10.1全等三角形(1)
鲁教版数学七年级下册 10.1 全等三角形 同步习题及答案
鲁教版数学七年级下册 10.1 全等三角形同步习题及答案一、选择题:1.利用尺规作图不能作出唯一三角形的是( )A.已知三边B.已知两边及夹角C.已知两角及夹边D.已知两边及其中一边的对角2.如图所示,已知AB∥CD,A,E,F,D在一条直线上,AB=CD,AE=FD,则图中的全等三角形有( )A.1对B.2对C.3对D.0对3.要测量河两岸相对的两点A,B间的距离,先在AB的垂线BF上取两点C,D,使CD=BC,再定出BF的垂线DE,使A,C,E在一条直线上(如图所示),可以说明ΔEDC≌ΔABC,得ED=AB,因此测出ED的长就是AB的长,判定ΔEDC≌ΔABC最恰当的理由是( )A.边角边B.角边角C.边边边D.边边角4.如图所示,在ΔABC中,AB=AC,∠ABC,∠ACB的平分线BD,CE相交于O点,且BD交AC于点D,CE交AB于点E.某同学分析图形后得出以下结论:①ΔBCD≌ΔCBE;②ΔBAD≌ΔBCD;③ΔBDA≌ΔCEA;④ΔBOE≌ΔCOD;⑤ΔACE≌ΔBCE.上述结论一定正确的是(提示:等腰三角形的两底角相等;在三角形中,两个相等的角所对的边相等) ( )A.①②③B.②③④C.①③⑤D.①③④5.如图所示,在ΔABC和ΔADE中:①AB=AD;②AC=AE;③BC=DE;④∠C=∠E;⑤∠B=∠ADE.下列四个选项分别以其中三个为条件,剩下两个为结论,则其中错误的是()A.若①②③成立,则④⑤成立B.若①②④成立,则③⑤成立C.若①③⑤成立,则②④成立D.若②④⑤成立,则①③成立6.如图,点P是∠AOB平分线上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA 的距离是()A. 1B. 2C. √3D. 47.下列四个命题中,真命题是( )A.若一个角的两边分别平行于另一个角的两边,则这两个角相等B.如果两个角的和是180°,那么这两个角是邻补角C.在同一平面内,平行于同一条直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线互相垂直8.如图所示,小敏做了一个角平分仪ABCD,其中AB=AD,BC=DC.将仪器上的点A与∠PRQ的顶点R重合,调整AB和AD,使它们分别落在角的两边上,过点A,C画一条射线AE,AE就是∠PRQ的平分线.此角平分仪的画图原理是:根据仪器结构,可得ΔABC≌ΔADC,这样就有∠QAE=∠PAE,则说明这两个三角形全等的依据是( )A.SASB.ASAC.AASD.SSS二、填空题:1.如图所示,在正方形ABCD中,如果AF=BE,那么∠AOD的度数是.2.如图所示,下列六个条件:①∠1=∠E;②∠2=∠F;③∠A+∠1=180°;④∠B+∠2=180°;⑤∠DCE+∠E=180°;⑥∠CDF+∠F=180°.从中选取两个作为条件,使得命题“如果, ,那么AB∥EF”是一个真命题,并证明你的结论.(填序号)3.根据下列解题过程填空.(1)如图1所示,已知直线EF与AB,CD都相交,且AB∥CD,试说明∠1=∠2的理由.解:∵AB∥CD(已知),∴∠2=∠3( ),∵∠1=∠3( ),∴∠1=∠2( ).(2)如图2所示,已知ΔAOC≌ΔBOD,试说明AC∥BD成立的理由.解:∵ΔAOC≌ΔBOD,∴∠A= ( ),∴AC∥BD( ).4.如图所示,PA=PB,PC是ΔPAB的中线,∠A=55°,求∠B的度数.解:∵PC是AB边上的中线,∴AC= (中线的定义),在中,∴≌( )∴∠A=∠B( ).∵∠A=55°(已知),∴∠B=55°( ).5.如图所示,如果AB=AC, ,根据“SAS”,即可判定ΔABD≌ΔACE.6.如图所示,已知∠CAE=∠DAB,AC=AD.给出下列条件:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能判定ΔABC≌ΔAED的条件为.(注:把你认为正确的答案序号都填上)7.如图,△ABC中,∠C=90°,∠BAC的平分线交BC于点D,若CD=4,则点D到AB的距离是________.8.如图所示,已知线段a,c(a<c),求作:直角三角形ABC,使∠C=90°,AC=c,BC=a,作法:(1)作∠MCN=90°;(2)以C为圆心, 为半径画弧,交射线CM于点B;(3)以C为圆心, 为半径画弧,交射线CN于点A;(4)连接,ΔABC就是所求.三、解答题:1.如图所示,有一座小山,现要在小山A,B的两端开一条隧道,施工队要知道A,B两端的距离,但A,B间的距离不能直接测量,请你用已学过的知识按以下要求设计测量方案:(1)画出测量图;(2)写出测量方案;(3)写出推理过程.2.如图所示,广场上有两根旗杆AC,DF都垂直于地面放置.已知太阳光线AB与DE是平行的,经过测量这两根旗杆在太阳光下的影子BC与EF一样长,那么这两根旗杆的高度相等吗?说说你的理由.3.已知:∠α,∠β,线段a,求作:ΔABC,使∠B=∠α,∠C=∠β,BC=a(不写作法,保留作图痕迹).4.如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C,求证:AF=DE .5.已知:四边形ABCD.求作:点P,使∠PCB=∠B,且点P到边AD和CD的距离相等.6.已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:(1)△CDE≌△DBF;(2)OA=OD.7.如图,在△ABC中,已知AB=AC,AD平分∠BAC,点M,N分别在AB,AC边上,AM=2MB,AN=2NC.求证:DM=DN.8.如图所示,已知四边形ABCD和四边形DEFG都是正方形,连接AE,CG.请猜想AE与CG有什么数量关系,并证明你的猜想.9.如图所示,在ΔABC和ΔDAE中,∠BAC=∠DAE,AB=AE,AC=AD,连接BD,CE,求证ΔABD≌ΔAEC.10.如图所示,在四边形ABCD中,AB=AD,CB=CD.求证∠B=∠D.参考答案一、选择题:1-5 DCBDB 6-8 BCD二、填空题:1.90°2.解:(本题答案不唯一)可选①④.如果∠1=∠E,∠B+∠2=180°,那么CD∥EF,AB∥CD,∴AB ∥EF.3.(1)两直线平行,同位角相等对顶角相等等量代换(2)∠B 全等三角形的对应角相等内错角相等,两直线平行4.BC ΔACP和ΔBCP ΔACP ΔBCP SSS 全等三角形的对应角相等等量代换.5.AD=AE6.①③④.7. 48. a c AB(解析:作∠MCN=90°,在射线CM上截取BC=a,以C为圆心,c的长为半径画弧,交射线CN于点A,连接AB,ΔABC就是所求.)三、解答题:1.解:(1)如图所示.(2)①找个能同时看见A点和B点的C点,然后连接AC并延长到D,使AC=DC;②连接BC并延长到E,使BC=EC,测量DE的长度,即为A,B间的距离.(3)在ΔACB和ΔDCE中,∴ΔACB≌ΔDCE(SAS),∴AB=DE.2.解:两根旗杆的高度相等.理由如下:∵太阳光线AB与DE是平行的,∴∠B=∠E,∵两根旗杆都垂直于地面放置,∴∠C=∠F=90°,∵两根旗杆在太阳光下的影子一样长,∴BC=EF,在ΔABC和ΔDEF中,∴ΔABC≌ΔDEF(ASA),∴AC=DF,即两根旗杆的高度相等.3.解:如图所示,ΔABC即为所求.4.证明:∵ BE =CF ,∴ BE +EF =CF +EF ,即 BF =CE ,在 ΔABF 和 ΔDCE 中,⎪⎩⎪⎨⎧=∠=∠=CE BF C B DCAB∴ ΔABF ≌ ΔDCE (SAS) ∴ AF =DE 5. 解: 作法:①作∠ADC 的平分线DE ,②过C 作CP ∥AB ,交DE 于点P , 则点P 就是所求作的点;6.证明:(1)∵DE 、DF 是△ABC 的中位线, ∴DF=CE ,DF ∥CE ,DB=DC . ∵DF ∥CE , ∴∠C=∠BDF . 在△CDE 和△DBF 中,∴△CDE ≌△DBF (SAS );(2)∵DE 、DF 是△ABC 的中位线, ∴DF=AE ,DF ∥AE ,∴四边形DEAF 是平行四边形, ∵EF 与AD 交于O 点, ∴AO=OD7.证明:∵AM=2MB ,AN=2NC ,AB=AC , ∴AM=AN ,∵AB=AC ,AD 平分∠BAC , ∴∠MAD=∠NAD , 在△AMD 与△AND 中,,∴△AMD ≌△AND (SAS ), ∴DM=DN .8.解:猜想:AE=CG,证明如下:∵四边形ABCD 和四边形DEFG 都是正方形,∴CD=AD,∠ADC=∠GDE=90°,GD=ED,∴∠CDG=∠ADE,在ΔCDG 与ΔADE 中, ∴ΔCDG ≌ΔADE(SAS),∴AE=CG. 9.证明:∵∠BAC=∠DAE,∴∠BAC-∠BAE=∠DAE-∠BAE, 即∠BAD=∠CAE, 在ΔABD 和ΔAEC 中, ∴ΔABD ≌ΔAEC(SAS).10证明:连接AC,在ΔABC 和ΔADC 中,∵⎪⎩⎪⎨⎧===DC BC AC AC ADAB )(公共边 ∴ΔABC ≌ΔADC ∴∠B=∠D.。
全等三角形(知识点讲解)
全等三角形(知识点讲解)全等三角形(知识点讲解)全等三角形是初中数学中的重要概念,也是几何学中的核心内容之一。
在这篇文章中,我们将从定义、判定全等三角形的条件以及全等三角形的性质等方面进行讲解。
一、全等三角形的定义全等三角形指的是具有完全相同的三边和三角的三角形。
简而言之,在几何学中,当两个三角形的对应边长相等、对应角度相等时,我们称这两个三角形是全等的。
二、全等三角形的判定条件为了判断两个三角形是否全等,我们有以下几个常用的判定条件:1. SSS判定法:即边-边-边判定法。
当两个三角形的三条边分别相等时,它们就是全等的。
2. SAS判定法:即边-角-边判定法。
当两个三角形的一对夹角和夹角两边分别相等时,它们就是全等的。
3. ASA判定法:即角-边-角判定法。
当两个三角形的一对夹角和夹角对边分别相等时,它们就是全等的。
4. AAS判定法:即角-角-边判定法。
当两个三角形的两对夹角和一个非夹角边分别相等时,它们就是全等的。
需要注意的是,这些判定条件是相互独立的,即只要满足其中一种条件,就可以判定两个三角形是全等的。
三、全等三角形的性质全等三角形具有以下重要性质:1. 对应边对应角相等性质:全等三角形的对应边对应角相等。
即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF,并且∠A = ∠D,∠B = ∠E, ∠C = ∠F。
2. 全等三角形的任意一角都与对应角相等:即若∆ABC≌∆DEF,那么∠A = ∠D, ∠B = ∠E, ∠C = ∠F。
3. 全等三角形的任意一边都与对应边相等:即若∆ABC≌∆DEF,那么 AB = DE, AC = DF, BC = EF。
4. 全等三角形的外角相等:即若∆ABC≌∆DEF,那么∠BAC =∠EDF, ∠ABC = ∠DEF, ∠ACB = ∠DFE。
通过以上性质,我们可以进行全等三角形的各种推理和计算。
四、全等三角形的应用全等三角形在几何学的应用非常广泛。
鲁教版(五四制)数学七年级下册 10.1 全等三角形 同步习题和答案
鲁教版数学七年级下册10.1 全等三角形同步习题及答案一、选择题:1.如图所示,已知EC=BF,∠A=∠D,现有下列6个条件:①AC=DF;②∠B=∠E;③∠ACB=∠DFE;④AB∥ED;⑤AB=ED;⑥DF∥AC.从中选取一个条件,以保证ΔABC≌ΔDEF,则可选择的是( )A.②③④⑥B.③④⑤⑥C.①③④⑥D.①②③④2.如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有()A.1个B.2个C.3个D.4个3.如图,OP为∠AOB的角平分线,PC⊥OA,PD⊥OB,垂足分别是C,D,则下列结论错误的是()A. PC=PDB. ∠CPD=∠DOPC. ∠CPO=∠DPOD. OC=OD4. 如图,在正方形ABCD中,点E,F分别在BC,CD上,BE=CF,则图中与∠AEB相等的角的个数是()A. 1B. 2C. 3D. 45.已知ΔABC≌ΔA1B1C1,且ΔABC的周长是20,AB=8,BC=5,那么A1B1等于( )A.5B.6C.7D.86.如图所示,一定全等的两个三角形是( )A.①②B.①③C.②③D.以上都不对7.如图所示,要测量湖两岸相对两点A,B的距离,可以在AB的垂线BF上取两点C,D,使CD=BC,再作出BF的垂线DE,使A,C,E在一条直线上,这时可得ΔABC≌ΔEDC,用于判定全等的是( )A.SSSB.SASC.ASAD.AAS8.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是( )A.①和②B.②和③C.①和③D.①②③9.方格纸中每个小方格的顶点叫做格点,顶点在格点上的三角形叫格点三角形.如图所示,在4×4的方格纸中有两个格点三角形ΔABC和ΔDEF.下列说法成立的是( )A.∠BCA=∠EDFB.∠BCA=∠EFDC.∠BAC=∠EFDD.这两个三角形中没有相等的角10.如图所示,ΔABC是等腰直角三角形,DE过直角顶点A,∠D=∠E=90°,则下列结论正确的个数有( )①CD=AE;②∠1=∠2;③∠3=∠4;④AD=BE.A.1个B.2个C.3个D.4个11.如图,过边长为1的等边△ABC的边AB上一点P,作PE⊥AC于E,Q为BC延长线上一点,当PA=CQ时,连PQ交AC边于D,则DE的长为()A. 13B. 12C. 23D. 不能确定12.尺规作图的画图工具是 ( )A.刻度尺、量角器B.三角板、量角器C.直尺、量角器D.没有刻度的直尺和圆规二、填空题:1.如图所示,点A,B,D在同一直线上,ΔABC和ΔBDE都是等边三角形,连接AE,CD相交于点P,则∠CPE的度数为度.(提示:等边三角形的三个内角均为60°)2.如图,△ABC中,∠C=90°,CA=CB,点M在线段AB上,∠GMB=∠A,BG⊥MG,垂足为G,MG与BC相交于点H.若MH=8cm,则BG= cm.3.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE= .4.如图所示,ΔABC≌ΔADE,∠B=85°,∠C=∠DAC=35°,则∠EAC= 度.5.如图所示,∠ACB=90°,AC=BC,BE⊥CE于E,AD⊥CE于D.AD=5 cm,DE=3 cm,BE的长度是.6.如图,△ABD≌△CBD,若∠A=80°,∠ABC=70°,则∠ADC的度数为_______.7. 如图,AC=BC,请你添加一对边或一对角相等的条件,使AD=BE.你所添加的条件是________.8.已知三条不同的直线a,b,c在同一平面内,下列四个命题:①如果a∥b,a⊥c,那么b⊥c;②如果b∥a,c∥a,那么b∥c;③如果b⊥a,c⊥a,那么b⊥c;④如果b⊥a,c⊥a,那么b∥c.其中真命题的是.(填写所有真命题的序号)三、解答题:1.如图所示,D,E分别是等边三角形ABC的边BC,CA延长线上的点,且CD=AE,连接AD,BE,求证AD=BE.(提示:等边三角形的三个内角均为60°)2.如图所示,已知线段a,b和∠α,用尺规作一个三角形,使其两边分别等于a,b,这两边的夹角等于2∠α.(要求:不写已知、求作、作法,只画图,保留作图痕迹)3.如图所示,已知ΔABC.(1)请用直尺和圆规作一个三角形,使所作三角形与ΔABC全等;(2)请简要说明你所作的三角形与ΔABC全等的依据.4.如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.5. 如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求的长.6. 如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.(1)如图1,过点A作AF⊥AB,并截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.7.如图所示,在ΔABC,ΔADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一直线上,连接BD.(1)求证ΔBAD≌ΔCAE;(2)试猜想BD,CE有何特殊的位置关系,并证明.8. 如图所示,点E,C,D,A在同一条直线上,AB∥DF,ED=AB,∠E=∠CPD.求证ΔABC≌ΔDEF.9. 如图所示,已知AB=DC,AC=BD.求证∠ABO=∠DCO.10.如图所示,ΔABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架.求证ΔABD≌ΔACD.11.如图所示,若ΔOAD≌ΔOBC,且∠O=65°,∠BEA=135°,求∠C的度数.(提示:四边形的内角和为360°)12. 如图所示,在图(1)中,点A,E,F,C在一条直线上,AE=CF,过点E,F分别作DE⊥AC,BF⊥AC,且AB∥CD.(1)求证BD平分EF;(2)若将图(1)变成图(2)时,其余条件不变,上述结论是否成立?为什么?参考答案一、选择题:1-5 ABBCD 6-10 BCCBB 11-12 BD二、填空题:1. 1202.4.3. 3.4.255.2 cm6. 130°7. ∠A=∠B或∠ADC=∠BEC或CE=CD8. ①②④.三、解答题:1.证明:∵ΔABC是等边三角形,∴∠BAC=∠ACB=60°,AC=AB,∴∠EAB=∠ACD=120°,∵在ΔABE和ΔCAD中,∴ΔABE≌ΔCAD(SAS),∴AD=BE.2.解:如图所示,ΔABC即为所求.3.解:(1)如图所示,ΔEDF即为所求.(作法不唯一)(2)在ΔEDF和ΔABC中,∴ΔEDF≌ΔABC(SSS).4.证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AEB和Rt△CFD中,{AB=CDBE=DF,∴Rt△AEB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD.5. (1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=BC=AD=DC,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中,,∴△ADE≌△FAB(AAS),∴DE=AB;(2)解:连接DF,如图所示:在△DCF和△ABF中,,∴△DCF≌△ABF(SAS),∴DF=AF,∵AF=AD,∴DF=AF=AD,∴△ADF是等边三角形,∴∠DAE=60°,∵DE⊥AF,∴∠AED=90°,∴∠ADE=30°,∵△ADE≌△FAB,∴AE=BF=1,∴DE=AE=,∴的长==.6. 解:(1)△CDF是等腰直角三角形,理由如下:∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形;(2)作AF⊥AB于A,使AF=BD,连结DF,CF,如图,∵AF⊥AD,∠ABC=90°,∴∠FAD=∠DBC,在△FAD与△DBC中,,∴△FAD≌△DBC(SAS),∴FD=DC,∴△CDF是等腰三角形,∵△FAD≌△DBC,∴∠FDA=∠DCB,∵∠BDC+∠DCB=90°,∴∠BDC+∠FDA=90°,∴△CDF是等腰直角三角形,∴∠FCD=45°,∵AF∥CE,且AF=CE,∴四边形AFCE是平行四边形,∴AE∥CF,∴∠APD=∠FCD=45°.7. (1)证明:∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+CAD,即∠BAD=∠CAE,又∵AB=AC,AD=AE,∴ΔBAD≌ΔCAE(SAS).(2)解:BD⊥CE.证明如下:由(1)知ΔBAD≌ΔCAE,∴∠ADB=∠E.∵∠DAE=90°,∴∠E+∠ADE=90°.∴∠ADB+∠ADE=90°,即∠BDE=90°,∴BD⊥CE.8. 证明:∵AB∥DF,∴∠B=∠CPD,∠A=∠FDE,∵∠E=∠CPD,∴∠E=∠B,在ΔABC和ΔDEF中,∴ΔABC≌ΔDEF(ASA).9. 证明:在ΔABC与ΔDCB中,∴ΔABC≌ΔDCB(SSS).∴∠ABC=∠DCB,∠ACB=∠DBC.∴∠ABO=∠DCO.10. 证明:∵D是BC的中点,∴BD=CD.在ΔABD和ΔACD中,∴ΔABD≌ΔACD(SSS).11. 解:∵ΔOAD≌ΔOBC,∴∠C=∠D,∠OBC=∠OAD,∵∠O=65°,∴∠OBC=180°-65°-∠C=115°-∠C,在四边形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360°,∴65°+115°-∠C+135°+115°-∠C=360°,∴∠C=35°.12. (1)证明:∵AE=CF,∴AE+EF=CF+EF,∴AF=CE,∵DE⊥AC,BF⊥AC,∴∠AFB=∠CED=90°,又∵AB∥CD,∴∠A=∠DCE,在ΔAFB和ΔCED中, ∴ΔAFB≌ΔCED,∴BF=DE,在ΔBGF和ΔDGE 中,∴ΔBFG≌ΔDEG,∴FG=EG,即BD平分EF. (2)解:成立.理由如下:∵AE=CF,∴AE-EF=CF-EF,即AF=CE.同(1)可证∠AFB=∠CED=90°,∠A=∠C,在ΔAFB和ΔCED中,∴ΔAFB ≌ΔCED,∴BF=DE,同(1)可证ΔBGF≌ΔDGE,∴EG=FG,即BD平分EF.。
全等三角形全等三角形ppt
实际应用案例展示
总结词
全等三角形在实际生活中有着广泛的应用,实际应用案例展示可以让我们更好地了解全等三角形的实 际应用价值。
详细描述
全等三角形实际应用案例展示包括全等三角形在几何、物理学、工程学等领域的应用实例,例如利用 全等三角形测量距离、利用全等三角形设计建筑结构等。通过实际应用案例展示,我们可以更好地理 解全等三角形的实际应用价值,感受数学与生活的紧密联系。
学生在解决全等三角形相关问题时,常常会因为一些 易错点而失分。
详细描述
全等三角形学生易错题型分析包括对学生在解决全等 三角形相关问题时常见的错误和易错点的详细讲解, 例如对全等三角形判定方法的使用不当、对全等三角 形性质的理解不准确等。通过对学生易错题型进行分 析,可以帮助学生在学习中更好地掌握全等三角形的 相关知识,避免常见错误,提高解题的准确性和效率 。
05
全等三角形的拓展知识
等腰三角形与等边三角形
等腰三角形
两边相等的三角形,其中相等的两边称为腰,另一边称为底。
等边三角形
三边都相等的三角形,也称为正三角形。
直角三角形与等腰直角三角形
直角三角形
有一个角为90度的三角形。
等腰直角三角形
腰与底边垂直的等腰三角形,也称为等腰直角三角形。
相似三角形与位似三角形
定义反证法为假设两个三角形不全等,通过推理得出矛盾,从而证明两个三角形 全等的方法。
反证法的特点是可以在一些情况下避免直接证明两个三角形全等,而是通过反证 的方式得出矛盾,从而间接证明两个三角形全等。
04
全等三角形的应用举例
在几何作图中的应用
1 2
证明全等
全等三角形是几何证明中的重要工具,可以用 于证明线段、角、四边形等几何元素之间的相 等关系。
全等三角形课件ppt
与三角函数的关系
三角函数是研究三角形边和角之间关系的数学工具。在全等 三角形中,可以利用三角函数来证明两个三角形全等。例如 ,在直角三角形中,可以利用勾股定理和三角函数来证明两 个直角三角形全等。
三角函数还可以用于计算三角形的角度、边长等几何量,这 些计算在证明两个三角形全等时也是非常有用的。
与四边形的联系
全等三角形的性质
全等三角形的对应边相等,对应角相 等。
全等三角形的周长、面积和角度和相 等。
全等三角形的分类
根据全等三角形的边长关系,可以分为SSS(三边全等)、SAS(两边和夹角全 等)、ASA(两角和夹边全等)和AAS(两角和非夹边全等)四种类型。
根据全等三角形的形状,可以分为直角三角形、等腰三角形、等边三角形等类型 。
详细描述
利用全等三角形的性质证明线段相等或 角相等。
综合练习题
详细描述
总结词:结合其他数学知识 ,考察学生综合运用全等三
角形的能力
01
02
03
将全等三角形与其他几何知 识结合,如平行线、角平分
线等。
在实际问题中应用全等三角 形的知识,如测量、构造等
。
04
05
结合其他数学知识,解决涉 及全等三角形的综合问题。
04
CHAPTER
练习题与解析
基础练习题
总结词:考察全等三角形 的基本性质和判定方法
详细描述
给出两个三角形,判断它 们是否全等。
根据给定的条件,判断能 否证明两个三角形全等。
进阶练习题
总结词:深化全等三角形的性质和判定 方法的应用
在复杂的图形中识别和构造全等三角形 。
利用全等三角形的判定方法证明两个三 角形全等。
10.1鲁教版三角形的有关证明(全等三角形)
证明的书写步骤:
①准备条件:证全等时要用的条件(完 整的边角)要先证好; ②三角形全等书写三步骤:
写出在哪两个三角形中 摆出三个条件用大括号括起来 写出全等结论(注明判定方法)
课堂练习
1. 完成下面证明过程. 已知:如图,AB与CD相交于 点O, △AOC ≌ △DOB 求证:△ABD≌ △DCA
B
ห้องสมุดไป่ตู้
C
E
F
B
拓展加深
• 已知: 如图, 四边形ABCD中, AD=CB,AB=CD • 求证: ∠A= ∠C。
D
4 2
C
A
1 3
B
分析:要证两角或两线段相等,常先证这两角或两线段 所在的两三角形全等,从而需构造全等三角形。
构造公共边是常添的辅助线
学以致用 小颖作业本上画的三角形被墨迹污染,她想 画出一个与原来完全一样的三角形,她该怎 么办呢?
C O A
D
B
D 4. 已知:如图,在四边形 ABCD中,AC平分 ∠BAD,AB=AD. 求证:AC平分∠BCD B
A
C
5. (1)已知:如图 AB=DE,AC=DF.要证明△ABC ≌ △DEF,只需再增添一个条件: = 或 = (2)如图,AE和CD相交于点O, ∠ADO= ∠CEO=90°.要证明△AOD ≌ △COE,只需再 添一个条件: = ,或 = 或 = . A A D D O C
A
解:∵ ∠A+∠B+∠C=180° ∠A'+∠B'+∠C'=180° (三角形的内角和等于180°) ∴ ∠A=180°-∠B-∠C C ∠A'=180°-∠B'-∠C' ∵ ∠B=∠B' ,∠C=∠C' ∴ ∠A= ∠A' 在ΔABC和Δ DEF中 ∠A= ∠A' AB=A'B'(已知) C’ ∠B=∠B' (已知) ∴ΔABC≌ΔDEF (ASA)
全等三角形知识点
全等三角形知识点摘要:全等三角形是初中数学中的一个重要概念,它指的是两个三角形在形状和大小完全相同的情况下,它们的对应边和对应角完全相等。
本文将详细介绍全等三角形的定义、性质、判定条件以及在几何题中的应用。
关键词:全等三角形、对应边、对应角、判定条件、几何应用1. 全等三角形的定义全等三角形(Congruent Triangles)指的是两个三角形在几何形状和大小上完全相同,即它们的所有对应边和对应角都相等。
在数学符号中,我们通常用“≌”来表示全等。
2. 全等三角形的性质全等三角形具有以下性质:- 对应边相等:两个全等三角形的对应边长度完全相同。
- 对应角相等:两个全等三角形的对应角度数完全相同。
- 对应边上的高相等:两个全等三角形对应边上的高(垂直于边的线段)长度也相等。
- 对应角的平分线相等:两个全等三角形对应角的角平分线长度相等。
- 对应边上的中线相等:两个全等三角形对应边上的中线(连接顶点和对边中点的线段)长度相等。
3. 全等三角形的判定条件要判定两个三角形是否全等,可以通过以下几种条件:- SSS(边边边):如果两个三角形的三边分别相等,那么这两个三角形全等。
- SAS(边角边):如果两个三角形有两边及它们的夹角分别相等,那么这两个三角形全等。
- ASA(角边角):如果两个三角形有两角及它们之间的边分别相等,那么这两个三角形全等。
- AAS(角角边):如果两个三角形有两角及其中一角的对边分别相等,那么这两个三角形全等。
- HL(直角边-直角边):对于直角三角形,如果斜边和一条直角边分别相等,那么这两个三角形全等。
4. 全等三角形在几何题中的应用全等三角形的概念在解决几何问题时非常有用,尤其是在涉及角度和长度计算的问题中。
通过识别和证明三角形全等,我们可以得出隐藏的边长和角度关系,从而解决复杂的几何构造问题。
5. 结论全等三角形是几何学中的一个基础概念,它在解决几何问题中扮演着关键角色。
鲁教版数学七年级下册10.1全等三角形 习题及答案
鲁教版数学七年级下册10.1全等三角形 习题及答案一、单选题1.如图,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A .△ABD 和△CDB 的面积相等 B .△ABD 和△CDB 的周长相等C .∠A +∠ABD =∠C +∠CBD D .AD ∥BC ,且AD =BC2.如图,ABC R t ∆沿直角边BC 所在的直线向右平移得到DEF ∆,下列结论中错误的是( )A.△ABC ≌△DEFB. ︒=∠90DEFC.DF AC =D.CF EC =3.如图,将矩形纸片ABCD 沿对角线BD 折叠一次,则图中全等三角形有( )A.2对B. 3对C. 4对D.5对4.如图,已知AB =DC ,AD =BC ,E ,F 是DB 上两点且BF =DE ,若∠AEB =100°,∠ADB =30°,则∠BCF =( )A .150°B .40°C .80°D .70°5.如图,∠B=∠E=90°,AB=DE ,AC=DF ,则△ABC ≌△DEF 的理由是( )A.SASB.ASAC.AASD.HL6.如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于F 点,AB =BF.添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是( )A、AD=BCB、CD=BFC、∠A=∠CD、∠F=∠CDE7.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC8.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()A.25°B.27°C.30°D.45°9.如图,在△ABC和△AED中,已知∠1=∠2,AC=AD,添加一个条件后,仍然不能证明△ABC≌△AED,这个条件是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.如图,AD是△ABC的角平分线,DE⊥AB于E,已知△ABC的面积为28.AC=6,DE=4,则AB的长为()A.6 B.8 C.4 D.1011.如图,在△ABC中,点E在边AC上,D E是AB的垂直平分线,△ABC的周长为19,△BCE 的周长为12,则线段AB的长为()A .9B .8C .7D .612.如图,已知AB =AC =BD ,则∠1与∠2的关系是( )A .3∠1﹣∠2=180°B .2∠1+∠2=180°C .∠1+3∠2=180°D .∠1=2∠2二、填空题13.如图为6个边长相等的正方形的组合图形,则∠1+∠3=________ .14. 已知ABC DEF ∆∆≌,AC AB =,且ABC ∆的周长为22cm ,BC=4cm ,则DEF ∆的边=DE cm .15. 在△ABC 中,∠C=90°,BC=4cm ,∠BAC 的平分线交B C 于D ,且BD ︰DC=5︰3,则D 到AB 的距离为_____________.16.如图,已知△ABC 中,∠ABC ,∠ACB 的角平分线交于点O ,连接AO 并延长交BC 于D ,OH ⊥BC 于H ,若∠BAC =60°,OH =5 cm ,则∠BAD =_____________,点O 到AB 的距离为____________ cm.17.△ABC ≌△BAD ,A 和B ,C 和D 是对应顶点,如果AB=8cm ,BD=•6cm ,AD=5cm ,则BC=________cm .18.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么,图中共有 对全等三角形.三、解答题19.如图,已知∠AOB=20°.(1)若射线OC⊥OA,射线OD⊥OB,请你在图中画出所有符合要求的图形;(2)请根据(1)所画出的图形,求∠COD的度数.20.如图,AB=DC,AD=BC,DE=BF.求证:BE=DF.21. 在ABC∆中,︒=∠90ACB,BCAC=,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①ADC∆≌CEB∆;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.22.已知:如图,在直线MN上求作一点P,使点P到∠AOB两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)ONMBA23.(8分)已知: BE ⊥CD ,BE =DE ,BC =DA ,求证:△BEC ≌△DAE24.已知:如图,AB=AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .25.如图,点C 、E 分别在直线AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF .小华的想法对吗?为什么?26.如图,已知CA =CD ,CB =CE ,∠ACB =∠DCE ,试说明△ACE ≌△DCB 的理由.27. 如图,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°,且BC =CE ,求证:△ABC ≌△DEC .BDF AAC BDE F28.如图,在△ABC中,∠C=90°,D、E分别为AC、AB上的点,且AD=BD,AE=BC,DE=DC,求证:DE⊥AB.29.如图,在△ABC和△ABD中,∠BAC=∠ABD=90°,点E为AD边上的一点,且AC=AE,连接CE交AB于点G,过点A作AF⊥AD交CE于点F.(1)求证:△AGE≌△AFC;(2)若AB=AC,求证:AD=AF+BD.30.△ABC中,AB=AC,∠A=40°,D、E分别是AB,AC上的不动点.且BD+CE=BC,点P 是BC上的一动点.(1)当PC=CE时(如图1),求∠DPE的度数;(2)若PC=BD时(如图2),求∠DPE的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.31.已知:如图,O为△ABC的∠BAC的角平分线上一点,∠1=∠2,求证:△ABC是等腰三角形.32.如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC (1)试判定△ODE的形状,并说明你的理由;(2)若BC=10,求△ODE的周长.33.如图,A、B、C三点在同一直线上,分别以AB、BC为边,在直线AC的同侧作等边△ABD 和等边△BCE,连接AE交BD于点M,连接CD交BE于点N,连接MN得△BMN.(1)求证:△ABE≌△DBC.(2)试判断△BMN的形状,并说明理由.参考答案一、单选题1-5 CDDDD 6-10 DCBBB 11-12 CA二、填空题13、 90°14. 915. 5.116. 30° 517. 518. 3三、解答题19、解:(1)如图1、如图2,OC (或OC ′)、OD (或OD ′)为所作;(2)如图1,∵OC ⊥OA ,OD ⊥OB ,∴∠BOD=∠AOC=90°,∴∠COD=360°﹣90°﹣90°﹣20°=160°,∠COD ′=∠BOC ﹣∠AOC=90°+20°﹣90°=20°,如图2,同理可得∠COD=160°,∠COD ′=20°,∴∠COD=20°或160°.(2)如图1,由于OC ⊥OA ,OD ⊥OB ,则∠BOD=∠AOC=90°,于是利用周角的定义可计算出∠COD=160°,利用∠COD ′=∠BOC ﹣∠AOC 可得到∠COD ′=20°,如图2,同理可得∠COD=160°,∠COD ′=20°.20. 解:连接BD.∵AD =BC ,AB =CD ,BD =BD ,∴△ABD ≌△CDB(SSS),∴∠ADB =∠DBC ,∴180°-∠ADB =180°-∠DBC ,∴∠BDE =∠DBF ,易证△BDE ≌△DBF(SAS),∴BE =DF21.(1)证明①︒=∠+∠90BCE ACD Θ︒=∠+∠90ACD DAC BCE DAC ∠=∠∴ 又︒=∠=∠=90,BEC ADC BC AC CEB ADC ∆∆∴≌.②CEB ADC ∆∆≌ΘCE AD BE CD ==∴,BE AD CD CE DE +=+=∴.(2)CEB ADC ∆∆≌成立,BE AD DE +=不成立,此时应有BE AD DE -=.22.作∠BOA 的平分线交MN 于P 点,就是所求做的点。
鲁教版数学七年级下册10.1《全等三角形》教学设计2
鲁教版数学七年级下册10.1《全等三角形》教学设计2一. 教材分析《全等三角形》是鲁教版数学七年级下册10.1节的内容,本节课主要让学生了解全等三角形的概念,性质和判定方法。
通过学习全等三角形,培养学生观察、思考、推理的能力,为后续几何学习打下基础。
教材内容主要包括全等三角形的定义、性质、SSS、SAS、ASA、AAS五种判定方法及应用。
二. 学情分析学生在七年级上册已经学习了三角形的性质,对三角形有了一定的了解。
但全等三角形概念较为抽象,对学生空间想象能力和逻辑推理能力要求较高。
此外,学生可能对五种判定方法的记忆和应用存在困难。
三. 教学目标1.了解全等三角形的概念、性质和判定方法。
2.培养学生观察、思考、推理的能力。
3.提高学生解决实际问题的能力。
四. 教学重难点1.全等三角形的概念和性质。
2.SSS、SAS、ASA、AAS五种判定方法的理解和应用。
五. 教学方法1.采用问题驱动法,引导学生探究全等三角形的性质和判定方法。
2.利用几何画板软件,直观展示全等三角形的判定过程。
3.采用小组合作交流,培养学生团队合作精神。
4.结合实例,让学生在实际问题中应用全等三角形的知识。
六. 教学准备1.准备几何画板软件,用于展示全等三角形的判定过程。
2.准备相关实例,用于巩固全等三角形的应用。
3.准备PPT,用于辅助教学。
七. 教学过程1.导入(5分钟)利用几何画板软件,展示两个三角形的全等变换,引发学生对全等三角形的兴趣。
提问:什么是全等三角形?全等三角形的性质有哪些?2.呈现(10分钟)介绍全等三角形的定义、性质和SSS、SAS、ASA、AAS五种判定方法。
通过PPT展示,让学生直观理解全等三角形的概念和性质。
3.操练(10分钟)分组讨论,让学生利用五种判定方法,判断给定的三角形是否全等。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示一组三角形,让学生运用全等三角形的知识,解决实际问题。
例如:在直角三角形中,已知两个直角边相等,求斜边是否相等。
《全等三角形》讲义(完整版)
全等三角形讲义一、知识点总结全等三角形定义:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
:形状大小相同,并且能够完全重合的两个三角形叫做全等形三角形。
补充说明:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
:重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等:全等三角形的对应边相等,全等三角形的对应角相等 全等三角形判定定理:(1)边边边定理:三边对应相等的两个三角形全等。
(简称SSS ) (2)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
)边角边定理:两边和它们的夹角对应相等的两个三角形全等。
((简称SAS) (3)角边角定理:两角和它们的夹边对应相等的两个三角形全等。
(简称ASA ASA)) (4)角角边定理:两个角和其中一个角的对边对应相等的两个三角形全等。
(简称AAS AAS)) (5)斜边、直角边定理:斜边和一条直角边对应相等的两个直角三角形全等。
(简称HL HL)) 角平分线的性质:在角平分线上的点到角的两边的距离相等在角平分线上的点到角的两边的距离相等. .∵OP 平分∠平分∠AOB AOB AOB,,PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,∴PM=PN 角平分线的判定:到角的两边距离相等的点在角的平分线上到角的两边距离相等的点在角的平分线上. .∵PM PM⊥⊥OA 于M ,PN PN⊥⊥OB 于N ,PM=PN ∴OP 平分∠平分∠AOB AOB三角形的角平分线的性质:三角形三个内角的平分线交于一点,并且这一点到三边的距离等。
二、典型例题举例A BC PMNO A BCPMN O例1、如图,△ABN ≌△ACM,∠B 和∠C 是对应角,AB 与AC 是对应边,写出其他对应边和对应角.例2、如图,△、如图,△ABC ABC 是一个钢架,是一个钢架,AB=AC AB=AC AB=AC,,AD 是连结点A 与BC 中点D 的支架.的支架.求证:△求证:△ABD ABD ABD≌△≌△≌△ACD ACD ACD..例3、已知:点A 、F 、E 、C 在同一条直线上,AF =CE ,BE ∥DF ,BE =DF . 求证:△ABE ≌△CDF .例4、如图:、如图:D D 在AB 上,上,E E 在AC 上,上,AB AB AB==AC AC,∠,∠,∠B B =∠=∠C C .求证AD AD==AE AE..例5、如图:∠、如图:∠1=1=1=∠∠2,∠,∠3=3=3=∠∠4 求证:求证:AC=AD AC=AD例6、如图,B 、E 、F 、C 在同一直线上,AF ⊥BC 于F ,DE ⊥BC 于E ,AB=DC ,BE=CF ,你认为AB 平行于CD 吗?说说你的理由吗?说说你的理由D CB ACADB123 4例7、如图1,△ABC 的边AB 、AC 为边分别向外作正方形ABDE 和正方形ACFG ,连结EG ,试判断△ABC 与△AEG 面积之间的关系,并说明理由.例8、如图,OC 是∠AOB 的平分线,P 是OC 上的一点,PD ⊥OA 交OA 于D ,PE ⊥OB 交OB 于E ,F 是OC 上的另一点,连接DF ,EF ,求证DF =EF例9、如图,△ABC 中,AD 是它的角平分线,P 是AD 上的一点,PE ∥AB 交BC 于E ,PF ∥AC 交BC 于F ,求证:D 到PE 的距离与D 到PF 的距离相等的距离相等例10、如图,在△ABC 中,AD 为∠BAC 的平分线,DE ⊥AB 于E ,DF ⊥AC 于F ,△ABC 面积是282cm ,AB =20cm ,AC =8cm,求DE 的长.AGF CBDE图1AEB DCFAB CDED C EF BA 例10、已知:BE ⊥CD ,BE =DE ,BC =DA ,求证:①,求证:① △BEC ≌△DAE ;②DF ⊥BC .例11、如图,已知:E 是∠AOB 的平分线上一点,EC ⊥OB ,ED ⊥OA ,C ,D 是垂足,连接CD ,求证:(1)∠ECD=∠EDC ;(2)OD=OC ;(3)OE 是CD 的中垂线.三、专题版块三、专题版块 专题一:专题一: 全等三角形的判定和性质的应用全等三角形的判定和性质的应用例1、如图,在△ABC 中,AB=AC , BAC=40°,分别以AB AB、AC 为边作两个等腰三角形ABD 和ACE ACE,使∠,使∠BAD=∠CAE=90°.(1)求∠DBC 的度数.(2)求证:BD=CE.例2、如图,A B ∥CD,AF CD,AF∥∥DE,BE=CF,DE,BE=CF,求证:求证:求证:AB=CD. AB=CD.例3、如图在△ABC 中,BE 、CF 分别是AC 、AB 边上的高,在BE 延长线上截取BM =AC ,在CF 延长线上截到CN =AB ,求证:AM =AN 。
初中数学_10.1t全等三角形(一)教学设计学情分析教材分析课后反思
10.1全等三角形(一)教案教学目标:1、了解作为证明基础的几条基本事实的内容,掌握证明的基本步骤和书写格式.2、能灵活地运用“边角边”基本事实、“角边角”基本事实、“边边边”基本事实和定理“角角边”定理判定两个三角形全等.3、对推理证明的要求,应在学生已有的基础上,进一步熟练和提高.学情分析:这部分知识在七年级上册已经学习过,了解了与全等相关的部分知识,解决问题的方法等,且现阶段的学生的逻辑思维能力已经初步形成,有了系统分析问题的能力,所以学习本章内容相对的来说比较容易.重点难点:1.重点是了解全等三角形的三条基本事实及“角角边”定理,掌握证明两三角形全等的基本步骤和书写格式.2.难点是灵活运用课本知识解决全等的相关问题.教学过程第一学时教学活动一、复习回顾自学课本《三角形的有关证明》第1节《全等三角形》的第1课时内容,完成《学案》中的预习作业:1.能够完全重合的两个图形叫做全等图形;能够_________________叫做全等三角形.2.全等三角形的对应边__________、对应角__________.3.关于三角形全等的基本事实分别是:(1) _________________________________________的两个三角形全等(SSS)(2) _________________________________________的两个三角形全等(SAS)(3) _________________________________________的两个三角形全等(ASA)4. (1)三个角对应相等的两个三角形全等吗?(2)两边和其中一边的对角对应相等的两个三角形全等吗?(3)两角分别相等且其中一组等角的对边相等的两个三角形全等吗?5.在证明三角形全等的书写格式上应注意什么?二、合作探究探究1关于“两角分别相等且其中一组等角的对边相等的两个三角形全等”这个结论,你能用有关的基本事实和已经证明过的定理证明它吗?已知:如图,在△ABC和△A'B'C'中,∠B=∠B',∠C=∠C',AB=A'B ' .求证:△ABC≌△A'B'C' .归纳总结:推论(AAS)合作探究2.已知:如图,线段AB和CD相交于点O,线段OA=OD,OC=OB.求证:AC=BD,∠A=∠D【思路导析】本题中利用了对等角这一隐含的条件3归纳证明的书写步骤。
《全等三角形》ppt课件
《全等三角形》ppt课件•全等三角形基本概念与性质•判定全等三角形方法探讨•辅助线在证明全等过程中作用•相似三角形与全等三角形关系探讨目录•生活中全等三角形应用举例•总结回顾与拓展延伸全等三角形基本概念与性质全等三角形定义及判定方法定义SSS(边边边)SAS(边角边)HL(斜边、直角边)ASA(角边角)AAS(角角边)对应边相等对应角相等对应关系确定030201对应边、对应角关系全等三角形性质总结判定全等三角形方法探讨SSS判定法定义应用举例注意事项应用举例SAS判定法定义在证明两个三角形全等时,若已知两边及夹角相等,则可直接应用SAS判定法。
注意事项ASA判定法定义AAS判定法定义比较分析案例分析01020304ASA和AAS判定法比较与案例分析辅助线在证明全等过程中作用构造辅助线策略与技巧分享观察图形特征在证明全等三角形时,首先要仔细观察图形,分析已知条件和目标结论,从而确定需要构造的辅助线类型。
利用基本图形熟悉并掌握一些基本图形(如角平分线、中线、高线等)的性质,可以帮助我们更快地构造出合适的辅助线。
构造平行线或垂直线根据题目条件,有时需要构造平行线或垂直线来利用相关性质进行证明。
典型辅助线构造方法剖析角平分线法01中线法02高线法03复杂图形中辅助线应用实例在复杂图形中,有时需要综合运用多种辅助线构造方法才能解决问题。
例如,可以先构造角平分线,再利用中线或高线的性质进行证明。
在一些特殊情况下,可能需要构造多条辅助线才能找到解决问题的突破口。
这时需要仔细分析图形特点,灵活运用所学知识进行构造和证明。
通过学习和掌握典型辅助线的构造方法和应用实例,可以提高学生的几何思维能力和解决问题的能力,为后续的数学学习打下坚实的基础。
相似三角形与全等三角形关系探讨性质面积比等于相似比的平方。
定义:两个三角形如果它们的对应角相等,则称这两个三角形相似。
周长比等于相似比;010203040506相似三角形定义及性质回顾相似三角形判定方法简介预备定理判定定理1判定定理2判定定理3相似三角形与全等三角形联系和区别联系区别全等三角形的性质在相似三角形中同全等三角形的性质更为严格和具体,而相似三角形的性质相对较为宽松和生活中全等三角形应用举例建筑设计中全等三角形应用稳定性美学效果美术创作中全等三角形构图技巧平衡感动态感其他领域(如工程、测量)中全等三角形应用工程测量机械设计地图制作总结回顾与拓展延伸全等三角形的判定方法熟练掌握SSS、SAS、ASA、AAS及HL等全等三角形的判定方法。
全等三角形知识点总结
全等三角形知识点总结一、全等三角形的概念1. 定义- 能够完全重合的两个三角形叫做全等三角形。
重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
- 例如,△ABC与△DEF全等,记作△ABC≌△DEF,其中A与D、B与E、C与F 是对应顶点,AB与DE、BC与EF、AC与DF是对应边,∠A与∠D、∠B与∠E、∠C 与∠F是对应角。
2. 全等三角形的性质- 对应边相等:若△ABC≌△DEF,则AB = DE,BC = EF,AC = DF。
- 对应角相等:∠A=∠D,∠B = ∠E,∠C=∠F。
- 全等三角形的周长相等,面积相等。
因为全等三角形的对应边相等,所以它们的周长(三边之和)相等;又因为对应边和对应角都相等,根据三角形面积公式(如S=(1)/(2)ahsin B等多种公式都可推出),其面积也相等。
二、全等三角形的判定1. SSS(边边边)判定定理- 内容:三边对应相等的两个三角形全等。
- 例如,在△ABC和△DEF中,如果AB = DE,BC = EF,AC = DF,那么△ABC≌△DEF。
- 作用:可以用来证明两个三角形全等,当已知两个三角形的三边长度分别相等时,就可以直接判定它们全等。
2. SAS(边角边)判定定理- 内容:两边和它们的夹角对应相等的两个三角形全等。
- 例如,在△ABC和△DEF中,如果AB = DE,∠A = ∠D,AC = DF,那么△ABC≌△DEF。
这里要注意必须是两边及其夹角,不能是两边及其中一边的对角。
- 作用:在已知三角形两边长度和它们夹角大小的情况下,用于判定三角形全等。
3. ASA(角边角)判定定理- 内容:两角和它们的夹边对应相等的两个三角形全等。
- 例如,在△ABC和△DEF中,如果∠A = ∠D,AB = DE,∠B = ∠E,那么△ABC≌△DEF。
- 作用:当知道两个三角形两角及其夹边相等时,可判定全等。
4. AAS(角角边)判定定理- 内容:两角和其中一角的对边对应相等的两个三角形全等。
全等三角形 知识点总结
全等三角形知识点总结在初中数学学习中,我们学习到了三角形的全等。
全等三角形是初中数学中一个非常重要的知识点,也是基础中的基础。
全等三角形的概念、性质和判定方法都是我们需要掌握的重点内容。
本文将对全等三角形的相关知识点进行总结,帮助大家更好地掌握和理解这一部分内容。
一、全等三角形的定义什么是全等三角形呢?全等三角形是指在三角形的三个对应角相等、三个对应边相等的情况下,我们就可以称这两个三角形是全等的。
用符号来表示的话,就是∆ABC≌∆DEF,其中A、B、C分别是∆ABC的三个顶点,D、E、F分别是∆DEF的三个顶点。
全等三角形的性质1、全等三角形的性质1:对应角相等如果两个三角形是全等的,那么它们的三个对应角分别相等。
也就是说,在全等三角形中,三个对应角是相等的。
2、全等三角形的性质2:对应边相等如果两个三角形是全等的,那么它们的三个对应边分别相等。
也就是说,在全等三角形中,三个对应边是相等的。
3、全等三角形的性质3:对应线段相等如果两个三角形是全等的,那么它们的对应线段(如中线、角平分线等)也相等。
二、全等三角形的判定方法全等三角形有几种判定方法,下面我们分别来看看。
1、全等三角形的判定方法一:SAS判定法SAS判定法是指边-角-边全等判定法。
也就是说,如果两个三角形的一个角和两个边分别相等,则这两个三角形是全等的。
判定条件:如果在两个三角形中,一对对应边相等,且夹在中间的对应角也相等,那么这两个三角形是全等的。
2、全等三角形的判定方法二:ASA判定法ASA判定法是指角-边-角全等判定法。
也就是说,如果两个三角形的两个角和一个夹在中间的边分别相等,则这两个三角形是全等的。
判定条件:如果在两个三角形中,一对对应角相等,且夹在中间的对应边也相等,那么这两个三角形是全等的。
3、全等三角形的判定方法三:SSS判定法SSS判定法是指边-边-边全等判定法。
也就是说,如果两个三角形的三条边分别相等,则这两个三角形是全等的。
鲁教版数学七年级下册10.1《全等三角形》教学设计1
鲁教版数学七年级下册10.1《全等三角形》教学设计1一. 教材分析《全等三角形》是鲁教版数学七年级下册第10.1节的内容,本节课的主要内容是让学生了解全等三角形的概念,性质以及全等三角形的判定方法。
通过学习全等三角形,学生能够进一步理解几何图形的性质,提高解决问题的能力。
二. 学情分析学生在七年级上学期已经学习了相似三角形的性质,能够识别和判断相似三角形。
但全等三角形与相似三角形有很大的区别,学生需要进一步理解和掌握全等三角形的概念和性质。
此外,学生对于实际操作和证明全等三角形的判定方法可能存在一定的困难,需要通过实例和练习来加深理解。
三. 教学目标1.了解全等三角形的概念和性质,能够识别全等三角形。
2.学会使用全等三角形的判定方法,能够证明两个三角形全等。
3.提高学生的空间想象能力和逻辑思维能力。
四. 教学重难点1.全等三角形的概念和性质的理解。
2.全等三角形的判定方法的掌握和应用。
五. 教学方法1.采用问题驱动的教学方法,引导学生通过观察、思考、讨论和操作来发现和证明全等三角形的性质和判定方法。
2.使用多媒体和实物模型辅助教学,帮助学生直观地理解全等三角形的概念和性质。
3.注重学生的主体地位,鼓励学生积极参与课堂讨论和练习,培养学生的合作意识和解决问题的能力。
六. 教学准备1.多媒体教学设备。
2.实物模型和图片。
3.练习题和测试题。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如拼图、制作模型等,引导学生思考如何判断两个图形是否完全相同。
学生可以结合已学的相似三角形的知识,尝试回答这个问题。
2.呈现(10分钟)教师通过多媒体展示全等三角形的概念和性质,引导学生观察和思考,让学生能够直观地理解全等三角形的定义和性质。
同时,教师可以给出一些实例,让学生判断两个三角形是否全等。
3.操练(10分钟)教师学生进行小组讨论,让学生通过实际操作和证明来理解和掌握全等三角形的判定方法。
教师可以给出一些练习题,让学生在小组内进行讨论和解答。
初中数学_10.1全等三角形教学设计学情分析教材分析课后反思
《全等三角形》教学设计授课内容:《义务教育教科书》(五·四学制)数学七年级下册第十章《三角形的有关证明》第一节《全等三角形》第一课时【学习目标】1、了解并掌握作为证明基础的三条基本事实的内容,掌握证明的基本步骤和书写格式.2、能初步运用“边角边”.“角边角”.“边边边”.“角角边”判定两个三角形全等.3、对推理证明的要求,进一步熟练和提高.【学习重点】会证明“AAS ”定理,掌握证明的基本步骤和书写格式.【学习难点】运用“SAS ”“ASA ”“SSS ”“AAS ”,判断两个三角形全等.【教学设计】(一)蓄势待发1.全等图形的定义:能够完全重合的两个图形叫做全等图形.全等三角形的定义:能够 ________________ 叫做全等三角形.由全等三角形的定义得:全等三角形的对应边_____,对应角____.2.关于三角形全等的基本事实分别是:(1) _____________________的两个三角形全等.(SAS )(2) _____________________的两个三角形全等.(ASA )(3) _____________________ 的两个三角形全等.(SSS )【设计意图】回顾全等三角形的性质及判定,为本节课的学习做好铺垫。
(二)小试锋芒已知:如图所示,在△ABC 与△ DEF 中,∠B= ∠E, ∠ C= ∠ F, AB =DE.求证:△ABC ≌△DEF.证明:定理_________________________________________________________________【设计意图】这一环节是对“AAS ”定理的证明,虽然简单,也应让学生进行证明,目的有两个,一是让学生进一步感知只有基本事实和经过严谨推理得出的结果才能作为解题的依据.二是进一步巩固命题证明的一般步骤,为下面的推理证明做准备.(三)学以致用1.已知:如图,AB =DE ,∠B =∠E ,要证明△ABC ≌△DEF ,只需再增添一个条件: ______=______,或______=______.2.如图,小明要测量小口瓶下半部的内径,他用两根长度相等的木条D C AB F EAA ’和BB ’在中点O 处连在一起,然后移动木条使末端A ’、B ’卡在瓶子的内壁上,则A,B 两点间的长度就是瓶子的内径.他的依据是( )A. AASB. SSSC. SASD. ASA2、【设计意图】这一环节是对判定方法的及时巩固,第1题设计为条件开放,目的是开阔学生思路,灵活选择方法,合理利用图形.第2题是全等三角形的实际应用,体现了数学与生活的联系.(四)同舟共济已知:如图,线段AB 和CD 相交于点O ,线段OA=OD ,∠C=∠B.你能得到哪些结论?先独立思考,小组交流,小组派一个代表展示,其它小组补充.【设计意图】本题是本节课的例题,在处理时改为结论开放题,由学生当老师设计问题,这样活跃了课堂气氛,充分发挥师生之间,生生之间的交流学习.培养思维的广度,激发求知欲.组内相互交流,组与组之间互相补充,培养学生的分析推理及合作交流的能力.通过审视学生的问题解决过程,发展学生勇于质疑.严谨求实的科学态度.让学生体会到证明定理的必要性和学习定理的意义所在. (五)大展身手1、已知:如图,点B,E,C,F 在同一条直线上,AB ∥DE,AC ∥DF,BE=CF.求证:AC=DF.【设计意图】通过适当的习题,加深学生对定理的理解,将新知识转化为自己的能力。
全等三角形知识点总结
全等三角形知识点总结一、全等三角形的定义1. 全等三角形的定义:如果两个三角形的三个对应角完全相等,那么这两个三角形就是全等的。
当且仅当两个三角形的对应边长都相等时,这两个三角形才是全等的。
2. 全等三角形的性质:a. 全等三角形的对应角相等,对应边相等。
b. 如果两个三角形是全等的,那么它们的内部三角形也全等。
二、全等三角形的判定定理1. SSS判定定理:如果两个三角形的三条边分别相等,那么这两个三角形是全等的。
2. SAS判定定理:如果两个三角形的两边及夹角分别相等,则这两个三角形是全等的。
3. ASA判定定理:如果两个三角形的两个角及夹边分别相等,则这两个三角形是全等的。
4. AAS判定定理:如果两个三角形有一对对应角相等,并且两个对应边分别相等,则这两个三角形是全等的。
5. RHS判定定理:如果两个直角三角形的两条直角边分别相等,则这两个直角三角形是全等的。
三、全等三角形的性质1. 全等三角形的对应边相等,对应角相等。
2. 全等三角形的内部三角形也是全等的。
3. 全等三角形的每个角的顶点到对边的距离也相等。
四、全等三角形的应用1. 在几何证明中,可以利用全等三角形的性质证明两个三角形相等。
2. 在计算中,可以利用全等三角形的性质求解未知边长和角度。
3. 在工程建设和日常生活中,可以利用全等三角形的性质进行测量和设计。
五、全等三角形的相关定理1. 全等三角形的相关定理包括:全等三角形的辅助线定理、全等三角形的平行线定理、全等三角形的垂直平分线定理等。
六、全等三角形的证明方法1. 证明两个三角形全等的一般步骤包括:1)找出两个三角形的对应角、对应边;2)通过对应边和对应角的关系来进行判定,通常使用SSS、SAS、ASA、AAS等定理。
七、全等三角形的应用举例1. 利用全等三角形的性质证明两个三角形全等。
2. 利用全等三角形的性质求解未知边长和角度。
3. 利用全等三角形的性质进行测量和设计。
总的来说,全等三角形是我们学习几何时必须掌握的重要知识点,它在证明、计算、测量和设计中都有广泛的应用。
全等三角形全部概念
全等三角形全部概念全等三角形是指具有相同形状和大小的三角形,它们的所有对应边长度相等,所有对应角度相等。
全等三角形的性质和定理在几何学中起着重要作用,对于解决各种三角形相关的问题具有重要意义。
以下是关于全等三角形的全部概念、性质和定理的详细介绍:一、全等三角形的定义:1. 全等三角形定义:如果两个三角形的所有对应边相等,对应角相等,那么这两个三角形就是全等的。
2. 全等三角形的记法:当两个三角形全等时,通常用符号“≌”来表示,如三角形ABC≌三角形DEF。
3. 全等三角形的条件:两个三角形全等的条件是:对应的三边相等,对应的内角相等。
即两个三角形的任意两对边相等,夹角相等或对应角相等,则这两个三角形全等。
二、全等三角形的性质:1. 全等三角形的性质1:全等的三角形的对应边相等,对应角相等。
2. 全等三角形的性质2:全等的三角形的对应角的对边也相等。
3. 全等三角形的性质3:全等的三角形的各边都是对应边的相等。
4. 全等三角形的性质4:如果两个三角形全等,则它们的周长相等。
5. 全等三角形的性质5:如果两个三角形全等,则它们的面积也相等。
6. 全等三角形的性质6:如果三角形ABC≌三角形DEF,则三角形ABC的内角和等于三角形DEF的内角和。
7. 全等三角形的性质7:全等三角形对应边之间的比例相等,即对应边之比相等。
8. 全等三角形的性质8:全等的三角形的顶点到对边的距离相等。
三、全等三角形的定理:1. SSS全等定理:如果一个三角形的三条边分别等于另一三角形的三条边,那么这两个三角形全等。
2. SAS全等定理:如果一个三角形的两边和夹角分别等于另一个三角形的两边和夹角,那么这两个三角形全等。
3. ASA全等定理:如果一个三角形的两个角和夹边分别等于另一个三角形的两个角和夹边,那么这两个三角形全等。
4. RHS全等定理:如果一个直角三角形的斜边和一个锐角三角形的一个锐角以及两边分别等于另一个锐角三角形的一个锐角以及两边,则这两个三角形全等。
全等三角形知识点归纳
全等三角形知识点归纳一、全等三角形的定义能够完全重合的两个三角形叫做全等三角形。
二、全等三角形的性质1、全等三角形的对应边相等也就是说,如果两个三角形全等,那么它们对应的边长度是相等的。
比如,三角形 ABC 全等于三角形 DEF,那么 AB = DE,BC = EF,AC = DF。
2、全等三角形的对应角相等同样,如果两个三角形全等,它们对应的角的度数也是相等的。
比如,∠A =∠D,∠B =∠E,∠C =∠F。
3、全等三角形的周长相等因为全等三角形的对应边相等,所以它们的周长也必然相等。
4、全等三角形的面积相等由于全等三角形完全重合,所以它们所覆盖的面积是一样的。
三、全等三角形的判定1、 SSS(边边边)如果两个三角形的三条边分别对应相等,那么这两个三角形全等。
例如:在三角形 ABC 和三角形 DEF 中,AB = DE,BC = EF,AC = DF,那么三角形 ABC 全等于三角形 DEF。
2、 SAS(边角边)如果两个三角形的两条边及其夹角分别对应相等,那么这两个三角形全等。
比如:在三角形 ABC 和三角形 DEF 中,AB = DE,∠A =∠D,AC = DF,那么三角形 ABC 全等于三角形 DEF。
3、 ASA(角边角)如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
举例:在三角形 ABC 和三角形 DEF 中,∠A =∠D,AB = DE,∠B =∠E,那么三角形 ABC 全等于三角形 DEF。
4、 AAS(角角边)如果两个三角形的两个角和其中一个角的对边分别对应相等,那么这两个三角形全等。
例如:在三角形 ABC 和三角形 DEF 中,∠A =∠D,∠B =∠E,BC = EF,那么三角形 ABC 全等于三角形 DEF。
5、 HL(斜边、直角边)对于两个直角三角形,如果它们的斜边和一条直角边分别对应相等,那么这两个直角三角形全等。
比如:在直角三角形 ABC 和直角三角形 DEF 中,∠C =∠F =90°,AB = DE,AC = DF,那么三角形 ABC 全等于三角形 DEF。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
拓展延伸:
或 ∠A = ∠D
逆向思维
1.已知:如图,AB=DE,AC=DF,要证明△ABC ≌△DEF,只需再增添一个条件: BC = EF ,
.
2.已知:如图,AE和CD相交于点O, ∠ADO= ∠CEO=90 °,要证△AOD ≌△COE,只需再增添一个 条件: AD = CE , 或 AO
A
10.1全等三角形 (第1课时)
学习目标:
1、了解作为证明基础的几条公理的内容, 初步掌握证明的基本步骤和书写格式. 2、能初步地运用公理“边角边”、“角 边角”、“边边边”和定理“角角边” 判定两个三角形全等.
温故互查:(二人小组完成)
有关全等三角形的公理有哪些?
(1) 两边及其夹角对应相等
(2) 两角及其夹边对应相等 (3) 三边对应相等
= OC
,或 OD
D
= OE
A D O
.
B
C (1)
E
F
B
E (2)
C
课堂小结:
1、本节课了解了几种证明三角形 全等的方法? 2、运用全等三角形可以解决那些 问题? 3、你还有那些要和同学分享体会?
作业:
1、习题10.1 第1 、2 题
2、同步学习 78页 基础自测1、2、3、4、5
B C
B′
C′
o ∵∠A+∠B+∠C=180o ∠A'+∠B'+∠C'=180 ∴∠A=180o-∠B-∠C,∠A'=180o-∠B'-∠C' ∵∠B= ∠B', ∠C= ∠C' 边、角 全等 ∴∠A=∠A' 在△ABC和△A'B'C'中 ∵∠A=∠A', AB=A′B′, ∠B= ∠B′, ∴△ABC ≌△A′B′C′(ASA)
问题导学:
2、目前我们有哪些寻找能判定两个三角形全等 的条件的方式呢? 1)已知条件 2)已学知识如:定义、公理、定理、性质等 3)从图形中如:无公共边、公共角、对顶角、 内错角、同位角(当两直线平行时)
自学检测:
求证:△AMC ≌△BMD.
边、角
C D
全等
1.已知:如图,M是线段AB的 中点,∠C= ∠D, ∠1= ∠2.
A A′
B
C
B′
C′
2、目前我们有哪些寻找能判定两个三角形全等 的条件的方式呢?
定理:两角及其中一角的对边对应相等 问题导学: 的两个三角形全等.(AAS) 1、已知:如图,在△ABC和△A′B′C′中,AB=A′B′, A A′ ∠B= ∠B′, ∠C= ∠C′.
求证: △ABC ≌△A′B′C′. 证明: 在△ABC和△A'B'C'中
的两个三角形全等.(SAS)
的两个三角形全等.(ASA) 的两个三角形全等.(SSS) .
(4)全等三角形的对应边 相等 、对应角 相等
A A′
B
C
B′
C′
问题导学:
1、已知:如图,在△ABC和△A′B′C′中,AB=A′B′, ∠B= ∠B′, ∠C= ∠C′.求证: △ABC ≌△A′B′C′.
全等 巩固练习:
边、角
全等
E
1、已知:如图,AB与CD相交于点O, △AOC≌△DOB. 求证:△ABD≌△DCA. 证明:∵△AOC≌△DOB, ∴AO=DO,CO=BO,AC=DB ( 全等三角形的定义 ) ∴ AO + BO = CO + DO , 即AB=DC. 在△ABD和△DCA中, ∵DB=AC, AD = DA , AB = DC , ∴△ABD≌△DCA( SSS ).C 和△BMD中, ∵M是线段AB的中点, ∴AM=BM, ∵∠C= ∠D, ∠1= ∠2 ∴△AMC ≌△BMD(AAS).
A
边、角 典例示范:
全等
边、角
已知:如图线段AB和CD相交于点O,线段 OA=OD, OC=OB. 求证:AC=DB,∠A=∠D. 证明:在△OAC 和△ODB中, ∵OA=OD, ∠AOC=∠DOB, OC=OB, ∴△OAC ≌△ODB(SAS). ∴AC=DB,∠A=∠D(全等三角形的定义)