故双曲线的离心率==..[·安徽黄山一模]设,是双曲线-=的两个焦点,是双曲线上的一点,且=,则△的面积等于( )....答案:解析:由已知,得(-),(),=.设=,∵=,∴=.由双曲线的性质知-=,解得=.∴=,=,∴∠=°,∴△的面积=××=,故选..[·吉林长春二模]过双曲线-=的右支上一点,分别向圆:(+)+=和圆:(-)+=作切线,切点分别为,,则-的最小值为( )....答案:解析:由题意可知,-=(-)-(-),因此-=--=(-)(+)-=(+)-≥-=.故选..已知椭圆+=(>>)的长轴长、短轴长、焦距成等比数列,离心率为;双曲线-=(>,>)的实轴长、虚轴长、焦距也成等比数列,离心率为.则等于()..答案:解析:由=,得-=,∴==.由=,得-=,∴==.。
2018版高考数学(人教A版文科)一轮复习课时跟踪检测53含解析
课时跟踪检测(五十三)[高考基础题型得分练]1.设抛物线y2=8x的准线与x轴交于点Q,若过点Q的直线l 与抛物线有公共点,则直线l的斜率的取值范围是( )A.错误!B.[-2,2]C.[-1,1] D.[-4,4]答案:C2.已知P为双曲线C:错误!-错误!=1上的点,点M满足|错误!|=1,且错误!·错误!=0,则当|错误!|取得最小值时点P到双曲线C的渐近线的距离为( )A。
错误! B.错误!C.4 D.5答案:B解析:由错误!·错误!=0,得OM⊥PM。
根据勾股定理,求|MP|的最小值可以转化为求|OP|的最小值,当|OP|取得最小值时,点P的位置为双曲线的顶点(±3,0),而双曲线的渐近线方程为4x±3y=0,∴所求的距离d=错误!,故选B。
3.若双曲线错误!-错误!=1(a>0,b〉0)的渐近线与抛物线y=x2+2有公共点,则此双曲线的离心率的取值范围是( )A .[3,+∞)B 。
(3,+∞)C .(1,3]D 。
(1,3)答案:A 解析:依题意可知双曲线渐近线方程为y =±错误!x ,与抛物线方程联立消去y ,得x 2±b a x +2=0. ∵渐近线与抛物线有交点,∴Δ=错误!-8≥0,求得b 2≥8a 2,∴c =错误!≥3a ,∴e =错误!≥3。
4.设F 1,F 2为椭圆错误!+y 2=1的左、右焦点,过椭圆中心任作一直线与椭圆交于P ,Q 两点,当四边形PF 1QF 2的面积最大时,错误!·错误!的值等于( )A .0B.2 C .4D.-2 答案:D解析:根据题意可知,当P ,Q 分别在椭圆短轴端点时,四边形PF 1QF 2的面积最大.这时,F 1(-错误!,0),F 2(错误!,0),P (0,1),∴错误!=(-错误!,-1),错误!=(错误!,-1),∴错误!·错误!=-2。
5.[2017·河南八市重点高中质量检测]已知椭圆错误!+错误!=1,左、右焦点分别为F1,F2,过F1且斜率不为0的直线l交椭圆于A,B两点,则|BF2|·|AF2|的最大值为( )A.3 B.6C.4 D.错误!答案:D解析:由题意知a=2,c2=a2-b2=4-3=1,则F1(-1,0),当且仅当AB⊥x轴时,|AB|取得最小值,为2×错误!=3。
2018年高考数学一轮复习课时跟踪检测6文新人教A版
课时跟踪检测(六)[高考基础题型得分练]1.下列函数中,既不是奇函数,也不是偶函数的是( ) A .y =x +sin 2x B .y =x 2-cos x C .y =2x+12xD .y =x 2+sin x答案:D解析:A 项,定义域为R ,f (-x )=-x -sin 2x =-f (x ),为奇函数,故不符合题意;B 项,定义域为R ,f (-x )=x 2-cos x =f (x ),为偶函数,故不符合题意;C 项,定义域为R ,f (-x )=2-x+12-x =2x+12x =f (x ),为偶函数,故不符合题意;D 项,定义域为R ,f (-x )=x 2-sin x ,-f (x )=-x 2-sin x ,因为f (-x )≠-f (x ),且f (-x )≠f (x ),故既不是奇函数,也不是偶函数.2.已知f (x )=3ax 2+bx -5a +b 是偶函数,且定义域为[6a -1,a ],则a +b =( ) A.17 B .-1 C .1 D .7答案:A解析:因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又f (x )为偶函数,所以3a (-x )2-bx -5a +b =3ax 2+bx -5a +b ,解得b =0,所以a +b =17.3.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=3x+m (m 为常数),则f (-log 35)的值为( )A .4B .-4C .6D .-6答案:B解析:由f (x )是定义在R 上的奇函数,得f (0)=1+m =0,解得m =-1,∴f (x )=3x-1.∵log 35>log 31=0,∴f (-log 35)=-f (log 35)=-(3log 35-1)=-4,故选B. 4.函数f (x )=lg|sin x |是( ) A .最小正周期为π的奇函数 B .最小正周期为2π的奇函数 C .最小正周期为π的偶函数 D .最小正周期为2π的偶函数答案:C解析:∵f (-x )=lg|sin(-x )|=lg|sin x |, ∴函数f (x )为偶函数.∵f (x +π)=lg|sin(x +π)|=lg|sin x |, ∴函数f (x )的最小正周期为π.5.[2017·湖北荆州模拟]已知f (x )是定义在R 上的周期为2的奇函数,当x ∈(0,1)时,f (x )=3x-1,则f ⎝⎛⎭⎪⎫2 0152=( )A.3+1B.3-1 C .-3-1 D .-3+1答案:D解析:因为f (x +2)=f (x )=-f (-x ), 所以f ⎝⎛⎭⎪⎫2 0152=f ⎝ ⎛⎭⎪⎫1 006+32=f ⎝ ⎛⎭⎪⎫-32=-f ⎝ ⎛⎭⎪⎫-32=-f ⎝ ⎛⎭⎪⎫12.又当x ∈(0,1)时,f (x )=3 x-1,所以f ⎝ ⎛⎭⎪⎫12=3-1,f ⎝ ⎛⎭⎪⎫2 0152=1- 3. 6.已知函数f (x )是定义域为R 的偶函数,且f (x +1)=1f x,若f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是( )A .增函数B .减函数C .先增后减的函数D .先减后增的函数答案:A解析:由题意知f (x +2)=1fx +1=f (x ),所以f (x )的周期为2.又函数f (x )是定义域为R 的偶函数,且f (x )在[-1,0]上是减函数,则f (x )在[0,1]上是增函数,所以f (x )在[2,3]上是增函数.7.已知f (x )在R 上是奇函数,且满足f (x +4)=f (x ),当x ∈(0,2)时,f (x )=2x 2,则f (2 019)=( )A .-2B .2C .-98D .98答案:A解析:∵f (x +4)=f (x ), ∴f (x )是以4为周期的周期函数,∴f (2 019)=f (504×4+3)=f (3)=f (-1).又f (x )为奇函数,∴f (-1)=-f (1)=-2×12=-2,即f (2 019)=-2.8.定义在(-1,1)上的函数f (x )=-5x +sin x ,若f (1-a )+f (1-a 2)>0,则实数a 的取值范围为________.答案:(1,2)解析:由题意知,函数f (x )为奇函数,在(-1,1)上单调递减,由f (1-a )+f (1-a 2)>0,得f (1-a )>f (a 2-1),∴⎩⎪⎨⎪⎧-1<1-a <1,-1<a 2-1<1,1-a <a 2-1,解得1<a < 2.9.定义在R 上的函数f (x )满足f (-x )=-f (x ),f (x -2)=f (x +2),且当x ∈(-1,0)时,f (x )=2x+15,则f (log 220)=________.答案:-1解析:因为f (-x )=-f (x ),所以f (x )是奇函数,所以当x ∈(0,1)时,-x ∈(-1,0),则f (x )=-f (-x )=-2-x-15.因为f (x -2)=f (x +2),所以f (x )=f (x +4),所以f (x )是周期为4的周期函数.而4<log 220<5,所以f (log 220)=f (log 220-4)=-2 -(log 220-4)-15=-242log 220-15=-1. 10.已知f (x ),g (x )分别是定义在R 上的奇函数和偶函数,且f (x )-g (x )=⎝ ⎛⎭⎪⎫12x,则f (1),g (0),g (-1)之间的大小关系是________.答案:f (1)>g (0)>g (-1)解析:在f (x )-g (x )=⎝ ⎛⎭⎪⎫12x 中,用-x 替换x ,得f (-x )-g (-x )=2x,由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数, 所以f (-x )=-f (x ),g (-x )=g (x ), 因此得-f (x )-g (x )=2x.联立方程组解得f (x )=2-x-2x 2,g (x )=-2-x +2x2,于是f (1)=-34,g (0)=-1,g (-1)=-54,故f (1)>g (0)>g (-1).11.若f (x )=ln(e 3x+1)+ax 是偶函数,则a =________.答案:-32解析:函数f (x )=ln(e 3x+1)+ax 是偶函数,故f (-x )=f (x ), 即ln(e-3x+1)-ax =ln(e 3x+1)+ax ,化简得ln 1+e 3x e 3x +e 6x =2ax =ln e 2ax ,即1+e 3xe 3x +e6x =e 2ax,整理得e 3x+1=e2ax +3x(e 3x+1),所以2ax +3x =0,解得a =-32.[冲刺名校能力提升练]1.[2017·陕西西安模拟]设f (x )是定义在实数集上的函数,且f (2-x )=f (x ),若当x ≥1时,f (x )=ln x ,则有( )A .f ⎝ ⎛⎭⎪⎫13<f (2)<f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫12<f (2)<f ⎝ ⎛⎭⎪⎫13C .f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2)D .f (2)<f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13 答案:C解析:由f (2-x )=f (x )可知,函数f (x )的图象关于x =1对称,所以f ⎝ ⎛⎭⎪⎫12=f ⎝ ⎛⎭⎪⎫32,f ⎝ ⎛⎭⎪⎫13=f ⎝ ⎛⎭⎪⎫53,又当x ≥1时,f (x )=ln x 单调递增,所以f ⎝ ⎛⎭⎪⎫32<f ⎝ ⎛⎭⎪⎫53<f (2),即f ⎝ ⎛⎭⎪⎫12<f ⎝ ⎛⎭⎪⎫13<f (2). 2.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (2)=2,则f (2 014)的值为( )A .2B .0C .-2D .±2答案:A解析:∵g (-x )=f (-x -1),∴-g (x )=f (x +1).又g (x )=f (x -1),∴f (x +1)=-f (x -1),∴f (x +2)=-f (x ),f (x +4)=-f (x +2)=f (x ), 则f (x )是以4为周期的周期函数, 所以f (2 014)=f (2)=2.3.[2016·广东惠州三调]如图,偶函数f (x )的图象如字母M ,奇函数g (x )的图象如字母N ,若方程f (g (x ))=0,g (f (x ))=0的实根个数分别为m ,n ,则m +n =( )A .18B .16C .14D .12答案:A解析:由题中图象知,f (x )=0有3个根0,a ,b ,a ∈(-2,-1),b ∈(1,2),g (x )=0有3个根0,c ,d ,c ∈(-1,0),d ∈(0,1),由f (g (x ))=0,得g (x )=0或a ,b ,由图象可知g (x )所对每一个值都能有3个根,因而m =9;由g (f (x ))=0,知f (x )=0或c ,d ,由图象可以看出0时对应有3个根,d 时有4个,c 时只有2个,加在一起也是9个,即n =9,∴m +n =9+9=18,故选A.4.[2017·内蒙古包头模拟]若关于x 的函数f (x )=tx 2+2x +t 2+sin xx 2+t(t >0)的最大值为M ,最小值为N ,且M +N =4,则实数t 的值为________.答案:2解析:由题意,f (x )=tx 2+2x +t 2+sin xx 2+t =t +2x +sin x x 2+t ,显然函数g (x )=2x +sin xx 2+t是奇函数, ∵函数f (x )最大值为M ,最小值为N ,且M +N =4, ∴M -t =-(N -t ),即2t =M +N =4,∴t =2.5.设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x . (1)求f (π)的值;(2)当-4≤x ≤4时,求f (x )的图象与x 轴所围成图形的面积. 解:(1)由f (x +2)=-f (x ),得f (x +4)=f ((x +2)+2)=-f (x +2)=f (x ),∴f (x )是以4为周期的周期函数.∴f (π)=f (-1×4+π)=f (π-4)=-f (4-π)=-(4-π)=π-4. (2)由f (x )是奇函数与f (x +2)=-f (x ), 得f ((x -1)+2)=-f (x -1)=f (-(x -1)), 即f (1+x )=f (1-x ).从而可知函数y =f (x )的图象关于直线x =1对称.又当0≤x ≤1时,f (x )=x ,且f (x )的图象关于原点成中心对称,则f (x )的图象如图所示.设当-4≤x ≤4时,f (x )的图象与x 轴围成的图形面积为S ,则S =4S △OAB =4×⎝ ⎛⎭⎪⎫12×2×1=4.6.设函数f (x )是定义在R 上的奇函数,对任意实数x 有f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x 成立.(1)证明y =f (x )是周期函数,并指出其周期; (2)若f (1)=2,求f (2)+f (3)的值;(3)若g (x )=x 2+ax +3,且y =|f (x )|·g (x )是偶函数,求实数a 的值.解:(1)由f ⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-x ,且f (-x )=-f (x ),知f (3+x )=f ⎝ ⎛⎭⎪⎫32+⎝ ⎛⎭⎪⎫32+x =-f ⎝ ⎛⎭⎪⎫32-⎝ ⎛⎭⎪⎫32+x =-f (-x )=f (x ),所以y =f (x )是周期函数,且T =3是其一个周期.(2)因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.(3)因为y =|f (x )|·g (x )是偶函数, 且|f (-x )|=|-f (x )|=|f (x )|, 所以|f (x )|为偶函数.故g (x )=x 2+ax +3为偶函数,即g (-x )=g (x )恒成立,于是(-x )2+a (-x )+3=x 2+ax +3恒成立.于是2ax =0恒成立,所以a =0.。
2018年高考数学一轮复习课时跟踪检测33文新人教A版
课时跟踪检测(三十三)[高考基础题型得分练]1. 在等比数列{a n}中,如果a i+ a4= 18, a?+ a3= 12,那么这个数列的公比为()1A. 2 B<2C. 2 或1D.—2 或1答案:Ca1 + a4解析:设数列{a n}的公比为q,由比+ & =2. [2017 •湖北宜昌模拟]在等比数列{a n}中,若a1—3, a4—24,则a3 + a4+ a5 —( )A. 33B. 72C. 84D. 189答案:C3 ^&4 2 3 4解析:由已知,得q——8,解得q—2,则有 & + a4+ a5—a«q + q + q ) —3X (4 + 8 + 16)—84.3. 已知x, y, z € R,若一1, x, y, z,—3成等比数列,则xyz的值为()A. —3B.±3C.—3 3D.±3 3答案:C解析:由等比中项知y2—3,「. y —± , 3,又T y 与一1, — 3 符号相同,y ——;3, y —xz,所以xyz —y3——3,3.4. [2017 •河北衡水模拟]已知正数组成的等比数列{a n},若a©。
—100,则a7+ a14的最小值为()A. 20B. 25C. 50D.不存在答案:A解析:2(a7 + 弘)—2 2a7 + an + 2a?a14》4a?a14—4a1a2o—400,. • a7+ a14》20.n—1 1 21 —q + q —18 —q —12,1 得q—2或q—勺a1 1 + q3_ a1 q+ q —1 + q3 1 + q 1—q+q2 q+q2 —q 1 + q15. [2017 •山东临沂模拟]已知等比数列{a n}的前n项和为S—a・2 —+石,则a的值为21 2———1 n 时,a n = S n — S n -1 = a ^2 1 — a ・2“ 2= a ・2“ 2,当 n = 1 时,a 1 = S = a +7,61• a =— 3.6. [2017 •河北高三联考]古代数学著作《九章算术》有如下问题:“今有女子善织, 日自倍,五日织五尺,问日织几何?”意思是:“一女子善于织布,每天织的布都是前一天 的2倍,已知她5天共织5尺,问这女子每天分别织布多少? ”根据上题的已知条件,1 一2 = 5,解得 x = 31, •••前n 天所织布的尺数为鲁(2 n — 1).5由31(2n — 1) >30,得2n > 187,贝y n 的最小值为8. 3 17. [2017 •浙江杭州第二次质检]已知数列{a n }是各项均为正数的等比数列, 且满足号+|= 2 + 2,齐 ¥= 4 + 4,则 a 1a 5 =( )2 a 1 a 2 4 4 a s a 4答案:C解析:设数列{a n }的公比为q ,由题意知q >0._ 4 a 3a 4A •— 3B.D.答案: 解析: 若要使织布的总尺数不少于30,该女子所A. 7C. 9 10答案:解析: 设该女子第一天织布 x 尺,A. 24 2B. 8C. 8 2D. 16a 1 a 2 a 1 + a 2'2 + 2 =2 22 = a 1+ a 2=a 1 + a 2 a©'••• a i a 2= 4,q = 2,1同理,a® = 16,.・.q =牯=4,又a s a4= a3q= 16,二a2= 8,2, •- a£5= a3 = 8 2,故选C.2&设各项都是正数的等比数列 {a n } ,S 为前n 项和,且So = 10,S 30= 70,那么 5=( )A. 150B.— 200C. 150 或—200D. 400 或—50答案:A解析:依题意,数列So , S 20— S o , S — S 20, So — S 30成等比数列,因此有(S 20— S o )2= S o ( S —S 20).2即(S 20— 10) = 10(70 — S 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课时跟踪检测(六十五)[高考基础题型得分练]1.若(1+i)+(2-3i)=a +b i(a ,b ∈R ,i 是虚数单位),则a ,b 的值分别等于( ) A .3,-2 B.3,2 C .3,-3 D.-1,4答案:A解析:(1+i)+(2-3i)=3-2i =a +b i ,∴a =3,b =-2,故选A.2.[2017·江西南昌一模]已知i 为虚数单位,则复数z =(-1-2i)i 在复平面内对应的点位于( )A .第一象限 B.第二象限 C .第三象限 D.第四象限 答案:D解析:z =(-1-2i)i =2-i ,对应的点Z (2,-1)在第四象限. 3.[2017·贵州遵义联考]复数53+4i 的共轭复数为( )A .3-4i B.3+4i C.35-45i D.35+45i 答案:D 解析:53+4i=-+-=35-45i , ∴z =35+45i.4.[2017·河北衡水一模]如图,在复平面内,复数z 1,z 2对应的向量分别是OA →,OB →,则|z 1+z 2|=( )A .2B.3C .2 2 D.3 3答案:A解析:z 1=-2-i ,z 1=i ,z 1+z 2=-2,故选A.5.[2017·陕西西安质检]已知复数z =1+2i2-i (i 为虚数单位),则z 的虚部为( )A .-1 B.0 C .1 D.i答案:C 解析:z =1+2i2-i=++-+=i ,故选C.6.[2017·河北名校模拟]已知复数z =m +3i-2+i的实部与虚部之和为0,则实数m 等于( )A .-3 B.-1 C .1 D.3答案:B解析:由已知得z =m +3i -2+i =-2m +3-+m5,则-2m +3-(6+m )=0⇒m =-1.7.[2017·陕西八校联考]已知i 是虚数单位,则i2 0151+i =( )A.1-i2B.1+i2 C.-1-i2D.-1+i2答案:C解析:i 2 0151+i =i 4×503+31+i =i 31+i =-i1+i=--+-=-1-i 2.8.已知i 为虚数单位,(z 1-2)(1+i)=1-i ,z 2=a +2i ,若z 1·z 2∈R ,则|z 2|=( ) A .4 B.20 C. 5 D.2 5答案:D解析:z 1=2+1-i 1+i=2+-2+-=2-i ,z 1·z 2=(2-i)(a +2i)=2a +2+(4-a )i ,若z 1·z 2∈R ,则a =4,|z 2|=2 5.故选D.9.[2017·陕西西安质检]设复数z 1和z 2在复平面内的对应点关于坐标原点对称,且z 1=3-2i,则z1·z2=________.答案:-5+12i解析:z1=3-2i,由题意知z2=-3+2i.∴z1·z2=(3-2i)(-3+2i)=-5+12i.10.[2015·江苏卷]设复数z满足z2=3+4i(i是虚数单位),则z的模为________.答案: 5解析:∵z2=3+4i,∴|z|2=|3+4i|=5,即|z|= 5.11.[2017·河北唐山模拟]若复数z满足z=i(2+z)(i为虚数单位),则z=________.答案:-1+i解析:由已知得z=2i+z i,∴z(1-i)=2i,z=2i1-i =+-+=-1+i.12.[2017·云南昆明模拟]设i是虚数单位,若复数(2+a i)i的实部与虚部互为相反数,则实数a的值为________.答案:2解析:(2+a i)i=-a+2i,其实部与虚部分别为-a,2,故-a+2=0,因此a=2.13.计算:(1)-1++i3;(2)+2+-2+i;(3)1-i+2+1+i-2;(4)1-3i3+2.解:(1)-1++i3=-3+i-i=-3+-i·i=-1-3i.(2)+2+-2+i=-3+4i+3-3i2+i=i2+i=-5=15+25i.(3)1-i1+2+1+i-2=1-i2i+1+i-2i=1+i-2+-1+i2=-1.(4)1-3i3+2=3+-3+2=-i3+i=-3-4=-14-34i.[冲刺名校能力提升练]1.[2017·湖南株洲模拟]复数1+2i2-i 的共轭复数是( )A.3i 5B.-3i 5C .i D.-i答案:D 解析:由1+2i2-i=++-+=5i5=i ,∴共轭复数为-i. 2.[2017·河南开封模拟]已知复数z =1+a i(a ∈R )(i 是虚数单位),zz =-35+45i ,则a =( )A .2 B.-2 C .±2 D.-12答案:B解析:∵z =1+a i ,∴z =1-a i , ∴zz =1-a i 1+a i =1-a 2-2a i 1+a 2=-35+45i , ∴⎩⎪⎨⎪⎧1-a 21+a 2=-35,-2a 1+a 2=45,解得a =-2.3.已知复数z =(a -2)(a -3)+(a 2-1)i(i 为虚数单位,a ∈R ),则“a =2”是“复数z 为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案:A解析:若a =2,则z =3i 为纯虚数;反之,若z 为纯虚数,则a =2或a =3.故选A. 4.如图,若向量OZ →对应的复数为z ,则z +4z表示的复数为( )A .1+3i B.-3-i C .3-i D.3+i答案:D解析:由题图可得Z (1,-1),即z =1-i ,所以z +4z =1-i +41-i=1-i ++-+=1-i +4+4i2=1-i +2+2i =3+i.5.设复数z =3+i(i 为虚数单位)在复平面中对应点A ,将OA 绕原点O 逆时针旋转90°得到OB ,则点B 在( )A .第一象限 B.第二象限 C .第三象限 D.第四象限答案:B解析:因为复数z 对应点的坐标为A (3,1),所以点A 位于第一象限,所以逆时针旋转π2后对应的点B 在第二象限,故选B.6.下面是关于复数z =2-1+i的四个命题:p 1:|z |=2;p 2:z 2=2i ;p 3:z 的共轭复数为1+i ;p 4:z 的虚部为-1.其中的真命题为( ) A .p 2,p 3 B.p 1,p 2 C .p 2,p 4 D.p 3,p 4答案:C解析:∵z =2-1+i =-1-i ,∴|z |=-2+-2=2,∴p 1是假命题;∵z 2=(-1-i)2=2i ,∴p 2是真命题; ∵z =-1-i ,∴z =-1+i , ∴p 3是假命题;∵z 的虚部为-1,∴p 4是真命题. 其中的真命题为:p 2,p 4.7.复数-1+3i1+2i (i 为虚数单位)的共轭复数为________.答案:1-i解析:因为复数-1+3i 1+2i =-1+-+-=5+5i 5=1+i ,所以其共轭复数z =1-i.8.若3+b i1-i =a +b i(a ,b 为实数,i 为虚数单位),则a +b =________.答案:3 解析:由3+b i1-i=+b +-+=3-b ++b 2=a +b i ,得a =3-b 2,b =3+b2, 解得b =3,a =0,所以a +b =3.9.复数z 满足(3-4i)z =5+10i ,则|z |=________. 答案: 5解析:由(3-4i)z =5+10i 知,|3-4i|·|z |=|5+10i|,即5|z |=55,解得|z |=5.10.[2017·江苏泰州一模]如图,在复平面内,点A 对应的复数为z 1,若z 2z 1=i(i 为虚数单位),则z 2=________.答案:-2-i解析:由题图易知A (-1,2),∴z 1=-1+2i ,由z 2z 1=i ,得z 2=z 1i =(-1+2i)i =-2-i.11.定义运算⎪⎪⎪⎪⎪⎪ab cd =ad -bc .若复数x =1-i 1+i ,y =⎪⎪⎪ 4i2⎪⎪⎪x i x +i ,则y =________. 答案:-2解析:因为x =1-i1+i =-22=-i.所以y =⎪⎪⎪ 4i2⎪⎪⎪ x i x +i =⎪⎪⎪ 4i2⎪⎪⎪10=-2. 12.复数z 1=3a +5+(10-a 2)i ,z 2=21-a+(2a -5)i ,若z 1+z 2是实数,求实数a 的值.解:z 1+z 2=3a +5+(a 2-10)i +21-a+(2a -5)i =⎝ ⎛⎭⎪⎫3a +5+21-a +[(a 2-10)+(2a -5)]i =a -13a +a -+(a 2+2a -15)i.∵z 1+z 2是实数,∴a 2+2a -15=0,解得a =-5或a =3. ∵a +5≠0,∴a ≠-5,故a =3.。