新人教版八年级上册数学各章节知识点复习总结
人教版八年级数学上册基础知识整理
人教版八年级数学上册基础知识整理一、数的四则运算1. 加法- 加法是将两个或多个数合并在一起的运算。
- 进行加法运算时,需要将被加数和加数对齐,然后按位相加。
- 加法满足交换律和结合律。
2. 减法- 减法是将一个数从另一个数中减去的运算。
- 进行减法运算时,将减数放在被减数上方,然后按位相减。
- 减法不能满足交换律和结合律。
3. 乘法- 乘法是将两个或多个数相乘的运算。
- 进行乘法运算时,将被乘数和乘数对齐,然后按位相乘,最后将各位的乘积相加。
- 乘法满足交换律和结合律。
4. 除法- 除法是将一个数分成若干个相等的部分的运算。
- 进行除法运算时,将被除数放在除号上方,除数放在除号下方,然后按位进行除法运算。
- 除法可分为整除和小数除两种情况。
二、有理数1. 整数- 整数是由正整数、负整数和0组成的数集。
- 整数集包括正数、负数和0。
- 整数可以进行加法、减法、乘法和除法运算。
2. 分数- 分数是由整数分子和整数分母组成的有理数。
- 分母不能为0,分子可以为0。
- 分数可以进行加法、减法、乘法和除法运算。
3. 负数- 负数是数轴上比0小的数。
- 负数可以进行加法、减法、乘法和除法运算。
4. 小数- 小数是有限小数和无限小数的统称。
- 有限小数是小数部分有限的小数。
- 无限小数是小数部分无限循环的小数。
三、平面图形1. 点- 点是平面上一个没有延伸的位置。
- 点用大写字母表示。
2. 线段- 线段是由两个端点确定的部分,是直线的有限部分。
- 线段的长度可以通过勾股定理计算。
3. 角- 角是由两条不同的射线在同一平面上公共端点形成的部分。
- 角可以用角度或弧度来表示。
4. 三角形- 三角形是由三条线段组成的图形。
- 三角形的分类可以根据边长和角度来区分。
四、直线和曲线1. 直线- 直线是只有一个方向、无限延伸的线段。
- 直线上的点都在同一直线上。
2. 曲线- 曲线是有限延伸的线段。
- 曲线上的点不在同一直线上。
人教版八年级上册数学各章节核心概念总结
人教版八年级上册数学各章节核心概念总结第一章线性方程组与二元一次方程- 线性方程组:包含多个线性方程的方程组。
- 二元一次方程:具有两个变量、各项次数为1的方程。
第二章比例与相似- 比例:两个量之间的比较关系。
- 相似:形状和大小相同或相似的物体。
第三章平方根与立方根- 平方根:一个数的平方等于给定数的正平方根。
- 立方根:一个数的立方等于给定数的正立方根。
第四章下册中心与离差- 中心:数据的中心倾向,包括平均数、中位数和众数。
- 离差:数据离开中心的程度。
第五章进一法与退一法- 进一法:四舍五入到一个更大的整数。
- 退一法:四舍五入到一个更小的整数。
第六章母线与棱台、棱锥- 母线:棱台或棱锥底面上两个对顶顶点的连线。
- 棱台:底面是一个多边形,侧面是三角形的多面体。
- 棱锥:底面是一个多边形,侧面是三角形的多面体。
第七章勾股定理- 勾股定理:直角三角形中,直角边的平方等于两直角边上的两个小正方形的面积之和。
第八章统计- 统计:收集、整理、分析和解释数据的过程。
- 数据图:用图形的方式展示数据分布、趋势和关系。
第九章多边形的面积- 多边形:由线段组成的封闭图形。
- 面积:一个平面图形或曲面所包含的单位正方形的个数。
第十章随机事件与概率- 随机事件:在相同条件下可能发生的事件。
- 概率:某个事件发生的可能性。
第十一章三角形的面积- 三角形:三条边围成的封闭图形。
- 面积:三角形所包含的单位正方形的个数。
第十二章分式方程与分式不等式- 分式方程:含有分数的方程。
- 分式不等式:含有分数的不等式。
第十三章平行线与比例线段- 平行线:在同一平面内永远不相交的两条直线。
- 比例线段:在两个或多个相交直线上的线段之间的比。
第十四章三角形的相似- 三角形相似:两个或多个三角形的内角相等,对应边成比例。
第十五章平面直角坐标系- 平面直角坐标系:由两个互相垂直的直线和他们的交点确定的坐标系。
第十六章图形的相似与投影- 图形相似:两个图形形状相同或相似。
人教版八年级数学上册各章节知识点归纳与总结
第一章:有理数1. 正数和负数有理数的概念是数学之中一个非常重要的基础概念,也是数轴上各点的集合。
它包括正数、负数和零。
其中,正数和负数是相对的概念。
正数是指大于零的数,负数是指小于零的数。
2. 有理数的加法和减法有理数的加法和减法符合交换律和结合律。
在进行有理数的加法和减法运算时,首先要对齐小数点,然后按照正数加正数、负数加负数、正数加负数的规律进行运算。
3. 有理数的乘法和除法有理数的乘法和除法同样也是非常重要的知识点。
有理数的乘法遵循交换律、结合律和分配律,而有理数的除法则是乘法的逆运算。
第二章:平方根与立方根1. 平方根的概念平方根是指某个数的平方等于给定数的性质,它是一个非负数。
在实际生活中,平方根的概念经常被用来求解一些几何问题和物理问题。
2. 平方根的性质平方根的运算规律包括:非负实数都有唯一的非负实数平方根,平方根的乘法性质等。
这些性质在进行平方根的计算时非常重要。
3. 立方根的概念及运算立方根是指一个数的立方等于给定数的性质,它有唯一的实数解。
在实际问题中,立方根的概念常常被用来求解体积和立方体的边长等问题。
第三章:实数的比较1. 实数的大小比较实数的大小比较是指根据实数的大小关系,进行大小比较。
在进行实数的大小比较时,首先要明确两个实数的正负情况,然后按照数轴上的位置进行判断,从而得出大小关系。
2. 实数的绝对值实数的绝对值是指一个数离开原点的距离,它是一个非负数。
在进行实数的比较时,绝对值是一个非常重要的概念。
求解绝对值的大小可以帮助我们更加准确地比较实数的大小关系。
第四章:一元一次方程1. 方程的概念方程是一个等式,它包含了一个未知数和一个已知数。
一元一次方程是指方程中只含有一个未知数,并且未知数的最高次数为一的方程。
2. 解一元一次方程解一元一次方程的过程包括移项、去括号、合并同类项、系数互除和检验等步骤。
在解题过程中,要注意化简和检查解是否符合原方程。
3. 化解实际问题一元一次方程在实际生活中有着广泛的应用,比如分配问题、芳龄问题、速度问题等。
人教版小学八年级上册数学知识点总结
人教版小学八年级上册数学知识点总结一、数与代数(一)二次根式1.二次根式的概念二次根式是指形如√a(a≥0)的数学表达式,其中a被称为被开方数。
当a>0时,二次根式有两个值,分别为正根和负根;当a=0时,二次根式的值为0。
2.二次根式的性质•非负性:对于任意实数a,√a的值总是非负的。
•乘方与开方互逆:对于任意非负实数a,有√(a^2) = a。
•运算性质:√(ab) = √a × √b(a≥0, b≥0);√(a/b) = √a / √b(a≥0, b>0)。
3.二次根式的化简与运算通过合并同类二次根式、利用二次根式的乘法法则进行化简和运算。
(二)一元二次方程1.一元二次方程的概念只含有一个未知数,且未知数的最高次数为2的方程称为一元二次方程。
一般形式为ax^2 + bx + c = 0(a≠0)。
2.一元二次方程的解法•直接开平方法:当一元二次方程可以化为x^2 = p或(x-m)^2 = p的形式时,可以直接开平方求解。
•配方法:通过配方将一元二次方程转化为完全平方的形式,然后开平方求解。
•公式法:对于一般形式的一元二次方程ax^2 + bx + c = 0,其解为x = [-b ± √(b^2 - 4ac)] / (2a)。
•因式分解法:将一元二次方程化为两个一次方程的乘积形式,然后分别求解。
3.一元二次方程的应用一元二次方程在实际问题中有广泛应用,如面积、体积、速度、时间等问题。
通过设立未知数,建立一元二次方程,然后求解未知数,可以得到实际问题的解。
(三)分式1.分式的概念一般地,如果A、B(B不等于零)表示两个整式,且B中含有字母,那么式子A / B 就叫做分式,其中A称为分子,B称为分母。
分式是不同于整式的一类代数式。
2.分式的性质•分式的基本性质:分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。
•分式的约分与通分:通过约分可以化简分式,通过通分可以比较分式的大小或进行分式的加减运算。
新人教版八年级上册数学 期末复习知识点
新人教版八年级上册数学期末复习知识点一、整数和有理数1. 整数的概念和表示方法2. 整数的加法、减法、乘法和除法运算规则3. 整数的大小比较和绝对值的计算4. 有理数的概念和表示方法5. 有理数的加法、减法、乘法和除法运算规则6. 有理数的大小比较和绝对值的计算二、代数式和代数方程1. 代数式的概念和基本运算法则2. 代数式的合并同类项和提取公因式3. 代数方程的解法和方程根的性质三、一次函数和一次方程1. 一次函数的概念和性质2. 一次函数的图象和函数表达式3. 一次函数的特殊情况:直线的斜率4. 一次方程的概念和解法5. 一次方程的实际应用四、平面图形的认识1. 直线、线段、射线和角的概念2. 三角形、四边形和多边形的概念与性质3. 平行线与垂直线的判定4. 平行四边形和各种特殊四边形的性质五、相似与全等1. 相似的概念和判定条件2. 相似三角形的性质和应用3. 全等的概念和判定条件4. 全等三角形的性质和应用六、数的性质和运算1. 平方根和立方根2. 科学计数法和统计与概率3. 实数的概念和分类七、数据的收集和处理1. 统计调查的方法和步骤2. 数据的整理和图表的制作3. 平均数与中位数4. 两个数据之间的比较八、直角三角形和勾股定理1. 直角三角形的定义和性质2. 勾股定理的概念和证明3. 利用勾股定理解决实际问题九、正比例与反比例函数1. 正比例函数和反比例函数的概念2. 正比例函数和反比例函数的性质和图象3. 正比例函数和反比例函数的应用十、平面直角坐标系1. 平面直角坐标系的建立2. 点的坐标和坐标的表示3. 点的对称和平面镜像十一、图形的位置和方位1. 平行四边形的判定和性质2. 图形的位移和旋转3. 线、面、体的位置关系十二、盈亏计算与商业应用1. 盈亏的计算2. 利润的计算3. 商业应用中的实际问题。
人教版八年级上册数学知识点汇总
第一章勾股定理1.勾股定理o直角三角形两直角边的平方和等于斜边的平方,即a2+b2=c2(其中a、b为直角边,c为斜边)。
o应用:用于直角三角形中的边长计算、证明等。
2.一定是直角三角形吗o如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形一定是直角三角形。
3.勾股定理的应用o应用于解决实际问题中的直角三角形边长计算。
第二章实数1.认识无理数o有理数:可以表示为有限小数或无限循环小数的数。
o无理数:无限不循环小数,如2、π等。
2.平方根o算数平方根:一个正数x的平方等于a,则x是a的算数平方根。
o平方根:一个数x的平方等于a,则x是a的平方根,正数有两个平方根,互为相反数;0的平方根是0本身;负数没有平方根。
3.立方根o立方根:一个数x的立方等于a,则x是a的立方根。
o每个数都有一个立方根,正数的立方根是正数,0的立方根是0,负数的立方根是负数。
4.估算与开方o估算:对复杂小数进行近似计算。
o用计算机开平方或立方。
5.实数o实数是有理数和无理数的统称,可以在数轴上表示。
第三章位置与坐标1.确定位置o在平面内,确定一个物体的位置一般需要两个数据(横坐标和纵坐标)。
2.平面直角坐标系o由两条互相垂直且有公共原点的数轴组成。
o通常地,两条数轴分别置于水平位置(x轴)与竖直位置(y轴),取向右与向上的方向分别为正方向。
3.轴对称与坐标变化o关于x轴对称的两个点的坐标,横坐标相同,纵坐标互为相反数;关于y轴对称的两个点的坐标,纵坐标相同,横坐标互为相反数。
第四章一次函数1.函数o如果在一个变化过程中有两个变量x和y,且对于x的每一个值,y都有唯一确定的值,则称y是x的函数。
2.一次函数o形式为y=kx+b(k、b为常数,k ≠ 0)的函数称为一次函数。
o当b = 0时,称为正比例函数y=kx。
3.一次函数的图像及性质o图像是一条直线,经过点(0, b)和(−kb,0)。
o当k > 0时,y随x的增大而增大;当k < 0时,y随x的增大而减小。
(完整版)新人教版八年级上册数学各章节知识点总结
第十一章三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4.中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性.7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8.多边形的内角:多边形相邻两边组成的角叫做它的内角.9.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.n-·180°⑶多边形内角和公式:n边形的内角和等于(2)⑷多边形的外角和:多边形的外角和为360°.n-条对角线,⑸多边形对角线的条数:从n边形的一个顶点出发可以引(3)第十二章全等三角形第一节:全等三角形形状大小放在一起完全重合的图形,叫做全等形。
换句话说,全等形就是能够完全重合的图形。
能够完全重合的两个三角形叫做全等三角形。
两个全等的三角形重合放在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
两个三角形全等用符号“≌”表示。
初二数学上册知识点总结人教版(精选14篇)
初二数学上册知识点总结人教版〔精选14篇〕篇1:初二数学上册知识点总结人教版初二上册数学知识点一.知识框架二.知识概念1.一次函数:假设两个变量x,y间的关系式可以表示成y=kx+bk≠0的形式,那么称y是x的一次函数x为自变量,y为因变量。
特别地,当b=0时,称y是x的正比例函数。
2.正比例函数一般式:y=kx(k≠0),其图象是经过原点0,0的一条直线。
3.正比例函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k0时,y随x的增大而增大;当k篇2:人教版初二数学上册知识点总结 1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 假如两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等23 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS) 有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的`两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的间隔相等28 定理2 到一个角的两边的间隔一样的点,在这个角的平分线上29 角的平分线是到角的两边间隔相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的断定定理假如一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论 2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,假如一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的间隔相等40 逆定理和一条线段两个端点间隔相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点间隔相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理 2 假如两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,假如它们的对应线段或延长线相交,那么交点在对称轴上45 逆定理假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a2+b2=c247 勾股定理的逆定理假如三角形的三边长a、b、c有关系a2+b2=c2 ,那么这个三角形是直角三角形48 定理四边形的内角和等于360°49 四边形的外角和等于360°550 多边形内角和定理 n边形的内角的和等于(n-2)×180°51 推论任意多边的外角和等于360°52 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 推论夹在两条平行线间的平行线段相等55 平行四边形性质定理3 平行四边形的对角线互相平分56 平行四边形断定定理1 两组对角分别相等的四边形是平行四边形57 平行四边形断定定理2 两组对边分别相等的四边形是平行四边形58 平行四边形断定定理3 对角线互相平分的四边形是平行四边形59平行四边形断定定理4 一组对边平行相等的四边形是平行四边形60矩形性质定理1 矩形的四个角都是直角初二上册数学知识点归纳平均数根本公式:①平均数=总数量÷总份数总数量=平均数×总份数总份数=总数量÷平均数②平均数=基准数+每一个数与基准数差的和÷总份数根本算法:①求出总数量以及总份数,利用根本公式①进展计算。
人教版八年级数学上册知识点归纳总结全册资料
人教版八年级数学上册知识点归纳总结全册资料目录1. 单元一:有理数2. 单元二:平方根与立方根3. 单元三:一元一次方程4. 单元四:图形的平移与旋转5. 单元五:函数的概念与性质6. 单元六:方程与不等式7. 单元七:统计与概率8. 单元八:相交线与平行线9. 单元九:锐角与三角函数10. 单元十:三角恒等变换单元一:有理数- 有理数的定义与相反数- 有理数的大小比较- 有理数的加减法运算- 有理数的乘法运算- 有理数的除法运算- 近似数和有效数字单元二:平方根与立方根- 平方根的定义与性质- 平方根的计算- 平方根的应用- 立方根的定义与性质- 立方根的计算- 立方根的应用单元三:一元一次方程- 一元一次方程的定义与解的概念- 一元一次方程的解法与检验- 一元一次方程的应用单元四:图形的平移与旋转- 图形的平移与平移变换- 图形的旋转与旋转变换- 图形的轴对称与轴对称变换- 图形的合同与合同变换单元五:函数的概念与性质- 函数的定义与表示- 函数的自变量与因变量- 函数的图像与对应关系- 函数的单调性与奇偶性- 函数的性质与判断单元六:方程与不等式- 一元二次方程- 一元二次方程的解法与应用- 一元二次方程的判别式与根的关系- 一元二次不等式与解的概念- 一元二次不等式的解法与应用单元七:统计与概率- 统计图表的应用与分析- 统计调查与样本估计- 概率的基本概念与计算- 概率的应用与分析单元八:相交线与平行线- 平行线的定义、性质与判定- 平行线的性质与应用- 相交线的性质与应用- 平行线与相交线综合应用单元九:锐角与三角函数- 锐角的概念与性质- 三角函数的定义与计算- 锐角三角函数的应用与计算- 锐角三角函数的图像与性质单元十:三角恒等变换- 三角恒等式的等价性与证明- 三角恒等式的应用与计算- 三角恒等式的证明技巧与方法以上为人教版八年级数学上册的知识点归纳总结,希望对您有所帮助。
需要更详细的内容和解释,请参考教材或向老师咨询。
八年级上册数学各单元知识点总结
八年级上册数学各单元知识点总结第一章:小数1.小数的概念小数是用数字和小数点来表示分数的一种方法,分母为10的分数叫做小数,数字中的小数点的左边表示整数部分,右边表示小数部分,小数点的位置可以被移动。
2.小数的加减乘除小数的加减乘除运算和整数一样,只需要注意小数点的位置。
3.小数与分数的转化通过小数点的位置,可以把小数转化为分数;通过分数的化简,可以把分数转化为小数。
4.小数的比较把小数转化为分数后,比较大小即可。
第二章:代数式1.代数式的概念代数式由变量、系数和常数构成的表达式,其中变量表示数值未知的量,系数是变量的系数,常数也是代数式的一部分,代数式可以进行运算。
2.代数式的加减乘除代数式进行加减乘除运算的方法和数字一样,只需把同类项加减即可。
3.同类项的合并同类项是指字母相同,次数相同的项,合并同类项可以简化表达式。
4.代数式的因式分解代数式的因式分解是指把一个代数式分解成为简单的乘积形式。
第三章:图形的认识1.图形的基本概念平面图形是二维几何图形,从简单到复杂可以分为直线、射线、线段、角、三角形、四边形、多边形、圆形等。
2.物体的视图物体的视图是指物体呈不同角度时在不同平面上所看到的形状,分为正视图和侧视图。
3.图形的相似性如果两个图形除了大小不同,其他地方完全相同,那么这两个图形就是相似的,可以通过比例来描述它们之间的关系。
4.角的度量角的度量有两种方式,一种是用角度来表示,一种是用弧度来表示。
第四章:方程1.方程的概念方程是指等号两边的式子,表示两个量或两个式子相等的关系,其中未知数是方程的一部分。
2.方程的解法方程的解法分为两种,一种是通过变形、化简来解决,另一种是通过列方程组来解决。
3.一元一次方程组一元一次方程组是指只有一个未知数,各方程的最高次数均为一次的方程组。
4.二元一次方程组二元一次方程组是指有两个未知数,各方程的最高次数均为一次的方程组。
第五章:百分数1.百分数的概念百分数是把一个数表示为百分之几的形式,以百分号“%”来表示。
人教版八年级数学上册知识点总结和复习要点
人教版八年级数学上册知识点总结和复习要点一、全等三角形1全等三角形的概念与性质概念:能够完全重合的两个三角形叫做全等三角形。
性质:全等三角形的对应边相等,对应角相等。
2全等三角形的判定条件SSS(边边边):三边对应相等的两个三角形全等。
SAS(边角边):两边及其夹角对应相等的两个三角形全等。
ASA(角边角):两角及其夹边对应相等的两个三角形全等。
AAS(角角边):两角及其一角的对边对应相等的两个三角形全等。
HL(直角、斜边):在一对直角三角形中,斜边及另一条直角边相等。
例子:若△ABC与△DEF中,AB = DE,AC = DF,∠A = ∠D,则根据SAS判定条件,△ABC ≌△DEF。
二、轴对称1轴对称的概念概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2轴对称的性质性质:轴对称图形上对应点到对称轴的距离相等;对应点的连线与对称轴垂直。
例子:等腰三角形是轴对称图形,其对称轴是底边上的高(中线或顶角平分线)。
三、实数1平方根与立方根的概念平方根:如果一个数的平方等于a,那么这个数就叫做a的平方根(或二次方根)。
立方根:如果一个数的立方等于a,那么这个数就叫做a的立方根(或三次方根)。
2实数的分类与性质实数可以分为有理数和无理数两大类。
有理数包括整数和分数,而无理数则是无限不循环小数。
实数具有封闭性、有序性和传递性等性质。
例子:√4 = 2,是4的平方根;∛8 = 2,是8的立方根。
四、一次函数1一次函数的概念概念:一般地,形如y = kx + b(k,b是常数,k ≠0)的函数,叫做一次函数。
2一次函数的性质性质:一次函数的图像是一条直线;当k > 0时,函数值y随x的增大而增大;当k < 0时,函数值y随x的增大而减小。
例子:函数y = 2x + 1是一次函数,其图像是一条斜率为2、截距为1的直线。
五、整式的乘法与因式分解1整式的乘法整式的乘法包括单项式乘单项式、单项式乘多项式、多项式乘多项式等。
人教版八年级上册数学各单元知识点归纳总结
人教版八年级上册数学各单元知识点归纳总结
第一章:三角形的初步知识
1. 三角形的基本性质:稳定性、内角和定理(三角形内角和为180度)。
2. 三角形的分类:等腰三角形、等边三角形、直角三角形、锐角三角形、钝角三角形。
3. 三角形的边与角的关系:边长与角度的关系,如a:b:c=sinA:sinB:sinC。
第二章:全等三角形
1. 全等三角形的定义及性质。
2. 全等三角形的判定方法:SSS(三边全等)、SAS(两边及夹角全等)、ASA(两角及夹边全等)、AAS(两角及非夹边全等)、HL(直角边斜边公理)。
3. 全等三角形的证明方法。
第三章:轴对称与中心对称
1. 轴对称与中心对称的基本性质。
2. 轴对称与中心对称图形的识别与证明。
3. 图形变换的基本方法。
第四章:四边形
1. 四边形的性质:平行四边形、矩形、菱形、正方形、梯形、等腰梯形等的基本性质。
2. 四边形的判定方法。
3. 四边形的面积计算。
第五章:一次函数
1. 函数的基本概念:自变量、因变量、常数。
2. 一次函数的定义及性质。
3. 一次函数的图象表示方法。
4. 一次函数的解析式及求法。
5. 一次函数的应用:求最值、求交点等。
第六章:一元一次不等式
1. 不等式的基本性质。
2. 一元一次不等式的解法:去分母、去括号、移项合并同类项等。
3. 一元一次不等式的应用:比较大小、求解最值等。
新人教版八年级上册数学各章节知识点总结(最新整理)
轴对称图形可以经过旋转得出。 用坐标轴表示轴对称:关于 x 轴对称(x,y)与(x,-y);关于 y 轴对称(x,y)与(-x,y)。 第三节等腰三角形 有两个边相等的三角形叫做等腰三角形。 等腰三角形的性质:1)等腰三角形的两个底角相等。简言之:等边对等角。
1 ap
(
a≠0,p是正
整数), 而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;当a<0时,a-p的值可能是正也可能是负的,如
(2)2
1 (2)2
1 4
, (2)3
1 (2)3
1 8
;
④运算要注意运算顺序。 2.整式的除法 1)单项式除法单项式 单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的 指数作为商的一个因式; 2)多项式除以单项式
一般地, (a)n
a n (当n为偶数时), a n (当n为奇数时).
底数有时形式不同,但可以化成相同。 要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。 3.积的乘方法则
一般地,对于任意底数a、b与任意正整数n,有 (ab)n an bn (n为正整数)。即积的乘方,等于把积
②相同字母相乘,运用同底数的乘法法则;
③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式; ④单项式乘法法则对于三个以上的单项式相乘同样适用; ⑤单项式乘以单项式,结果仍是一个单项式。
2)单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。即单项式乘以多项式, 是通过乘法对加法的分配律,把它转化为单项式乘以单项式。
人教版初二上数学知识点
人教版初二上数学知识点一、数与式1.整数:正整数、负整数、零。
绝对值、相反数、相邻整数。
2.少数和多数的比较:分数、小数、百分数。
3.整数的加减法:异号相消、同号相加。
4.字母表示数:字母的含义、字母定点、字母代数加减法、字母代数整数乘法、字母代数整数除法。
5.简单的代数式与数对:相等关系、代数式值的判断、算式的理解、算法的性质。
二、平方根与立方根1.定义:数a的平方根是b,表示为b²=a,b是一个数。
数a的立方根是c,表示为c³=a,c是一个数。
2.计算平方根:完全平方数的平方根、非完全平方数的平方根。
3.计算立方根:完全立方数的立方根、非完全立方数的立方根。
三、代数式1.代数式的概念:由字母及其系数和指数的代数符号组成的有一个或多个算式。
2.项、同类项、不同类项、系数、指数。
3.同类项的合并与展开:同类项合并、展开、合并同类项的法则。
4.乘法公式与因式分解:二次平方公式的条件、应用。
5.多项式的加减法:同次异号相消、同次同号相加。
四、方程与不等式1.一元一次方程:解方程思想、去括号、去分母、去小数、去开方。
2.解方程与变量约束数:答案在数轴上的位置。
3.一元一次方程的应用。
4.一元一次不等式:解不等式的解集与表示。
五、函数概念1.函数的概念:函数的定义、自变量、因变量、函数值。
2.函数的表示方法:函数图、输入输出表、函数公式。
3.函数的性质:单调性、奇偶性。
4.一些常见的函数:自然数函数、整数函数、有理数函数、无理数函数、递增函数、平方函数、立方函数、绝对值函数。
六、图形的认识与性质1.平面的概念:平面与图形。
2.图形的分类:几何图形、曲线。
3.角:角的概念、角的度量、角的度数与弧度、零度角、平角、直角、锐角、钝角、角的相互关系。
4.线段:线段的概念、线段的长度、线段的性质、相交线段、重合线段、界限线段。
5.三角形:三角形的概念、三角形的分类、角的度量关系。
6.多边形:多边形的概念、多边形的分类、正多边形。
人教版八年级数学上册各章节知识点考点汇总
人教版八年级数学(上)知识点人教版八年级上册主要包括全等三角形、轴对称、实数、一次函数和整式的乘除与分解因式五个章节的内容。
第十一章全等三角形一.知识框架二.知识概念1.全等三角形:两个三角形的形状、大小、都一样时,其中一个可以经过平移、旋转、对称等运动(或称变换)使之与另一个重合,这两个三角形称为全等三角形。
2.全等三角形的性质:全等三角形的对应角相等、对应边相等。
3.三角形全等的判定公理及推论有:(1)“边角边”简称“SAS”(2)“角边角”简称“ASA”(3)“边边边”简称“SSS”(4)“角角边”简称“AAS”(5)斜边和直角边相等的两直角三角形(HL)。
4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。
5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).在学习三角形的全等时,教师应该从实际生活中的图形出发,引出全等图形进而引出全等三角形。
通过直观的理解和比较发现全等三角形的奥妙之处。
在经历三角形的角平分线、中线等探索中激发学生的集合思维,启发他们的灵感,使学生体会到集合的真正魅力。
第十二章 轴对称一.知识框架二.知识概念1.对称轴:如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。
2.性质: (1)轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
(2)角平分线上的点到角两边距离相等。
(3)线段垂直平分线上的任意一点到线段两个端点的距离相等。
(4)与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
(5)轴对称图形上对应线段相等、对应角相等。
3.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)4.等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。
人教版初中八年级数学上册各单元知识点汇总
第一章:有理数1.1 有理数的概念有理数是由整数和分数组成的数,其中整数包括正整数、零和负整数,分数是指一个整数除以另一个非零整数得到的数。
1.2 有理数的比较比较两个有理数的大小时,可以先化为同分母,然后比较分子的大小。
1.3 有理数的加减运算有理数的加减运算遵循着同号相加、异号相减的规律,可以通过数轴来理解有理数的加减运算规律。
1.4 有理数的乘除运算有理数的乘法遵循着同号得正、异号得负的规律,而有理数的除法则可以转化为乘法运算来进行计算。
1.5 有理数的混合运算有理数的混合运算包括加减乘除运算的综合运用,需要灵活运用各种运算规律来进行计算。
第二章:代数2.1 代数的概念代数是数学中的一个重要分支,它研究用字母表示的数和与它们之间的关系。
2.2 代数运算代数运算包括加减乘除和乘方等运算,需要灵活运用代数运算法则来进行计算。
2.3 代数式的化简与因式分解代数式的化简是指将复杂的代数式简化为简单的形式,而因式分解则是将代数式分解为一些能整除它的代数式相乘。
2.4 一元一次方程及其解一元一次方程是指未知数的次数为一,且方程的最高次数为一的方程,解方程的方法包括逆运算法、两边等值法和相等变形法等。
2.5 原式的价值和未知数的值代数式的价值是指将代数式中的字母用具体的数值代入后所得到的数值结果,而未知数的值则是指在方程中未知数的具体取值。
第三章:平面图形3.1 三角形的概念三角形是由三条边和三个顶点组成的图形,根据角的大小和边的长度可以分为等边三角形、等腰三角形和普通三角形。
3.2 三角形的性质三角形的性质包括角的性质、边的性质和三角形的周长和面积的计算方法,需要灵活运用三角形的性质来解决实际问题。
3.3 四边形的概念和性质四边形是由四条边和四个顶点组成的图形,包括矩形、正方形、平行四边形和菱形等。
3.4 多边形的概念和性质多边形是由多条边和多个顶点组成的图形,需要灵活运用多边形的性质来解决实际问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与三芾影有关的经段二、知识概念:1. 三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形2. 三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边3. 高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高•4. 中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线5. 角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6. 三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性7. 多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形8. 多边形的内角:多边形相邻两边组成的角叫做它的内角9. 多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角10. 多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线11. 正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形12. 平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13. 公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和性质2:三角形的一个外角大于任何一个和它不相邻的内角⑶多边形内角和公式:n边形的内角和等于(n 2)• 180°⑷多边形的外角和:多边形的外角和为360° .⑸多边形对角线的条数:从n边形的一个顶点出发可以引(n 3)条对角线,第十二章全等三角形第一节:全等三角形形状大小放在一起完全重合的图形,叫做全等形。
换句话说,全等形就是能够完全重合的图形。
能够完全重合的两个三角形叫做全等三角形。
两个全等的三角形重合放在一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
两个三角形全等用符号“也”表示。
如?ABC^?A'BC。
其中对应的边是AB与A'B'、AC与AC、BC与B'C'。
如若前一个三角形的边的表示字母变换位置,那么后一个三角形的对应字母也要变换位置,如CB与C'B'为对应边。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等。
第二节:三角形全等的判定上节中知道全等三角形的三条对应边,三个对应角均分别相等。
那么是否可以从逆推得三角形全等呢?由于三角形具有稳定性,那么画图得两个对应边分别相等的三角形,发现它们全等,对应角也相等。
再次,画图得两个对应角分别相等的三角形,发现,它们的对应边成比例,但是不一定相等,例如,两个等边三角形,角都相等,但是边长不一定相等。
所以有判定一:三边对应相等的两个三角形全等(边边边或SSS。
、知识框架:第十一章三角形画图得两个角度相等,边分别相等的两个角,依次分别连接角的边的端点,得两个全等的三角形(两边与夹角确定第三边)。
有判定二:两边和它们的夹角对应相等的两个三角形全等(边角边或SAS。
画图得两条长度相等的线段,分别以线段两端点为起点做射线,射线与线段的夹角对应相等,两条射线相交与一点,形成两个三角形。
这两个三角形全等。
有判定三:两个角和它们的夹边对应相等的两个三角形全等(角边角或ASA。
画图得两个角度和一边对应相等的两个角,分别从该边向另一边引一条射线,射线与另一边的夹角对应相等。
形成的两个三角形全等。
有判定四:两个角和其中一角的对边对应相等的两个三角形全等(角角边或AAS。
画图得两个直角三角形,它们的斜边和一条直角边对应相等,这两个三角形全等。
有判定五:斜边和一条直角边对应相等的两个直角三角形全等(斜边、直角边或HL。
第三节:角的平分线的性质作图:已知AOB,求作AOB的平分线1做法:1、以0为圆心,适当长为半径画弧,交OA于M交0盯N; 2、分别以M N为圆心,大于丄MN2 的长为半径画弧,两弧在AOB的内部交于点C; 3、画射线0C射线0C即为所求。
从射线0C上任选一点,分别作OA 0B的垂线段,沿着0C折叠,会发现OA 0B勺垂线段完全重合。
故,有角的平分线的性质:角的平分线上的点到角的两边的距离相等。
同理:角的内部到角的两边的距离相等的点在角的平分线上。
证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系);②回顾三角形判定,搞清我们还需要什么;③正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。
可以逆推,由需要证明的结论一步步推导出已知条件。
第十三章轴对称第一节轴对称如果一个图形沿着一条直线折叠,直线两旁的部分能够相互重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
可以说这个图形关于这条直线(成轴)对称。
把一个图形沿着以一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。
把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称。
线段垂直平分线上的点与这条线段两个端点的距离相等。
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
第二节:画轴对称图形画轴对称图形的步骤:1、选择已知图形的关键点;2、依次过它们做垂直于已知直线的垂线,截取直线两边的线段长度相等,则新点即是已知图形的关键点关于直线对称的点;3、依次连接各个点。
所得图形即为已知图形的轴对称图形。
轴对称图形可以经过旋转得出。
用坐标轴表示轴对称:关于x轴对称(x, y)与(x, -y );关于y轴对称(x,『)与(-x , y)。
第三节等腰三角形有两个边相等的三角形叫做等腰三角形。
等腰三角形的性质:1)等腰三角形的两个底角相等。
简言之:等边对等角。
2 )等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合。
等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。
简言之:等角对等边。
一种特殊的等腰三角形——等边三角形,三条边相等,三个角相等并且都为60o。
反推, 三个角都相等的三角形是等边三角形;有一个角是60o 的等腰三角形是等边三角形。
在直角三角形中,如果一个锐角等于30o,那么它所对的直角边等于斜边的一半第十四章整式的乘法与因式分解第一节:整式的乘法1 .同底数幂的乘法一般地,对于任意底数a与任意正整数m有a m a n a m n(m n都是正整数)。
即同底数幕相乘,底数不变,指数相加。
该乘法法则是幂的运算中最基本的法则。
在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幕的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆, 对乘法, 只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幕相乘时,法则可推广为a m a n a p a m n p(其中m n、p均为正整数);⑤公式还可以逆用:a m n a m a n(m n均为正整数)。
2 .幂的乘方一般地,对任意底数a与任意正整数m n,有(a m)n a mn(m n都是正整数)。
即幕的乘方,底数不变,指数相乘。
该法则是幂的乘法法则为基础推导出来的,但两者不能混淆。
另有:(a n)m(a m)n a mn(m n都是正整数)。
当底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3。
一般地,( a)n a n(当n为偶数时), a n(当n为奇数时).底数有时形式不同,但可以化成相同。
要注意区别(ab)% (a+b)n意义是不同的,不要误以为(a+b)n=a n+b n(a、b均不为零)。
3. 积的乘方法则一般地,对于任意底数a、b与任意正整数n,有(ab)n a n b n(n为正整数)。
即积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘。
幂的乘方与积乘方法则均可逆向运用。
4. 整式的乘法1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。
单项式乘法法则在运用时要注意以下几点:①积的系数等于各因式系数积,先确定符号,再计算绝对值。
这时容易出现的错误的是,将系数相乘与指数相加混淆;②相同字母相乘,运用同底数的乘法法则;③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;④单项式乘法法则对于三个以上的单项式相乘同样适用;⑤单项式乘以单项式,结果仍是一个单项式。
2)单项式与多项式相乘:就是用单项式去乘多项式的每一项,再把所得的积相加。
即单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式。
单项式与多项式相乘时要注意以下几点:①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;②运算时要注意积的符号,多项式的每一项都包括它前面的符号;③在混合运算时,要注意运算顺序。
3 )多项式与多项式相乘:先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。
多项式与多项式相乘时要注意以下几点:①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的积;②多项式相乘的结果应注意合并同类项;③对含有同一个字母的一次项系数是1的两个一次二项式相乘2(x a)(x b) x (a b)x ab,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。
对于一次项系数不为1的两个一次二项式(mx+a和(nx+b)相乘可以得2(mx a)(nx b) mnx (mb na) ab。
第二节:乘法公式1. 平方差公式两数和与这两数差的积,等于它们的平方差,即(a b)(a b) a2 b2。
其结构特征是:①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。
2. 完全平方公式两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍,即(a b)2 a2 2ab b2。
口决:首平方,尾平方,2倍乘积在中央。
结构特征:①公式左边是二项式的完全平方;②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。
在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现(a b)2 a2 b2这样的错误。
添括号法则:添括号是,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。