电子科大随机信号分析随机期末试题答案A

合集下载

电子科技大学信号检测与估计2016期末考试

电子科技大学信号检测与估计2016期末考试

信号检测与估计试题答案三、(15分)现有两个假设00,11,:,1,2,,:,1,2,,j j j j j j H y u z j K H y u z j K=+==+=其中观测样本j y 为复信号,0,1,,j j u u 是复信号样本,j z 是均值为零、方差为2*z j j E z z σ⎡⎤=⎣⎦的复高斯白噪声,代价因子为001101100,1c c c c ====,先验概率010.5ππ==(1)试写出两假设下的似然函数()0p y 和()1p y ,其中12[,,,]T K y y y y =;(4分)(2)采用贝叶斯准则进行检测,给出信号检测的判决规则表达式;(6分) (3)在上题基础上,计算虚警概率。

(5分) 解:(1)观测样本j y 在假设0H 下的概率密度函数为()20,0221exp 1,2,,j jj z z y u p y j K πσσ⎧⎫-⎪⎪=-=⎨⎬⎪⎪⎩⎭……..(2分)由于样本间互相独立,则K 个观测样本的联合概率密度函数为()()()()()20010200,22111exp K K j j Kj z z p y p y p y p y y u σπσ=⎧⎫==--⎨⎬⎩⎭∑…….(1分)同理可得,在假设1H 下的似然函数为()()()()()21111211,22111exp K K j j Kj z z p y p y p y p y y u σπσ=⎧⎫==--⎨⎬⎩⎭∑…….(1分)(2)首先计算似然比:()()(){}{}1**011,0,22221102222exp Re Re K K j j j j j j z z z z p y L y y u y u p y εεσσσσ==⎧⎫==--+⎨⎬⎩⎭∑∑其中∑==K j j u 12,00||21ε,∑==K j j u 12,11||21ε。

……..(2分) 然后,计算贝叶斯准则似然比门限为()()010********B C C C C πτπ-==-………(2分)因此,根据{}{}1**011,0,22221102222exp Re Re 1K K j j j j j j z z z z D y u y u D εεσσσσ==≥⎧⎫--+⎨⎬<⎩⎭∑∑ 化简可得最后的判决表达式:(){}1*1,0,101Re Kj j j j D y u u D εε=≥--<∑ ……..(2分) (3)在假设0H 下,j y 是均值为0,j u 、方差为2z σ的复高斯随机变量,因此,统计决策量(){}*1,0,1Re Kj j j j y u u μ==-∑ 为高斯分布随机变量,其均值和方差分别为:{}002r E H με=- (1分){}()()220101222z r z r Var H σμεεσεε=+-=+- (1分)其中,*0,1,Kj jr i uuJ ρρρ=+=∑ 定义为两信号的相关系数。

随机信号习题及答案

随机信号习题及答案
Y = 3 X + 1 的分布函数。
3.
⎧0 ⎪ 已知随机变量 X 的分布函数为: FX ( x) = ⎨kx 2 ⎪1 ⎩
x<0 0 ≤ x < 1 ,求:①系数 k;②X 落在区间 x >1
0 < x < +∞,0 < y < +∞ 其它
(0.3,0.7)内的概率;③随机变量 X 的概率密度函数。
4.
⎧e − ( x + y ) 设二维随机变量(X,Y)的概率密度为: f ( x, y ) = ⎨ ⎩0
求:①
分布函数 FXY ( x, y ) ;②(X,Y)落在如图所示的三角形区域内的概率。
y x+y=1
0
x
5. (续上题)求③边缘分布函数 FX ( x) 和 FY ( y ) ;④求边缘概率 f X ( x) 和 fY ( y ) 。 6. ( 续 上 题 ) ⑤ 求 条 件 分 布 函 数 FX ( x y ) 和 FY ( y x) ; ⑥ 求 条 件 概 率 密 度 f X ( x
103
9 若两个随机过程 X (t ) = A(t )cos t 和 Y (t ) = B(t )sin t 都是非平稳过程,其中 A(t ) 和 B (t ) 为相互独立,且 各自平稳的随机过程,它们的均值为 0 ,自相关函数 R A (τ ) = RB (τ ) = R (τ ) 。试证这两个过程之和
和 Y 的相关性及独立性。
11. 已知随机变量 X 的均值 m X = 3 ,方差 σ 2 X = 2 ,且另一随机变量 Y = −6 X + 22 。讨论 X 和 Y 的相关性和正交性。 12. 设随机变量 Y 和 X 之间为线性关系 Y = aX + b ,a、b 为常数,且 a ≠ 0 。已知随机变量 X 为正态分布,即:

(完整word版)随机信号分析习题.(DOC)

(完整word版)随机信号分析习题.(DOC)

随机信号分析习题一1. 设函数⎩⎨⎧≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数.并求下列概率:)1(<ξP ,)21(≤≤ξP 。

2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。

3. 设二维随机变量),(Y X 的联合密度函数为⎥⎦⎤⎢⎣⎡++-=)52(21exp 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。

(1)求Y 的可能取值 (2)确定Y 的分布. (3)求][Y E 。

5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。

(2)X 与Y 统计独立时所有A 值。

6. 二维随机变量(X ,Y )满足:ϕϕsin cos ==Y Xϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。

7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f .8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度?9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X⎧=+⎨=⎩ 设X ,Y 是相互独立的高斯变量。

随机信号分析第3版习题及答案word资料18页

随机信号分析第3版习题及答案word资料18页

1. 有四批零件,第一批有2019个零件,其中5%是次品。

第二批有500个零件,其中40%是次品。

第三批和第四批各有1000个零件,次品约占10%。

我们随机地选择一个批次,并随机地取出一个零件。

(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。

(2)发现次品后,它来自第二批的概率为, 2. 设随机试验X求X 的概率密度和分布函数,并给出图形。

解:()()()()0.210.520.33f x x x x δδδ=-+-+- 3. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。

解:(1)由()1f x dx ∞-∞=⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为4.求:(1)X 与的联合分布函数与密度函数;(2)与的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。

(北P181,T3) 解:(1)(2) X 的分布律为 Y 的分布律为(3)Z XY =的分布律为 (4)因为 则X 与Y 的相关系数0XY ρ=,可见它们无关。

5. 设随机变量()~0,1X N ,()~0,1Y N 且相互独立,U X YV X Y =+⎧⎨=-⎩。

(1) 随机变量(),U V 的联合概率密度(),UV f u v ;(2) 随机变量U 与V 是否相互独立? 解:(1)随机变量(),X Y 的联合概率密度为由反函数 22u v x u vy +⎧=⎪⎪⎨-⎪=⎪⎩,1112211222J ==--, (2)由于, 222244414uv u v e π+---⎛⎫⎛⎫=⨯⎪⎪⎪⎪⎭⎭所以随机变量U 与V 相互独立。

6. 已知对随机变量X 与Y ,有1EX =,3EY =,()4D X =,()16D Y =,0.5XY ρ=,又设3U X Y =+,2V X Y =-,试求EU ,EV ,()D U ,()D V 和(,)Cov U V 。

随机信号分析课后习题答案

随机信号分析课后习题答案

1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。

求随机变量的数学期望和方差。

解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=ii ix X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F 求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。

解:⎪⎩⎪⎨⎧<≤-π==其他201)](2π[cos 2)()(x x A dx x dF x f由 1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P 1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。

(1)⎪⎩⎪⎨⎧<≥-=-00e1)(2x x x F x2(2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x xx x F (3)0)]()([)(>--=a a x u x u ax x F (4)0)()()(>---=a a x u ax a x u a x x F解:(1)⎪⎩⎪⎨⎧<≥-=-00e1)(2x x x F x当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数;1)(0≤≤x F 成立; )()(x F x F =+也成立。

2008电子科技大学随机信号分析期末考试

2008电子科技大学随机信号分析期末考试

一、 设相互独立的 随机变量,X Y 的概率密度函数分别()()1212(),()x y X Y f x e U x f y e U y λλλλ--==,(1) 求Z=X +Y 的特征函数;(2)求X+Y 的均值?(10分) 解:(1)因为XY 相互独立,所以()()()Z X Y u u u φφφ=110()()xjuxjuxX x x f x e dx ee dx λφλ∞∞--∞==⎰⎰11101x juxe e dx juλλλλ∞-==-⎰,()Y y φ=22202xjuxee dx juλλλλ∞-==-⎰1212()Z u ju juλλφλλ=-- (1分)(2) E (X+Y )=EX+EY 121200xyxedx yedy λλλλ∞∞--=+⎰⎰1211λλ=+二、(10分)随机信号X(t)的均值()10cos(/40)X m t t π=,相关函数()[],50cos((2)/40)cos(/40)X R t t t ττπτπ+=++。

现有随机信号()()Y t X t =-Θ,Θ均匀分布于[0,80]区间。

求:1. [(168)],[(166)(161)]E X E X X2. [(168)],[(171)(161)]E Y E Y Y ,讨论()Y t 的平稳性解:1. [(168)](168)10cos(168/40)X E X m π==[(166)(161)]50[cos(327/40)cos(5/40)]E X X ππ=+2.因为Y (t ) 是周期平稳信号X(t)在一个周期内的均匀滑动,根据定理,它是一个广义平稳信号,且80801[(168)](168)()80110cos(/40)080Y X E Y m m t dtt dt π====⎰⎰ ()[]808001[(171)(161)],80150cos((2)/40)cos(/40)8050cos(/40)X E Y Y R t t dtt dt ττπτπτπ=+=++==⎰⎰三、 若随机信号()cos X t A t ω=,其中A 是一个贝努里型的随机变量,且满足1[1][1]2P A P A ===-=,ω为常数。

电子科技大学2009年随机信号分析试题A与标准答案

电子科技大学2009年随机信号分析试题A与标准答案

(1) 试判断 X ( t ) 和 Y ( t ) 在同一时刻和不同时刻的独立性、相关 性及正交性; (2) 试判断 X ( t ) 和 Y ( t ) 是否联合广义平稳。 解: (1) 由于 X ( t ) 和 Y( t ) 包含同一随机变量 θ ,因此非独立。 根据题意有
f (θ ) = 1 2π
π
−π
1 1 = cos[ w0 ( t1 − t2 )] cos( w0τ ) 2 2
同理可得 RY ( t1 ,t2 ) = RX ( t1 ,t2 ) ,因此 X ( t ) 和 Y( t ) 均广义平稳。
,t2 ) C XY ( t1= ,t2 ) 由于 RXY ( t1= 1 1 sin [w0 ( t1 − = t2 )] sin (w0τ ) ,因此 X ( t ) 和 2 2

π
−π
E[ X ( t )] E [sin(ω = = 0 t + Θ) ]
E[Y( t )] E [ cos(ω = = 0 t + Θ) ]
π

1 sin( w0= t + θ )dθ 0 , 2π
−π

1 cos( w0= t + θ )dθ 0 2π
C XY ( t1 ,t2 ) = RXY ( t1 ,t2 ) = E[ X ( t1 )Y( t2 )] = E[sin (w0t1 + θ )co s( w0t2 + θ )]
1 1 1 1 − τ 1 −3 τ = P R(0)= += R (τ )= e + e ,所以 4 12 3 4 12
1 ∞ 1 10 20 P S ( ) d 2 d = = = ω ω ω (3) 可以。 2π ∫−∞ 2π ∫−10 π

电子科技大学随机信号分析期末考试题

电子科技大学随机信号分析期末考试题

电子科技大学随机信号分析期末考试题电子科技大学20 -20 学年第学期期考试卷课程名称:_________ 考试形式:考试日期: 20 年月日考试时长:____分钟课程成绩构成:平时 10 %,期中 10 %,实验 %,期末 80 % 本试卷试题由___2__部分构成,共_____页。

一、填空题(共20分,共 10题,每题2 分)0()cos(),X t A t t ω=+Φ-∞<<∞,其中0ω为常数,A Φ和是相互独立的随机变量,[]01A ∈,且均匀分布,Φ在[]02π,上均匀分布,则()X t 的数学期望为: 02. 已知平稳随机信号()X t 的自相关函数为2()2X R e ττ-=,请写出()X t 和(2)X t +的协方差12-e3. 若随机过程()X t 的相关时间为1τ,()Y t 的相关时间为2τ,12ττ>,则()X t 比()Y t 的相关性要__大___,()X t 的起伏特性比()Y t 的要__小___。

4. 高斯随机过程的严平稳与___宽平稳_____等价。

5. 窄带高斯过程的包络服从___瑞利___分布,相位服从___均匀___分布,且在同一时刻其包络和相位是___互相独立___的随机变量。

6. 实平稳随机过程的自相关函数是___偶____(奇、偶、非奇非偶)函数。

7. 设)(t Y 是一均值为零的窄带平稳随机过程,其单边功率谱密度为)(ωY F ,且0()Y F ωω-为一偶函数,则低频过程)()(t A t A s c 和是___正交___。

二、计算题(共80分)X 和Y 的联合概率密度函数为(,)=XY f x y axy ,a 是常数,其中0,1x y ≤≤。

求:1) a ;2) X 特征函数;3) 试讨论随机变量X 和Y 是否统计独立。

解:因为联合概率密度函数需要满足归一性,即(2分)所以4A = (1分)X 的边缘概率密度函数:1()4201X f x xydy x x ==≤≤? (2分)所以特征函数容易得1()4201Y f y xydx y y ==≤≤?则有 (,)()()XY X Y f x y f x f y = (2分)因此X 和Y 是统计独立。

电子科大随机信号分析随机期末试题答案完整版

电子科大随机信号分析随机期末试题答案完整版

电子科大随机信号分析随机期末试题答案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】电子科技大学2014-2015学年第 2 学期期 末 考试 A 卷一、设有正弦随机信号()cos X t V t ω=,其中0t ≤<∞,ω为常数,V 是[0,1)均匀分布的随机变量。

( 共10分)1.画出该过程两条样本函数。

(2分)2.确定02t πω=,134t πω=时随机信号()X t 的一维概率密度函数,并画出其图形。

(5分)3.随机信号()X t 是否广义平稳和严格平稳?(3分)解:1.随机信号()X t 的任意两条样本函数如题解图(a)所示:2.当02t πω=时,()02X πω=,()012P X πω⎡⎤==⎢⎥⎣⎦,此时概率密度函数为:(;)()2X f x x πδω=当34t πω=时,3()42X πω=-,随机过程的一维概率密度函数为:3. ()[]1cos cos 2E X t E V t t ωω==⎡⎤⎣⎦ 均值不平稳,所以()X t 非广义平稳,非严格平稳。

二、设随机信号()()sin 2X n n πφ=+与()()cos 2Y n n πφ=+,其中φ为0~π上均匀分布随机变量。

( 共10分)1.求两个随机信号的互相关函数12(,)XY R n n 。

(2分)2.讨论两个随机信号的正交性、互不相关性与统计独立性。

(4分)3.两个随机信号联合平稳吗?(4分)解:1.两个随机信号的互相关函数其中()12sin 2220E n n ππφ++=⎡⎤⎣⎦2. 对任意的n 1、n 2 ,都有12(,)0XY R n n =,故两个随机信号正交。

又故两个随机信号互不相关,又因为故两个随机信号不独立。

3.两个随机信号的均值都平稳、相关函数都与时刻组的起点无关,故两个信号分别平稳,又其互相关函数也与时刻组的起点无关,因而二者联合平稳。

(完整word版)电子科技大学随机信号分析期末考试A

(完整word版)电子科技大学随机信号分析期末考试A

一、已知随机变量X 服从11,22⎡⎤-⎢⎥⎣⎦区间的均匀分布,Y 是取值为(-1,1)的二值随机变量,且满足1[1][1]2P Y P Y =-===。

若X 和Y 彼此统计独立,求随机变量Z X Y =+的: 1、概率密度函数()Z f z 。

2、特征函数()Z v Φ。

解:1、随机变量X 均服从11,22⎡⎤-⎢⎥⎣⎦区间的均匀分布,111,()()220,X x f x rect x otherwise ⎧-≤≤⎪==⎨⎪⎩11()(1)(1)22Y f y x x δδ=++-由于X 和Y 彼此统计独立,所以11()()()(1)22Z X Y f z f z f z rect z rect=*=++131/2,220,z otherwise ⎧≤≤⎪=⎨⎪⎩2、()2rect z Sa ω⎛⎫⇔ ⎪⎝⎭且 ()()FTz z f z v Φ-所以()1()cos 222j j z v Sa e e Sa ωωωωω-⎛⎫⎛⎫Φ=+= ⎪ ⎪⎝⎭⎝⎭二、取值()0,1,等概分布的独立半随机二进制传输信号()X t ,时隙长度为0T ,问:1、信号的均值函数()E X t ⎡⎤⎣⎦。

2、信号的自相关函数(),X R t t τ+。

3、()X t 的一维概率分布函数();X F x t 和二维概率分布函数()1212,;,X F x x t t 。

解:1、()00.510.50.5X t E =⨯+⨯=⎡⎤⎣⎦2、当,t t τ+在同一个时隙时:[]222(,)()()[()]00.510.50.5X R t t E X t X t E X t ττ+=+==⨯+⨯=当,t t τ+不在同一个时隙时:[][][](,)()()()()0.50.50.25X R t t E X t X t E X t E X t τττ+=+=+=⨯= 1、 一维分布:()()();0.50.51X F x t u x u x =+-二维分布:当12,t t 在同一个时隙时 ()[][12121212,;,0.5,0.51,X F x x t t u x x u x x =+--当12,t t 不在同一个时隙时:()121211221112,;,[(),()][()][()]X F x x t t P X t x X t x P X t x P X t x =≤≤=≤≤()()()1212120.25,0.251,0.25,10u x x u x x u x x =+-+-+三、广义平稳高斯随机信号X (t )、Y(t )具有均值各态历经性,其功率谱如下图所示。

电子科技大学随机信号分析中期考题2006随机(A)

电子科技大学随机信号分析中期考题2006随机(A)

电⼦科技⼤学随机信号分析中期考题2006随机(A)1.设随机过程21)(cos )(2-Θ+=t t X ω,Θ是随机变量,其特征函数为)(υφΘ。

证明:)(t X 是⼴义平稳随机过程的充要条件是0)4()2(==ΘΘφφ。

证明:(1))(t X 的均值为:()21()[()][cos ()]2111[1cos 2()][cos(22)]22211cos(2)[cos(2)]sin(2)[sin(2)]22X m t E X t E t E t E t t E t E ωωωωω==+Θ-=++Θ-=+Θ=Θ-Θ由上式可知,当且仅当0)]2sin()2[cos(][)2(2=Θ+Θ==ΘΘj E e E j φ时,()0X m t =,才与t ⽆关。

(2))(t X 的相关函数为:22(,)[()()]11[(cos ())(cos ())]2211[cos(222)cos(22)]22[cos(2)][cos(424)]811cos(2)cos(42)[cos(4)]881sin(42)][sin(4)]8X R t t E X t X t E t t E t t E E t t E t E ττωωτωωωτωωτωωτωτωωτωωτ+=+=++Θ-+Θ-=++Θ?+Θ+++Θ==++Θ-+Θ同理可得,当且仅当0)]4sin()4[cos(][)4(4=Θ+Θ==ΘΘj E eE j φ时,)cos(21),(ωττ=+t t R X 与t ⽆关。

2.设随机过程)sin()(0Θ+Ω=t A t X ,其中0A 为常数,ΘΩ和为相互独⽴的随机变量,Ω在]2010[ππ内均匀分布,Θ在]20[π内均匀分布。

证明:(1) )(t X 是⼴义平稳随机信号;(2) )(t X 的均值是各态历经的。

解:(1)00000[()][sin()][sin()cos()cos()sin())][sin()][cos()][cos()][sin())]0E X t E A t E A t A t A E t E A E t E =Ω+Θ=ΩΘ+ΩΘ=ΩΘ+ΩΘ= 202020(,)[()()][sin()sin()]cos()cos(22)2cos()2X R t t E X t X t A E t t t A E A E ττττττ+=+=Ω+Ω+ΘΩ+ΘΩ-Ω+Ω+Θ??=Ω??=所以)(t X 是⼴义平稳随机信号(2)[]00000001[()][sin()]lim sin()lim sin()lim cos()|0TT T T T T A X t A A t A t dtT A A t d t t T T →+∞→+∞→+∞=Ω+Θ=Ω+Θ=Ω+ΘΩ=-Ω+Θ=ΩΩ时间平均等于统计平均,所以)(t X 的均值是各态历经的。

电子科技大学2010年随机信号分析其中考试试题与标准答案

电子科技大学2010年随机信号分析其中考试试题与标准答案
2π 1 E = ϕ ) ⋅ dϕ 0 (ω 0 t + Φ ) X ( t ) E A sin= A∫0 sin (ω 0t += 2π
2 = RX ( t1 , t2 ) E A sin (ω0t1 + Φ ) sin (ω0t2 + Φ ) 2 A = E cos (ω0 ( t1 − t2 ) ) − cos (ω0t1 + ω0t2 + 2Φ ) 2 A2 cos (ω0τ ) (τ= t1 − t2 ) = 2
八、 (10 分)已知平稳信号 X (t ) 的自相关函数为
R= 6 exp(− X (τ )
τ
2
);
对于任意给定的 t ,求信号四个状态 X (t ) , X (t + 1) , X (t + 2) , X (t + 3) 的协方差矩阵。
2 = = lim R X (τ ) m 0 解: τ X →∞
= X (t ) A sin(ω 0t + Φ ) , ω 0 为常数, Φ 是 [0, 2π ) 的均匀分布随机变量,讨论 四、 (15 分)已知随机信号
当 A 满足如下条件时,X(t)的广义平稳性。 1. A 为常数; (5 分) 2. A 为时间函数 A(t); (5 分) 3. A 为随机变量且 A 与 Φ 独立。 (5 分) 解:1、当 A 为常数时,
Φ Z ( v ) = Φ X ( 3v ) ⋅ ΦY ( 2v ) e j10 v = a ⋅ q + pe j 2 v ⋅ e j10 v a − j 3v
三、(15 分)若随机过程 X(t)由四个样本函数{X(t) : 2,sint,-sint,cost}构成,各样本函数出现 概率相等,求: 1.X(t)数学期望; (5 分)

电子科技大学2010随机信号考试题附答案

电子科技大学2010随机信号考试题附答案

电⼦科技⼤学2010随机信号考试题附答案电⼦科技⼤学⼆零⼀零⾄⼆零⼀⼀学年第⼀学期期末考试随机信号分析课程考试题 A 卷( 120 分钟)考试形式:闭考试⽇期 2011年 1 ⽉ 9⽇课程成绩构成:平时 10 分,期中 5 分,实验 0 分,期末 85 分⼀.判断正误。

并说明原因(20分,每题2分,判断1分,理由1分) 1)若随机过程()X t 和()Y t 统计独⽴,则()()()()E X t Y t E X t E Y t =正确 2)若()X t 是严平稳,则()X t 和()X t c +具有相同的统计特性,其中c 为常数。

正确3)⼴义各态历经的随机信号不⼀定⼴义平稳,⼴义平稳的随机信号也未必⼴义各态历经。

错:⼴义各态历经的随机信号⼀定⼴义平稳 4)希尔伯特变换将改变随机信号统计平均功率。

错:希尔伯特变换不会改变随机信号统计平均功率。

只改变信号的相位。

5)系统等效噪声带宽由系统的冲击响应和输⼊信号功率的共同决定。

错! 系统等效噪声带宽只由系统的冲击响应决定。

6)⾼斯随机过程的严格平稳与⼴义平稳等价。

对!7)随机过程既可以看成⼀组确知的时间函数的集合,同时也可以看成⼀组随机变量的集合。

对! 8)随机信号的功率谱密度为可正可负的随机函数。

错!随机信号的功率谱密度为⾮负的实函数。

9)函数()1R eττ-=-可以作为⼴义实平稳随机信号的⾃相关函数。

错!()10R ∞=-< 或不满⾜()()0R R τ>10) 函数()3R eττ-=可以作为窄带⾼斯随机信号同相分量和正交分量的互相关函数。

错!窄带⾼斯随机信号同相分量和正交分量的互相关函数应为奇函数⼆.解释以下名词每题四分共16分1.各态历经过程:指随机过程的任⼀样本特性都经历了其它样本所经历的状态,即可⽤任⼀样本的时间平均特性来等效整个过程的统计特性。

2窄带⽩⾼斯噪声:指功率谱密度满⾜窄带特性(中⼼频率远⼤于带宽),且在其带宽内功率谱密度的值为常数),过程的概率分布满⾜⾼斯概率分布特性的随机过程。

A卷试卷标准答案(更新版)

A卷试卷标准答案(更新版)

电子科技大学二零零 六 至二零零 七 学年第 2 学期期 末 考试《 随机信号分析 》 课程考试题 A 卷 ( 120 分钟) 考试形式:一页纸开卷 考试日期 200 7 年 7 月 5 日课程成绩构成:平时 20 分, 期中 10 分, 实验 0 分, 期末 70 分1. 设两个平稳随机过程()()cos U t t =+Θ和()()sin V t t =+Θ,其中Θ是在[],ππ-上均匀分布的随机变量。

问: 1) 这两个过程是否联合平稳?2) 这两个过程是否正交、互不相关和统计独立?(10分) 解:1)()()()()()()12121212,cos sin 11sin 2sin sin 22UV R t t E t t E t t t t τ=+Θ+Θ⎡⎤⎣⎦=++Θ--=-⎡⎤⎣⎦ 所以,这两个过程是联合平稳的 2)()()121,sin 2UV R t t τ=-不恒为零,所以()()U t V t 和不正交 又 ()()0E U t E V t ==⎡⎤⎡⎤⎣⎦⎣⎦ 所以()()()1sin 2UV UV C R τττ==-不恒为零,所以()()U t V t 和相关 ()()22U t V t +=1,()()U t V t 和不统计独立2、设{(),},{(),}X t t T Y t t T ∈∈是零均值的实联合广义平稳随机信号,它们的相关函数分别为(),()X Y R R ττ,互相关函数为()XY R τ,如果()(), ()()X Y XY YX R R R R ττττ==--若(),()X t Y t 的谱密度为(),()X Y S S ωω,互谱密度为()X Y S ω,试求00()()cos()()sin()Z t X t t Y t t ωω=+的功率谱密度,其中0ω为常数。

(10分)解:00()()cos()()sin()Z t X t t Y t t ωω=+[][]{}000000(,)()cos()()sin()()cos()()sin()Z R t t E X t t Y t t X t t Y t t ττωωττωωτωω∴+=++++++000000000000000000[()()cos()cos()()()cos()sin() ()()sin()cos()()()sin()sin()]()cos()cos()()cos()sin() X XY E X t X t t t X t Y t t t Y t X t t t Y t Y t t t R t t R t t τωτωωτωωτωτωωτωτωωτωτωωτωτωωτω=++++++++++=+++000000()sin()cos()()sin()sin()YX Y R t t R t t τωωτωτωωτω++++由于(),()X t Y t 联合广义平稳,所以()()XY YX R R ττ=-,加之()(), ()()X Y XY YX R R R R ττττ==--, 所以()()0XY YX R R ττ==,即(),()X t Y t 正交。

电子科技大学2007年随机信号分析试题B与标准答案

电子科技大学2007年随机信号分析试题B与标准答案

解:
mX2
=
RX (∞) =
lim
τ →∞
cosτ eτ
=
0 → mX =
0
对周期平稳过程, mY = 0
Z (t)的均值: E[Z (t)] = E[ A⋅ X (t) ⋅Y (t)] =E[ A]⋅ E[ X (t)]⋅ E[Y (t)] = 0
Z (t)的相关函数: Rz (t += τ ,t) E[ A2 X (t +τ ) ⋅Y (t +τ ) ⋅ X (t) ⋅Y (t)] = E[ A2 ]⋅ E[ X (t +τ ) ⋅ X (t) ⋅Y (t +τ ) ⋅Y (t)] =8 × E[ X (t +τ ) ⋅ X (t)] × E[Y (t +τ ) ⋅Y (t)] =8 × RX (τ ) × RY (τ ) =8 ⋅ e−τ ⋅ cos2 τ
Y (t) = X 2 (t) ,试求:
(1) Y (t) 的均值;
(2) Y (t) 的相关函数;
(3) Y (t) 的广义平稳性。
解:(1)
E= [Y(t)] E= [X2 (t)] E[a2 cos2 (ω 0t + Θ)] = a2E[cos2 (ω 0t + Θ)]
= a2 1 + E[cos(2ω 0t + 2Θ)] 2
8. 已知随机过程 X (t) 和 Y (t) 独立且各自平稳,且 RX (τ ) = e−τ cosτ 与 RY (τ ) = cosτ 。令随机过程 Z (t) = AX (t)Y (t) ,其中 A 是均值
为 2,方差为 4 的随机变量,且与 X (t) 和 Y (t) 相互独立。求过程 Z (t) 的均值、方差和自相关函数。

随机信号处理考试

随机信号处理考试

随机信号分析与处理》期末自我测评试题(二)一、填空题(共12小题,每空1分,共25分)1.随机过程可以看成是_____ ______的集合,也可以看作是______ _____的集合。

2.假设连续型随机变量的概率分布函数为F(x),则F(-∞)= _________,F(+∞)= _________。

3.平稳随机信号通非线性系统的分析常用的方法是_______________和___________与级数展开法。

4.平稳正态随机过程的任意维概率密度只由____________与____________来确定。

5.如果随机过程X(t) 满足____________________________ _____________,则称X(t)为严格平稳随机过程;如果随机过程X(t)满足:_____________________,___________________________________,则称X(t)为广义平稳随机过程。

6.如果一零均值随机过程的功率谱在整个频率轴上为一常数,则称该随机过程为______________,该过程的任意两个不同时刻的状态是__________________。

7.宽带随机过程通过窄带线性系统,其输出近似服从____________分布。

窄带正态噪声的包络服从____________分布,而相位则服从___________________分布。

8.分析平稳随机信号通过线性系统的两种常用方法是___________ ____和___ ________。

9.若实平稳随机过程相关函数为,则其均值为_____,方差为_____。

10.匹配滤波器是_________________________________作为准则的最佳线性滤波器。

11.对随机过程X(t),如果,则我们称X(t1)和X(t2)是____________。

如果,则我们称X(t1)和X(t2)是____________。

(完整word版)电子科大版概率论期末考试

(完整word版)电子科大版概率论期末考试

概率论与数理统计期末考试填空与单项选择暂无对应题库,您可以自行用小号刷题获取题库A。

1•B.•C。

0。

7••A.P{Y=2X—1}=1•B。

P{Y=-2X—1}=10。

00/3。

00•C。

P{Y=—2X+1}=1•D.P{Y=2X+1}=1正确答案:D你错选为B3单选(3分)已知P(A)=0。

9;,则P(A—BC)=得分/总分•A。

0。

4•B.0.6•C.0。

7•D。

0。

8正确答案:C你没选择任何选项4单选(3分)设随机变量X和Y都服从正态分布,且它们不相关,则得分/总分•A。

X和Y一定独立•B.X和Y不一定独立•C.(X,Y)一定服从二维正态分布•D。

X+Y服从一维正态分布正确答案:B你没选择任何选项5单选(3分)设X1,X2,……为独立同分布随机变量序列,且Xi(i=1,2,……)均服从参数为4的指数分布。

则当n比较大时,近似服从得分/总分•A.•B。

•C。

•D.正确答案:A你没选择任何选项6填空(3分)随机变量X的概率密度为则常数T=__________?得分/总分你没有填写答案正确答案:17填空(3分)甲、乙、丙三人同时独立地向同一个目标射击一次,命中率分别为0.8、0。

6、0。

5,则目标被击中的概率为_______?(答案保留两位小数)得分/总分你没有填写答案正确答案:0。

968填空(3分)若随机事件A与B互不相容,并且P(A)= p, P(B)=q, 则_______?得分/总分你没有填写答案正确答案:q9填空(3分)一个袋子中装有3个红色球,5个白色球,甲取出了一个红球,不再放回袋子中,乙也从袋子中摸一个球,他取出红球的概率是_______?(答案保留两位小数)得分/总分你没有填写答案正确答案:0。

2910填空(3分)设随机变量X1,X2,X3相互独立,其中X1在区间[0,6]上服从均匀分布,X2服从正态分布N(0,4),X3服从参数为λ=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)=_________?得分/总分你没有填写答案正确答案:46本部分由7道计算题组成,每道题均为10分。

电子科大16秋《随机信号与系统》在线作业3

电子科大16秋《随机信号与系统》在线作业3

电子科技大学电子科大16秋《随机信号与系统》在线作业3一、单选题(共10 道试题,共40 分。

)1. 随机信号X(t,w)当时间变量t固定是,此函数为()。

A. 随机信号B. 随机变量C. 样本函数D. 随机过程正确答案:2. 连续投两次硬币,两次的结果是一样的概率是()。

A. 1/4B. 1/8C. 1/2D. 1正确答案:3. 若N(t)是方差为a的零均值独立高斯过程,则它在不同的两个时刻的相关函数是()。

A. 0B. aC. 不确定正确答案:4. 已知X(t)=Acos(wt+θ),其中θ在[0,2*pi]上均匀分布,A为常数,则X(t)的均值为()。

A. 1B. AC. 0D. w正确答案:5. 随机变量X~N(0,a),那么Y=2X的均值为()。

A. aB. 0C. 4aD. 不确定正确答案:6. 均值为零的白噪声通过LTI系统后的输出噪声的均值为()。

A. 2B. 0C. 1D. 不确定正确答案:7. 已知X(t)=Acos(wt+θ),其中θ在[0,2*pi上均匀分布,A服从均值为0的高斯分布,A与θ相互独立,则X(t)的均值为()。

A. 0B. AC. 1D. w正确答案:8. 高斯信号X(t)的均值为u,方差d2,Y(t)=3X(t),Y(t)的方差为()。

A. uB. d2C. 3uD. 9d2正确答案:9. 随机信号X(t)均值为2,通过一个LTI系统H(jw)=1/(jw+2),则输出Y(t)的均值为()。

A. 2B. 1C. 1/2D. 0正确答案:10. 已知一随机信号X(t)是平稳的,则其均值可能是()。

A. 2tB. t+2C. 2D. 以上都不可能正确答案:16秋《随机信号与系统》在线作业3二、多选题(共5 道试题,共30 分。

)1. 以下哪个信号不是随机信号?A. sin(2t)B. cos(2t+θ),θ~U[0,2*pi)C. t+a,a是常数D. 2t正确答案:2. 随机变量X1和X2都是服从均值为0,方差为1的高斯分布的且它们相互独立,Y=X1+X2,对于随机变量Y,下列说法正确的是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子科技大学2014-2015学年第 2 学期期 末 考试 A 卷一、设有正弦随机信号()cos X t V t ω=,其中0t ≤<∞,ω为常数,V 是[0,1)均匀分布的随机变量。

( 共10分)1.画出该过程两条样本函数。

(2分)2.确定02t πω=,134t πω=时随机信号()X t 的一维概率密度函数,并画出其图形。

(5分)3.随机信号()X t 是否广义平稳和严格平稳?(3分)解:1.随机信号()X t 的任意两条样本函数如题解图2.1(a)所示:t2.当02t πω=时,()02X πω=,()012P X πω⎡⎤==⎢⎥⎣⎦,此时概率密度函数为:(;)()2X f x x πδω= 当34t πω=时,32()42X V πω=-,随机过程的一维概率密度函数为:232,0(;)240,X x f x others πω⎧-<<⎪=⎨⎪⎩3. ()[]1cos cos 2E X t E V t t ωω==⎡⎤⎣⎦ 均值不平稳,所以()X t 非广义平稳,非严格平稳。

二、设随机信号()()sin 2X n n πφ=+与()()cos 2Y n n πφ=+,其中φ为0~π上均匀分布随机变量。

( 共10分)1.求两个随机信号的互相关函数12(,)XY R n n 。

(2分)2.讨论两个随机信号的正交性、互不相关性与统计独立性。

(4分)3.两个随机信号联合平稳吗?(4分) 解:1.两个随机信号的互相关函数()()()()()()()121212121212(,)sin 2cos 21sin 222sin 2221sin 2202XY R n n E X n Y n E n n E n n n n n n πφπφππφππππ=⎡⎤⎣⎦=++⎡⎤⎣⎦=+++-⎡⎤⎣⎦=-=其中()12sin 2220E n n ππφ++=⎡⎤⎣⎦2. 对任意的n 1、n 2 ,都有12(,)0XY R n n =,故两个随机信号正交。

又()()()()()()12sin 2cos 2,01cos 2sin 200E X n E n n E Y n E n n ππφπφππππφπφπ⎛⎫=+=-+=⎡⎤⎡⎤ ⎪⎣⎦⎣⎦⎝⎭⎛⎫=+=+=⎡⎤⎡⎤ ⎪⎣⎦⎣⎦⎝⎭()()()12121212(,)(,)1sin 2202XY XY X Y C n n R n n m n m n n n ππ=-=-=故两个随机信号互不相关,又因为()()()()222200sin cos 1X n Y n n n ωφωφ+=+++= 故两个随机信号不独立。

3.()()()()()()1212121212(,)sin 2sin 21cos 22cos 222212X R n n E X n X n E n n E n n n n πφπφππππφ=⎡⎤⎣⎦=++⎡⎤⎣⎦=--++⎡⎤⎣⎦= ()()()()()()1212121212(,)cos 2cos 21cos 22cos 222212Y R n n E Y n Y n E n n E n n n n πφπφππππφ=⎡⎤⎣⎦=++⎡⎤⎣⎦=-+++⎡⎤⎣⎦= 两个随机信号的均值都平稳、相关函数都与时刻组的起点无关,故两个信号分别平稳,又其互相关函数也与时刻组的起点无关,因而二者联合平稳。

三、()W t 为独立二进制传输信号,时隙长度T 。

在时隙内的任一点()30.3P W t =+=⎡⎤⎣⎦和()30.7P W t =-=⎡⎤⎣⎦,试求( 共10分)1.()W t 的一维概率密度函数。

(3分)2.()W t 的二维概率密度函数。

(4分)3.()W t 是否严格平稳?(3分)解:下面的讨论中,t 不在时隙分界点上:1. 在时隙内的任一点上,()W t 为二进制离散随机变量,因此,随机信号的一维概率密度函数为:()()(),0.330.73f w t w w δδ=-++2. 当1t ,2t 在同一时隙时,随机变量()1t W ,()2t W 取值相同,此时二维概率密度函数为:()()()12121212,;,0.33,30.73,3f w w t t w w w w δδ=--+++当1t ,2t 不在同一时隙时,随机变量()1t W ,()2t W 取值独立,此时二维概率密度函数为:()()()()()121212121212,;,0.093,30.213,30.213,30.493,3f w w t t w w w w w w w w δδδδ=--+-+++-+++3. ()W t 不严格平稳。

四、设正弦随机信号X(t) = Acos(ωt+Θ), ω是常数,A ∽U(-1,+1) , Θ∽ U(0,π), 且A 和Θ统计独立,令Y(t)=X 2(t)。

( 共10分) 讨论:1.Y(t)的均值。

(3分)2.Y(t)的相关函数。

(4分)3.Y(t)是否是广义平稳?。

(3分) 解:1. Y(t)的均值:22222[()][()][cos ()]1[1cos(22)]21111*2236E Y t E X t E A t E A E t E A ωω==+Θ⎡⎤=++Θ⎣⎦⎡⎤===⎣⎦2. Y(t)的相关函数:[]()(){}()()[]224224(,)()()()()cos ()cos ()11cos 2221cos 224111cos 222cos 224511cos(2)cos(424)204011cos(2)2040Y R t t E Y t Y t E X t X t E A t t E A E t t E t t E t τττωωτωωωτωωωτωωτωωτωτ+⎡⎤=+=+⎣⎦⎡⎤=++Θ+Θ⎣⎦⎡⎤=+++Θ++Θ⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦=⨯+++Θ+Θ⎡⎤⎣⎦=++++Θ=+3. 因为Y(t)的均值和相关函数都与t 无关,因此Y(t)是广义平稳随机信号。

五、高斯随机信号X(t)的自相关函数如图所示( 共10分)1.求X(t)的一维概率密度函数。

(3分)2.求X(t)上间隔为0.001的任意两个采样时刻的二维密度函数。

(4分)3.对一段时长为1秒的信号,最多能够获取多少了独立的采样点?(3分)解:1. 求X(t)的一维概率密度函数;(3分)因为:R X(∞)=m2,故m = 0σ2 = R X(0)- m2 = 421(x;t)exp8Xxf⎛⎫=-⎪⎝⎭2. 求X(t)上间隔为τ=0.001s的任意两个采样时刻的二维密度函数;(4分)因为:C X(τ) = R X(τ) - m2,故C X(0.001)= 0高斯随机变量不相关,则其统计独立,因此任意两个间隔为0.001s 的两个随机变量的二维密度函数为: 221212121(x ,x ;t ,t )exp 88X x x f π⎛⎫+=- ⎪⎝⎭ 3. 对一段时长为1秒的信号,最多能够获取多少了独立的采样点?(3分) 因为不相关的最小间隔为0.0001秒,则在1秒间隔内,最多可采集的独立采样点为: 1/0.0001 + 1 = 10001六、功率谱密度为20N 的零均值平稳高斯白噪声通过一个理想带通滤波器,此滤波器的增益为1,中心频率为0f ,带宽为B 2。

( 共10分)1.)(t n i 的同相分量)(t i 及正交分量)(t q 的自相关函数和相关系数。

(4分)2.)(t i 的二维概率密度函数。

)21,;,(21B t t i i f i (3分)3.)(t i 及)(t q 的二维联合概率密度函数。

(3分) 解:依题1. ⎩⎨⎧≤-++==其它,00),()()()(00ωωωωωωωX X q i S S S S0022sin(2)sin(2)()()2222()()sin(2)()()(2)(0)(0)2i q i i i q a i i N B B B R R N B B B C R B S B C R B ππτπτττππτπτττπτρτρτπτπτ⋅========)2()()(τπτρτρB S a i q == 2. 2,1,2,2k B k k B πτπτ=→==±±是()i R τ的零点121222120022120011(,;,)(;)(;)2211exp()exp()441exp()44i i i f i i t t f i t f i t B Bi i N B N B i i N B N B π+=+=--+=-3. 因为)(t n i 的功率谱关于0f 偶对称,故)(t i 与)(t q 处处正交、无关、独立12122200(,;,)(;)(;)1exp()44iq i iq f i q t t f i t f q t i q N B N B π=+=-七、已知平稳过程{}+∞<<-∞t t X ),(的均值函数为1)(=t m ,相关函数为ττ2cos 2)(=R ,讨论其均值各态历经性。

( 共10分) 解:[]()()cos()cos()cos()lim lim lim lim lim T T T T T T T T T T T T TT T C d R d T Td d T TT --→+∞→+∞--→+∞→+∞-→+∞ττ=τ-τ=ττ=ττ=τ=⎰⎰⎰⎰1112211222241204 所以{}+∞<<-∞t t X ),(具有均值各态历经性。

八、设有随机过程{}+∞<<-∞+=t t A t X ),cos()(φω,其中φ,A 是相互独立的随机变量,ω是正常数,)2,0(~),3,3(~πφU U A -,试讨论{}+∞<<-∞t t X ),(的广义平稳性和广义各态历经性。

( 共10分)解:[][][][][][])(cos 23cos 21126)cos())(cos()cos())(cos(),(0)cos()cos()(22τωτωτφωφτωφωφτωτφωφωR t t E A E t A t A E t t R t E A E t A E t m X ==⨯=+++=+++=+=+=+={}+∞<<-∞t t X ),(广义平稳。

[][])(cos 2)cos())(cos(21)()(0cos sin )cos(21)(2lim lim lim τωτφωφτωτφωωφωX T T T XT T T T R A dt t A t A Tt X t X A m T TA dt t A Tt X A ≠=+++=+===+=⎰⎰-+∞→+∞→-+∞→{}+∞<<-∞t t X ),(均值各态历经,相关函数不具有各态历经性。

相关文档
最新文档