湍流模型简介以及k-ε模型详解
k-ε模型中的K和ε物理意义
这些在软件里有详细介绍。陶的书中有类似的处理,假定了进口的湍流雷诺数。
fluent帮助里说,用给出的公式计算就行。
k-e模型的收敛问题!
应用k-e模型计算圆筒内湍流流动时,网格比较粗的时计算结果能收敛,但是当网格比较问大侠有没有解决的办法?
作一个简单的平板间充分发展的湍流流动,基于k-e模型。
确定压力梯度有两种方案,一是给定压力梯度,二是对速度采用周期边界条件,压力不管!
k-epsiloin湍流模型参数设置:
k-动能能量;epsilon-耗散率;
在运用两方程湍流模型时这个k值是怎么设置的呢?epsilon可以这样计算吗?
但是由于湍流脉动的尺度范围很大,计算的实际问题可能并不会如上所说的那样存在一个确切的正比和反比的关系。在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,大涡携带并传递能量,小涡则将能量耗散为内能。
在入口界面上设置的K和湍动能尺度对计算的结果影响大
至于k是怎么设定see fluent manual "turbulence modelling"
1。对K=ln(k)和E=ln(e)求解,问
题:壁面ke=0难处理,
2。先用层流计算500步,然后再用ke算,
3。各种强制限制办法
4。源项局部线性化。
5。算到一定程度,如果k值趋势对了,就干脆不求ke方程了。
k-ε模型中的K和ε物理意义
K是紊流脉动动能(J), ε 是紊流脉动动能的耗散率(%)
K 越大表明湍流脉动长度和时间尺度越大, ε 越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。
就ke模型而言。
fluent k-epsilon模型 公式
fluent k-epsilon模型公式
k-epsilon模型是一种常用的湍流模型,用于描述流体中湍流运动的特性。
它基于湍流能量和湍流速度脉动的方程来描述湍流的发展和衰减。
k方程描述了湍流能量的传输与产生,而epsilon方程描述了湍流速度脉动的耗散。
k表示湍流能量,epsilon表示湍流速度脉动的耗散率。
k方程的一般形式为:
∂(ρk)/∂t + ∂(ρuk)/∂x + ∂(ρvk)/∂y + ∂(ρwk)/∂z = Pk - εk + ∂/∂x[(μ+μt)/σk ∂(ρk)/∂x] + ∂/∂y[(μ+μt)/σk ∂(ρk)/∂y] + ∂/∂z[(μ+μt)/σk ∂(ρk)/∂z]
epsilon方程的一般形式为:
∂(ρε)/∂t + ∂(ρuε)/∂x + ∂(ρvε)/∂y + ∂(ρwε)/∂z = C1ε(ε/k)Pk - C2ε(ε^2/k) + ∂/∂x[(μ+μt)/σε ∂(ρε)/∂x] + ∂/∂y[(μ+μt)/σε ∂(ρε)/∂y] + ∂/∂z[(μ+μt)/σε ∂(ρε)/∂z] + C3εG
其中,Pk表示湍流能量项的产生率,εk表示湍流能量项的耗散率,u、v、w分别表示流体速度的x、y、z分量,ρ表示流体密度,μ表示动力粘度,μt表示湍流粘度,σk、σε分别为湍流能量和湍流速度脉动耗散率的可靠性修正参数,C1、C2、C3为经验常数,G 为湍流剪切产生项。
需要注意的是,上述公式只是k-epsilon模型的一般形式,在实
际应用中可能会根据具体问题进行适当调整或改进。
K-e湍流模型资料讲解
K-e湍流模型K是紊流脉动动能(J),ε 是紊流脉动动能的耗散率(%)K越大表明湍流脉动长度和时间尺度越大,ε 越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。
但是由于湍流脉动的尺度范围很大,计算的实际问题可能并不会如上所说的那样存在一个确切的正比和反比的关系。
在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,大涡携带并传递能量,小涡则将能量耗散为内能。
在入口界面上设置的K和湍动能尺度对计算的结果影响大,至于k是怎么设定see fluent manual "turbulence modelling"作一个简单的平板间充分发展的湍流流动,基于k-e模型。
确定压力梯度有两种方案,一是给定压力梯度,二是对速度采用周期边界条件,压力不管!k-epsiloin湍流模型参数设置:k-动能能量;epsilon-耗散率;在运用两方程湍流模型时这个k值是怎么设置的呢?epsilon可以这样计算吗?Mepsilon=Cu*k*k/Vt%这些在软件里有详细介绍。
陶的书中有类似的处理,假定了进口的湍流雷诺数。
fluent帮助里说,用给出的公式计算就行。
k-e模型的收敛问题!应用k-e模型计算圆筒内湍流流动时,网格比较粗的时计算结果能收敛,但是当网格比较密的时候,湍流好散率就只能收敛到10的-2次方,请问大侠有没有解决的办法?用粗网格的结果做初场网格加密不是根本原因,更本的原因是在加密过程中,部分网格质量差注意改进网格质量,应该就会好转.在求解标准k-e双方程湍流模型时(采用涡粘假设,求湍流粘性系数,然后和N-S方程耦合求解粘性流场),发现湍动能产生项(雷诺应力和一个速度张量相乘组成的项)出现负值,请问是不是一种错误现象?如果是错误现象一般怎样避免。
另外处理湍动能产生项采用什么样的差分格式最好。
而且因为源项的影响,使得程序总是不稳定,造成k,e值出现负值,请问有什么办法克服这种现象。
k-ε模型中的K和ε物理意义
4。源项局部线性化。
5。算到一定程度,如果k值趋势对了,就干脆不求ke方程了。
可以参考:《湍流的计算模型》 陈义良 1991 中国科技大学出版社
出现负的ke不仅仅是计算格式的问题,
更重要的是模型问题,
没有谁能证明ke模型在任何流动问题中都能保证ke是正的。
有这么一些办法避免ke出现负值
1。对K=ln(k)和E=ln(e)求解,问题:壁面ke=0难处理,
2。先
用层流计算500步,然后再用ke算,
k-epsiloin湍流模型参数设置:
k-动能能量;epsilon-耗散率;
在运用两方程湍流模型时这个k值是怎么设置的呢?epsilon可以这样计算吗?
epsilon=Cu*k*k/Vt
这些在软件里有详细介绍。陶的书中有类似的处理,假定了进口的湍流雷诺数。
fluent帮助里说,用给出的公式计算就行。
值,请问有什么办法克服这种现象。
你可以试试这里计算的时候加一个判断,出现负值的时候强制为一个很小的正值。
这可能是因为你采用的数值格式的问题,一般计算程序对k方程都要做一定处理,
以保证k的正定。比如,强制规定源项与0的关系,以使数值计算稳定。
就ke模型而言。
它是problem dependent.对简单的无弯曲无旋转无...的湍流问题,它能算而且能给出好的结果,但对复杂的流动问题,它就不能使用了。
K是紊流脉动动能(J), ε 是紊流脉动动能的耗散率(%)
K 越大表明湍流脉动长度和时间尺度越大, ε 越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。
但是由于湍流脉动的尺度范围很大,计算的实际问题可能并不会如上所说的那样存在一个确切的正比和反比的关系。在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,大涡携带并传递能量,小涡则将能量耗散为内能。
fluent中常见的湍流模型及各自应用场合
标题:深入探讨fluent中常见的湍流模型及各自应用场合在fluent中,湍流模型是模拟复杂湍流流动的重要工具,不同的湍流模型适用于不同的流动情况。
本文将深入探讨fluent中常见的湍流模型及它们各自的应用场合,以帮助读者更深入地理解这一主题。
1. 简介湍流模型是对湍流流动进行数值模拟的数学模型,通过对湍流运动的平均值和湍流运动的涡旋进行描述,以求解湍流运动的平均流场。
在fluent中,常见的湍流模型包括k-ε模型、k-ω模型、LES模型和DNS模型。
2. k-ε模型k-ε模型是最常用的湍流模型之一,在工程领域有着广泛的应用。
它通过求解两个方程来描述湍流场,即湍流能量方程和湍流耗散率方程。
k-ε模型适用于对流动场变化较为平缓的情况,如外流场和边界层内流动。
3. k-ω模型k-ω模型是另一种常见的湍流模型,在边界层内流动和逆压力梯度流动情况下有着良好的适用性。
与k-ε模型相比,k-ω模型对于边界层的模拟更加准确,能够更好地描述壁面效应和逆压力梯度情况下的流动。
4. LES模型LES(Large Ey Simulation)模型是一种计算密集型的湍流模拟方法,适用于对湍流细节结构和湍流的大尺度结构进行同时模拟的情况。
在fluent中,LES模型通常用于对湍流尾流、湍流燃烧和湍流涡流等复杂湍流流动进行模拟。
5. DNS模型DNS(Direct Numerical Simulation)模型是一种对湍流流动进行直接数值模拟的方法,适用于小尺度湍流结构的研究。
在fluent中,DNS模型常用于对湍流的微观结构和湍流的小尺度特征进行研究,如湍流能量谱和湍流的空间分布特性等。
总结与回顾通过本文的介绍,我们可以看到不同的湍流模型在fluent中各有其适用的场合。
从k-ε模型和k-ω模型适用于工程领域的实际流动情况,到LES模型和DNS模型适用于研究湍流细节结构和小尺度特征,每种湍流模型都有其独特的优势和局限性。
K-e湍流模型资料讲解
K-e湍流模型K是紊流脉动动能(J),ε 是紊流脉动动能的耗散率(%)K越大表明湍流脉动长度和时间尺度越大,ε 越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。
但是由于湍流脉动的尺度范围很大,计算的实际问题可能并不会如上所说的那样存在一个确切的正比和反比的关系。
在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,大涡携带并传递能量,小涡则将能量耗散为内能。
在入口界面上设置的K和湍动能尺度对计算的结果影响大,至于k是怎么设定see fluent manual "turbulence modelling"作一个简单的平板间充分发展的湍流流动,基于k-e模型。
确定压力梯度有两种方案,一是给定压力梯度,二是对速度采用周期边界条件,压力不管!k-epsiloin湍流模型参数设置:k-动能能量;epsilon-耗散率;在运用两方程湍流模型时这个k值是怎么设置的呢?epsilon可以这样计算吗?Mepsilon=Cu*k*k/Vt%这些在软件里有详细介绍。
陶的书中有类似的处理,假定了进口的湍流雷诺数。
fluent帮助里说,用给出的公式计算就行。
k-e模型的收敛问题!应用k-e模型计算圆筒内湍流流动时,网格比较粗的时计算结果能收敛,但是当网格比较密的时候,湍流好散率就只能收敛到10的-2次方,请问大侠有没有解决的办法?用粗网格的结果做初场网格加密不是根本原因,更本的原因是在加密过程中,部分网格质量差注意改进网格质量,应该就会好转.在求解标准k-e双方程湍流模型时(采用涡粘假设,求湍流粘性系数,然后和N-S方程耦合求解粘性流场),发现湍动能产生项(雷诺应力和一个速度张量相乘组成的项)出现负值,请问是不是一种错误现象?如果是错误现象一般怎样避免。
另外处理湍动能产生项采用什么样的差分格式最好。
而且因为源项的影响,使得程序总是不稳定,造成k,e值出现负值,请问有什么办法克服这种现象。
K-e湍流模型
K是紊流脉动动能(J),ε 是紊流脉动动能的耗散率(%)K越大表明湍流脉动长度和时间尺度越大,ε 越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。
但是由于湍流脉动的尺度范围很大,计算的实际问题可能并不会如上所说的那样存在一个确切的正比和反比的关系。
在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,大涡携带并传递能量,小涡则将能量耗散为内能。
在入口界面上设置的K和湍动能尺度对计算的结果影响大,至于k是怎么设定see fluent manual "turbulence modelling"作一个简单的平板间充分发展的湍流流动,基于k-e模型。
确定压力梯度有两种方案,一是给定压力梯度,二是对速度采用周期边界条件,压力不管!k-epsiloin湍流模型参数设置:k-动能能量;epsilon-耗散率;在运用两方程湍流模型时这个k值是怎么设置的呢?epsilon可以这样计算吗?Mepsilon=Cu*k*k/Vt%这些在软件里有详细介绍。
陶的书中有类似的处理,假定了进口的湍流雷诺数。
fluent帮助里说,用给出的公式计算就行。
k-e模型的收敛问题!应用k-e模型计算圆筒内湍流流动时,网格比较粗的时计算结果能收敛,但是当网格比较密的时候,湍流好散率就只能收敛到10的-2次方,请问大侠有没有解决的办法?用粗网格的结果做初场网格加密不是根本原因,更本的原因是在加密过程中,部分网格质量差注意改进网格质量,应该就会好转.在求解标准k-e双方程湍流模型时(采用涡粘假设,求湍流粘性系数,然后和N-S方程耦合求解粘性流场),发现湍动能产生项(雷诺应力和一个速度张量相乘组成的项)出现负值,请问是不是一种错误现象?如果是错误现象一般怎样避免。
另外处理湍动能产生项采用什么样的差分格式最好。
而且因为源项的影响,使得程序总是不稳定,造成k, e值出现负值,请问有什么办法克服这种现象。
你可以试试这里计算的时候加一个判断,出现负值的时候强制为一个很小的正值。
四种湍流模型介绍
由于航发燃烧室中的流动特性极其复杂,要想提高数值计算的预测能力,必须要慎重选择湍流模型。
用四种不同的湍流模型对带双径向旋流杯的下游流场进行数值模拟,将计算结果与实验结果作对比,比较各湍流模型的原理和物理基础,优劣,并分析流场速度分布和回流区特性。
涉及的湍流模型:标准k-ε湍流模型(SKE)1标准k-ε湍流模型有较高的稳定性,经济性和计算精度,应用广泛,适合高雷诺数湍流,但不适合旋流等各向异性较强的流动。
2简单的湍流模型是两个方程的模型,需要解两个变量,即速度和长度。
在fluent中,标准k-ε湍流模型自从被Launder and Spalding 提出之后,就变成流场计算中的主要工具。
其在工业上被普遍应用,其计算收敛性和准确性都非常符合工程计算的要求。
3但其也有某些限制,如ε方程包含不能在壁面计算的项,因此必须使用壁面函数。
另外,其预测强分离流,包含大曲率的流动和强压力梯度流动的结果较弱。
它是个半经验的公式,是从实验现象中总结出来的。
动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。
应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。
可实现的k-ε模型是才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。
·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。
术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。
应用范围:可实现的k-ε模型直接的好处是对于平板和圆柱射流的发散比率的更精确的预测。
而且它对于旋转流动、强逆压梯度的边界层流动、流动分离和二次流有很好的表现。
可实现的k-ε模型和RNG k-ε模型都显现出比标准k-ε模型在强流线弯曲、漩涡和旋转有更好的表现。
由于带旋流修正的k-ε模型是新出现的模型,所以还没有确凿的证据表明它比RNG k-ε模型有更好的表现。
[讲解]k-ε模型中的K和ε物理意义
k-ε模型中的K和ε物理意义k-ε模型中的K和ε物理意义K是紊流脉动动能(J),ε是紊流脉动动能的耗散率(%)。
K 越大表明湍流脉动长度和时间尺度越大,ε越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。
但是由于湍流脉动的尺度范围很大,计算的实际问题可能并不会如上所说的那样存在一个确切的正比和反比的关系。
在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,大涡携带并传递能量,小涡则将能量耗散为内能。
在入口界面上设置的K和湍动能尺度对计算的结果影响大。
至于k是怎么设定see fluent manual "turbulence modelling"作一个简单的平板间充分发展的湍流流动,基于k-e模型。
确定压力梯度有两种方案,一是给定压力梯度,二是对速度采用周期边界条件,压力不管!k-epsiloin湍流模型参数设置:k-动能能量;epsilon-耗散率;在运用两方程湍流模型时这个k值是怎么设置的呢?epsilon可以这样计算吗?epsilon=Cu*k*k/Vt这些在软件里有详细介绍。
陶的书中有类似的处理,假定了进口的湍流雷诺数。
fluent帮助里说,用给出的公式计算就行。
k-e模型的收敛问题问:应用k-e模型计算圆筒内湍流流动时,网格比较粗的时计算结果能收敛,但是当网格比较密的时候,湍流好散率就只能收敛到10的-2次方,请问大侠有没有解决的办法?答:用粗网格的结果做初场。
网格加密不是根本原因,更本的原因是在加密过程中,部分网格质量差,注意改进网格质量,应该就会好转.问:在求解标准k-e双方程湍流模型时(采用涡粘假设,求湍流粘性系数,然后和N-S方程耦合求解粘性流场),发现湍动能产生项(雷诺应力和一个速度张量相乘组成的项)出现负值,请问是不是一种错误现象?如果是错误现象一般怎样避免。
另外处理湍动能产生项采用什么样的差分格式最好。
而且因为源项的影响,使得程序总是不稳定,造成k,e值出现负值,请问有什么办法克服这种现象。
fluent中常见的湍流模型及各自应用场合
fluent中常见的湍流模型及各自应用场合湍流是流体运动中的一种复杂现象,它在自然界和工程应用中都非常常见。
为了模拟和预测湍流的行为,数学家和工程师们开发了各种湍流模型。
在Fluent中,作为一种流体动力学软件,它提供了多种常见的湍流模型,每个模型都有其自己的适用场合。
1. k-ε 模型最常见的湍流模型之一是k-ε模型。
该模型基于雷诺平均的假设,将湍流分解为宏观平均流动和湍流脉动两个部分,通过计算能量和湍动量方程来模拟湍流行为。
k-ε模型适用于边界层内和自由表面流动等具有高湍流强度的情况。
它还适用于非压缩流体和对称或旋转流动。
2. k-ω SST 模型k-ω SST模型是基于k-ε模型的改进版本。
它结合了k-ω模型和k-ε模型的优点,既能够准确地模拟边界层流动,又能够提供准确的湍流边界条件。
SST代表了"Shear Stress Transport",意味着模型在对剪切流动的边界层进行处理时更为准确。
k-ω SST模型适用于各种湍流强度的流动,特别是在激烈湍流的边界层内。
3. Reynolds Stress 模型Reynolds Stress模型是一种基于雷诺应力张量模拟湍流的高级模型。
它考虑了流场中的各向异性和非线性效应,并通过解Reynolds应力方程来确定流场中的张应力。
由于对流场的湍流行为进行了更精确的建模,Reynolds Stress模型适用于湍流流动和涡旋流动等复杂的工程应用。
然而,由于模型的计算复杂度较高,使用该模型需要更多的计算资源。
4. Large Eddy Simulation (LES)Large Eddy Simulation是一种直接模拟湍流的方法,它通过将整个流场划分为大尺度和小尺度的涡旋来模拟湍流行为。
LES适用于高雷诺数的流动,其中小尺度涡旋的作用显著。
由于需要同时解决大尺度和小尺度涡旋的运动方程,LES计算的复杂度非常高,适用于需要高精度湍流求解的工程应用。
K-e湍流模型
K是紊流脉动动能(J),ε 是紊流脉动动能的耗散率(%)K越大表明湍流脉动长度和时间尺度越大,ε 越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。
但是由于湍流脉动的尺度范围很大,计算的实际问题可能并不会如上所说的那样存在一个确切的正比和反比的关系。
在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,大涡携带并传递能量,小涡则将能量耗散为内能。
在入口界面上设置的K和湍动能尺度对计算的结果影响大,至于k是怎么设定see fluent manual "turbulence modelling"作一个简单的平板间充分发展的湍流流动,基于k-e模型。
确定压力梯度有两种方案,一是给定压力梯度,二是对速度采用周期边界条件,压力不管!k-epsiloin湍流模型参数设置:k-动能能量;epsilon-耗散率;在运用两方程湍流模型时这个k值是怎么设置的呢epsilon可以这样计算吗Mepsilon=Cu*k*k/Vt%这些在软件里有详细介绍。
陶的书中有类似的处理,假定了进口的湍流雷诺数。
fluent帮助里说,用给出的公式计算就行。
k-e模型的收敛问题!应用k-e模型计算圆筒内湍流流动时,网格比较粗的时计算结果能收敛,但是当网格比较密的时候,湍流好散率就只能收敛到10的-2次方,请问大侠有没有解决的办法用粗网格的结果做初场网格加密不是根本原因,更本的原因是在加密过程中,部分网格质量差注意改进网格质量,应该就会好转.在求解标准k-e双方程湍流模型时(采用涡粘假设,求湍流粘性系数,然后和N-S方程耦合求解粘性流场),发现湍动能产生项(雷诺应力和一个速度张量相乘组成的项)出现负值,请问是不是一种错误现象如果是错误现象一般怎样避免。
另外处理湍动能产生项采用什么样的差分格式最好。
而且因为源项的影响,使得程序总是不稳定,造成k,e值出现负值,请问有什么办法克服这种现象。
你可以试试这里计算的时候加一个判断,出现负值的时候强制为一个很小的正值。
k-ε模型的原理和应用
k-ε模型的原理和应用学号: 报告人:余江滔一、k -ε模型的原理k -ε 模型是两方程湍流模型中最具代表性的,同时也是工程中应用最为普遍的模式。
湍流被称为经典力学的最后难题,原因在于湍流场通常是一个复杂的非定常、非线性动力学系统,流场中充满着各种大小不同的涡结构。
整个湍流场的特性都取决于这些涡结构的不断产生、发展和消亡,同时,这些涡结构之间又不断发生着复杂的相互作用,这就使得对湍流现象的理解、描述和控制变得十分困难。
对于单相流动,科学界已经有较为成熟的湍流封闭模型。
k -ε 模型包括RNG k -ε 模型和标准k -ε 模型等,下面简要介绍一下。
1、RNG k -ε模型湍流产生和消散的传输模型和k -ε模型的一样,只是模型常量不一样。
原来的定真1C 由函数RNG C 1代替。
()()()ρεεεσμμρρεεεRNG k RNG RNG t C P C k U t 21-+⎥⎦⎤⎢⎣⎡∇⎪⎪⎭⎫ ⎝⎛+•∇=•∇+∂∂ 式中ηf C RNG -=42.112、标准 k -ε模型双方程模型把紊流粘性与紊动能 和耗散率k ε 相联系,建立起它们与涡粘性的关系,这种模型在工程上被广泛采纳。
ε−k 双方程模型是由英国帝国学院Spalding 教授领导的研究小组于 1974 年提出的,后来被应用界广泛采纳。
k -ε模型假设湍流粘性和湍动能及耗散率有关,标准的k- ε方程形式为:+=p- ε+[(μ+)]+=-+[(μ+)] =其中,k,ε分别为湍动能和湍流耗散率,为湍动能生成项,为湍流粘性系数,模型常数分别为:=,=,=,=,=二、k -ε模型的应用k -ε模型是目前应用最广泛的两方程紊流模型。
大量的工程应用实践表明,该模型可以计算比较复杂的紊流,比如它可以较好地预测无浮力的平面射流,平壁边界层流动,管流,通道流动,喷管内的流动,以及二维和三级无旋和弱旋加流流动等。
但从定量结果来看,它还没有比代数模型表现在出更明显的优势。
标准k-ε湍流模型
标准k-ε湍流模型标准k-ε湍流模型是一种流体力学中最为广泛使用的湍流模型之一。
它采用了分别描述湍动能和湍流耗散率的两个方程,用于模拟高雷诺数下的湍流运动。
下面将对标准k-ε湍流模型进行详细介绍。
1. 基本原理标准k-ε湍流模型基于雷诺平均 Navier-Stokes (RANS) 方程组,该方程组将流体分解为均值流和湍流部分,其中均值流部分由平均速度、压力和温度组成,湍流部分由湍动速度、湍动压力和湍动温度组成。
在标准k-ε湍流模型中,采用两个方程分别描述湍动速度和湍动能。
2. 方程表达式k方程用于描述湍动速度的大小和分布,其表达式为:$\frac{\partial}{\partial t}(\rho k)+\frac{\partial}{\partial x_j}(\rho u_j k)=\frac{\partial}{\partial x_j}[(\mu+\frac{\mu_t}{\sigma_k})\frac{\partialk}{\partial x_j}]-\rho\epsilon+C_{1\epsilon}(\frac{\epsilon}{k})k$$\rho$为流体密度,$u_j$为速度,$\mu$为流体黏度,$\mu_t$为湍流黏度,$\sigma_k$为可调参数,$C_{1\epsilon}$为常量,$\epsilon$为湍流耗散率。
在上述方程中,第一项表示瞬态效应和压力效应,第二项表示输运效应,第三项表示湍流耗散效应。
需要注意的是,$k$的单位为速度平方,通常是m^2/s^2。
$C_{2\epsilon}$和$C_{3\epsilon}$也为常量,$\sigma_\epsilon$是可调参数。
3. 模型适用范围标准k-ε湍流模型适用于中等到高雷诺数的流动问题,其中雷诺数的大小主要受到惯性力和黏性力的比值影响。
当惯性力占主导地位时,流动将呈现出湍流特征,而当黏性力占主导地位时,流动将呈现出层流特征。
K-e湍流模型
K是紊流脉动动能(J),ε 是紊流脉动动能的耗散率(%)K越大表明湍流脉动长度和时间尺度越大,ε 越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。
但是由于湍流脉动的尺度范围很大,计算的实际问题可能并不会如上所说的那样存在一个确切的正比和反比的关系。
在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,大涡携带并传递能量,小涡则将能量耗散为内能。
在入口界面上设置的K和湍动能尺度对计算的结果影响大,至于k是怎么设定see fluent manual "turbulence modelling"作一个简单的平板间充分发展的湍流流动,基于k-e模型。
确定压力梯度有两种方案,一是给定压力梯度,二是对速度采用周期边界条件,压力不管!k-epsiloin湍流模型参数设置:k-动能能量;epsilon-耗散率;在运用两方程湍流模型时这个k值是怎么设置的呢?epsilon可以这样计算吗?Mepsilon=Cu*k*k/Vt%这些在软件里有详细介绍。
陶的书中有类似的处理,假定了进口的湍流雷诺数。
fluent帮助里说,用给出的公式计算就行。
k-e模型的收敛问题!应用k-e模型计算圆筒内湍流流动时,网格比较粗的时计算结果能收敛,但是当网格比较密的时候,湍流好散率就只能收敛到10的-2次方,请问大侠有没有解决的办法?用粗网格的结果做初场网格加密不是根本原因,更本的原因是在加密过程中,部分网格质量差注意改进网格质量,应该就会好转.在求解标准k-e双方程湍流模型时(采用涡粘假设,求湍流粘性系数,然后和N-S方程耦合求解粘性流场),发现湍动能产生项(雷诺应力和一个速度张量相乘组成的项)出现负值,请问是不是一种错误现象?如果是错误现象一般怎样避免。
另外处理湍动能产生项采用什么样的差分格式最好。
而且因为源项的影响,使得程序总是不稳定,造成k, e值出现负值,请问有什么办法克服这种现象。
你可以试试这里计算的时候加一个判断,出现负值的时候强制为一个很小的正值。
k-epsilon湍流模型
k-epsilon湍流模型
k-omega模型,即k-ω模型,应用于墙壁束缚流动和自由剪切流动。
湍流模型选取的准则:流体是否可压、建立特殊的可行的问题、精度
的要求、计算机的能力、时间的限制。
比较常用的模型包括Spalart-Allmaras模型、k-ε模型、k-ω模型
和雷诺应力模型等。
雷诺时均模拟方法计算效率较高,解的精度也基本可
以满足工程实际需要,是流体机械领域使用最为广泛的湍流数值模拟方法。
扩展资料
计算湍流运动主要通过三种方法,直接数值模拟(DNS)、大涡模拟(LES)和基于雷诺平均N-S方程组(RANS)模拟。
DNS直接求解全尺度的湍流N-S方程,可以得到湍流的全部信息。
但
是由于计算机条件的约束,只能求解一些低Re数的简单流动,对于复杂
流动问题无法计算。
LES对湍流脉动部分进行直接模拟,从流场中去除小尺度涡,求解大
涡方程。
虽然LES方法计算成本相对DNS较小,但对于大部分工程问题仍
然有很长的路要走。
RANS是将满足动力学方程的瞬时运动分解为平均运动和脉动运动,
其中脉动项采用雷诺应力来体现,再根据各自经验、实验等方法对雷诺应
力进行假设,从而封闭湍流的平均雷诺方程而求解,RANS相当于NS方程
基础上添加了一个额外的粘度项。
湍流模型简介以及k-ε模型详解
内燃机缸内湍流流动的特点
实验和理论计算表明,缸内湍流的主要来源是 进气射流通过气阀时产生的强烈剪切层以及射 流与缸壁的碰撞。在进气冲程中期,即进气进 行最猛烈时,缸内湍流度达到其峰值。此时湍 流分布很不均匀,而且是各向异性的,主要可 分为射流内的高湍流度区和其余部分的低湍流 度区。随着平均流速的减小,湍流开始衰减。 同时,由于对流和扩散作用,整个缸内湍流趋 向于均匀化和各向同性化。在压缩冲程中,尽 管进气产生的主涡流还残留在缸内,但已经很 弱并且继续衰减。活塞压缩产生的正应力和缸 壁的剪切应力对湍流的生成虽有一定的贡献, 但由于耗散大于生产,故总的效果详解
北京理工大学12级车辆硕
湍流的基本概念
层流和湍流是两种不同的基本流态。它们的区 分变化可以用雷诺数来量化。雷诺数较小时 (小于2000),黏滞力对流场的影响大于惯性 力,流场中流速的扰动会因黏滞力而衰减,流 体流动稳定,为层流;反之,若雷诺数较大时, 惯性力对流场的影响大于黏滞力,流体流动较 不稳定,流速的微小变化容易发展、增强,形 成紊乱、不规则的湍流流场。
3,k-ε模型的强旋流修正
总结
k -ε模型是目前应用最广泛的两方程紊流模型。 大量的工程应用实践表明,该模型可以计算比 较复杂的紊流,比如它可以较好地预测无浮力 的平面射流,平壁边界层流动,管流,通道流 动,喷管内的流动,以及二维和三级无旋和弱 旋加流流动等。但从定量结果来看,它还没有 比代数模型表现在出更明显的优势。随着空化 流动理论和计算方法的发展,数值计算逐渐成 为空化现象研究的有力手段。对于空化流动这 种复杂的湍流进行模拟,湍流模型是一个重要 方面。最初,人们广泛采用了标准的k -ε模型, 由于空化流动中汽泡的生成和溃灭过程对湍流 发展的影响,引起空化流动中湍动能产生项和弥
湍流数值计算的k-
Zhejiang University
K-Ɛ模型
Zhejiang University
Zhejiang University
湍动能K的控制方程
Zhejiang University
Zhejiang University
标准K、Ɛ的输运方程
Zhejiang University
K-Ɛ模型方程
Zhejiang University
评价
优点:只需要提供初始条件和边界条件的最简单的湍流模型;对于很多 工业流动效果极好;已经完善,是最为普遍有效的湍流模型。
缺点:比起混合长度模型,实现其代价较大(多两个偏微分方程),在一些 重要场合表现较差。如一些无约束流、大应变流(如曲边界层、回旋流)、旋 转流和非圆截面管的充分发展流等。 难以模拟剪切层中平均流场方向的改变对湍流场的影响 不能反映雷诺应力的各向异性,特别是近壁湍流 不能反映平均涡量对雷诺应力分布的影响 对强旋流、湍流分离流和近壁流等明显各向异性的流动使用标准k-ɛ模型 是不合适的。
Zhejiang University
评价
模型对回旋流动和大的快速附加应变(如高度曲线边界层和扩散 段)也有问题,因为它没有包含流线哇Il率对湍流的微妙影响。k-ɛ 模型也不能预测各向异性法向雷诺应力驱动的、长的非圆截面导 管二次流,因为模型中缺少法向应力处理。最后,若参考坐标系 旋转,k-ɛ模型不能考虑体积力。
Zhejiang University
K方程
Zhejiang University
模型化的K方程
Zhejiang University
模型化的Ɛ方程
同样可以得到ɛ方程:
Zhejiang University
边界条件
k-ε(epsilon)模型使用经验分享
k-ε(epsilon)模型使⽤经验分享K是紊流脉动动能(J),ε(epsilon)是紊流脉动动能的耗散率(%)K 越⼤表明湍流脉动长度和时间尺度越⼤,ε越⼤意味着湍流脉动长度和时间尺度越⼩,它们是两个量制约着湍流脉动。
但是由于湍流脉动的尺度范围很⼤,计算的实际问题可能并不会如上所说的那样存在⼀个确切的正⽐和反⽐的关系。
在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,⼤涡携带并传递能量,⼩涡则将能量耗散为内能。
k-ε湍流模型参数设置在运⽤两⽅程湍流模型时这个k值是怎么设置的呢?epsilon可以这样计算吗?epsilon=Cu*k*k/Vt这些在软件⾥有详细介绍。
FLUENT帮助⾥说,⽤给出的公式计算就⾏。
k-ε模型的收敛问题应⽤k-ε模型计算圆筒内湍流流动时,⽹格⽐较粗的时计算结果能收敛,但是当⽹格⽐较密的时候,湍流好散率就只能收敛到10的-2次⽅。
⽤粗⽹格的结果做初场。
⽹格加密不是根本原因,根本的原因是在加密过程中,部分⽹格质量差,注意改进⽹格质量,应该就会好转。
在求解标准k-ε双⽅程湍流模型时(采⽤涡粘假设,求湍流粘性系数,然后和N-S⽅程耦合求解粘性流场),发现湍动能产⽣项(雷诺应⼒和⼀个速度张量相乘组成的项)出现负值,请问是不是⼀种错误现象?如果是错误现象⼀般怎样避免。
另外处理湍动能产⽣项采⽤什么样的差分格式最好。
⽽且因为源项的影响,使得程序总是不稳定,造成k,ε值出现负值,请问有什么办法克服这种现象。
你可以试试这⾥计算的时候加⼀个判断,出现负值的时候强制为⼀个很⼩的正值。
这可能是因为你采⽤的数值格式的问题,⼀般计算程序对k⽅程都要做⼀定处理,以保证k的正定。
⽐如,强制规定源项与0的关系,以使数值计算稳定。
就k-ε模型⽽⾔。
它是problem dependent。
对简单的⽆弯曲⽆旋转⽆...的湍流问题,它能算⽽且能给出好的结果,但对复杂的流动问题,它就不能使⽤了。
出现负的k-ε不仅仅是计算格式的问题,更重要的是模型问题,没有谁能证明k-ε模型在任何流动问题中都能保证k-ε是正的。
标准k-epsilon模型湍流方程
标准k-epsilon模型湍流方程
标准k-epsilon模型是一种基于湍流能和湍流耗散率这两个物
理量的模型,用于求解湍流流场。
其基本假设是湍流各向同性,即湍流各向同性,也就是说,缺乏空间方向下的相关性。
模型利用湍流能和湍流耗散率的方程来描述湍流的物理行为。
标准
k-epsilon模型的湍流方程为:
∂(ρk)/∂t + ∂(ρuk)/∂x + ∂(ρvk)/∂y + ∂(ρwk)/∂z = Pk - ε
∂(ρε)/∂t + ∂(ρuε)/∂x + ∂(ρvε)/∂y + ∂(ρwε)/∂z = C1εP - C2ερk²/ε +
C3εν∂²ε/∂x²
其中,ρ为密度,k为湍流能,u、v、w为速度分量,ε为湍流耗散率,P为湍流能的产生率,是由非线性项产生的
(P=Cμρk²/ε,其中Cμ为常数),ε为湍流耗散率,是湍流能
耗散的产生率(C1ε为常数,C2ε和C3ε为修正常数)。
这个模
型是目前应用比较广泛的湍流模型之一,适用于不可压缩、不可彎曲且压力梯度适宜的流体动力学问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验和理论计算表明,缸内湍流的主要来源是进气射流 通过气阀时产生的强烈剪切层以及射流与缸壁的碰撞。 在进气冲程中期,即进气进行最猛烈时,缸内湍流度达 到其峰值。此时湍流分布很不均匀,而且是各向异性的, 主要可分为射流内的高湍流度区和其余部分的低湍流度 区。随着平均流速的减小,湍流开始衰减。同时,由于 对流和扩散作用,整个缸内湍流趋向于均匀化和各向同 性化。在压缩冲程中,尽管进气产生的主涡流还残留在 缸内,但已经很弱并且继续衰减。活塞压缩产生的正应 力和缸壁的剪切应力对湍流的生成虽有一定的贡献,但 由于耗散大于生产,故总的效果是湍流持续衰减。实验 表明,TDC时的平均湍流度是进气体积流率的线性函数, 或与发动机的转速成正比。通常认为,接近TDC时,湍 流基本成为各向同性,这也得到k-є模型计算结果的证 实。但Jennings和Morel用雷诺应力模型的意思表明, 对轴对称的一维压缩情况,到TDC时的湍流并非各向同 性,轴向正应力远大于其他两个方向,因此有必须要以 后对此再深入研究。(内燃机计算燃烧学——解茂昭)
北京态。它们的区分变化可 以用雷诺数来量化。雷诺数较小时(小于2000),黏滞 力对流场的影响大于惯性力,流场中流速的扰动会因黏 滞力而衰减,流体流动稳定,为层流;反之,若雷诺数 较大时,惯性力对流场的影响大于黏滞力,流体流动较 不稳定,流速的微小变化容易发展、增强,形成紊乱、 不规则的湍流流场。 在内燃机整个工作循环中,其缸内气体能量始终在进行 着极为复杂而又强烈瞬变的湍流运动。这种湍流运动是 内燃机工作和燃烧过程中各个物理化学子过程的一个共 同基础。它决定了各种量在缸内的输运极其空间分布, 它对可燃 混合气的形成极其浓度场、火焰传播速率和 燃烧品质、缸壁的传热及污染物的形成等都具有直接的、 本质的影响。因此,要正确地从微观上模拟和分析内燃 机的燃烧,绝对离不开对缸内湍流运动的正确描述和模 拟。也正是基于这一原因,内燃机燃烧的零维和准维模 型被称为热力学模型或现象模型,而多维模型则被称为 流体动力学或CFD模型。
旋流和滚流的影响
燃烧室形状的影响 燃油喷射和燃烧的影响
k -ε模型是目前应用最广泛的两方程紊流模型。大量的 工程应用实践表明,该模型可以计算比较复杂的紊流, 比如它可以较好地预测无浮力的平面射流,平壁边界层 流动,管流,通道流动,喷管内的流动,以及二维和三 级无旋和弱旋加流流动等。但从定量结果来看,它还没 有比代数模型表现在出更明显的优势。随着空化流动理 论和计算方法的发展,数值计算逐渐成为空化现象研究 的有力手段。对于空化流动这种复杂的湍流进行模拟, 湍流模型是一个重要方面。最初,人们广泛采用了标准 的k -ε模型,由于空化流动中汽泡的生成和溃灭过程对 湍流发展的影响,引起空化流动中湍动能产生项和弥散 项间的不平衡,这种模型并不能很好地模拟空化流动。 除了标准k -ε模型外还诸如RNGk -ε模型等多种改进模型, 这些模型在预测浮力影响、强旋流、高剪切率、低雷诺 数影响等方面都较准确,对大多数工业流动问题能够提 供良好的特性和物理现象预测。