逆命题逆定理教案

合集下载

互逆命题与互逆定理-华东师大版八年级数学上册教案

互逆命题与互逆定理-华东师大版八年级数学上册教案

互逆命题与互逆定理-华东师大版八年级数学上册教案一、引入在初中数学中,我们学习了很多命题,比如“若a=b,那么a2=b2”,又比如“对于任意的正整数a,a^2>a”等等。

其中,有一种特殊的命题,叫做“逆命题”。

逆命题指的是,对于一个给定的命题P,将其假设的条件和结论交换位置,并取反形式而得到的命题,比如“若a=b,那么a2=b2”的逆命题是“若a2=b2,那么a=b 或a=-b”。

那么,如果一个命题的逆命题也成立,我们就称这两个命题互为“逆命题”,其中比较重要的是“互为逆命题的命题是等价命题”。

但是,在实际情况下,有一些命题和它的逆命题虽然都是真命题,但它们并不等价。

此时我们就需要引入“互逆定理”,来判断它们的关系。

二、教学内容1. 规律感知首先,让学生自己尝试找出一些互逆命题。

比如,“若x>5,那么x2>25”和“若x2>25,那么x>5或x<-5”就是互逆命题。

在找到互逆命题后,让学生自己分析它们之间的关系。

2. 探索任务接下来,设计一个小组探究任务,让学生自己去探索什么样的条件下能得到互逆命题,以及互逆命题之间的关系。

具体实施时,可以分配几个小组,要求每个小组找出两个互逆命题,并将它们的条件和结论进行比较。

然后,让学生自己汇总每组的成果,分析条件的相同点和不同点,以及结论的相同点和不同点。

最后,让学生自己总结出什么样的条件可以得到互逆命题,以及互逆命题之间的关系。

3. 展示交流在小组任务完成后,组织学生进行展示和交流。

让学生自己介绍自己小组的成果,以及自己对互逆命题和互逆定理的理解。

同时,其他学生可以对其进行提问和补充,以加深理解。

4. 拓展延伸为了让学生更加深入理解互逆命题和互逆定理,可以提供一些案例让学生进行分析。

比如,“若a2+b2=0,那么a=b=0”和“若a=b=0,那么a2+b2=0”就是互逆命题。

通过这些案例的分析,可以帮助学生更好地掌握互逆命题和互逆定理的应用。

高中数学逆命题教案设计

高中数学逆命题教案设计

高中数学逆命题教案设计
教学目标:通过学习逆命题,在解题过程中提高学生逻辑思维能力,培养学生对数学问题的综合分析和解决能力。

教学内容:逆命题的概念及相关定理应用。

教学重点:掌握逆命题的基本概念;掌握逆命题的判断方法;能够运用逆命题解决实际问题。

教学难点:运用逆命题解决问题的思维方法。

教学准备:教材、教具、PPT课件。

教学过程:
一、导入(5分钟)
教师通过举例引出逆命题的概念,引起学生对逆命题的兴趣。

二、讲解(15分钟)
1.讲解逆命题的定义和相关定理。

2.举例说明逆命题的判断方法。

三、练习(20分钟)
1.操练逆命题相关的例题。

2.让学生自行解决一些实际问题,运用逆命题解决。

四、总结(5分钟)
教师和学生共同总结逆命题的要点和解题方法。

五、作业布置(5分钟)
布置逆命题相关的作业,巩固学生所学知识。

教学反思:通过本节课的教学,学生对逆命题的理解更加深入,能够灵活运用逆命题解决问题,提高了数学解题的能力。

华师版数学八年级上册教案-第13章 全等三角形-13.5 逆命题与逆定理(3课时)

华师版数学八年级上册教案-第13章 全等三角形-13.5 逆命题与逆定理(3课时)

13.5逆命题与逆定理1互逆命题与互逆定理(第1课时)一、基本目标1.理解逆命题与逆定理的意义,会写出一个命题的逆命题.2.会判断定理的逆命题的真假.二、重难点目标【教学重点】会写出一个命题的逆命题,会判断定理的逆命题的真假.【教学难点】写出一个命题的逆命题.环节1自学提纲,生成问题【5 min阅读】阅读教材P92~P93的内容,完成下面练习.【3 min反馈】一、互逆命题1.命题“两直线平行,内错角相等”的条件是两直线平行,结论是内错角相等.2.命题“内错角相等,两直线平行”的条件是内错角相等,结论是两直线平行.3.在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题就叫做它的逆命题.二、互逆定理1.“两直线平行,内错角相等”的逆命题是内错角相等,两直线平行.2.“对顶角相等”的逆命题是相等的角是对顶角.3.如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.环节2合作探究,解决问题活动1小组讨论(师生互学)【例题】写出下列各命题的逆命题,并判断其逆命题是真命题还是假命题,若是假命题,请举出一个反例说明.(1)两直线平行,同旁内角互补;(2)在同一平面内,垂直于同一条直线的两直线平行;(3)相等的角是内错角;(4)有一个角是60°的三角形是等边三角形.【互动探索】(引发学生思考)什么是逆命题?怎样举反例?【解答】(1)逆命题:同旁内角互补,两直线平行.是真命题.(2)逆命题:在同一平面内,如果两条直线平行,那么这两条直线垂直于同一条直线.是真命题.(3)逆命题:内错角相等.是假命题.反例:如图,∠1与∠2是内错角,但不相等.(4)逆命题:等边三角形有一个角是60°.是真命题.【互动总结】(学生总结,老师点评)说明命题为假命题的反例即为符合该命题条件而不符合该命题结论的例子,如(3)小题中的例子.活动2巩固练习(学生独学)1.下列命题的逆命题是真命题的是(C)A.全等三角形的周长相等B.对顶角相等C.等边三角形的三个角都是60°D.全等三角形的对应角相等2.写出“全等三角形的面积相等”的逆命题:面积相等的三角形全等.3.写出命题“有两角互余的三角形是直角三角形”的逆命题并证明.解:逆命题:直角三角形的两锐角互余.已知:在△ABC中,∠C=90°.求证:∠A+∠B=90°.证明:∵∠A+∠B+∠C=180°,∠C=90°,∴∠A+∠B=90°,即∠A与∠B互余.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!2线段垂直平分线(第2课时)一、基本目标1.掌握线段垂直平分线的性质定理和判定定理.2.能灵活运用线段垂直平分线的性质定理和判定定理解题.二、重难点目标【教学重点】线段垂直平分线的性质定理和判定定理.【教学难点】灵活运用线段垂直平分线的性质定理和判定定理解题.环节1自学提纲,生成问题【5 min阅读】阅读教材P94~P95的内容,完成下面练习.【3 min反馈】1.如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,猜想一下线段AA′、BB′、CC′与直线MN有什么关系?解:AA′、BB′、CC′与直线MN垂直平分.2.线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.3.线段垂直平分线的判定定理:到线段两端距离相等的点在线段的垂直平分线上.4.下列条件中,不能判定直线MN是线段AB的垂直平分线的是(C)A.MA=MB,NA=NBB.MA=MB,MN⊥ABC.MA=NA,MB=NBD.MA=MB,MN平分∠AMB5.三角形的三条垂直平分线交于一点.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】如图,在△ABC中,AB=AC=20 cm,DE垂直平分AB,垂足为点E,交AC 于点D.若△DBC的周长为35 cm,求BC的长.【互动探索】(引发学生思考)已知AB、AC的长和△DBC的周长,要求BC的长,先求什么?再求什么?【解答】∵DE垂直平分AB,∴AD=BD.∵△DBC的周长=BC+BD+CD=35 cm,∴BC+AD+CD=35 cm.∵AC=AD+DC=20 cm,∴BC=35-20=15 (cm).【互动总结】(学生总结,老师点评)利用线段垂直平分线的性质定理,可以实现线段之间的相互转化,从而求出未知线段的长.【例2】如图所示,在△ABC中,AD平分∠BAC,DE⊥AB于点E,DF⊥AC于点F,试说明AD与EF的关系.【互动探索】(引发学生思考)先利用角平分线的性质得出DE =DF ,再证△AED ≌△AFD ,从而找出AD 与EF 的关系.【解答】AD 垂直平分EF .证明如下: ∵AD 平分∠BAC ,DE ⊥AB ,DF ⊥AC , ∴DE =DF ,∠AED =∠AFD =90°.在Rt △ADE 和Rt △ADF 中,∵⎩⎪⎨⎪⎧AD =AD ,DE =DF ,∴Rt △ADE ≌Rt △ADF , ∴AE =AF ,∴A 、D 均在线段EF 的垂直平分线上,即直线AD 垂直平分线段EF .【互动总结】(学生总结,老师点评)证明线段的垂直平分线可以用定义法,也可用线段垂直平分线的判定定理.活动2 巩固练习(学生独学)1.三角形中,到三个顶点距离相等的点是( D ) A .三条高线的交点 B .三条中线的交点 C .三条角平分线的交点 D .三边垂直平分线的交点2.如图,△ABC 的两边AC 和BC 的垂直平分线分别交AB 于D 、E 两点,若AB 边的长为10 cm ,则△CDE 的周长为( A )A .10 cmB .20 cmC .5 cmD .不能确定3.如图,直线CD 是线段AB 的垂直平分线,P 为直线CD 上的一点,已知线段P A =5,则线段PB的长度为(B)A.6 B.5C.4 D.34.小明做了一个如图所示的风筝,其中EH=FH,ED=FD,小明说不用测量就知道DH是EF的垂直平分线.其中蕴含的道理是到线段两端距离相等的点在线段的垂直平分线上.活动3拓展延伸(学生对学)【例3】如图,在四边形ABCD中,AD∥BC,E为CD的中点,连结AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.【互动探索】(1)根据AD∥BC可知∠ADC=∠ECF,再根据E是CD的中点可证得△ADE≌△FCE,从而证得结论;(2)根据线段垂直平分线的性质判断出AB=BF即可.【证明】(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中点,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD.(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.∵BE⊥AE,∴BE是线段AF的垂直平分线,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.【互动总结】(学生总结,老师点评)本题是线段垂直平分线与全等三角形的综合应用,证得△ADE≌△FCE是解题的关键.环节3课堂小结,当堂达标(学生总结,老师点评)请完成本课时对应练习!3角平分线(第3课时)一、基本目标1.掌握角平分线的性质定理和判定定理.2.能灵活运用角平分线的性质定理和判定定理解题.二、重难点目标【教学重点】角平分线的性质定理和判定定理.【教学难点】灵活运用角平分线的性质定理和判定定理解题.环节1自学提纲,生成问题【5 min阅读】阅读教材P96~P98的内容,完成下面练习.【3 min反馈】1.角平分线上的点到角两边的距离相等.2.角的内部到角两边距离相等的点在角的平分线上.3.三角形的三条角平分线交于一点,这个交点一定在三角形内部,它到三角形三边距离相等.4.如图,AD⊥DC,AB⊥BC,若AB=AD,∠DAB=120°,则∠ACB的度数为30°.环节2合作探究,解决问题活动1小组讨论(师生对学)【例1】如图,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC =3 cm,那么AE、AC、DE这三条线段之间有怎样的数量关系?请说明理由.【互动探索】(引发学生思考)根据“角平分线上的点到角两边距离相等”可得DE=CE,从而可知AE 、AC 、DE 之间的数量关系.【解答】AE +DE =AC =3 cm.理由如下: ∵∠ACB =90°,BE 平分∠ABC ,DE ⊥AB , ∴DE =CE ,由图可知,AC =AE +CE , 所以AC =AE +DE =3 cm.【互动总结】(学生总结,老师点评)本题考查了“角平分线上的点到角两边距离相等”的性质,熟记性质是解题的关键.【例2】如图,P 是OC 上一点,PD ⊥OA 于点D ,PE ⊥OB 于点E ,F 、G 分别是OA 、OB 上的点,且PF =PG ,DF =EG .求证:OC 是∠AOB 的平分线.【互动探索】(引发学生思考)要证OC 是∠AOB 的平分线,需证PD =PE ,而通过证Rt △PFD ≌Rt △PGE 即可得PD =PE .【证明】∵PD ⊥OA ,PE ⊥OB , ∴∠PDF =∠PEG =90°.在Rt △PFD 和Rt △PGE 中,∵⎩⎪⎨⎪⎧PE =PG ,DF =EC ,∴Rt △PFD ≌Rt △PGE (H.L.), ∴PD =PE .∵P 是OC 上一点,PD ⊥OA ,PE ⊥OB , ∴OC 是∠AOB 的平分线.【互动总结】(学生总结,老师点评)根据三角形全等得到PD =PE ,这样就把已知条件和角平分线的判定定理联系起来了.活动2巩固练习(学生独学)1.如图所示,在Rt△ACB中,∠C=90°,AD平分∠BAC,若BC=16,BD=9,则点D到AB的距离是(D)A.10 B.9C.8 D.72.如图,直线l、l′、l″表示三条相互交叉的公路,现计划建一个加油站,要求它到三条公路的距离相等,则可供选择的地址有(D)A.一处B.二处C.三处D.四处3.如图,∠B=∠C=90°,M是BC的中点,且DM平分∠ADC.(1)求证:AM平分∠DAB;(2)试说明线段DM与AM有怎样的位置关系?并证明你的结论.(1)证明:过点M 作ME ⊥AD 于点E . ∵DM 平分∠ADC ,∠C =90°,ME ⊥AD , ∴MC =ME . ∵M 是BC 的中点, ∴BM =MC =ME .又∵∠B =90°,ME ⊥AD , ∴AM 平分∠DAB .(2)解:AM ⊥DM .证明如下: ∵∠B =∠C =90°, ∴AB ∥DC ,∴∠BAD +∠ADC =180°.∵AM 平分∠DAB ,DM 平分∠ADC , ∴∠MAD =12∠BAD ,∠MDA =12∠ADC ,∴∠MAD +∠MDA =90°, ∴∠AMD =90°, ∴AM ⊥DM .环节3 课堂小结,当堂达标 (学生总结,老师点评)请完成本课时对应练习!。

浙教版数学八年级上册2.5《逆命题和逆定理》教学设计

浙教版数学八年级上册2.5《逆命题和逆定理》教学设计

浙教版数学八年级上册2.5《逆命题和逆定理》教学设计一. 教材分析《逆命题和逆定理》是浙教版数学八年级上册第2.5节的内容。

本节内容是在学生已经掌握了命题与定理的基本知识的基础上进行教学的。

通过本节课的学习,使学生掌握逆命题的概念,理解逆定理的含义,并能够运用逆定理解决一些实际问题。

教材通过生活中的实例,引导学生探究逆命题和逆定理,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和解决问题的能力,他们已经学习了命题与定理的基本知识,对于新的知识有一定的接受能力。

但是,对于一些抽象的概念和理论,学生可能还存在着一定的理解难度。

因此,在教学过程中,需要通过生活中的实例和具体的操作,帮助学生理解和掌握逆命题和逆定理。

三. 教学目标1.知识与技能目标:使学生掌握逆命题的概念,理解逆定理的含义,并能够运用逆定理解决一些实际问题。

2.过程与方法目标:通过探究逆命题和逆定理的过程,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。

四. 教学重难点1.重点:使学生掌握逆命题的概念,理解逆定理的含义。

2.难点:对于逆定理的理解和运用。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生探究逆命题和逆定理。

2.小组合作学习:让学生在小组内进行讨论和交流,培养团队合作意识。

3.问题驱动法:通过问题的设置和解决,激发学生的学习兴趣和解决问题的能力。

六. 教学准备1.教学PPT:制作相关的教学PPT,展示生活中的实例和相关的理论知识。

2.教学素材:准备一些相关的数学题目,用于巩固和拓展学生的知识。

3.教学设备:准备白板和粉笔,用于板书和展示。

七. 教学过程1.导入(5分钟)通过一个生活中的实例,引导学生思考逆命题和逆定理的概念。

例如,假设有一个命题:“如果一个人是学生,那么他喜欢数学。

”那么这个命题的逆命题就是:“如果一个人喜欢数学,那么他是学生。

浙教版八年级上册2.5逆命题和逆定理课程教学设计

浙教版八年级上册2.5逆命题和逆定理课程教学设计

《逆命题和逆定理》教学设计【设计者】主备黄璐烨。

【内容出处】浙江教育出版社八年级数学下册第2章第5课。

【素养指向】“逻辑推理”之“归纳类比”。

【教学目标】1.经历逆命题的概念的发生过程。

2.了解逆命题、逆定理的概念。

3.会识别两个命题是不是互逆命题。

会在简单情况下写出一个命题的逆命题。

4.了解原命题的的成立,其逆命题不一定成立。

5.理解线段的垂直平分线性质定理和逆定理的证明。

【时间预设】课内1课时加课后10分钟。

【教学过程】一、先行学习1.什么叫命题?2.什么是真命题,什么是假命题?3.命题的结构二、交互学习〖小组合学〗小组内同学思考:写出下列命题的条件和结论:①两直线平行,同位角相等;②同位角B C 相等,两直线平行;③如果a=b,那么a2=b2;④如果a2=b2,那么a=b。

〖展示评析〗小组推荐代表展示交流,其他小组质疑与纠错,交流评析后获得结论:在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。

我们把其中的一个叫做原命题,另一个叫做它的逆命题。

〖师生共学〗一个命题经证明是真命题,就可称为定理;如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的逆定理,这两个定理叫互逆定理。

〖即时练习〗1.说出下列命题的逆命题,并判定是真命题还是假命题:(1)两直线平行,内错角相等;(2)同位角相等;(3)磁悬浮列车是一种高速行驶时不接触地面的交通工具。

2.判断下列说法是否正确?请说明理由(1)假命题没有逆命题;(2)真命题没有逆命题;(3)每个命题都有逆命题;(4)真命题的逆命题是真命题。

3.下列定理中,哪些有逆定理?如果有逆定理,请说出逆定理。

⑴线段垂直平分线上的点到线段两端距离相等⑵两直线平行,同旁内角互补;⑶对顶角相等。

4.举例说明下列命题的逆命题是假命题:(1)如果一个整数的个位数字是5,那么这个整数能被5整除;(2)如果一个整数能被5整除,那么这个整数的个位数字是5。

逆命题与逆定理(3角平分线)说课稿

逆命题与逆定理(3角平分线)说课稿

逆命题与逆定理(3角平分线)说课稿逆命题与逆定理(3角平分线) 说课稿下面我从教材分析、教法学法、教学过程、板书设计说明几个方面谈谈对本节课的理解。

一、教材分析1、教材的地位和作用角平分线的概念在第一册的教材中已介绍过,它的性质很重要,在几何里证明线段或角相等时常常用到它们,同时在作图中也运用广泛,刚学过的运用HL定理证明直角三角形全等的方法为证明角平分线的性质定理和逆定理创造了条件。

性质定理和它的逆定理为证线段相等、角相等,开辟了新的途径,简化了证明过程。

2、重点与难点分析本节内容的重点是角平分线的性质定理,逆定理及它们的应用。

本节内容的难点是:a、角平分线定理和逆定理的应用;b、这两个定理的区别;、学生对证明两个三角形全等的问题已经很熟悉了,所以证题时,不习惯直接应用定理,仍然去找全等三角形,结果相当于重新证明了一次定理。

3、教学目标(一)知识目标:(1)掌握角平分线的性质定理和逆定理;(2)能够运用性质定理和逆定理证明两个角相等或两条线段相等;(二)能力目标:(1)通过定理的推导,培养学生的归纳能力(2)通过定理的初步应用,培养学生的逻辑推理能力及创新的能力.(三)情感目标:(1)通过学生的主动探索让学生体验获取数学知识的成就感;(2)通过对角平分线的进一步认识,渗透运用不同的观点,从不同的侧面认识事物的辩证思维方法。

二、教法学法学生是学习的主体,只的学生真正融入到课堂教学中,学生才会深切地感受到数学带给他们的乐趣。

这节课,我主要采用学生自己动手实践,观察,组织讨论等方法,多媒体引导,以学生为主,给学生提供足够的活动时间,充分发挥他们的个性,让学生在实践中感受知识的力量,通过观察,让学生在观察中发现,在发现中探索,在探索中创新。

充分发挥他们的主观能动性,最大限度的发挥他们的创造力。

让学生成为课堂的主人。

教师只是在学生的思维受阻的情况下进行适时的引导。

三、教学过程1、通过生活中的实例,创设情境通过实例1的思考与探索,让学生复习了点到直线的距离这一概念。

华师大版数学八年级上册13.5《逆命题与逆定理》教学设计

华师大版数学八年级上册13.5《逆命题与逆定理》教学设计

华师大版数学八年级上册13.5《逆命题与逆定理》教学设计一. 教材分析《逆命题与逆定理》是华师大版数学八年级上册第13.5节的内容。

本节主要让学生了解逆命题和逆定理的概念,理解它们之间的关系,并能够运用逆定理判断命题的真假。

教材通过实例引入逆命题和逆定理的概念,接着给出了它们的定义和性质,最后通过例题和练习题来巩固所学知识。

二. 学情分析学生在学习本节内容前,已经学习了命题、定理和证明等基本知识,具备了一定的逻辑思维能力。

但逆命题和逆定理的概念较为抽象,学生可能难以理解和接受。

因此,在教学过程中,需要通过具体实例和生活中的问题来引导学生理解和掌握逆命题和逆定理。

三. 教学目标1.了解逆命题和逆定理的概念,理解它们之间的关系。

2.能够写出给定命题的逆命题,并能判断其真假。

3.能够运用逆定理判断命题的真假。

4.培养学生的逻辑思维能力和解决问题的能力。

四. 教学重难点1.逆命题和逆定理的概念。

2.判断逆命题的真假。

3.运用逆定理判断命题的真假。

五. 教学方法1.实例引入:通过具体实例引导学生理解和掌握逆命题和逆定理。

2.小组讨论:让学生分组讨论,共同探索逆命题和逆定理的关系,提高学生的合作能力。

3.练习巩固:通过大量练习题,让学生巩固所学知识,提高解题能力。

4.引导思考:引导学生思考生活中的问题,培养学生解决问题的能力。

六. 教学准备1.教学课件:制作课件,展示逆命题和逆定理的定义和性质。

2.练习题:准备适量练习题,用于巩固所学知识。

3.实例:准备生活中的实例,用于引导学生理解和掌握逆命题和逆定理。

七. 教学过程1.导入(5分钟)通过生活中的实例,如“如果一个人是学生,那么他一定是人类。

”引导学生思考,让学生知道一个命题可以分为题设和结论两部分,并且题设和结论可以互换位置。

2.呈现(10分钟)讲解逆命题和逆定理的概念,给出它们的定义和性质。

让学生理解逆命题是将原命题的题设和结论互换位置得到的新命题,而逆定理是如果一个命题的逆命题是真命题,那么这个命题也是真命题。

逆命题和逆定理

逆命题和逆定理

逆命题和逆定理(1)上海市西延安中学王健教学目标:1、掌握互逆命题,互逆定理的概念。

2、会叙述简单命题的逆命题。

3、搞清每一个命题都有它的逆命题,但逆命题不一定是真命题。

每一个定理不一定有逆定理。

教学重点:命题的题设和结论判别。

教学难点:搞清每一个命题都有它的逆命题,但逆命题不一定是真命题。

每一个定理不一定有逆定理。

教学过程:一、引入探究:给出三组命题,让学生分析每组命题的题设和结论,在此基础上找出以上三组命题的特点、联系与区别。

第一组命题:(1)两直线平行,内错角相等。

(2) 内错角相等,两直线平行。

第二组命题:(1)如果三角形的两条边相等,那么它们所对的角相等。

(2)如果三角形的两个角相等,那么它们所对的边相等。

第三组命题:(1)如果两个角是对顶角,那么它们相等。

(2)如果两个角相等,那么它们是对顶角。

探究结果:(1)每一组两个命题的题设和结论正好互换。

(2)第一二组两个命题都是真命题,第三组中第一个命题是真命题,第二个命题是假命题。

二、新授(一)定义定义1:在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题。

如果把其中一个叫做原命题,那么另一个命题叫做它的逆命题。

定义2:如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理。

(二)重要结论每一个命题都有逆命题。

但是真命题的逆命题不一定是真命题。

因此,并不是每一个定理都有逆定理。

三、练习练习1:说出下列命题的逆命题,并判断原命题和逆命题的真假。

(1)同旁内角互补,两直线平行。

(2)如果三角形中有两个角是锐角,那么另一个角是钝角。

( 3 ) 直角三角形的两个锐角互余。

(4)在直角三角形中,如果一个锐角等于30度,那么它所对的直角边等于斜边的一半。

(5)如果两个角的两边分别平行,那么这两个角相等。

练习2:说出下列命题的题设和结论,并写出它们的逆命题。

(1)线段的垂直平分线上的点和这条线段的两个端点的距离相等。

初二年级数学上册 2.5《逆命题和逆定理》教案 (新版)浙教版

初二年级数学上册 2.5《逆命题和逆定理》教案 (新版)浙教版

《逆命题和逆定理》教学目标1、经历逆命题的概念的发生过程,了解一个命题都是由条件与结论两部分构成,每个命题都有它的逆命题,命题有真假之分.2、了解逆命题、逆定理的概念.教学重点、难点重点:会识别两个命题是不是互逆命题,会在简单情况下写出一个命题的逆命题,了解原命题成立,其逆命题不一定成立.难点:能判断一些命题的真假性,并能运用推理的思想方法证明一类较简单的真命题,同时了解假命题的证明方法是举反例说明.教学过程一、回顾旧知,引入新课1、命题的概念:对某一件事情作出正确或不正确的判断的句子叫做命题.我们还知道,命题都有两部分,即条件和结论,它的一般形式是“如果…,那么…”例1.命题:“平行四边形的对角线互相平分”条件是 ,结论是 .命题:“对角线互相平分的四边形是平行四边形” 条件是 , 结论是 .以上两个命题有什么不同?请你说一说.归纳:在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.填表并思考命题条件 结论 命题真假⑴两直线平行,同位角相等⑵同位角相等,两直线平行⑶如果a b =,那么22a b =⑷如果22a b =,那么a b = 问:每个命题都有它的逆命题,但每个真命题的逆命题是否一定为真命题?二、例题教学例1、说出定理“线段垂直平分线上的点到这条线段两个端点的距离相等的逆命题,并证明这个逆命题是真命题.注意:①注意组织适当的语句叙述出逆命题,不能只是把原命题的条件和结论交换位置.②引导学生运用分类考虑的必要性.练习:⑴作业题4三、小结:这节课我们学到了什么?①逆命题、逆定理的概念.②能写出一个命题的逆命题.四、作业作业:1.课后作业题.。

19.3逆命题和逆定理(教学课件)-八年级数学上册

19.3逆命题和逆定理(教学课件)-八年级数学上册

• 命题的分类:
定理
假命题 举反例
• 定理的含义:从公理或其他真命题出发, 用推理方法证明为正确的,
并进一步作为判断其他命题真假的 依据
说出下列命题的题设与结论
命题
(1)两直线平行,内错角相等 (2)内错角相等,两直线平行
(3)如果a=b,那么a2=b2。 (4)如果a2=b2,那么a=b。
题设
两直线平行 内错角相等
假练命习题的2 逆请命判题断可这能些是假原命命题题也与逆命题 (的1真)可假能如是果真一命个题数是素数,那么这个数一定 逆是命奇题数:如. 果一个数是奇数,那么这个数一定是素
数。
(2)一个三每角个形命题中都如有果逆有命两题个角是锐角, 那么另一个角一定是钝角.
逆命题:一个三角形中如果有一个角是钝角,那么 另外两个角一定是锐角。 (3)全等三角形对应边相等. 逆命题:边都对应相等的两个三角形是全等三角形。
3.下列定理有没有逆定理?为什么? (1)对顶角相等. (2)全等三角形的对应边相等.
【解析】(1)定理“对顶角相等”的逆命题是:相等的两个角是对 顶角。这是一个假命题,所以“对顶角相等”没有逆定理。
(2)定理“全等三角形的对应边相等”的逆命题是:三边对应角相等 的两个三角形是全等三角形,这是一个真命题。所以“全等三角形的 对应边相等”有逆定理。
P
B
E C
证明:
连结PA,PB,PC.
∵ PD,PE分别是AB,AC的垂直平分线,
A
∴ PA=PB,PA=PC
(线段垂直平分线 上的点到线段
D
两端的距离相等) .
E
∴ PB=PC(等量代换),
P
∴点P在BC的垂直平分线上
B

《逆命题与逆定理》精品教案

《逆命题与逆定理》精品教案

逆命题与逆定理【教学目标】1、经历逆命题的概念的发生过程,了解一个命题都是由条件与结论两部分构成,每个命题都有它的逆命题,命题有真假之分。

2、了解逆命题、逆定理的概念。

【教学重点、难点】重点:会识别两个命题是不是互逆命题,会在简单情况下写出一个命题的逆命题,了解原命题成立,其逆命题不一定成立.难点:能判断一些命题的真假性,并能运用推理的思想方法证明一类较简单的真命题,同时了解假命题的证明方法是举反例说明. 【教学过程】一、 回顾旧知,引入新课1、命题的概念:对某一件事情作出正确或不正确的判断的句子叫做命题。

我们还知道,命题都有两部分,即条件和结论,它的一般形式是“如果…,那么…”列句子是命题的是( )A.画∠AOB=45°B. 小于直角的角是锐角吗C.连结CDD. 鸟是动物观察表中的命题,命题⑴与命题⑵有什么关系命题⑶与命题⑷呢归纳:在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题。

如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题。

命题条件结论命题真假⑴两直线平行,同位角相等 ⑵同位角相等,两直线平行 ⑶如果a b =,那么22a b =⑷如果22a b =,那么a b =填表并思考请学生分别说明上表的原命题,逆命题及真假。

思考:每个命题都有逆命题吗一个命题的逆命题是真命题还是假命题请举例说明一个原命题是真命题,逆命题也是真命题的例子;有没有原命题是真命题,而逆命题是假命题的例子一个命题经证明是真命题,就可称为定理;如果一个定理的逆命题能被证明是真命题,那么就叫它是原定理的逆定理,这两个定理叫互逆定理。

线段垂直平分线性质定理:线段垂直平分线上的点到这条线段两个端点的距离相等线段垂直平分线性质定理的逆定理:到一条线段两个端点距离相等的点,在这条线段的垂直平分线上二、例题教学1.说出下列命题的逆命题,并判定是真命题还是假命题:(1)两直线平行,同位角相等.(2)同位角相等(3)长方形有两条对称轴。

华东师大版八年级上册数学教学设计《互逆命题与互逆定理》

华东师大版八年级上册数学教学设计《互逆命题与互逆定理》

华东师大版八年级上册数学教学设计《互逆命题与互逆定理》一. 教材分析华东师大版八年级上册数学《互逆命题与互逆定理》一课,是在学生学习了命题与定理的基础上进行的。

本节课的主要内容是让学生理解互逆命题的概念,掌握互逆定理的证明过程,并能运用互逆定理解决实际问题。

教材通过丰富的例题和练习,引导学生探索互逆命题和互逆定理的规律,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析学生在学习本节课之前,已经掌握了命题与定理的基本概念,具备了一定的逻辑思维能力。

但是,对于互逆命题和互逆定理的理解和应用,还需要进一步的引导和培养。

因此,在教学过程中,教师需要关注学生的学习需求,针对学生的实际情况,采取适当的教学策略,帮助学生理解和掌握互逆命题和互逆定理。

三. 教学目标1.知识与技能目标:让学生理解互逆命题的概念,掌握互逆定理的证明过程,能运用互逆定理解决实际问题。

2.过程与方法目标:通过探索互逆命题和互逆定理的规律,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。

四. 教学重难点1.重点:互逆命题的概念,互逆定理的证明过程。

2.难点:互逆定理在实际问题中的应用。

五. 教学方法1.情境教学法:通过设置情境,引导学生主动探索互逆命题和互逆定理的规律。

2.小组合作学习:学生进行小组讨论和合作,培养学生的团队合作精神。

3.案例教学法:通过分析实际案例,帮助学生理解互逆定理的应用。

六. 教学准备1.教学PPT:制作包含互逆命题和互逆定理的定义、证明过程和应用实例的PPT。

2.教学案例:准备一些实际问题,用于引导学生运用互逆定理解决。

3.学习材料:为学生准备相关的学习材料,以便学生在课堂上进行自主学习。

七. 教学过程1.导入(5分钟)利用PPT展示一些实际问题,引导学生思考如何利用已学的命题和定理来解决这些问题。

通过问题的讨论,激发学生的学习兴趣,引出本节课的主题——互逆命题与互逆定理。

逆命题和逆定理

逆命题和逆定理

逆命题和逆定理一、本节学习指导这一节重在理解命题的概念,命题是能判断一件事情的正确与错误的句子,不能是问句,也不能是省略句,这个句子必须是完整的,并且能判断正确与否才叫做命题。

2、数学命题通常由题设、结论两部分组成。

题设是已知事项,结论是由已知事项推出的事项。

因此命题可以写成“如果222222,那么222222”的形式。

3、人们从长期实践中总结出来的真命题叫做公理,它们可以作为判断其他命题真假的原始数据。

4、有些命题是从公理或其他真命题出发,用推理的方法证明为正确的,并进一步作为判断其他命题真假的依据,这样的真命题叫做定理。

Array二、知识要点1、命题、定理、证明⑴理解:命题的定义包括两层含义:(1)命题必须是个完整的句子;(2)这个句子必须对某件事情做出判断。

⑵命题的分类(按正确、错误与否分)真命题(正确的命题)命题假命题(错误的命题)⑶公理:的真命题叫公理。

⑷定理:的依据,这样的命题叫定理。

⑸⑹证明的一般步骤①根据题意,画出图形。

②③2、常用数学口诀.平方差公式: 22()()-=+-a b a b a b口诀:平方差公式有两项,符号相反切记牢,首加尾乘首减尾,莫与完全公式相混淆。

完全平方差公式: 222a b a ab b-=-+()2完全平方和公式:222+=++()2a b a ab b口诀:完全平方有三项,首尾符号是同乡,首平方、尾平方,首尾二倍放中央;首±尾括号带平方,尾项符号随中央。

证明知识点一证明的含义从一个命题的条件出发,通过讲道理(推理),得出它的结论成立,从而判定该命题为真,这个过程叫做证明。

注意:(1)证明一个命题时,首先要分清命题条件和结论,其次要从已知条件出发,运用定义、公理、定理进行推理,得出结论。

(2)证明的过程必须做到步步有据。

知识点二命题的证明证明几何命题的表述格式:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写条件,在“求证”中写出结论;(3)在“证明”中写出推理过程。

《互逆命题与互逆定理》参考教案

《互逆命题与互逆定理》参考教案

§13.5 逆命题与逆定理互逆命题与互逆定理教学目的:1.理解互逆命题与互逆定理2.准确应用互逆命题与互逆定理重点与难点:区分互逆命题与互逆定理教学过程:我们已经知道,表示判断的语句叫做命题.例如“两直线平行,内错角相等”、“内错角相等,两直线平行”都是命题.上面两个命题的条件和结论恰好互换了位置.一般来说,在两个命题中,假如第一个命题的条件是第二个命题的结论,而第一个命题的结论是第二个命题的条件,那么这两个命题叫做互逆命题.假如把其中一个命题叫做原命题,那么另一命题就叫做它的逆命题.命题“两直线平行,内错角相等”的条件为____________________________;结论为_________________________________.所以它的逆命题为_______________________________________.每一个命题都有逆命题,只要将原命题的条件改成结论,并将结论改成条件,便可得到原命题的逆命题.但是原命题准确,它的逆命题未必准确.例如真命题“对顶角相等”的逆命题为“相等的角是对顶角”,此命题就是假命题.假如一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.我们已经知道命题“两直线平行,内错角相等”和它的逆命题“内错角相等,两直线平行”都是定理,所以它们就是互逆定理.一个假命题的逆命题能够是真命题,甚至能够是定理.例如“相等的角是对顶角”是假命题,但它的逆命题“对顶角相等”是真命题,且是定理.练习1.说出以下命题的条件和结论,并说出它们的逆命题:(1)假如一个三角形是直角三角形,那么它的两个锐角互余;(2)等边三角形的每个角都等于60°;(3)全等三角形的对应角相等;(4)假如a=b,那么a3=b3.2.举例说明以下命题的逆命题是假命题:(1)假如一个整数的个位数字是5,那么这个整数能被5整除;(2)假如两个角都是直角,那么这两个角相等.3.在你所学过的知识内容中,有没有原命题与逆命题都准确的例子(即互逆定理)?试举出几对.课堂小结:总结一下你所学过的知识。

高中数学逆命题教案模板

高中数学逆命题教案模板

高中数学逆命题教案模板
一、教学目标
1.了解逆命题的概念和性质;
2.能够分析逆命题的证明过程;
3.能够应用逆命题解决实际问题。

二、教学重点和难点
重点:逆命题的定义和证明方式;
难点:逆命题的应用解决实际问题。

三、教学内容
1.逆命题的概念和表达方式;
2.逆命题的证明方法;
3.逆命题的应用案例。

四、教学过程
1.引入:通过一个简单的例子引入逆命题的概念;
2.讲解:介绍逆命题的定义和性质,讲解逆命题的证明方法;
3.练习:让学生做一些基础练习,巩固逆命题的概念和证明方法;
4.拓展:提供一些实际问题,让学生应用逆命题解决问题;
5.总结:总结逆命题的重点和难点,梳理学习内容。

五、教学资源
1.课件:包含逆命题的定义和证明方法;
2.练习题:包含逆命题的练习题和实际问题。

六、教学评价
1.课堂问答:随堂进行适时提问,检验学生对逆命题的理解;
2.作业布置:布置适量的练习题,检验学生对逆命题的掌握情况;
3.课后反馈:提供及时反馈,帮助学生及时纠正错误。

七、教学反思
1.针对学生的学习情况,及时调整教学内容和方法;
2.激发学生的学习兴趣,增强学生对逆命题的掌握和应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4. 逆命题、逆定理
我们已经知道,可以判断正确或错误的句子叫做命题.例如“两直线平行,内错角相等”和“内错角相等,两直线平行”都是命题.
在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一命题就叫做它的逆命题.
命题“两直线平行,内错角相等”的题设为______________________________ ____________________________________________________________________;结论为______________________________________________________________.它的逆命题为_________________________________________________.
每一个命题都有逆命题,只要将原命题的题设改成结论,并将结论改成题设,便可得到原命题的逆命题.但是原命题正确,它的逆命题未必正确.例如真命题“对顶角相等”的逆命题为“相等的角是对顶角”,此命题就是一个假命题.如果一个定理的逆命题也是定理,那么这两个定理叫做互逆定理,其中的一个定理叫做另一个定理的逆定理.
我们已经知道命题“两直线平行,内错角相等”和它的逆命题“内错角相等,两直线平行”都是定理,因此它们就是互逆定理.
在第19章中,我们已经学过勾股定理,即
勾股定理:直角三角形两直角边的平方和等于斜边的平方.
我们可以证明,勾股定理的逆命题也是正确的.
勾股定理的逆定理如果三角形的一条边的平方等于另外两条边的平方和,那么这个三角形是直角三角形.
已知:如图27.2.9,在△ABC中,AB=c, BC=a,CA=b,且a2+b2=c2.
图27.2.9
求证:△ABC是直角三角形.
分析首先构造一个直角三角形A' B' C',使得∠C'=90°,B' C'=a,C' A'=b,然后可以证明△ABC≌△A' B' C',从而可知△ABC是直角三角形.
做一做
设三角形三边长分别是下列各组数,试判断各三角形是不是直角三角形.如果是直角三角形,请指出哪条边所对的角是直角.
(1)7,24,25;(2)12,35,37;
(3)35,91,84.
练习
1. 指出下列命题的题设和结论,并说出它们的逆命题:
(1)如果一个三角形是直角三角形,那么它的两个锐角互余.
(2)等边三角形的每个角都等于60°.
(3)全等三角形的对应角相等.
(4)到一个角的两边距离相等的点在这个角的平分线上.
(5)线段的垂直平分线上的点到这条线段的两个端点的距离相等.
2. 举例说明下列命题的逆命题是假命题:
(1)如果一个整数的个位数字是5,那么这个整数能被5整除.
(2)如果两个角都是直角,那么这两个角相等.
3. 在你所学过的知识中,有没有原命题与逆命题都正确的例子(即互逆定理)?试举出2对.
4. 三角形ABC三边长a、b、c分别是下列各组数,试判断各三角形是不是直角三角形.如果是,那么哪一条边所对的角是直角?
(1)a=8, b=15, c=17;(2)a=241, b=10, c=8;
(3)a=6, b=8, c=10;(4)a=1, b=2, c=3.
5. 给定一个三角形的两边长分别为5、12,当第三条边为多长时,这个三角形是直角三角形?
习题27.21.
1.如图,在△ABC中,AB=AC,DB=DC.求证:(1)∠1=∠2;(2)AD⊥
BC.
(第1题)(第2题)
2.如图,在△ABC中,∠ABC、∠ACB的平分线交于点D,EF经过点D,且
EF∥BC.求证:EF=BE+CF.
3.如图,E是∠AOB的平分线上一点,EC⊥AO,ED⊥BO,垂足分别是C、D.求
证:∠EDC=∠ECD.
(第3题) (第4题)
4. 如图,在△ABC 中,∠A =30°,∠C =90°,BD 是∠ABC 的平分线,交AC
于D .求证:点D 在AB 的垂直平分线上.
5. 如图,△ABD 、△ACE 都是等边三角形.求证:CD =BE .(提示:找出分别
以CD 、BE 为边的两个全等三角形)
(第5题)
6. 写出下列命题的逆命题,并判断它是真命题还是假命题.
(1) 如果x =y ,那么x 2=y 2;
(2) 如果一个三角形有一个角是钝角,那么它的另外两个角是锐角.
(3)。

相关文档
最新文档