2020年广东省中考数学《不等式与不等式组》练习题 (36)
初中数学中考专项练习《不等式与不等式组》50道填空题包含答案与解析(中考冲刺)
初中数学中考专项练习《不等式与不等式组》50道填空题包含答案与解析(中考冲刺)(时间:60分钟满分:100分)班级:_________ 姓名:_________ 分数:_________一、填空题(共50题)1、关于的不等式的解集如图所示,则的值是________.2、用不等式表示“x 与 5 的差不大于1”:________.3、不等式组的解集是________。
4、关于x的分式方程的解为正数,则m的取值范围是________.5、已知不等式≥3,那么这个不等式的解集是________6、若关于x的不等式的解集在数轴上表示如图,请写出此解集为________.7、不等式组的正整数解的乘积为________.8、若关于x的一元二次方程没有实数解,则关于x的不等式的的解集为________.(用含的式子表示)9、不等式组的解集是________.10、已知关于x的不等式>x-1,当m=1时,该不等式的解集为________;若该不等式的解集中的每一个x都能使关于x的不等式x>a成立,则此时m的取值范围为________,a的取值范围是________.11、不等式的解集是________.12、不等式组的解集是________ .13、不等式组的解集是________.14、“a的2倍减去b不小于2”用不等式表示是________.15、不等式组的解集是________.16、点 P(1,a﹣3)在第四象限,则a的取值范围是________.17、将不等式“ ”化为“ ”的形式为:________.18、若x>y,且(m-5)x <(m-5)y ,则m的取值范围是________.19、不等式组的解集是________.20、已知关于x的一元一次不等式与2﹣x<0的解集相同,则m=________.21、抛物线y=kx2﹣7x﹣7的图象和x轴有交点,则k的取值范围是________.22、若式子在实数范围内有意义,则x的取值范围是________.23、关于、的二元一次方程组的解满足,则的取值范围是________.24、不等式3x-6≤9的解是________.25、某种型号汽车每行驶100km耗油10L,其油箱容量为40L.为了有效延长汽车使用寿命,厂家建议每次加油时油箱内剩余油量不低于油箱容量的,按此建议,一辆加满油的该型号汽车最多行驶的路程是________km.26、不等式组的解集是________.27、关于的不等式的解集是写出一组满足条件的的值________.28、苹果的进价为每千克3.8元,销售中估计有5%的苹果正常损耗,为避免亏本,商家把售价应该至少定为每千克________元.29、x与y的平方和一定是非负数,用不等式表示为________30、若m<n,则不等式组的解集是________.31、一元二次方程x2+2x+a=0有实根,则a的取值范围是________.32、某次知识竞赛共有20道题,每一题答对得10分,答错或不答都扣 5 分.小明得分要超过90分,他至少要答对________道题.33、已知不等式x﹣1≥0,此不等式的解集在数轴上表示为________34、若不等式组的解集是,则m的取值范围是________.35、我们定义,例如,若均为整数,且满足,则的值是________.36、不等式组的解集是________.37、已知关于x的方程=m的解满足(0<n<3),若y>1,则m的取值范围是________.38、若关于x的一元二次方程有实数根,则n的取值范围是________.39、若关于x的不等式组无解,则a的取值范围为________.40、关于x的不等式组只有4个整数解,则a的取值范围是________.41、要使式子在实数范围内有意义,则实数a的取值范围是________.42、已知关于x的不等式组无解,则实数a的取值范围是________43、如图,周长为a的圆上有且仅有一点A在数轴上,点A所表示的数为1,若该圆沿着数轴向右滚动两周后点A对应的点为B,此时,A、B两点之间恰好有三个表示正整数的点(不包括点A、B),则该圆的周长a的取值范围为________44、用不等号连接下列各组数:(1)π________ 3.14;(2)(x﹣1)2________ 0;(3)﹣________ ﹣45、若不等式(m-2)x>2的解集是,则m的取值范围是________.46、不等式-3x+2≥5的解集是________。
2020中考数学试题含答案 (36)
2020中考数学试卷一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示亿元.2.(3分)在函数y=中,自变量x的取值范围是.3.(3分)如图,在平行四边形ABCD中,添加一个条件,使平行四边形ABCD是矩形.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.5.(3分)不等式组有3个整数解,则a的取值范围是.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a212.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.614.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是2015.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.716.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠217.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A .B .C .1D .19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种20.(3分)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=BC=1,则下列结论: ①∠CAD=30°②BD=③S 平行四边形ABCD =AB•AC ④OE=AD ⑤S △APO =,正确的个数是( )A .2B .3C .4D .5三、解答题(满分60分)21.(5分)先化简,再求值:(a ﹣)÷,其中a=,b=1.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC 的三个顶点坐标分别为A (1,4),B (1,1),C (3,1).(1)画出△ABC 关于x 轴对称的△A 1B 1C 1.(2)画出△ABC 绕点O 逆时针旋转90°后得到的△A 2B 2C 2.(3)在(2)的条件下,求点A 所经过的路径长(结果保留π).23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为件,图中d值为.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点F.(1)当点E在线段BD上移动时,如图(1)所示,求证:AE=EF;(2)当点E在直线BD上移动时,如图(2)、图(3)所示,线段AE与EF又有怎样的数量关系?请直接写出你的猜想,不需证明.27.(10分)为了落实党的“精准扶贫”政策,A、B两城决定向C、D两乡运送肥料以支持农村生产,已知A、B两城共有肥料500吨,其中A城肥料比B城少100吨,从A城往C、D两乡运肥料的费用分别为20元/吨和25元/吨;从B城往C、D两乡运肥料的费用分别为15元/吨和24元/吨.现C乡需要肥料240吨,D乡需要肥料260吨.(1)A城和B城各有多少吨肥料?(2)设从A城运往C乡肥料x吨,总运费为y元,求出最少总运费.(3)由于更换车型,使A城运往C乡的运费每吨减少a(0<a<6)元,这时怎样调运才能使总运费最少?28.(10分)如图,在平面直角坐标系中,菱形ABCD的边AB在x轴上,点B 坐标(﹣3,0),点C在y轴正半轴上,且sin∠CBO=,点P从原点O出发,以每秒一个单位长度的速度沿x轴正方向移动,移动时间为t(0≤t≤5)秒,过点P作平行于y轴的直线l,直线l扫过四边形OCDA的面积为S.(1)求点D坐标.(2)求S关于t的函数关系式.(3)在直线l移动过程中,l上是否存在一点Q,使以B、C、Q为顶点的三角形是等腰直角三角形?若存在,直接写出Q点的坐标;若不存在,请说明理由.中考数学试卷参考答案与试题解析一、填空题(每题3分,满分30分)1.(3分)2018年1月18日,国家统计局对外公布,我国经济总量首次站上80万亿的历史新台阶,将80万亿用科学记数法表示8×105亿元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将80万亿用科学记数法表示为:8×105亿.故答案为:8×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(3分)在函数y=中,自变量x的取值范围是x≥0且x≠1.【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【解答】解:根据题意得:x≥0且x﹣1≠0,解得:x≥0且x≠1.故答案为:x≥0且x≠1.【点评】考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.3.(3分)如图,在平行四边形ABCD中,添加一个条件AC=BD或∠ABC=90°,使平行四边形ABCD是矩形.【分析】根据矩形的判定方法即可解决问题;【解答】解:若使▱ABCD变为矩形,可添加的条件是:AC=BD;(对角线相等的平行四边形是矩形),∠ABC=90°等(有一个角是直角的平行四边形是矩形),故答案为:任意写出一个正确答案即可,如:AC=BD或∠ABC=90°.故答案为AC=BD或∠ABC=90°【点评】本题主要考查了平行四边形的性质与矩形的判定,熟练掌握矩形是特殊的平行四边形是解题关键.4.(3分)在一个不透明的袋子中装有除颜色外完全相同的5个红球、3个白球、2个绿球,任意摸出一球,摸到白球的概率是.【分析】根据随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数,用白球的个数除以总个数,求出恰好摸到白球的概率是多少即可.【解答】解:∵袋子中共有10个球,其中白球有3个,∴任意摸出一球,摸到白球的概率是,故答案为:.【点评】此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.5.(3分)不等式组有3个整数解,则a的取值范围是﹣2≤a<﹣1.【分析】先解x的不等式组,然后根据整数解的个数确定a的取值范围.【解答】解:解不等式x﹣a>0,得:x>a,解不等式1﹣x>2x﹣5,得:x<2,∵不等式组有3个整数解,∴不等式组的整数解为﹣1、0、1,则﹣2≤a<﹣1,故答案为:﹣2≤a<﹣1.【点评】本题考查了一元一次不等式组的整数解,难度适中,关键是根据整数解确定关于a的不等式组.6.(3分)如图,AC为⊙O的直径,点B在圆上,OD⊥AC交⊙O于点D,连接BD,∠BDO=15°,则∠ACB=60°.【分析】连接DC,得出∠BDC的度数,进而得出∠A的度数,利用互余解答即可.【解答】解:连接DC,∵AC为⊙O的直径,OD⊥AC,∴∠DOC=90°,∠ABC=90°,∵OD=OC,∴∠ODC=45°,∵∠BDO=15°,∴∠BDC=30°,∴∠A=30°,∴∠ACB=60°,故答案为:60°.【点评】此题考查圆周角定理,关键是根据直径和垂直得出∠BDC的度数.7.(3分)用一块半径为4,圆心角为90°的扇形纸片围成一个圆锥的侧面,则此圆锥的高为.【分析】设圆锥的底面圆的半径为r,根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式得到2πr=,然后求出r后利用勾股定理计算圆锥的高.【解答】解:设圆锥的底面圆的半径为r,根据题意得2πr=,解得r=1,所以此圆锥的高==.故答案为.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.8.(3分)如图,已知正方形ABCD的边长是4,点E是AB边上一动点,连接CE,过点B作BG⊥CE于点G,点P是AB边上另一动点,则PD+PG的最小值为2.【分析】作DC关于AB的对称点D′C′,以BC中的O为圆心作半圆O,连D′O分别交AB及半圆O于P、G.将PD+PG转化为D′G找到最小值.【解答】解:如图:取点D关于直线AB的对称点D′.以BC中点O为圆心,OB为半径画半圆.连接OD′交AB于点P,交半圆O于点G,连BG.连CG并延长交AB于点E.由以上作图可知,BG⊥EC于G.PD+PG=PD′+PG=D′G由两点之间线段最短可知,此时PD+PG最小.∵D′C=4,OC′=6∴D′O=∴D′G=2∴PD+PG的最小值为2故答案为:2【点评】本题考查线段和的最小值问题,通常思想是将线段之和转化为固定两点之间的线段和最短.9.(3分)Rt△ABC中,∠ABC=90°,AB=3,BC=4,过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,则这个等腰三角形的面积是 3.6或4.32或4.8.=6,找出所有可【分析】在Rt△ABC中,通过解直角三角形可得出AC=5、S△ABC能的剪法,并求出剪出的等腰三角形的面积即可.【解答】解:在Rt△ABC中,∠ACB=90°,AB=3,BC=4,∴AC==5,S=AB•BC=6.△ABC沿过点B的直线把△ABC分割成两个三角形,使其中只有一个是等腰三角形,有三种情况:①当AB=AP=3时,如图1所示,S等腰△ABP=S△ABC=×6=3.6;②当AB=BP=3,且P在AC上时,如图2所示,作△ABC的高BD,则BD===2.4,∴AD=DP==1.8,∴AP=2AD=3.6,∴S等腰△ABP =S△ABC=×6=4.32;④当CB=CP=4时,如图3所示,S等腰△BCP=S△ABC=×6=4.8.综上所述:等腰三角形的面积可能为3.6或4.32或4.8.故答案为3.6或4.32或4.8.【点评】本题考查了勾股定理、等腰三角形的性质以及三角形的面积,找出所有可能的剪法,并求出剪出的等腰三角形的面积是解题的关键.10.(3分)如图,已知等边△ABC的边长是2,以BC边上的高AB1为边作等边三角形,得到第一个等边△AB1C1;再以等边△AB1C1的B1C1边上的高AB2为边作等边三角形,得到第二个等边△AB2C2;再以等边△AB2C2的B2C2边上的高AB3为边作等边三角形,得到第三个等边△AB3C3;…….记△B1CB2面积为S1,△B2C1B3面积为S2,△B3C2B4面积为S3,则S n=•()n﹣1.【分析】先计算出S1=,再根据阴影三角形都相似,后面的三角形面积是前面面积的.【解答】解:∵等边三角形ABC的边长为2,AB1⊥BC,∴BB1=B1C=1,∠ACB=60°,∴B1B2=B1C=,B2C=,∴S1=××=依题意得,图中阴影部分的三角形都是相似图形,且相似比为,故S n=•()n﹣1.故答案为:•()n﹣1.【点评】此题考查了等边三角形的性质,属于规律型试题,熟练掌握等边三角形的性质是解本题的关键.二、选择题(每题3分,满分30分)11.(3分)下列各运算中,计算正确的是()A.a12÷a3=a4B.(3a2)3=9a6C.(a﹣b)2=a2﹣ab+b2D.2a•3a=6a2【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=a9,不符合题意;B、原式=27a6,不符合题意;C、原式=a2﹣2ab+b2,不符合题意;D、原式=6a2,符合题意.故选:D.【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.12.(3分)如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念进行判断即可.【解答】解:A、不是轴对称图形,是中心对称图形,不合题意;B、不是轴对称图形,是中心对称图形,不合题意;C、是轴对称图形,也是中心对称图形,符合题意;D、不是轴对称图形,也不是中心对称图形,不合题意.故选:C.【点评】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.13.(3分)如图是由若干个相同的小正方体搭成的一个几何体的主视图和左视图,则组成这个几何体的小正方体的个数不可能是()A.3 B.4 C.5 D.6【分析】左视图底面有2个小正方体,主视图与左视图相同,则可以判断出该几何体底面最少有2个小正方体,最多有4个.根据这个思路可判断出该几何体有多少个小立方块.【解答】解:左视图与主视图相同,可判断出底面最少有2个,最多有4个小正方体.而第二层则只有1个小正方体.则这个几何体的小立方块可能有3或4或5个.故选:D.【点评】本题考查了由三视图判断几何体,难度不大,主要考查了考生的空间想象能力以及三视图的相关知识.14.(3分)某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是20【分析】直接利用平均数、中位数、众数以及极差的定义分别分析得出答案.【解答】解:A、平均分为:(94+98+90+94+74)=90(分),故此选项错误;B、五名同学成绩按大小顺序排序为:74,90,94,94,98,故中位数是94分,故此选项错误;C、94分、98分、90分、94分、74分中,众数是94分.故此选项正确;D、极差是98﹣74=24,故此选项错误.故选:C.【点评】此题主要考查了平均数、中位数、众数以及极差的定义,正确把握相关定义是解题关键.15.(3分)某中学组织初三学生篮球比赛,以班为单位,每两班之间都比赛一场,计划安排15场比赛,则共有多少个班级参赛?()A.4 B.5 C.6 D.7【分析】设共有x个班级参赛,根据第一个球队和其他球队打(x﹣1)场球,第二个球队和其他球队打(x﹣2)场,以此类推可以知道共打(1+2+3+…+x﹣1)场球,然后根据计划安排15场比赛即可列出方程求解.【解答】解:设共有x个班级参赛,根据题意得:=15,解得:x1=6,x2=﹣5(不合题意,舍去),则共有6个班级参赛.故选:C.【点评】此题考查了一元二次方程的应用,关键是准确找到描述语,根据等量关系准确的列出方程.此题还要判断所求的解是否符合题意,舍去不合题意的解.16.(3分)已知关于x的分式方程=1的解是负数,则m的取值范围是()A.m≤3 B.m≤3且m≠2 C.m<3 D.m<3且m≠2【分析】直接解方程得出分式的分母为零,再利用x≠﹣1求出答案.【解答】解:=1解得:x=m﹣3,∵关于x的分式方程=1的解是负数,∴m﹣3<0,解得:m<3,当x=m﹣3=﹣1时,方程无解,则m≠2,故m的取值范围是:m<3且m≠2.故选:D.【点评】此题主要考查了分式方程的解,正确得出分母不为零是解题关键.17.(3分)如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A.π﹣6 B.πC.π﹣3 D.+π【分析】根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB 的面积,根据扇形面积公式计算即可.【解答】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积﹣△ABC的面积,∴阴影部分的面积=扇形ADB的面积==π,故选:B.【点评】本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.18.(3分)如图,∠AOB=90°,且OA、OB分别与反比例函数y=(x>0)、y=﹣(x<0)的图象交于A、B两点,则tan∠OAB的值是()A.B.C.1 D.【分析】首先过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,易得△OBD∽△AOC,又由点A在反比例函数y=的图象上,点B在反比例函数y=﹣的图象上,即可得S△AOC =2,S△OBD=,然后根据相似三角形面积的比等于相似比的平方,即可得=,然后由正切函数的定义求得答案.【解答】解:过点A作AC⊥x轴于C,过点B作BD⊥x轴于D,∴∠ACO=∠ODB=90°,∴∠OBD+∠BOD=90°,∵∠AOB=90°,∴∠BOD +∠AOC=90°,∴∠OBD=∠AOC ,∴△OBD ∽△AOC , ∴=()2,∵点A 在反比例函数y=的图象上,点B 在反比例函数y=﹣的图象上, ∴S △OBD =,S △AOC =2, ∴=,∴tan ∠OAB==. 故选:A .【点评】此题考查了相似三角形的判定与性质、反比例函数的性质以及直角三角形的性质.注意掌握数形结合思想的应用,注意掌握辅助线的作法.19.(3分)为奖励消防演练活动中表现优异的同学,某校决定用1200元购买篮球和排球,其中篮球每个120元,排球每个90元,在购买资金恰好用尽的情况下,购买方案有( )A .4种B .3种C .2种D .1种【分析】设购买篮球x 个,排球y 个,根据“购买篮球的总钱数+购买排球的总钱数=1200”列出关于x 、y 的方程,由x 、y 均为正整数即可得.【解答】解:设购买篮球x 个,排球y 个,根据题意可得120x +90y=1200,则y=,∵x 、y 均为正整数,∴x=1、y=12;x=4、y=8;x=7、y=4;所以购买资金恰好用尽的情况下,购买方案有3种,故选:B .【点评】本题主要考查二元一次方程的应用,解题的关键是理解题意,依据相等关系列出方程.20.(3分)如图,平行四边形ABCD 的对角线AC 、BD 相交于点O ,AE 平分∠BAD ,分别交BC 、BD 于点E 、P ,连接OE ,∠ADC=60°,AB=BC=1,则下列结论: ①∠CAD=30°②BD=③S 平行四边形ABCD =AB•AC ④OE=AD ⑤S △APO =,正确的个数是( )A .2B .3C .4D .5【分析】①先根据角平分线和平行得:∠BAE=∠BEA ,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE 是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE ∥AB ,根据勾股定理计算OC==和OD 的长,可得BD 的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S △AOE =S △EOC =OE•OC=,=,代入可得结论.【解答】解:①∵AE 平分∠BAD ,∴∠BAE=∠DAE ,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC==,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD==,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,∴OE=AB,∵AB=BC,∴OE=BC=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE =S△EOC=OE•OC==,∵OE∥AB,∴,∴=,∴S△AOP===;故⑤正确;本题正确的有:①②③④⑤,5个,故选:D.【点评】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.三、解答题(满分60分)21.(5分)先化简,再求值:(a﹣)÷,其中a=,b=1.【分析】根据分式的减法和除法可以化简题目中的式子,然后将a、b的值代入化简后的式子即可解答本题.【解答】解:(a﹣)÷===a﹣b,当a=,b=1时,原式==﹣.【点评】本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.22.(6分)如图,在正方形网格中,每个小正方形的边长都是一个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,4),B(1,1),C(3,1).(1)画出△ABC关于x轴对称的△A1B1C1.(2)画出△ABC绕点O逆时针旋转90°后得到的△A2B2C2.(3)在(2)的条件下,求点A所经过的路径长(结果保留π).【分析】(1)直接利用关于x轴对称的性质得出对应点位置进而得出答案;(2)利用旋转的性质得出对应点位置进而得出答案;(3)直接利用弧长公式计算得出答案.【解答】解:(1)如图:△A1B1C1,即为所求;(2)如图:△A2B2C2,即为所求;(3)r==,A经过的路径长:×2×π×=π.【点评】此题主要考查了旋转变换以及轴对称变换和弧长公式应用,正确得出对应点位置是解题关键.23.(6分)如图,抛物线y=x2+bx+c与y轴交于点A(0,2),对称轴为直线x=﹣2,平行于x轴的直线与抛物线交于B、C两点,点B在对称轴左侧,BC=6.(1)求此抛物线的解析式.(2)点P在x轴上,直线CP将△ABC面积分成2:3两部分,请直接写出P点坐标.【分析】(1)由对称轴直线x=2,以及A点坐标确定出b与c的值,即可求出抛物线解析式;(2)由抛物线的对称轴及BC的长,确定出B与C的横坐标,代入抛物线解析式求出纵坐标,确定出B与C坐标,利用待定系数法求出直线AB解析式,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,由已知面积之比求出QH的长,确定出Q横坐标,代入直线AB解析式求出纵坐标,确定出Q坐标,再利用待定系数法求出直线CQ解析式,即可确定出P的坐标.【解答】解:(1)由题意得:x=﹣=﹣=﹣2,c=2,解得:b=4,c=2,则此抛物线的解析式为y=x2+4x+2;(2)∵抛物线对称轴为直线x=﹣2,BC=6,∴B横坐标为﹣5,C横坐标为1,把x=1代入抛物线解析式得:y=7,∴B(﹣5,7),C(1,7),设直线AB解析式为y=kx+2,把B坐标代入得:k=﹣1,即y=﹣x+2,作出直线CP,与AB交于点Q,过Q作QH⊥y轴,与y轴交于点H,BC与y轴交于点M,可得△AQH∽△ABM,∴=,∵点P在x轴上,直线CP将△ABC面积分成2:3两部分,∴AQ:QB=2:3或AQ:QB=3:2,即AQ:AB=2:5或AQ:QB=3:5,∵BM=5,∴QH=2或QH=3,当QH=2时,把x=﹣2代入直线AB解析式得:y=4,此时Q(﹣2,4),直线CQ解析式为y=x+6,令y=0,得到x=﹣6,即P(﹣6,0);当QH=3时,把x=﹣3代入直线AB解析式得:y=5,此时Q(﹣3,5),直线CQ解析式为y=x+,令y=0,得到x=﹣13,此时P (﹣13,0),综上,P的坐标为(﹣6,0)或(﹣13,0).【点评】此题考查了待定系数法求二次函数解析式,二次函数性质,以及二次函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.24.(7分)为弘扬中华优秀传统文化,某校开展了“经典雅韵”诵读比赛活动,现随机抽取部分同学的成绩进行统计,并绘制如下两个不完整的统计图,请结合图中提供的信息,解答下列各题:(1)直接写出a的值,a=30,并把频数分布直方图补充完整.(2)求扇形B的圆心角度数.(3)如果全校有2000名学生参加这次活动,90分以上(含90分)为优秀,那么估计获得优秀奖的学生有多少人?.【分析】(1)先根据E等级人数及其占总人数的比例可得总人数,再用D等级人数除以总人数可得a的值,用总人数减去其他各等级人数求得C等级人数可补全图形;(2)用360°乘以A等级人数所占比例可得;(3)用总人数乘以样本中E等级人数所占比例.【解答】解:(1)∵被调查的总人数为10÷=50(人),∴D等级人数所占百分比a%=×100%=30%,即a=30,C等级人数为50﹣(5+7+15+10)=13人,补全图形如下:故答案为:30;(2)扇形B的圆心角度数为360°×=50.4°;(3)估计获得优秀奖的学生有2000×=400人.【点评】此题主要考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(8分)某工厂甲、乙两车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙车间各自加工零件总数为y(件),与甲车间加工时间x(天),y与x之间的关系如图(1)所示.由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(件)与甲车间加工时间x(天)的关系如图(2)所示.(1)甲车间每天加工零件为80件,图中d值为770.(2)求出乙车间在引入新设备后加工零件的数量y与x之间的函数关系式.(3)甲车间加工多长时间时,两车间加工零件总数为1000件?【分析】(1)由图象的信息解答即可;(2)利用待定系数法确定解析式即可;(3)根据题意列出方程解答即可.【解答】解:(1)由图象甲车间每小时加工零件个数为720÷9=80个,d=770,故答案为:80,770(2)b=80×2﹣40=120,a=(200﹣40)÷80+2=4,∴B(4,120),C(9,770)设y BC=kx+b,过B、C,∴,解得,∴y=130x﹣400(4≤x≤9)(3)由题意得:80x+130x﹣400=1000,解得:x=答:甲车间加工天时,两车间加工零件总数为1000件【点评】本题为一次函数实际应用问题,关键是根据一次函数图象的实际意义和根据图象确定一次函数关系式解答.26.(8分)如图,在Rt△BCD中,∠CBD=90°,BC=BD,点A在CB的延长线上,且BA=BC,点E在直线BD上移动,过点E作射线EF⊥EA,交CD所在直线于点。
2020年中考数学《不等式与不等式组》真题汇编(带答案)
2020年中考数学《不等式与不等式组》专题复习(名师精选全国真题,值得下载练习)一.选择题1.(2019•上海)如果m>n,那么下列结论错误的是()A.m+2>n+2 B.m﹣2>n﹣2 C.2m>2n D.﹣2m>﹣2n2.(2019•永州)若关于x的不等式组有解,则在其解集中,整数的个数不可能是()A.1 B.2 C.3 D.43.(2019•日照)把不等式组的解集在数轴上表示出来,正确的是()A.B.C.D.4.(2019•恩施州)已知关于x的不等式组恰有3个整数解,则a 的取值范围为()A.1<a≤2B.1<a<2 C.1≤a<2 D.1≤a≤25.(2019•云南)若关于x的不等式组的解集是x>a,则a的取值范围是()A.a<2 B.a≤2C.a>2 D.a≥2 6.(2019•绥化)小明去商店购买A、B两种玩具,共用了10元钱,A种玩具每件1元,B种玩具每件2元.若每种玩具至少买一件,且A种玩具的数量多于B种玩具的数量.则小明的购买方案有()A.5种B.4种C.3种D.2种7.(2019•常德)小明网购了一本《好玩的数学》,同学们想知道书的价格,小明让他们猜.甲说:“至少15元.”乙说:“至多12元.”丙说:“至多10元.”小明说:“你们三个人都说错了”.则这本书的价格x(元)所在的范围为()A.10<x<12 B.12<x<15 C.10<x<15 D.11<x<148.(2019•呼和浩特)若不等式﹣1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x﹣1)+5>5x+2(m+x)成立,则m的取值范围是()A.m>﹣B.m<﹣C.m<﹣D.m>﹣9.(2019•广元)不等式组的非负整数解的个数是()A.3 B.4 C.5 D.6 10.(2019•无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a个零件(a为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a的值至少为()A.10 B.9 C.8 D.711.(2019•聊城)若不等式组无解,则m的取值范围为()A.m≤2B.m<2 C.m≥2D.m>2 12.(2019•怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则有一户可分得母羊但不足3只.这批种羊共()只.A.55 B.72 C.83 D.89 13.(2019•绵阳)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有()A.3种B.4种C.5种D.6种14.(2019•重庆)某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对的题的个数为()A.13 B.14 C.15 D.1615.(2019•德州)不等式组的所有非负整数解的和是()A.10 B.7 C.6 D.016.(2019•台湾)阿慧在店内购买两种蛋糕当伴手礼,如图为蛋糕的价目表.已知阿慧购买10盒蛋糕,花费的金额不超过2500元.若他将蛋糕分给75位同事,每人至少能拿到一个蛋糕,则阿慧花多少元购买蛋糕?()A.2150 B.2250 C.2300 D.2450二.填空题17.关于x的不等式组的解集是2<x<4,则a的值为.18.(2019•铜仁市)如果不等式组的解集是x<a﹣4,则a的取值范围是.19.(2019•大庆)已知x=4是不等式ax﹣3a﹣1<0的解,x=2不是不等式ax ﹣3a﹣1<0的解,则实数a的取值范围是.20.(2019•荆州)对非负实数x“四舍五入”到个位的值记为(x),即当n为非负整数时,若n﹣0.5≤x<n+0.5,则(x)=n.如(1.34)=1,(4.86)=5.若(0.5x﹣1)=6,则实数x的取值范围是.21.(2019•鄂州)若关于x、y的二元一次方程组的解满足x+y≤0,则m的取值范围是.22.(2019•宜宾)若关于x的不等式组有且只有两个整数解,则m 的取值范围是.23.(2019•达州)如图所示,点C位于点A、B之间(不与A、B重合),点C 表示1﹣2x,则x的取值范围是.24.(2019•德州)已知:[x]表示不超过x的最大整数.例:[4.8]=4,[﹣0.8]=﹣1.现定义:{x}=x﹣[x],例:{1.5}=1.5﹣[1.5]=0.5,则{3.9}+{﹣1.8}﹣{1}=.三.解答题25.(2019•济南)解不等式组,并写出它的所有整数解.26.(2019•青海)某市为了提升菜篮子工程质量,计划用大、中型车辆共30辆调拨不超过190吨蔬菜和162吨肉制品补充当地市场.已知一辆大型车可运蔬菜8吨和肉制品5吨;一辆中型车可运蔬菜3吨和肉制品6吨.(1)符合题意的运输方案有几种?请你帮助设计出来;(2)若一辆大型车的运费是900元,一辆中型车的运费为600元,试说明(1)中哪种运输方案费用最低?最低费用是多少元?27.(2019•锦州)某市政部门为了保护生态环境,计划购买A,B两种型号的环保设备.已知购买一套A型设备和三套B型设备共需230万元,购买三套A 型设备和两套B型设备共需340万元.(1)求A型设备和B型设备的单价各是多少万元;(2)根据需要市政部门采购A型和B型设备共50套,预算资金不超过3000万元,问最多可购买A型设备多少套?28.(2019•遵义)某校计划组织240名师生到红色教育基地开展革命传统教育活动.旅游公司有A,B两种客车可供租用,A型客车每辆载客量45人,B型客车每辆载客量30人.若租用4辆A型客车和3辆B型客车共需费用10700元;若租用3辆A型客车和4辆B型客车共需费用10300元.(1)求租用A,B两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有哪几种租车方案?哪种方案最省钱?29.(2019•赤峰)某校开展校园艺术节系列活动,派小明到文体超市购买若干个文具袋作为奖品.这种文具袋标价每个10元,请认真阅读结账时老板与小明的对话:(1)结合两人的对话内容,求小明原计划购买文具袋多少个?(2)学校决定,再次购买钢笔和签字笔共50支作为补充奖品,两次购买奖品总支出不超过400元.其中钢笔标价每支8元,签字笔标价每支6元,经过沟通,这次老板给予8折优惠,那么小明最多可购买钢笔多少支?30.(2019•孝感)为加快“智慧校园”建设,某市准备为试点学校采购一批A、B 两种型号的一体机.经过市场调查发现,今年每套B型一体机的价格比每套A型一体机的价格多0.6万元,且用960万元恰好能购买500套A型一体机和200套B型一体机.(1)求今年每套A型、B型一体机的价格各是多少万元?(2)该市明年计划采购A型、B型一体机共1100套,考虑物价因素,预计明年每套A型一体机的价格比今年上涨25%,每套B型一体机的价格不变,若购买B型一体机的总费用不低于购买A型一体机的总费用,那么该市明年至少需要投入多少万元才能完成采购计划?参考答案一.选择题1.解:∵m>n,∴﹣2m<﹣2n,故选:D.2.解:解不等式2x﹣6+m<0,得:x<,解不等式4x﹣m>0,得:x>,∵不等式组有解,∴<,解得m<4,如果m=2,则不等式组的解集为<x<2,整数解为x=1,有1个;如果m=0,则不等式组的解集为0<x<3,整数解为x=1,2,有2个;如果m=﹣1,则不等式组的解集为﹣<x<,整数解为x=0,1,2,3,有4个.故选:C.3.解:解不等式①得:x≥﹣3,解不等式②得:x<1,故不等式组的解集为:﹣3≤x<1,在数轴上表示为:故选:C.4.解:解①得:x≥﹣1,解②得:x<a,∵不等式组的整数解有3个,∴不等式组的整数解为﹣1、0、1,则1<a≤2,故选:A.5.解:解关于x的不等式组得∴a≥2故选:D.6.【解答】解:设小明购买了A种玩具x件,则购买的B种玩具为件,根据题意得,,解得,3<x≤8,∵x为整数,也为整数,∴x=4或6或8,∴有3种购买方案.故选:C.7.解:根据题意可得:,可得:12<x<15,∴12<x<15故选:B.8.解:解不等式﹣1≤2﹣x得:x≤,∵不等式﹣1≤2﹣x的解集中x的每一个值,都能使关于x的不等式3(x ﹣1)+5>5x+2(m+x)成立,∴x<,∴>,解得:m<﹣,故选:C.9.解:,解①得:x>﹣2,解②得x≤3,则不等式组的解集为﹣2<x≤3.故非负整数解为0,1,2,3共4个故选:B.10.解:设原计划n天完成,开工x天后3人外出培训,则15an=2160,得到an=144.所以15ax+12(a+2)(n﹣x)<2160.整理,得ax+4an+8n﹣8x<720.∵an=144.∴将其代入化简,得ax+8n﹣8x<144,即ax+8n﹣8x<an,整理,得8(n﹣x)<a(n﹣x).∵n>x,∴n﹣x>0,∴a>8.∴a至少为9.故选:B.11.解:解不等式<﹣1,得:x>8,∵不等式组无解,∴4m≤8,解得m≤2,故选:A.12.解:设该村共有x户,则母羊共有(5x+17)只,由题意知,解得:<x<12,∵x为整数,∴x=11,则这批种羊共有11+5×11+17=83(只),故选:C.13.解:设该店购进甲种商品x件,则购进乙种商品(50﹣x)件,根据题意,得:,解得:20≤x<25,∵x为整数,∴x=20、21、22、23、24,∴该店进货方案有5种,故选:C.14.解:设要答对x道.10x+(﹣5)×(20﹣x)>120,10x﹣100+5x>120,15x>220,解得:x>,根据x必须为整数,故x取最小整数15,即小华参加本次竞赛得分要超过120分,他至少要答对15道题.故选:C.15.解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.16.解:设阿慧购买x盒桂圆蛋糕,则购买(10﹣x)盒金爽蛋糕,依题意有。
2020年中考数学专题复习卷:不等式与不等式组(含解析)
不等式与不等式组一、选择题1.下列式子一定成立的是( ) A.若ac 2=bc 2,则a=b B.若ac>bc,则a>bC.若a>b,则ac 2>bc 2D.若a<b,则a(c 2+1)<b(c 2+1)2.已知实数a ,b ,若a >b ,则下列结论错误的是( ) A. a-7>b-7 B. 6+a >b+6 C.D. -3a >-3b 3.不等式3x ﹣1≥x+3的解集是( )A. x≤4B. x≥4C. x≤2D. x≥2 4.不等式2x >3﹣x 的解集是( )A. x >3B. x <3C. x >1D. x <15.设a ,b 是常数,不等式>0的解集为x < ,则关于x 的不等式bx ﹣a <0的解集是( )A. x >B. x <﹣C. x >﹣D. x < 6.下列某不等式组的解集在数轴上表示如图所示,则该不等式组是( )A. B.C.D.7.下列各数中,为不等式组解的是()A. -1 B. 0C. 2D. 48.不等式﹣x+2≥0的解集在数轴上表示正确的是()A. B.C. D.9.不等式组的最小整数解是()A. 1B. 2C. 3D. 410.不等式0≤ax+5≤4的整数解是1,2,3,4,则a的取值范围是()A. B. a≤C. ≤a<﹣1 D. a≥11.不等式组有3个整数解,则的取值范围是()A. B.C. D.12.关于x的不等式组的解集为,那么m的取值范围为()A. B.C.D.二、填空题13.函数中自变量x的取值范围为________.14.不等式3x+1>2x﹣1的解集为________.15.不等式组的解集为________.16.把一筐梨分给几个学生,若每人4个,则剩下3个;若每人6个,则最后一个同学最多分得3个,求学生人数和梨的个数.设有z个学生,依题意可列不等式组为________17.在实数范围内规定新运算“△”,其规则是:a△b=2a-b.已知不等式x△k≥1的解集表示在数轴上如图所示,则k的值是________18.当x________时,代数式1- 的值不大于代数式的值.19.若关于x,y的方程组的解满足x>y,则p的取值范围是________20.不等式组的所有整数解的和为________21.已知﹣1<b<0,0<a<1,则代数式a﹣b、a+b、a+b2、a2+b中值最大的是________.22.对于满足0≤p≤4的一切实数,不等式x2+px>4x+p﹣3恒成立,则实数x的取值范围是________三、解答题23.解不等式组,并把它的解集在数轴上表示出来.24.解不等式组并写出它的所有非负整数解.25.已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货,设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时)。
2020年广东省中考数学《不等式与不等式组》练习题 (29)
2020年广东省中考数学《不等式与不等式组》练习题1.某校为了普及推广冰雪活动进校园,准备购进速滑冰鞋和花滑冰鞋用于开展冰上运动,若购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元.
(1)求速滑冰鞋和花滑冰鞋每双购进价格分别为多少元?
(2)若该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元,则该校至多购进速滑冰鞋多少双?
【分析】(1)设每双速滑冰鞋购进价格是x元,每双花滑冰鞋购进价格是y元,根据“购进30双速滑冰鞋和20双花滑冰鞋共需8500元;若购进40双速滑冰鞋和10双花滑冰鞋共需8000元”列出方程组并解答;
(2)设该校购进速滑冰鞋a双,根据“该校购进花滑冰鞋的数量比购进速滑冰鞋数量的2倍少10双,且用于购置两种冰鞋的总经费不超过9000元”列出不等式.
【解答】解:(1)设每双速滑冰鞋购进价格是x元,每双花滑冰鞋购进价格是y元,由题意,得.
解得.
答:每双速滑冰鞋购进价格是150元,每双花滑冰鞋购进价格是200元;
(2)设该校购进速滑冰鞋a双,
根据题意,得150a+200(2a﹣10)≤9000.
解得a≤20.
答:该校至多购进速滑冰鞋20双.
【点评】本题考查了二元一次方程组的应用,一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.。
2020年广东省中考数学《不等式与不等式组》练习题 (31)
2020年广东省中考数学《不等式与不等式组》练习题1.某网店“双11”前准备从厂家选购甲、乙两种商品,乙种商品每件进价比甲种商品每件进价少20元,若购进5件甲种商品和4件乙种商品共需要1000元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)若甲种商品的售价为每件145元,乙种商品的售价为每件120元,该网店准备购进甲、乙两种商品共40件,且这两种商品全部售出后总利润不少于920元,则乙种商品最多可购进多少件?
【分析】(1)设甲种商品每件进价x元,乙种商品每件进价y元,根据题意列出方程组,求出方程组的解即可得到结果;
(2)设该网店购进乙种商品m件,则购进甲种商品(40﹣m)件,根据题意列出不等式,求出解集即可得到结果.
【解答】解:(1)设甲种商品每件进价x元,乙种商品每件进价y元,
列方程组:,
解得:,
答:甲、乙两种商品每件的进价分别是120元、100元;
(2)设该网店购进乙种商品m件,则购进甲种商品(40﹣m)件,
列不等式:(145﹣120)(40﹣m)+(120﹣100)m≥920,
解得:m≤16,
答:乙种商品最多可购进16件.
【点评】此题考查了一元一次不等式的应用,以及二元一次方程组的应用,弄清题意是解本题的关键.。
2020年广东省中考数学《不等式与不等式组》练习题 (18)
2020年广东省中考数学《不等式与不等式组》练习题1.某校计划组织师生共310人参加一次野外研学活动,如果租用6辆大客车和5辆小客车恰好全部坐满.已知每辆大客车的乘客座位数比小客车多15个.
(1)求每辆大客车和每辆小客车的乘客座位数;
(2)由于最后参加活动的人数增加了20人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,为将所有参加活动的师生装载完成,求租用小客车数量的最大值.【分析】(1)设每辆小客车的乘客座位数是x个,每辆大客车的乘客座位数是y个,根据“租用6辆大客车和5辆小客车正好能乘坐310人,每辆大客车的乘客座位数比小客车多15个”,即可得出关于x,y的二元一次方程组,解之即可得出结论;
(2)设租用a辆小客车,则租用(6+5﹣a)辆大客车,根据可乘坐的总人数=每辆车的乘客座位数×租车辆数结合可乘坐的总人数不少于330人(310+20),即可得出关于a的一元一次不等式,解之取其中最大的整数值即可得出结论.
【解答】解:(1)设每辆小客车的乘客座位数是x个,每辆大客车的乘客座位数是y个,依题意,得:,
解得:.
答:每辆小客车的乘客座位数是20个,每辆大客车的乘客座位数是35个.
(2)设租用a辆小客车,则租用(6+5﹣a)辆大客车,
依题意,得:20a+35(6+5﹣a)≥330,
解得:a≤3,
∵a为整数,
∴a的最大值为3.
答:租用小客车数量的最大值为3.
【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.。
2020年广东省中考数学《不等式与不等式组》练习题 (26)
2020年广东省中考数学《不等式与不等式组》练习题1.解不等式组,并把它的解集在数轴上表示出来.
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【解答】解:,
解不等式①,得x≥﹣1,
解不等式②,得x<3.
所以不等式组的解集:﹣1≤x<3,
在数轴上表示为:
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小无解了”的原则是解答此题的关键.。
2020年广东省中考数学《不等式与不等式组》练习题 (4)
2020年广东省中考数学《不等式与不等式组》练习题1.代数式的值不大于代数式x﹣2的值,则x的最大整数值为﹣1.【分析】根据代数式的值不大于代数式x﹣2的值,即可得出关于x的一元一次不等式,解不等式即可求出x的取值范围,取期内的最大整数值,此题得解.
【解答】解:由已知得:≤x﹣2,
解得:x≤﹣.
∵﹣1<﹣<0,
故答案为:﹣1.
【点评】本题考查了一元一次不等式的整数解,解题的关键是根据代数式的值不大于代数式x﹣2的值得出关于x的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,熟练掌握一元一次不等式的解法是关键.。
2020年广东省中考数学《不等式与不等式组》练习题 (44)
2020年广东省中考数学《不等式与不等式组》练习题1.解不等式组:,并把解集在数轴上表示出来.
【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.
【解答】解:解不等式①得:x<2,
解不等式②得:x≥﹣1,
在数轴上表示为:
∴不等式组的解集为﹣1≤x<2.
【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.。
2020年广东省中考数学《不等式与不等式组》练习题 (48)
2020年广东省中考数学《不等式与不等式组》练习题1.已知方程组的解x为非正数,y为负数.
(1)求a的取值范围;
(2)化简|a﹣3|+|a+2|;
(3)在a的取值范围中,当a为何整数时,不等式2ax+x>2a+1的解为x<1?
【分析】(1)求出不等式组的解集即可得出关于a的不等式组,求出不等式组的解集即可;
(2)根据a的范围去掉绝对值符号,即可得出答案;
(3)求出a<﹣,根据a的范围即可得出答案.
【解答】解:(1)
∵①+②得:2x=﹣6+2a,
x=﹣3+a,
①﹣②得:2y=﹣8﹣4a,
y=﹣4﹣2a,
∵方程组的解x为非正数,y为负数,
∴﹣3+a≤0且﹣4﹣2a<0,
解得:﹣2<a≤3;
(2)∵﹣2<a≤3,
∴|a﹣3|+|a+2|
=3﹣a+a+2
=5;
(3)2ax+x>2a+1,
(2a+1)x>2a+1,
∵不等式的解为x<1
∴2a+1<0,
∴a<﹣,
∵﹣2<a≤3,
∴a的值是﹣1,
∴当a为﹣1时,不等式2ax+x>2a+1的解为x<1.
【点评】本题考查了解方程组和解不等式组的应用,主要考查学生的理解能力和计算能力,题目比较好.。
2020年广东省中考数学《不等式与不等式组》练习题 (46)
2020年广东省中考数学《不等式与不等式组》练习题1.“双11”期间,某个体户在淘宝网上购买某品牌A、B两款羽绒服来销售,若购买3件A,4件B需支付2400元,若购买2件A,2件B,则需支付1400元.
(1)求A、B两款羽绒服在网上的售价分别是多少元?
(2)若个体户从淘宝网上购买A、B两款羽绒服各10件,均按每件600元进行零售,销售一段时间后,把剩下的羽绒服全部6折销售完,若总获利不低于3800元,求个体户让利销售的羽绒服最多是多少件?
【分析】(1)设设A款a元,B款b元,根据题意列方程组求解;
(2)设让利的羽绒服有x件,总获利不低于3800元,列不等式,求出最大整数解.【解答】解:(1)设A款a元,B款b元,
可得:,
解得:,
答:A款400元,B款300元.
(2)设让利的羽绒服有x件,则已售出的有(20﹣x)件
600 (20﹣x)+600×60% x﹣400×10﹣300×10≥3800,
解得x≤5,
答:最多让利5件.
【点评】本题考查了二元一次方程组和一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程组和不等式求解.。
2020年广东省中考数学《不等式与不等式组》练习题 (47)
2020年广东省中考数学《不等式与不等式组》练习题1.商厦两次购进一批同种型号的挂式空调和电风扇,第一次购进8台空调和20台电风扇,用去资金17400元;第二次购进10台空调和30台电风扇,用去资金22500元.
(1)求挂式空调和电风扇每台的采购价各是多少元?
(2)若该商厦计划再购进这两种电器70台,而可用于购买这两种电器的资金不超过30000元,问该商厦最多可再购进空调多少台?
【分析】(1)设挂式空调每台的采购价是x元,电风扇每台的采购价是y元,根据采购价格=单价×数量,可列出关于x、y的二元一次方程组,解方程组即可得出结论;
(2)设再购进空调a台,则购进风扇(70﹣a)台,根据采购价格=单价×数量,可列出关于a的一元一次不等式,解不等式即可得出结论.
【解答】解:(1)设挂式空调每台的采购价是x元,电风扇每台的采购价是y元,
根据题意,得,
解得.
答:挂式空调每台的采购价是1800元,电风扇每台的采购价是150元.
(2)设再购进空调a台,则购进风扇(70﹣a)台,
由已知,得1800a+150(70﹣a)≤30000,
解得:a≤11,
故该经营业主最多可再购进空调11台.
【点评】本题考查了二元一次方程组的应用以及解一元一次不等式,解题的关键是:(1)列出关于x、y的二元一次方程组;(2)列出关于a的一元一次不等式.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或不等式)是关键.。
2020年广州市中考数学复习:不等式与不等式组练习题 (18)
2020年广州市中考数学复习:不等式与不等式组练习题1.下列不等式变形中,错误的是()
A.若a≥b,则a+c≥b+c B.若a+c≥b+c,则a≥b
C.若a≥b,则ac2≥bc2D.若ac2≥bc2,则a≥b
【分析】根据不等式的性质,依次分析各个选项,选出变形错误的选项即可.
【解答】解:A.a≥b,不等式两边同时加上c,不等号的方向不变,即a+c≥b+c,变形正确,
B.a+c≥b+c,不等式两边同时减去c,不等号的方向不变,即a≥b,变形正确,
C.a≥b,c2≥0,不等式两边同时乘以一个非负数c2,ac2≥bc2成立,变形正确,D.ac2≥bc2,若c2=0,则不等式两边同时除以c2无意义,变形错误,
故选:D.
【点评】本题考查了不等式的性质,正确掌握不等式的性质是解题的关键.
第1页(共1页)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年广东省中考数学《不等式与不等式组》练习题1.某手机经销商计划同时购进一批甲、乙两种型号的手机,若购进2部甲型号手机和1部乙型号手机,共需要资金2800元;若购进3部甲型号手机和2部乙型号手机,共需要资金4600元.
(1)求甲、乙型号手机每部进价为多少元?
(2)该店计划购进甲、乙两种型号的手机销售,预计用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台,请问有几种进货方案?请写出进货方案;
(3)售出一部甲种型号手机,利润率为40%,乙型号手机的售价为1280元.为了促销,公司决定每售出一台乙型号手机,返还顾客现金m元,而甲型号手机售价不变,要使(2)中所有方案获利相同,求m的值.
【分析】(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元,根据题意建立方程组求解就可以求出答案;
(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,根据“用不多于1.8万元且不少于1.74万元的资金购进这两部手机共20台”建立不等式组,求出其解就可以得出结论;
(3)由题意得出w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m,根据“(2)中所有方案获利相同”知w与a的取值无关,据此解答可得.
【解答】解:(1)设甲种型号手机每部进价为x元,乙种型号手机每部进价为y元
,
解得,
答:甲型号手机每部进价为1000元,乙型号手机每部进价为800元;
(2)设购进甲种型号手机a部,则购进乙种型号手机(20﹣a)部,
17400≤1000a+800(20﹣a)≤18000,
解得7≤a≤10,
共有四种方案,
方案一:购进甲手机7部、乙手机13部;
方案二:购进甲手机8部、乙手机12部;
方案三:购进甲手机9部、乙手机11部;
方案四:购进甲手机10部、乙手机10部.
(3)甲种型号手机每部利润为1000×40%=400,
w=400a+(1280﹣800﹣m)(20﹣a)=(m﹣80)a+9600﹣20m
当m=80时,w始终等于8000,取值与a无关.
【点评】此题考查了一元一次不等式组与二元一次方程组的应用,要能根据题意列出不等式组,关键是根据不等式组的解集求出所有的进货方案,是一道实际问题.。