数列的通项公式与求和知识点及题型归纳总结

合集下载

数列知识点归纳总结

数列知识点归纳总结

数列知识点归纳总结一、基本概念1. 数列的定义数列是按照一定的顺序排列的一组数,通常用a1, a2, a3, …,an来表示,其中ai表示数列中的第i个数。

数列中的数称为项,n称为项数。

2. 数列的类型数列可以根据项的规律和性质进行分类,主要包括等差数列、等比数列、递推数列等。

3. 数列的通项公式数列的通项公式是描述数列中任意一项与其序号之间的关系的公式,通常用an或者Un 表示第n个项,用n表示项数。

数列的通项公式可以根据数列的类型和性质进行求解。

二、等差数列1. 定义如果一个数列满足任意相邻两项之差都相等的条件,那么这个数列就是等差数列,差值为d。

2. 性质(1)通项公式:对于等差数列an,其通项公式为an=a1+(n-1)d。

(2)前n项和:等差数列的前n项和Sn= (a1+an) * n /2。

(3)求和公式推导:对于等差数列Sn= (a1+an) * n /2,可用数学归纳法进行证明。

3. 等差数列的应用等差数列在数学和现实生活中有着重要的应用,如计算机算法中的序列求和、物理学中等速直线运动、金融学中的等额本息贷款等。

三、等比数列1. 定义等比数列是指数列中的任意相邻两项的比值都相等的数列,比值为q。

2. 性质(1)通项公式:对于等比数列an,其通项公式为an=a1*q^(n-1)。

(2)前n项和:等比数列的前n项和Sn= (a1*(q^n - 1)) / (q-1)。

3. 等比数列的应用等比数列在数学和现实生活中也有着重要的应用,如复利计算、生物学中种群增长问题、物理学中的指数衰减等。

四、递推数列1. 定义递推数列是指数列中的每一项都可以由前面的一项或几项通过某种规律得到的数列。

2. 性质递推数列的通常是通过递推关系式进行求解,递推数列的解可以是显式公式和递推公式。

3. 递推数列的应用递推数列是数学中的重要概念,它在代数、离散数学、概率论等领域都有着广泛的应用。

五、常见数列形式1. 斐波那契数列斐波那契数列是指数列中第n项等于其前两项之和的数列,通常用F(n)表示,前几项为0, 1, 1, 2, 3, 5, 8, 13, …2. 调和数列调和数列是指数列中的每一项是调和级数的一部分的数列,通常用H(n)表示,前几项为1, 1/2, 1/3, 1/4, 1/5, …2. 等差-等比混合数列等差-等比混合数列是指数列中的相邻两项之间既满足等差数列的条件,又满足等比数列的条件的数列。

数列求和与求通项公式方法总结

数列求和与求通项公式方法总结

数列求和与求通项公式方法总结数列是数学中的一种重要概念,它是由一列按照一定规律排列的数字所组成的序列。

在数列中,求和与求通项公式是两个重要的问题,本文将对这两个问题的方法进行总结。

首先,我们来讨论数列的求和问题。

数列的求和是指对一个给定的数列中的所有元素进行求和的操作。

数列求和的方法主要有以下几种。

1.等差数列求和公式:对于一个等差数列,其通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。

等差数列求和的公式为Sn=[(a1+an)n]/2,其中an为末项。

这个公式适用于等差数列的求和问题,可以更快地求得数列的和。

2.等差数列求和差法:对于一个等差数列,当项数为n时,可以通过求和的差法Sn=(a1+an)(n/2)来求得数列的和。

这个方法适用于项数较多且公差较小的等差数列。

3.等比数列求和公式:对于一个等比数列,其通项公式为An=a1*r^(n-1),其中a1为首项,r为公比,n为项数。

等比数列求和的公式为Sn=a1*(1-r^n)/(1-r),其中r不等于1、这个公式适用于等比数列的求和问题,可以轻松地求得数列的和。

4.等比数列求和减法:对于一个等比数列,当公比r满足,r,<1时,可以通过求和的减法Sn=a1/(1-r)来求得数列的和。

这个方法适用于公比绝对值小于1的等比数列。

其次,我们来讨论数列的求通项公式问题。

数列的通项公式是指能够根据数列的位置n来快速计算出数列中相应位置上的数值的公式。

数列求通项公式的方法主要有以下几种。

1.等差数列通项公式:对于一个等差数列,其通项公式为An=a1+(n-1)d,其中a1为首项,d为公差,n为项数。

通过这个公式,我们可以直接根据位置n来计算出数列中第n项的数值。

2.等比数列通项公式:对于一个等比数列,其通项公式为An=a1*r^(n-1),其中a1为首项,r为公比,n为项数。

通过这个公式,我们可以直接根据位置n来计算出数列中第n项的数值。

数列求和及求通项方法总结

数列求和及求通项方法总结

数列求和及求通项一、数列求和的常用方法1、公式法:利用等差、等比数列的求和公式进行求和2、错位相减法:求一个等差数列与等比数列的乘积的通项的前n 项和,均可用错位相减法 例:已知数列1312--=n n n a ,求前n 项和n S 3、裂项相消法:将通项分解,然后重新组合,使之能消去一些项①形如)(1k n n a n +=,可裂项成)11(1kn n k a n +-=,列出前n 项求和消去一些项②形如kn n a n ++=1,可裂项成)(1n k n ka n -+=,列出前n 项求和消去一些项 例:已知数列1)2()1)(1(11=≥+-=a n n n a n ,,求前n 项和n S4、分组求和法:把一类由等比、等差和常见的数列组成的数列,先分别求和,再合并。

例:已知数列122-+=n a nn ,求前n 项和n S5、逆序相加法:把数列正着写和倒着写依次对应相加(等差数列求和公式的推广)一、数列求通项公式的常见方法有:1、关系法2、累加法3、累乘法4、待定系数法5、逐差法6、对数变换法7、倒数变换法 8、换元法 9、数学归纳法累加法和累乘法最基本求通项公式的方法求通项公式的基本思路无非就是:把所求数列变形,构造成一个等差数列或等比数列,再通过累加法或累乘法求出通项公式。

二、方法剖析1、关系法:适用于)(n f s n =型求解过程:⎩⎨⎧≥-===-)2()1(111n s s n s a a n n n例:已知数列{}n a 的前n 项和为12++=n n S n ,求数列{}n a 的通项公式2、累加法:适用于)(1n f a a n n +=+——广义上的等差数列求解过程:若)(1n f a a n n +=+则)1(12f a a =- )2(23f a a =-所有等式两边分别相加得:∑-==-111)(n k n k f a a 则∑-=+=111)(n k nk f a a例:已知数列{}n a 满足递推式)2(121≥++=-n n a a n n ,{}的通项公式,求n a a 11= 3、累乘法:适用于n n a n f a )(1=+——广义上的等比数列求解过程:若n n a n f a )(1=+,则)(1n f a a nn =+ ......累加则)1()......2()1(12312-===-n f a a f a a f a a n n , 所有等式两边分别相乘得:∏-==111)(n k n k f a a 则∏-==111)(n k n k f a a 例:已知数列{}n a 满足递推式)2(21≥=-n a a n nn ,其中{}的通项公式,求n a a 31= 4、待定系数法:适用于)(1n f pa a n n +=+①形如)1,0,;,(1≠≠+=+p b p b p b pa a n n 为常数型(还可用逐差法)求解过程:构造数列)(1k a p k a n n +=++,展开得k pk pa a n n -+=+1,因为系数相等,所以解方程b k pk =-得1-=p b k ,所以有:)1(11-+=-++p ba p pb a n n ,这样就构造出了一个以11-+p b a 为首项,公比为p 的等比数列⎭⎬⎫⎩⎨⎧-+1p b a n 。

数列求通项知识点总结与题型归纳讲义

数列求通项知识点总结与题型归纳讲义

10.3数列求通项知识梳理.数列求通项1.利用n S 与n a 的关系求通项公式;2.累加法:若已知1a 且()()12n n a a f n n --=≥的形式;3.累乘法:若已知1a 且()()12nn a f n n a -=≥的形式;4.构造法:若已知1a 且()12,0,1n n a pa b n p p -=+≥≠≠的形式qpa a n n +=+1()n f pa a n n +=+1n n n qa pa a +=++12(其中p ,q 均为常数);题型一.利用Sn 与an 的关系考点1.已知Sn 与an 的关系求an1.已知数列{a n }为等差数列,且a 3=5,a 5=9,数列{b n }的前n 项和S n =23b n +13.(Ⅰ)求数列{a n }和{b n }的通项公式;【解答】解:(Ⅰ)数列{a n }为等差数列,∴d =12(a 5﹣a 3)=2,又∵a 3=5,∴a 1=1,∴a n =2n ﹣1,当n =1时,S 1=23b 1+13,∴b 1=1,当n ≥2时,b n =S n ﹣S n ﹣1=23b n −23b n ﹣1,∴b n =﹣2b n ﹣1,即数列{b n }是首项为1,公比为﹣2的等比数列,∴b n =(﹣2)n ﹣1,2.已知数列{a n }的前n 项和S n 满足2=3(−1)(∈∗).(1)求数列{a n}的通项公式;【解答】解:(1)当n=1时,2S1=3(a1﹣1)=2a1,得a1=3,当n≥2时,2S n=3(a n﹣1),2S n﹣1=3(a n﹣1﹣1),两式作差可得2a n=3a n﹣3a n﹣1,即a n=3a n﹣1,所以数列{a n}是以3为首项,3为公比的等比数列,所以a n=3n;3.记S n为数列{a n}的前n项和,已知a n<0,a n2﹣3a n=4﹣6S n.(1)求数列{a n}的通项公式;【解答】解:(1)当n=1时,12−31=4−61,所以a1=﹣4或a1=1(舍)当n≥2时,因为2−3=4−6,所以K12−3K1=4−6K1,两式相减得(a n+a n﹣1)(a n﹣a n﹣1+3)=0,因为a n<0,所以a n﹣a n﹣1=﹣3,所以数列{a n}是以﹣4为首项﹣3为公差的等差数列,所以a n=﹣4+(n﹣1)⋅(﹣3)=﹣3n﹣1.考点2.带省略号1.设数列{a n}满足1+32+⋯+(2−1)=2o∈∗).(Ⅰ)求a1,a2及{a n}的通项公式;【解答】解:(Ⅰ)∵a1+3a2+…+(2n﹣1)a n=2n,当n=1时,a1=2,当n=2时,a1+3a2=4,∴a2=23,∵a1+3a2+…+(2n﹣1)a n=2n,①,∴n≥2时,a1+3a2+…+(2n﹣3)a n﹣1=2(n﹣1),②①﹣②得:(2n﹣1)•a n=2,∴a n=22K1,又n=1时,a1=2满足上式,∴=22K1;2.已知数列{a n},a n=2n+1,则12−1+13−2+⋯+1r1−=()A.1+12B.1﹣2n C.1−12D.1+2n【解答】解:a n+1﹣a n=2n+1+1﹣(2n+1)=2n∴1r1−=12∴12−1+13−2+⋯+1r1−=12+122+⋯+12=1−12故选:C.题型二.累加法1.已知数列{a n}满足a1=1,a n+1=a n+n+1.(1)求{a n}的通项公式;【解答】解:(1)由a1=1,a n+1=a n+n+1,可得n≥2时,a n﹣a n﹣1=n,可得a n=a1+(a2﹣a1)+(a3﹣a2)+...+(a n﹣a n﹣1)=1+2+3+...+n=12n(n+1),即a n=12n(n+1),n∈N*;2.设数列{a n}满足a1=2,a n+1﹣a n=3•22n﹣1,则数列{a n}的通项公式是a n=22n﹣1.【解答】解:∵a1=2,a n+1﹣a n=3•22n﹣1,∴n≥2时,a n=a1+(a2﹣a1)+(a3﹣a2)+…+(a n﹣a n﹣1)=2+3•2+3•23+…+3•22n﹣3=2+3⋅2(1−4K1)1−4=22n﹣1;当n=1时a1=2适合上式.∴=22K1.故答案为:22n﹣1.3.在数列{a n}中,1=2,r1=+B(1+1),则数列{a n}的通项a n=.【解答】解:a1=2=2+ln1,3=2+B2+B(1+12)=2+ln [2×(1+12)]=2+ln 3,4=2+B3+B(1+13)=2+ln 4.由此可知a n =2+lnn .故选:D .题型三.累乘法1.在数列{a n }中,已知(n 2+n )a n +1=(n 2+2n +1)a n ,n ∈N +,且a 1=1,求a n 的表达式.【解答】解:由题意,r1r1=∵a 1=1,∴{}是以1为首项,0为公差的等差数列,∴=1,∴a n =n .2.已知数列{a n }满足a 1=3,a n +1=3K13r2a n (n ≥1),求a n 的通项公式.【解答】解:∵数列{a n }满足a 1=3,a n +1=3K13r2a n (n ≥1),∴K1=3K43K1(n ≥2),∴a n =K1⋅K1K2•…•32•21⋅1=3K43K1•3K73K4•…•58•25•3=63K1,当n =1时也成立.∴a n =63K1.3.已知正项数列{a n }的首项a 1=1,且2na n +12+(n ﹣1)a n a n +1﹣(n +1)a n 2=0(n ∈N *),则{a n }的通项公式为a n =(12)K1⋅.【解答】解:∵2na n +12+(n ﹣1)a n a n +1﹣(n +1)a n 2=0,∴(2na n +1﹣(n +1)a n )•(a n +1+a n )=0,∵数列{a n }为正项数列,∴2na n +1﹣(n +1)a n =0,∴r1=r12,∴21=22,32=34,43=46,…K1=2(K1),两边累乘得,1=22×34×46×⋯×2(K1)=n •(12)K1∴a n =(12)K1⋅,故答案为:(12)K1⋅,题型四.构造法1.已知数列{a n }的前n 项和为S n ,满足a n +1=2a n +1,且a 1+2a 2=a 3.(1)求数列{a n }的通项公式;【解答】解:(1)数列{a n }的前n 项和为S n ,满足a n +1=2a n +1,整理得:a n +1+1=2(a n +1),由a 1+2a 2=a 3=2a 2+1,解得a 1=1,故数列{a n +1}是以a 1+1=2为首项,2为公比的等比数列;所以=2−1.2.已知数列{a n }满足a n =3a n ﹣1+3n (n ≥2,n ∈N *),首项a 1=3.(1)求数列{a n }的通项公式;【解答】解:(1)数列{a n }满足=3K1+3(n ≥2,n ∈N *),∴−3K1=3,又∵3n ≠0,∴3−K13K1=1为常数,∴数列{3}是首项为13=1、公差为1的等差数列,∴3=n,∴=⋅3(n∈N*);3.已知数列{a n}满足1=12,r1=+1,则a2021=()A.12019B.12020C.12021D.12022【解答】解:因为r1=+1,则1r1−1=1,又1=12,则11=2,所以数列{1}是首项为2,公差为1的等差数列,则1=+1,所以=1r1,则a2021=12021+1=12022.故选:D.。

数列的通项与求和例题和知识点总结

数列的通项与求和例题和知识点总结

数列的通项与求和例题和知识点总结一、数列的通项在数列中,通项公式是指第 n 项 an 与项数 n 之间的关系式。

(一)等差数列的通项公式若一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列。

其通项公式为:an = a1 +(n 1)d ,其中a1 为首项,d 为公差。

例如:数列 2,5,8,11,14,是一个首项 a1 = 2,公差 d = 3 的等差数列,其通项公式为 an = 2 +(n 1)×3 = 3n 1 。

(二)等比数列的通项公式若一个数列从第二项起,每一项与它的前一项的比值等于同一个常数,这个数列就叫做等比数列。

其通项公式为:an = a1×q^(n 1) ,其中 a1 为首项,q 为公比。

例如:数列 2,4,8,16,32,是一个首项 a1 = 2,公比 q = 2 的等比数列,其通项公式为 an = 2×2^(n 1) = 2^n 。

(三)常见的求通项公式的方法1、观察法通过对数列前几项的观察,找出规律,从而推测出通项公式。

例如:数列 1,3,5,7,9,很容易观察出其通项公式为 an = 2n1 。

2、累加法当数列的递推关系为 an an 1 = f(n) 时,可用累加法求通项公式。

例如:已知数列{an} 满足 a1 = 1,an an 1 = n ,求 an 。

因为 an an 1 = n ,所以a2 a1 = 2a3 a2 = 3an an 1 = n将上述式子相加得:an a1 = 2 + 3 ++ n所以 an = a1 + 2 + 3 ++ n = 1 +(2 + 3 ++ n) = 1 + n(n+ 1)/2 。

3、累乘法当数列的递推关系为 an / an 1 = f(n) 时,可用累乘法求通项公式。

例如:已知数列{an} 满足 a1 = 1,an / an 1 = n ,求 an 。

因为 an / an 1 = n ,所以a2 / a1 = 2a3 / a2 = 3an / an 1 = n将上述式子相乘得:an / a1 = 2×3××n所以 an = a1×2×3××n = n! 。

数列 知识点总结及数列求和,通项公式的方法归纳(附例题)

数列 知识点总结及数列求和,通项公式的方法归纳(附例题)

⎩⎨⎧无穷数列有穷数列按项数 2221,21(1)2nn a a n a a n a n=⎧⎪=+=⎪⎨=-+⎪⎪=-⋅⎩n n n n n常数列:递增数列:按单调性递减数列:摆动数列:数 列数列的考查主要涉及数列的基本公式、基本性质、通项公式,递推公式、数列求和、数列极限、简单的数列不等式证明等.1.数列的有关概念:(1) 数列:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项. (2) 从函数的观点看,数列可以看做是一个定义域为正整数集N +(或它的有限子集)的函数。

当自变量从小到大依次取值时对应的一列函数值。

由于自变量的值是离散的,所以数列的值是一群孤立的点。

(3) 通项公式:如果数列{}n a 的第n 项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(n f a n =.如: 221n a n =-。

(4) 递推公式:如果已知数列{}n a 的第一项(或前几项),且任何一项n a 与它的前一项1-n a (或前几项)间的关系可以用一个式子来表示,即)(1-=n n a f a 或),(21--=n n n a a f a ,那么这个式子叫做数列{}n a 的递推公式. 如数列{}n a 中,121n n a a -=+,其中121n n a a -=+是数列{}n a 的递推公式.再如: 121,2,a a ==12(2)n n n a a a n --=+>。

2.数列的表示方法:(1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。

(3) 解析法:用通项公式表示。

(4)递推法:用递推公式表示。

3.数列的分类:按有界性M M M >Mn n n n +⎧≤∈⎪⎨⎪⎩有界数列:存在正数,总有项a 使得a ,n N 无界数列:对于任何正数,总有项a 使得a4.数列{a n }及前n 项和之间的关系:123n n S a a a a =++++ 11,(1),(2)n n n S n a S S n -=⎧=⎨-≥⎩等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d ,这个数列叫做等差数列,常数d 称为等差数列的公差. 2.通项公式与前n 项和公式⑴通项公式d n a a n )1(1-+=,1a 为首项,d 为公差.可变形为d m n a a m n )(-+= ⑵前n 项和公式2)(1n n a a n S +=或d n n na S n )1(211-+=. 3.等差中项如果b A a ,,成等差数列,那么A 叫做a 与b 的等差中项.即:A 是a 与b 的等差中项⇔b a A +=2⇔a ,A ,b 成等差数列.4.等差数列的判定方法⑴定义法:d a a n n =-+1(+∈N n ,d 是常数)⇔{}n a 是等差数列; ⑵中项法:212+++=n n n a a a (+∈N n )⇔{}n a 是等差数列. 5.常用性质:{}n a 是等差数列(1)若m n p q +=+,则m n p q a a a a +=+;(2)数列{}p a n +、{}n pa (p 是常数)都是等差数列;在等差数列{}n a 中,等距离取出若干项也构成一个等差数列,即 ,,,,32k n k n k n n a a a a +++为等差数列,公差为kd 。

数列通项公式和求和综合常见题型归纳

数列通项公式和求和综合常见题型归纳
2 S . =1 x 2 +4 x 2 +… +( 3 n一5 ) ×2 一 +( 3 n一2 ) ×2
第 二 步 : 变 形 得 到 A n一 | L= B , 即 : 数 列 { j 是 一 求和 :
个 以 =。 为首项 ,以 B为公差的等差数列 .


配凑等差数 列法求通项公式和错位 相减 求和
1 .配凑等 差数列法求通项公 式的 常见模型 递推公式形如 : + l = A・ +曰・ A ,A≠l ,B#O .
得 : 数 列 { 喜 ) 是 一 个 以 = 1 为 首 项 , 以 3 为 公 差 的 等
差数列 , 由 一=1 +( 凡一1 ) ×3=3 n一2= % =( 3 n一2 )‘ 2 一 , n∈

3, n∈ N .
2 4 硅 教 育 论 坛[ 2 0 1 4 年 第4 期 ]
比较系数 : ( A一1 ) p k jp
( A —1 ) q— p=6 j g=
T ,

=7×2 +3 一( n +3 ) , . n ∈N .
( 2 ) 由 瓯=7 X 2 n +3 一t 一( n+3 ) , n∈ N ,下可用分组求和法
式. = +3 j 一
1 =2
3・ 2 n
( 2 ) 当f( n ) =k n 4 - b , k ≠0时 , ‰+ I =A・ ‰+ k n+ b ,
设: + 1 +q ( n+1 ) +q =A ・ ( a n + p n+ q ) . 还原 : a n + l = A・ % +( A 一1 p n+( A 一1 ) q— P .
具体作 法 :第一步 :递推公式 两边 同时除以 A ,则原 递推

数列的通项公式与求和公式总结

数列的通项公式与求和公式总结

数列的通项公式与求和公式总结数列是由一系列按照特定规律排列的数字组成的序列,通常用公式表示。

数列的通项公式是指能够根据数列的位置得出该位置上的数值的公式,而求和公式则是指能够计算数列中所有数值的和的公式。

以下是一些常见数列的通项公式与求和公式的总结。

等差数列:等差数列是一个公差为d的数列,其中每一项与前一项之间的差值相等。

其通项公式和求和公式如下:通项公式:an = a1 + (n-1)d其中an表示数列的第n项,a1表示数列的第一项,d表示公差。

求和公式:Sn = (n/2)(a1 + an)其中Sn表示数列前n项的和。

等比数列:等比数列是一个公比为q的数列,其中每一项与前一项之间的比值相等。

其通项公式和求和公式如下:通项公式:an = a1 * q^(n-1)其中an表示数列的第n项,a1表示数列的第一项,q表示公比。

求和公式:Sn = (a1 * (q^n - 1))/(q - 1)其中Sn表示数列前n项的和。

斐波那契数列:斐波那契数列是一个特殊的数列,其前两项为1,后续每一项是前两项之和。

其通项公式和求和公式如下:通项公式:an = (1/sqrt(5)) * (((1 + sqrt(5))/2)^n - ((1 - sqrt(5))/2)^n)其中an表示数列的第n项。

求和公式:Sn = a1 * (1 - ((1 + sqrt(5))/2)^n)/(1 - ((1 + sqrt(5))/2))其中Sn表示数列前n项的和。

这些是常见数列的通项公式与求和公式的总结,通过这些公式,我们可以通过给定的位置计算出数列中的数值,或者计算数列中所有数值的和。

在数学中,数列的通项公式与求和公式是非常重要的工具,能够帮助我们理解数列的规律和特性。

初中数学知识归纳数列的求和和通项

初中数学知识归纳数列的求和和通项

初中数学知识归纳数列的求和和通项数列是数学中常见的一种数学对象,它由一系列的数按照一定的规律排列组成。

在初中数学中,学生需要学习数列的求和和通项等重要知识。

本文将对初中数学中数列的求和和通项进行归纳总结,帮助同学们更好地理解和应用这一知识。

一、数列求和数列的求和是指将数列中的所有数进行累加的运算。

根据数列的特点,我们可以采用不同的方法来求解数列的和。

1.1 等差数列求和等差数列是指数列中的每一项与前一项之差都相等的数列。

设等差数列的首项为a₁,公差为d,共有n项,则等差数列的求和公式为: Sₙ = (2a₁ + (n - 1)d) * n / 2其中,Sₙ表示等差数列的前n项和。

1.2 等比数列求和等比数列是指数列中的每一项与前一项之比都相等的数列。

设等比数列的首项为a₁,公比为q(q≠0),共有n项(q>1时)或无穷多项(-1<q<1时),则等比数列的求和公式为:Sₙ = a₁ * (1 - qⁿ) / (1 - q)其中,Sₙ表示等比数列的前n项和。

1.3 部分和求和对于一些特殊的数列,我们可以通过求其部分和的方式来得到数列的求和结果。

例如,假设数列an满足an = n²,则部分和Sn的公式为: Sn = 1² + 2² + 3² + ... + n² = n * (n + 1) * (2n + 1) / 6二、数列通项数列的通项是指数列中的任意一项与它的序号之间的关系式。

对于已知规律的数列,我们可以通过观察找出其通项的规律,进而求解问题。

2.1 等差数列通项对于等差数列,设首项为a₁,公差为d,第n项为an,有如下通项公式:an = a₁ + (n - 1)d2.2 等比数列通项对于等比数列,设首项为a₁,公比为q,第n项为an,有如下通项公式:an = a₁ * q^(n - 1)2.3 Fibonacci数列通项Fibonacci数列是指数列中的每一项都是前两项的和,首项为1,第二项为1,即1, 1, 2, 3, 5, 8, 13, ...。

数列的通项与求和

数列的通项与求和

数列的通项与求和数列是数学中一个重要的概念,广泛应用于各个领域中。

在数列中,通项与求和是两个重要的概念。

本文将详细介绍数列的通项与求和的概念、性质和计算方法。

一、数列的通项数列的通项是指数列中第n个数的一般表示式。

在数列中,通项通常使用公式或递推关系给出。

1.1 公式求通项对于一些特殊的数列,可以通过观察数列中数的规律来得到通项的公式。

常见的数列包括等差数列和等比数列。

1.1.1 等差数列如果数列中的相邻两项之差固定为常数d,则该数列为等差数列。

等差数列的通项公式可以通过以下公式计算得到:an = a1 + (n - 1)d其中,an表示等差数列的第n项,a1表示等差数列的首项,d表示等差数列的公差,n表示项数。

1.1.2 等比数列如果数列中的相邻两项的比固定为常数q,则该数列为等比数列。

等比数列的通项公式可以通过以下公式计算得到:an = a1 * q^(n - 1)其中,an表示等比数列的第n项,a1表示等比数列的首项,q表示等比数列的公比,n表示项数。

1.2 递推关系求通项对于一些数列,无法通过观察数列中数的规律找到通项的公式,可以通过递推关系来得到通项。

递推关系是指数列中的每一项与前面一项之间的关系。

递推关系通过以下公式表示:an = f(an-1)其中,an表示数列的第n项,an-1表示数列的第n-1项,f表示递推关系。

二、数列的求和数列的求和是指将数列中的一定项数的数相加的运算。

数列的求和可以使用两种方法进行计算,即通项法和递推法。

2.1 通项法求和通项法是指根据数列的通项公式,将数列的每一项相加来计算数列的求和。

使用通项法计算数列的求和需要明确求和的起始项和结束项。

例如,对于等差数列an = 2n + 1,求前10项的和,可以使用通项法:Sn = (a1 + an) * n / 2其中,Sn表示数列的前n项和,a1表示数列的首项,an表示数列的第n项,n表示项数。

2.2 递推法求和递推法是指通过数列的递推关系,将数列的前一项和当前项相加来计算数列的求和。

数列通项公式、前n项和求法总结(全)

数列通项公式、前n项和求法总结(全)

数列通项公式、前n项和求法总结(全)⼀.数列通项公式求法总结:1.定义法 —— 直接利⽤等差或等⽐数列的定义求通项。

特征:适应于已知数列类型(等差或者等⽐).例1.等差数列{}n a 是递增数列,前n 项和为n S ,且931,,a a a 成等⽐数列,255a S =.求数列{}n a 的通项公式.变式练习:1.等差数列{}n a 中,71994,2,a a a ==求{}n a 的通项公式2. 在等⽐数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的⾸项、公⽐及前n 项和.2.公式法求数列{}n a 的通项n a 可⽤公式≥?-=?=-2111n S S n S a n n n 求解。

特征:已知数列的前n 项和n S 与n a 的关系例2.已知下列两数列}{n a 的前n 项和s n 的公式,求}{n a 的通项公式。

(1)13-+=n n S n 。

(2)12-=n s n变式练习:1. 已知数列{}n a 的前n 项和为n S ,且n S =2n 2+n ,n ∈N ﹡,数列{b }n 满⾜n a =4log 2n b +3,n ∈N ﹡.求n a ,n b 。

2. 已知数列{}n a 的前n 项和212n S n kn =-+(*k N ∈),且S n 的最⼤值为8,试确定常数k 并求n a 。

3. 已知数列{}n a 的前n 项和*∈+=N n n n S n ,22.求数列{}n a 的通项公式。

3.由递推式求数列通项法类型1 特征:递推公式为)(1n f a a n n +=+对策:把原递推公式转化为)(1n f a a n n =-+,利⽤累加法求解。

例3. 已知数列{}n a 满⾜211=a ,a a n n +=+211,求n a 。

变式练习:1. 已知数列{}n a 满⾜11211n n a a n a +=++=,,求数列{}n a 的通项公式。

初中数学点知识归纳数列的通项公式和求和公式

初中数学点知识归纳数列的通项公式和求和公式

初中数学点知识归纳数列的通项公式和求和公式【初中数学点知识归纳数列的通项公式和求和公式】数列是数学中的一个重要概念,它由一系列按照一定规律排列的数构成。

在初中数学中,学生需要学习数列的基本概念以及数列的通项公式和求和公式。

本篇文章将对初中数学中的这些知识做一个归纳总结。

一、数列的基本概念数列是由一系列按照一定规律排列的数所组成的有序集合。

数列中的每一个数称为该数列的项,通常用an表示第n个项。

数列通常用大括号{}或者用a1, a2, a3, ...的形式表示。

二、数列的通项公式对于数列来说,如果能够找到一条规律,可以用一个公式表示出数列的每一项,那么这个公式就是数列的通项公式。

1. 等差数列的通项公式等差数列是指相邻两项之差相等的数列。

设等差数列的首项为a,公差为d,则第n项的通项公式为:an = a + (n-1)d。

其中,a表示首项,d表示公差,n表示项数。

2. 等比数列的通项公式等比数列是指相邻两项之比相等的数列。

设等比数列的首项为a,公比为q,则第n项的通项公式为:an = a * q^(n-1)。

其中,a表示首项,q表示公比,n表示项数。

3. 斐波那契数列的通项公式斐波那契数列是指从第三项开始,每一项都等于前两项之和的数列。

设斐波那契数列的首项为a,第二项为b,则第n项的通项公式为:an = an-1 + an-2。

其中,a表示首项,b表示第二项,n表示项数。

三、数列的求和公式数列的求和是指将数列中的所有项进行加总的结果。

学生在解决数列求和的问题时,可以利用数列的求和公式。

1. 等差数列的求和公式等差数列的前n项求和公式为:Sn = (a + an) * n / 2。

其中,S表示前n项的和,a表示首项,an表示第n项,n表示项数。

2. 等比数列的求和公式等比数列的前n项求和公式有两种情况。

当公比q不等于1时,前n项求和公式为:Sn = a * (q^n - 1) / (q - 1)。

当公比q等于1时,前n项求和公式为:Sn = a * n。

初中数学知识归纳数列的通项和求和公式

初中数学知识归纳数列的通项和求和公式

初中数学知识归纳数列的通项和求和公式数列是数学中一个重要的概念,广泛应用于各个领域。

在初中数学中,我们常常需要研究数列的通项和求和公式。

本文将对初中数学中常见的数列进行分类归纳,并给出相应的通项和求和公式。

一、等差数列等差数列是最常见的数列之一,它的特点是每一项与前一项之差相等。

设等差数列的首项为a₁,公差为d,第n项为aₙ,则其通项公式为:aₙ = a₁ + (n-1) * d求和公式为:Sₙ = (a₁ + aₙ) * n / 2其中,Sₙ代表数列前n项的和。

例如,对于等差数列1,4,7,10,13,...,首项a₁=1,公差d=3,根据通项公式可以得到任意一项的值。

当n=5时,根据求和公式可以得到前5项的和为25。

二、等比数列等比数列是指数列中每一项与前一项之比相等。

设等比数列的首项为a₁,公比为q,第n项为aₙ,则其通项公式为:aₙ = a₁ * q^(n-1)求和公式为:Sₙ = a₁ * (q^n - 1) / (q - 1)其中,Sₙ代表数列前n项的和。

例如,对于等比数列2,4,8,16,32,...,首项a₁=2,公比q=2,根据通项公式可以得到任意一项的值。

当n=5时,根据求和公式可以得到前5项的和为62。

三、斐波那契数列斐波那契数列是一个特殊的数列,它的首两项为1,1,之后的每一项都是前两项之和。

设斐波那契数列的第n项为fₙ,则其通项公式为:fₙ = fₙ₋₁ + fₙ₋₂例如,斐波那契数列的前10项为1,1,2,3,5,8,13,21,34,55。

四、等差数列和等比数列的推广在拓展的初中数学中,还存在一些特殊的数列问题。

例如,等差数列的和可以通过分段求和的方法来求解;等比数列的和可以通过等比级数的求和公式来计算。

总结:以上便是初中数学中关于数列的通项和求和公式的归纳总结。

数列的研究不仅有助于我们理解数学中的规律和性质,也在实际问题中具有广泛的应用价值。

通过掌握这些公式,我们能够更好地解决与数列相关的计算问题。

数列通项公式与求和的常见解法

数列通项公式与求和的常见解法

数列通项公式与求和的常见解法数列通项公式是指一个数列中,每一项与它的序号之间的关系表达式。

常见的数列通项公式包括等差数列、等比数列、斐波那契数列等。

求和则是指将数列中的所有项相加的过程,常见的求和方法有逐项相加法、数列求和公式法以及数列分组求和法等。

下面将详细介绍这些数列通项公式和求和的常见解法。

一、等差数列的通项公式与求和等差数列是指数列中的任意两个相邻项之间的差值保持不变。

等差数列的通项公式为:an = a1 + (n - 1)d,其中an表示第n项,a1表示首项,d表示公差。

以等差数列1,4,7,10,13...为例,首项a1 = 1,公差d = 4 -1 = 3,第n项可以表示为an = 1 + (n - 1)3等差数列的求和可以使用数列求和公式Sn = n(a1 + an) / 2,其中Sn表示前n项和。

二、等比数列的通项公式与求和等比数列是指数列中的任意两个相邻项之间的比值保持不变。

等比数列的通项公式为:an = a1 * r^(n - 1),其中an表示第n项,a1表示首项,r表示公比。

以等比数列2,6,18,54,162...为例,首项a1 = 2,公比r = 6/ 2 = 3,第n项可以表示为an = 2 * 3^(n - 1)。

等比数列的求和可以使用数列求和公式Sn=a1*(1-r^n)/(1-r),其中Sn表示前n项和。

三、斐波那契数列的通项公式与求和斐波那契数列是指数列中的每一项都是前两项的和,通常以F(n)表示第n项,a1=1,a2=1、斐波那契数列的通项公式可以使用递归形式表示:Fn=Fn-1+Fn-2斐波那契数列的求和可以使用迭代方式进行计算,将每一项逐个相加即可得到和。

四、逐项相加求和法逐项相加法是最基本的求和方法,对于数列中的每一项逐个相加得到和。

即S = a1 + a2 + a3 + ... + an,其中S表示和。

逐项相加法的计算量较大,对于项数较多的数列效率较低。

数列的通项公式与求和知识点及题型归纳总结

数列的通项公式与求和知识点及题型归纳总结

数列的通项公式与求和知识点及题型归纳总结知识点精讲一、基本概念(1)若已知数列的第1项(或前项),且从第2项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么该公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法.(2)数列的第n 项n a 与项数n 之间的函数关系,可以用一个公式()n a f n =来表示,那么n a 就是数列的通项公式.注:①并非所有的数列都有通项公式;②有的数列可能有不同形式的通项公式; ③数列的通项就是一种特殊的函数关系式; ④注意区别数列的通项公式和递推公式.题型归纳及思路提示题型1 数列通项公式的求解 思路提示常见的求解数列通项公式的方法有观察法、利用递推公式和利用n S 与n a 的关系求解. 观察法根据所给的一列数、式、图形等,通过观察法归纳出其数列通项. 利用递推公式求通项公式 ①叠加法:形如1()n n a a f n +=+的解析式,可利用递推多式相加法求得n a②叠乘法:形如1()nn a f n a -= (0)n a ≠*(2,)n n N ≥∈的解析式, 可用递推多式相乘求得n a③构造辅助数列:通过变换递推公式,将非等差(等比)数列构造成为等差或等比数列来求其通项公式.常用的技巧有待定系数法、取倒数法、对称变换法和同除以指数法.利用n S 与n a 的关系求解 形如1(,)()n n n f S S g a -=的关系,求其通项公式,可依据1*1(1)(2,)n n n S n a S S n n N -=⎧=⎨-≥∈⎩,求出n a 观察法观察法即根据所给的一列数、式、图形等,通过观察分析数列各项的变化规律,求其通项.使用观察法时要注意:①观察数列各项符号的变化,考虑通项公式中是否有(1)n-或者1(1)n -- 部分.②考虑各项的变化规律与序号的关系.③应特别注意自然数列、正奇数列、正偶数列、自然数的平方{}2n 、{}2n与(1)n-有关的数列、等差数列、等比数列以及由它们组成的数列. 例6.20写出下列数列的一个通项公式:(1)325374,,,,,,;751381911---L(2)2,22,222,L ,222L ;(3)数列{}n a 中各项为:12,1122,111222,L,{111222n n L L 123个个,L 分析:通过观察,找出所给数列的特征,求出其通项.解析:(1)①原数列中的数的符号一正一负,故摆动数列乘以(1)n-;②绝对值后分子分母无明显的规律,但通过对偶数各项分子分母同乘以2,可使分子出现规律为3,4,5,6,L ,则2(1)34nn n a n +=-+. 解法一:1212021021022(101010)1(110)22(101)1109n n n n n n n a ----=⨯+⨯++=+++-==--L L g g 解法二:原数列⇔2229,99,999999n ⨯⨯⨯L L 123个,即2=(10-1)9nn a (3)121=(10-1)10+(10-1)=(10-1)(10+2)999n n n n n n a g 变式1 将全体正整数排成一个三角形数阵,如下所示,则第n 行(3n ≥)从左到右的第3个数为__________ 12 34 5 67 8 9 10L L L L L L L L L 变式2 观察下列等式:211122ni i n n ==+∑,2321111326ni i n n n ==++∑34321111424ni i n n n ==++∑45431111152330ni i n n n n ==++-∑5654211151621212ni i n n n n ==++-∑67653111111722642ni in n n n n ==++-+∑ L L L L1111101nk k k k k k k i i a n a n a n a n a +-+-==+++++∑L ,可以推测,当*2()k k N ≥∈时,111k a k +=+,12k a =,1_____k a -=,2_____k a -=利用递推公式求通项公式叠加法 数列有形如1()n n a a f n +=+的递推公式,且(1)(2)()f f f n +++L 的和可求,则变形为1()n n a a f n +-=,利用叠加法求和例6.21 已知数列{}n a 满足132n n a a n +=++ *()n N ∈,且12a =,求数列{}n a 的通项公式.分析:式子132n n a a n +=++ *()n N ∈是形如1()n n a a f n +=+的形式,故利用叠加法求和. 解析:132n n a a n +-=+ *()n N ∈可得131n n a a n --=-,(2n ≥) 1234n n a a n ---=-,L L L215a a -=相加可得:232n n n a +=(2n ≥),且12a =也满足上式,故232n n na +=*()n N ∈ 变式1 已知数列{}n a 中,12a =,12n n na a +-=*()n N ∈,求数列{}n a 的通项公式变式2 已知数列{}n a 中,12a =,11ln(1)n n a a n+=++ *()n N ∈,则n a =____A 、2ln n +B 、2(1)ln n n +-C 、2ln n n +D 、1ln n n ++ 变式3 已知数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-,(2n ≥,0q ≠)(1)设1n n n b a a +=-*()n N ∈,证明:{}n b 是等比数列. (2)求数列{}n a 的通项公式 变式4 数列{}n a 中,12a =,1n n a a cn +=+(c 为常数)*()n N ∈,且123,,a a a 成公比不为1的等比数列.(1)求c 的值;(2)求数列{}n a 的通项公式2、叠乘法 数列有形如1()nn a f n a -=g 的递推公式,且(1)(2)()f f f n g g L g 的积可求,则将递推公式变形为1()nn a f n a -=,利用叠乘法求出通项公式n a 例6.22 已知数列{}n a 中,11a =,12(1)n n na n a +=+,则数列{}n a 的通项公式为( ) A 、2n n B 、12n n - C 、21n n - D 、12n n +分析:数列的递推公式是形如1()nn a f n a -=的形式,故可以利用叠乘法求解. 解析:由12(1)n n na n a +=+变形得112n n a n a n ++=,从而 12(1)n n a na n -=-,L , 2122a a =,故1132112211132()212212n n n n n n a a a a n n na a a a n n ------==--g g L g g g g g L g g (2n ≥) 即112n n a n a -=(2n ≥),所以12n n n a -=(2n ≥,*n N ∈),且11a =满足上式,故12n n na -=(*n N ∈),选B变式1 已知数列{}n a 中,11a =,12n n a n a n++=,求数列{}n a 的通项公式 3、构造辅助数列法 (1)待定系数法形如1n n a pa q +=+(,p q 为常数,0pq ≠且1p ≠)的递推式,可构造1()n n a p a λλ++=+,转化为等比数列求解.也可以与类比式1n n a pa q -=+作差,由11()n n n n a a p a a +--=-,构造{}1n n a a +-为等比数列,然后利用叠加法求通项.例6.23 已知数列{}n a 中,11a =,1112n n a a +=+,求{}n a 的通项公式. 分析:式子1112n n a a +=+形如1n n a pa q +=+(,p q 为常数,0pq ≠且1p ≠),故利用构造法转化. 解析:解法一、设1112n n a a +=+等价于11()2n n a a λλ++=+,得到11122n n a a λ+=-,对应1112n n a a +=+,得到2λ=-故原递推式等价于112(2)2n n a a +-=-,因此数列{}2n a -为首项为1-,公比为12的等比数列,所以112()2n n a --=-,故112()2n n a -=- 解法二、由1112n n a a +=+得 1112n n a a -=+(2n ≥,*n N ∈), 因此111()2n n n n a a a a +--=-(2n ≥,*n N ∈),所以数列{}1n n a a -- 是首项为2112a a -=,公比为12的等比数列.2112111()()()22n n n n a a a a ----=-=2121()2n n n a a ----=L L L L1211()2a a -= 叠加得到:211111()111122()()1()1222212n n n n a a ----=+++==--L 故112()2n n a -=- (*n N ∈)变式1 已知11a =,132n n a a -=+(2n ≥,*n N ∈),求{}n a 的通项公式.例6.24 在数列{}n a 中,12a =,1431n n a a n +=-+ (*n N ∈),求数列{}n a 的通项公式.分析:将原递推公式转化为1(1)4()n n a a n a an λλ++++=++,即1433n n a a an a λ+=++-,比较1431n n a a n +=-+,得1a =-,0λ=,所以数列{}n a n -是首项为1,公比为4的等比数列,故14n n a n --=,即14n n a n -=+ (*n N ∈)2、同除以指数形如 1nn n a pa d +=+ (0p ≠且1p ≠,1d ≠)的递推式,当p d =时,两边同除以1n d +转化为关于n n a d ⎧⎫⎨⎬⎩⎭的等差数列;当p d ≠时,两边人可以同除以1n d +得111n n n n a a p d d d d ++=+g ,转化为11n np b b d d+=+g ,同类型(1).例6.25 已知数列{}n a 中,11a =-,1132n n n a a --=+(2n ≥,*n N ∈),求数列{}n a 的通项公式.解析:解法一、将1132n n n a a --=+两边同除以3n得11112()3333n n n nn a a ---=+⨯, 则1111121212()()()33333333n n nna a -=+⨯++⨯=-L ,则132n nn a -=- 解法二、将1132n n n a a --=+两边同除以2n得11312222n n n n a a --=+g ,令2nnna b =,得13122n n b b -=+,构造13()2n n b b λλ-+=+,得1λ=,因此数列{}1n b +为等比数列,且111331(1)()22n n n n b b --+=+=,则1312n n n b -=- (*n N ∈), 故13122n n n n a -=-,进而得到132n nn a -=- 评注:一般地,对于形如 1nn n a pa d +=+ (0p ≠且1p ≠,1d ≠)的数列求通项公式,两边同除以1n d +转化为待定系数法求解;两边同除以1n p+转化为叠加法求解.变式1 在数列{}n a 中,11a =,122nn n a a +=+(1)设12nnn a b -=,试证明:数列{}n b 是等差数列. (2)求数列{}n a 的前n 项的和n S取倒数法 对于1(0)n n n aa a ac b ca +=≠+,取倒数得111n n n n b ca b ca aa a a a++==+g .当a b =时,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;当a b ≠时,令1nnb a =,则1n n b c b b a a+=+g ,可用待定系数法求解. 例6.26 在数列{}n a 中,11a =,122nn na a a +=+,求数列{}n a 的通项公式. 分析:式中含有形如1n a +和n a 的分式形式,故考虑利用倒数变换求其通项公式. 解析:因为1121122n n n n a a a a ++==+,所以11112n n a a +-=,即数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,11111(1)22n n n n a a ++=+-=,故21n a n =+(*n N ∈) 变式1 已知数列{}n a 中首项135a =,1312n n n a a a +=+(*n N ∈),求数列{}n a 的通项公式.变式2 已知数列{}n a 中首项11a =,前n 项的和为n S ,且满足1112n n n S S S --=+(2n ≥,*n N ∈),求数列{}n a 的通项公式. 取对数法 形如1(0,0)k n n n a ca c a +=>>的递推公式,则常常两边取对数转化为等比数列求解.例6.27 已知数列{}n a 中首项13a =,且31n na a += (*n N ∈),则数列的通项n a =_______ 分析:取对数时,常用以1a 为底的对数,便于计算. 解析:因为13a =,所以对31n na a +=两边取以3为底的对数,得到313log 2log n n a a +=,故{}3log n a 是以1为首项,2为公比的等比数列,所以13log 2n n a -=,所以123n na -=(*n N ∈)变式1 已知数列{}n a 中首项110a =,且2110n na a +=g (*n N ∈),求数列的通项n a 已知通项公式n a 与前n 项的和n S 关系求通项问题对于给出关于n a 与n S 的关系式的问题,解决方法包括两个转化方向,在应用时要合理选择.一个方向是转化n S 为n a 的形式,手段是使用类比作差法,使nS 1n S --=n a (2n ≥,*n N ∈),故得到数列{}n a 的相关结论,这种方法适用于数列的前n 项的和的形式相对独立的情形;另一个方向是将n a 转化为n S 1n S --(2n ≥,*n N ∈),先考虑n S 与1n S -的关系式,继而得到数列{}n S 的相关结论,然后使用代入法或者其他方法求解{}n a 的问题,这种情形的解决方法称为转化法,适用于数列的前n 项和的形式不够独立的情况.简而言之,求解n a 与n S 的问题,方法有二,其一称为类比作差法,实质是转化n S 的形式为n a 的形式,适用于n S 的形式独立的情形,如已知142nn S a -=+(2n ≥,*n N ∈);其二称为转化法,实质是转化n a 的形式为n S 的形式,适用于n S 的形式不够独立的情形,如已知2221n n n S a S =-(2n ≥,*n N ∈);不管使用什么方法,都应该注意解题过程中对n 的范围加以跟踪和注意,一般建议在相关步骤后及时加注n 的范围.例6.28 已知正项数列{}n a 中,前n 项的和n S,且满足1n a =+,求数列{}n a 的通项公式.解析:由已知,可得24(1)n n S a =+ ①类比得到2114(1)n n S a --=+(2n ≥,*n N ∈)②式①-式②得 221114422n n n n n n S S a a a a ----=-+-即1112()()()n n n n n n a a a a a a ---+=+-所以11()(2)0n n n n a a a a --+--=,又因为10n n a a -+>,故120n n a a ---=(2n ≥,*n N ∈),因此数列{}n a 为等差数列,且首项为1,公比为2 故21na n =- (*n N ∈)评注:本题是关于n a 与n S 的关系式问题中第一个方向的典型题目,本题的闪光点是未给出n S 的直接形式,需要考生稍加变形,转化为24(1)nn S a =+后,才可使求解方向变得更为明朗.变式1 已知数列{}n a 的前n 项的和n S ,11a =,142n n S a +=+(*n N ∈)(1)设12n n n b a a +=-,求n b ;(2)设112nn nc a a +=-,求数列{}n c 的前n 项和n T ;(3)设2n nna d =,求2010d例6.29 已知数列{}n a 中,0n a >,且对于任意正整数n 有11()2n n nS a a =+,求数列{}n a 的通项公式分析:已知n a 与n S 的关系,求数列的通项公式利用n a =n S 1n S --(2n ≥,*n N ∈)求解,将试题右边的含n a 的式子换成n S 1n S --来处理.解析:当1n =时,111111()2S a a a ==+,及0n a >,解得 11a =当2n ≥时,由11()2n n n S a a =+得1111()2n n n n n S S S S S --=-+-,变形整理得2211n n S S --=,数列{}2n S 是等差数列,首项为1, 公差为1 故21(1)1nS n n =+-⨯=,所以n S =1n =适合上式,故n S =(*n N ∈)故当2n ≥时,n a =n S 1n S --= 1n =适合上式,故na =*n N ∈)变式1 已知数列{}n a 中,0n a ≠(1)n ≥,112a =,前n 项和n S 满足2221n n n S a S =-(2n ≥,*n N ∈)(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列; (2)求数列{}n a 的通项公式变式2 设数列{}n a是正数组成的数列,且有*2)n a n N +=∈,求数列{}n a 的通项公式.例6.30 设数列{}n a 的前n 项的和为n S ,已知111,42n n a S a +==+. (1)设12n n n b a a +=-,证明:数列{}n b 是等比数列. (2)求数列{}n a 的通项公式.解析 (1)在142n n S a +=+中,令1n =,得2142S a =+,即12142a a a +=+,故25a =,由142n n S a +=+知2142n n S a ++=+,两式相减得2144n n n a a a ++=-,即211224n n n n a a a a +++-=-,故12n n b b +=,且121230b a a =-=≠,即{}n b 是以2为公比的等比数列.(2)由2142S a =+且11a =知26S =,故2215a S a =-=,所以212523a a -=-=,即有111232n n n b b --==g g ,所以11232n n n a a -+-=g ,于是113224n n n n a a ++-=,因此数列{}2n na 是首项为12,公差为34的等差数列.所以1331(1)22444n na n n =+-⨯=-,故2(31)2n n a n -=-g . 变式1 已知数列{}n a 的前n 项之和为n S ,且*585()n n S n a n N =--∈. (1)证明:数列{1}n a -是等比数列;(2)求数列{}n S 的通项公式,请指出n 为何值时,n S 取得最小值,并说明理由.变式2 已知数列{}n a 的前n 项和为n S ,且满足2*24()n n S a n n n N =+-∈. (1)写出数列{}n a 的前3项123,,a a a ; (2)求证:数列{21}n a n -+为等比数列; (3)求n S .变式3 设数列{}n a 的前n 项和为n S .已知2*112121,()33n n S a a n n n N n +==---∈. (1)求2a 的值;(2)求数列{}n a 的通项公式.题型2 数列的求和 思路提示求数列前n 项和的常见方法如下: (1)通项分析法.(2)公式法:对于等差、等比数列,直接利用前n 项和公式.(3)错位相减法:数列的通项公式为n n a b g 或n nab 的形式,其中{}n a 为等差数列,{}n b 为等比数列.(4)分组求和法:数列的通项公式为n n a b +的形式,其中{}n a 和{}n b 满足不同的求和公式.常见于{}n a 为等差数列,{}n b 为等比数列或者{}n a 与{}n b 分别是数列的奇数项和偶数项,并满足不同的规律. (5)裂项相消法:将数列恒等变形为连续两项或相隔若干项之差的形式,进行消项. (6)倒序相加:应用于等差数列或转化为等差数列的数列求和. 一、通项分析法例6.31 求数列2211,12,122,,1222,n -+++++++L L L 的前n 项的和. 解析 数列的通项21122221n n n a -=++++=-L ,即*21()n n a n N =-∈, 所以数列的前n 项的和为121212(12)(21)(21)(21)(222)2212n nnn n S n n n +-=-+-++-=+++-=-=---L L即1*22()n n S n n N +=--∈.评注 先分析数列通项的特点,再选择合适的方法求和是求数列的前n 项和问题应该强化的意识. 变式1 求数列9,99,999,L ,999nL 123的前n 项和. 二、公式法利用等差、等比数列的前n 项和公式求和.例6.32 已知等差数列{}n a 中,259,21,2n a n a a b ===,求数列{}n b 的前n 项和n S .分析 根据数列{}n a 为等差数列,259,21a a ==,求出数列{}n a 的通项, 从而知数列{}n b 为等比数列,利用等比数列的求和公式求n S .解析 设等差数列{}n a 的首项为1a ,公差为d ,依题意得119421a d a d +=⎧⎨+=⎩,解得154a d =⎧⎨=⎩.数列{}n a 的通项公式为41n a n =+,由2na nb =得412n n b +=,因为454141222n n n n b b +++==,所以数列{}n b 是首项为512b =,公比为42q =的等比数列.于是得数列{}n b 的前n 项和54442[1(2)]32(21)1215n n n S --==-. 评注 针对数列的结构特征,确定数列的类型,符合等差或等比数列时,直接利用等差、等比数列相应公式求解.变式1 如图6-4所示,从点1(0,0)P 作x 轴的垂线交曲线xy e =于点1(0,1)Q ,曲线在点1Q 处的切线与x 轴交于点2P .再从2P 作x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:1122,;,;;,n n P Q P Q P Q L ,记点k P 的坐标为(,0)(1,2,,)k x k n =L .(1)试求k x 与1k x -的关系(2)k n ≤≤; (2)求1122||||||n n PQ P Q P Q +++L .三、错位相减法 求数列{n n a b g }和{nna b }的前n 项和,数列{}n a , {}n b 分别为等差与等比数列.求和时,在已知求和式的两边乘以等比数列公比q 后,与原数列的和作差,即n n S qS -,然后求n S 即可.例6.33 已知数列{}n a 的前n 项和为n S ,且*22()n n S a n N =-∈,数列{}n b 中,11b =,点1(,)n n P b b +在直线20x y -+=上.(1)求数列{}n a , {}n b 的通项公式;(2)设n n n c a b =g ,数列{}n c 的前n 项和为n T ,求n T . 解析 (1)22n n S a =-,*1122(2,)n n S a n n N --=-≥∈上两式相减得1122n n n n S S a a ---=-,得122n n n a a a -=-,故12n n a a -=, 令1*11111,22,2,2()n n n n a a a a a q n N -==-===∈.点1(,)n n P b b +在直线20x y -+=上,则120n n b b +-+=,12n n b b +=+, 则{}n b 是首项为1,公差为2的等差数列,*1(1)221()n b b n n n N =+-⨯=-∈.(2)(21)2n n n n c a b n ==-gg , 121232(21)2(1)n n T n =⨯+⨯++-⨯L 23`21232(21)2(2)n n T n +=⨯+⨯++-⨯L由(1)-(2)得112118(12)22222(21)22(21)212n nn n n T n n -++--=+⨯++⨯--⨯=+--⨯-L12(32)6n n +=--,故1(23)26n n T n +=-+.评注 由于结果的复杂性,自己可以通过代入1,2n =等验证,111222,T a b T a b ==等以确保所求结果的准确性. 变式1 已知数列{}n a 的前n 项和21(*)2n S n kn k N =-+∈,且n S 的最大值为8.(1)确定常数k ,并求n a ; (2)求数列92{}2nna -的前n 项和n T . 变式2已知{}n a 是等差数列,其前n 项和为n S ,{}nb 是等比数列,且1144442,27,10a b a b S b ==+=-=. (1)求数列{}n a 与{}n b 的通项公式;(2)记1121(*)n n n n T a b a b a b n N -=+++∈L ,证明:12210(*)n n n T a b n N +=-+∈.四、分组求和法对于既非等差又非等比数列的一类数列,若将数列的项进行适当地拆分,可分成等差、等比或常数列,然后求和.例6.34 在数列{}n a 中11111,(1)2n n n n a a a n ++==++.(1)设nn a b n=,证明1{}n n b b +-为等比数列; (2)求数列{}n a 的前n 项和n S . 解析 (1)由已知得1111(1)12112n nn n n n n a a a n b n n n +++++===+++,即112n n nb b +=+, 故112n n nb b +-=,且111(2,*)2n n n n b b n n N b b +--=≥∈-,因此1{}n n b b +-是公比为12的等比数列. (2)由(1)知当2n ≥时,1121111,,22n n n b b b b ---=-=L ,叠加得 11122111122n n n n n b b b b b b -----+-++-=++L L , 所以111112211212n n n b b ---==--,得11112n n b b -=+-,1n =时也成立,又111b a ==,所以112(*)2n n b n N -=-∈,得12(*)2n nn na nb n n N -==-∈. 12123(21)(4)(6)(2)24223(2462)(1)222n n n nS n nn --=-+-+-++-=++++-++++L L L令21231222n n nT -=++++L , 23111231222222n n n n nT --=+++++L , 故2111(1)11112212(1)2122222222212n n n n n n n nT nn n n --+=++++-=-=--=--g L ,故1242n n nT -+=-,又2462(1)n n n ++++=+L , 所以12(1)42n n nS n n -+=++-. 变式 1 已知数列{}n a 中的相邻两项212,k k a a -是关于x 的方程2(32)320k k x k x k -++=g 的两个根,且212(1,2,3,)k k a a k -≤=L .(1)求1357,,,a a a a ;(2)求数列{}n a 的前2n 项和2n S .变式2 等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表6-1的同一列.表6-1第1列 第2列 第3列 第1行 3 2 10 第2行 6 4 14 第3行 9 8 18(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:(1)ln n n n n b a a =+-,求数列{}n b 的前2n 项和2n S .五、裂项相消法将数列恒等变形为连续两项或相隔若干项之差的形式,进行消项. 常用的裂项相消变换有: 1.分式裂项1111()()n n p p n n p=-++;1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++.2.根式裂项1p=.3.对数式裂项lg lg()lgn pn p nn+=+-.4.指数式裂项1()(1)1n n naaq q q qq+=-≠-;11111()(1)(1)(1)111nn n n nqqq q q q q++=-≠-----.使用裂项法,要注意正负项相消时消去了哪些项,保留了哪些项;应注意到,由于数列{}na中每一项na均裂成一正一负两项,所以互为相反数的项合并为零后,所剩正数项与负数项的项数必是一样的多,切不可漏写未被消去的项.未被消去的项有前后对称的特点,即经过裂项后有“对称剩项”的特征.另外从实质上看,正负项相消是裂项法的根源和目的.例6.35 求数列1111,,,,,132435(2)n n⨯⨯⨯+L L的前n项和nS.解析先分析通项公式1111()(2)22nan n n n==-++,所以1111111111311[(1)()()](1)(*)23242221242224 nS n Nn n n n n n=-+-++-=+--=--∈+++++L评注如果数列的通项公式可以写成()()f n p f n+-的形式,常采用裂项求和的方法.特别地,当数列形如11{}n na a+,其中{}na是等差数列时,可尝试使用此法.变式1 已知数列1111,,,,,12123123n+++++++L LL,求它的前n项和nS.例6.36已知等差数列{}na满足3577,26a a a=+=,{}na的前n项和nS.(1)求na及nS;(2)令21(*)1nnb n Na=∈-,求数列{}nb的前n项和nT.解析(1)设{}na的首项为1a,公差为d,由已知可得111273210262a d aa d d+==⎧⎧⇒⎨⎨+==⎩⎩.所以1(1)21(*)na a n d n n N=+-=+∈,1()(2)(*)2nna a nS n n n N+==+∈.(2)因为21na n=+,所以214(1)na n n-=+,因此1111()4(1)41nbn n n n==-++,故1211111111(1)(1)(*)42231414(1)n n nT b b b n N n n n n =+++=-+-++-=-=∈+++L L .故数列{}n b 的前n 项和4(1)n nT n =+.评注 采用裂项相消法求解数列的前n 项和,消项时要注意相消的规律,可将前几项和表示出来,归纳规律.一般来说,先注意项数,如果是每两项作为一组相消,则最终剩余项数为偶数项;再看大小,若前面保留的是分母最小的若干项,则最后必会保留分母最大的若干项. 变式1 设正项数列{}n a 前n 项和n S 满足21(1)4n n S a =+.(1)求数列{}n a 的通项公式; (2)设11n n n b a a +=g ,求数列{}n b 的前n 项和n T .变式2 在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令lg ,1n n a T n =≥. (1)求数列{}n a 的通项公式;(2)设1tan tan n n n b a a +=g 求数列{}n b 的前n 项和n S .六、倒序相加法将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时可用倒序相加法(等差数列前n 项和公式的推导即用此方法).例6.37设()f x (7)(6)(5)(0)(8)f f f f f -+-+-++++L L 的值.解析因为1()(1)22x xf x f x +-==+=+x =+==所以(7)(6)(5)(0)(8)8f f f f f -+-+-++++==L L . 变式1 函数121()(0),,4xf x m x x R m =>∈+,当121x x +=时,121()()2f x f x +=. (1)求m 的值;(2)已知数列{}n a 满足121(0)()()()(1)n n a f f f f f n n n-=+++++L ,求n a ;(3)若12n n S a a a =+++L ,求n S .变式2 已知函数()f x 对任意x R ∈都有1()(1)2f x f x +-=.(1)求1()2f 的值;(2)若数列{}n a 满足121(0)()()()()(*)n n na f f f f f n N n n n n-=+++++∈L ,数列{}n a 是等差数列吗?试证明之;(3)设4(*)41n n b n N a =∈-,1n n n c b b +=,求数列{}n c 的前n 项和n T .变式3 已知数列{}n a 是首项为1,公差为2的等差数列,求0121231n n nn n n n S C a C a C a C a +=++++L .最有效训练题1.L ,则 )A .第18项B .第19项C .第17项D .第20项2.已知各项均不为零的数列{}n a ,定义向量1(,),(,1),*n n n n c a a b n n n N +==+∈u u r u u r,则下列命题为真命题的是( )A .若对任意的*n N ∈,总有//n n c b u u r u u r 成立,则数列{}n a 是等差数列B .若对任意的*n N ∈,总有//n n c b u u r u u r成立,则数列{}n a 是等比数列 C .若对任意的*n N ∈,总有n n c b ⊥u u r u u r成立,则数列{}n a 是等差数列 D .若对任意的*n N ∈,总有n n c b ⊥u u r u u r成立,则数列{}n a 是等比数列3.设{}n a 是单调递减的等差数列,前3项的和是15,前3项的积是105,当该数列的前n 项和最大时,n =( )A .4B .5C .6D .74.已知数列{}n a 满足111n n a a +=-,若112a =,则2011a =( )A .12B .2C .-1D .1 5.设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S ,若对*n N ∀∈,有23n n S S <,则q 的取值范围是( )A .(0,1]B .(0,2)C .[1,2)D .(0)6.对于数列{}n a ,如果*k N ∃∈及12,,,k R λλλ∈L ,使1122n k n k n k k n a a a a λλλ++-+-=+++L 成立,其中*n N ∈,则称{}n a 为k 阶递推数列,给出下列三个结论: ①若{}n a 为等比数列,则是1阶递推数列; ②若{}n a 为等差数列,则是2阶递推数列;③若数列{}n a 的通项公式为2n a n =,则是3阶递推数列. 其中正确结论的个数是( )A .0B .1C .2D .37.根据数列的前几项,写出数列的一个通项公式: (1)-1,7,-13,19,L ,n a =_____________; (2)0.8,0.88,0.888,L ,n a =_____________; (3)115132961,,,,,,248163264--L ,n a =_____________;(4)0,1,0,1,L ,n a =_____________. 8.若数列{}n a 满足111n n d a a +-=(*n N ∈,d 为常数),则称{}n a 为调和数列.已知数列1{}nx 为调和数列,且1220200x x x +++=L ,则56x x +=__________.9.在数列{}n a 中,121,2a a ==,且21(1)(*)n n n a a n N +-=+-∈,则100S =__________. 10.根据下列条件,确定数列{}n a 的通项公式. (1)已知数列{}n a 的前n 项和2231n S n n =-+; (2)已知数列{}n a 的满足132n n n a a +=++,且12a =; (3)1111,(2,*)n n n a a a n n N n--==≥∈; (4)在数列{}n a 中,111,2(*)n n n a a a n N +==+∈; (5)在数列{}n a 中,113,21(*)n n a a a n N +==+∈;(6)在数列{}n a 中,2111,2(*)n nn a a a a n N +==+∈. 11.设数列{}n a 的前n 项和为n S ,点(,)(*)nS n n N n∈均在函数32y x =-的图像上. (1)求数列{}n a 的通项公式; (2)设13n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n mT <对所有*n N ∈都成立的最小正整数m .12. 已知数列{}n a 的首项1122,(*)31n n n a a a n N a +==∈+(1)证明:数列1{1}na -是等比数列; (2)求数列{}nna 的前n 项和n S .。

数列的通项公式与求和公式知识点总结

数列的通项公式与求和公式知识点总结

数列的通项公式与求和公式知识点总结数列是数学中常见的数值按照一定规律排列形成的序列。

在数列的研究中,通项公式和求和公式是两个重要的概念,它们能够帮助我们对数列进行分析和计算。

本文将对数列的通项公式和求和公式进行总结和说明。

一、通项公式通项公式又称为一般项公式,可以表达数列中第n个数值与n的关系。

通过通项公式,我们可以直接计算出数列中任意位置的数值,从而更好地理解和分析数列的特性。

1.1 等差数列的通项公式等差数列是指数列中相邻两项之间的差值恒定的数列。

设等差数列的首项为a1,公差为d,则其通项公式为an = a1 + (n-1)d。

其中,an表示数列中第n个数值,an-1为前一项的值。

1.2 等比数列的通项公式等比数列是指数列中相邻两项之间的比值恒定的数列。

设等比数列的首项为a1,公比为r,则其通项公式为an = a1 * r^(n-1)。

其中,an表示数列中第n个数值,an-1为前一项的值。

1.3 斐波那契数列的通项公式斐波那契数列是一种特殊的数列,其每一项都是前两项之和。

设斐波那契数列的首项为a1,前一项为a(n-1),当前项为an,则其通项公式为an = a(n-1) + a(n-2)。

其中,a2是斐波那契数列的第二项,一般取1。

二、求和公式求和公式是用来计算数列前n项和的公式。

通过求和公式,我们能够快速计算出数列的和,从而更方便地进行数列求和的操作。

2.1 等差数列的求和公式等差数列前n项和的求和公式为Sn = (n/2)(a1 + an),其中Sn表示前n项的和,a1为首项,an为第n项。

2.2 等比数列的求和公式等比数列前n项和的求和公式分两种情况,当r=1时,Sn = na1;当r不等于1时,Sn = (a1 * (1 - r^n)) / (1 - r)。

其中,Sn表示前n项的和,a1为首项,r为公比。

2.3 斐波那契数列的求和公式斐波那契数列前n项和的求和公式为Sn = a(n+2) - a2,其中Sn表示前n项的和,a(n+2)为斐波那契数列的第n+2项,a2为第二项。

(完整)数列题型及解题方法归纳总结,推荐文档

(完整)数列题型及解题方法归纳总结,推荐文档

1 2
5
文德教育
n 2时,a n Sn Sn1 …… 3·4 n1
a n ca n1 d c、d为常数,c 0,c 1,d 0
建议收藏下载本文,以便随时学习! 4、叠乘法
可转化为等比数列,设a n x c a n1 x
例如:数列a n 中,a1
3,
a n1 an
n n 1 ,求an
a n ca n1 c 1x
解: a 2 · a 3 …… a n 1 · 2 …… n 1 ,∴ a n 1
a1 a2
a n1 2 3
n
a1 n
又a 1
3,∴a n
3 n
5、等差型递推公式
由a n a n1 f (n),a1 a 0,求a n ,用迭加法
令(c 1)x d,∴x d c1
(3)形如 an1 ank 的递推数列都可以用对数法求通项。
(7)(理科)数学归纳法。
4
文德教育
建议收藏下载本文,以便随时学习! (8)当遇到 an1
an1
d或 an1 an1
q 时,分奇数项偶数项讨论,结果
求数列通项公式的常用方法:
1、公式法
可能是分段形式。 数列求和的常用方法:
2、 由S n 求a n
∴a n
c
d
1是首项为a
1
c
d ,c为公比的等比数列 1
∴a n
c
d 1
a1
c
d
1
·c
n
1
n
2时,a 2 a3
a1 a2
f (2)
f
(3)
两边相加,得:
…… ……
a n a n1 f (n)

初中数学知识归纳数列的通项公式和前n项和

初中数学知识归纳数列的通项公式和前n项和

初中数学知识归纳数列的通项公式和前n项和数学中的数列是指按照一定规律排列的数字序列。

在初中数学中,了解和掌握数列的通项公式和前n项和的计算方法是非常重要的。

本文将对数列的概念、通项公式和前n项和进行归纳总结,帮助初中生更好地理解和应用数列知识。

1. 数列的概念数列由一系列按照一定规律排列的数字组成。

通常用a₁、a₂、a₃、...、aₙ表示数列的各个项,其中a₁表示首项,aₙ表示第n项。

2. 等差数列等差数列是指数列中相邻两项之间的差都相等的数列。

设等差数列的首项为a₁,公差为d,则有通项公式如下:aₙ = a₁ + (n-1)d其中,aₙ表示第n项。

3. 等差数列的前n项和等差数列的前n项和可以通过以下公式进行计算:Sn = (n/2) * (a₁ + aₙ)其中,Sn表示前n项和。

4. 等比数列等比数列是指数列中相邻两项之间的比都相等的数列。

设等比数列的首项为a₁,公比为r,则有通项公式如下:aₙ = a₁ * r^(n-1)其中,aₙ表示第n项。

5. 等比数列的前n项和等比数列的前n项和可以通过以下公式进行计算(当r≠1时):Sn = (a₁ * (1 - r^n)) / (1 - r)其中,Sn表示前n项和。

6. 斐波那契数列斐波那契数列是指数列中的每一项都是前两项之和的数列。

斐波那契数列的通项公式如下:aₙ = aₙ₋₂ + aₙ₋₁其中,a₁和a₂为斐波那契数列的首项。

7. 结论在初中数学中,数列是一个基础概念,了解数列的通项公式和前n 项和的计算方法有助于提高数学解题的能力。

通过掌握和应用这些公式,我们可以快速计算数列中任意项的值和前n项的和,提高解题效率。

总结起来,本文介绍了数列的概念,以及等差数列、等差数列、斐波那契数列的通项公式和前n项和的计算方法。

希望这些内容能够帮助初中生更好地理解和运用数列知识,提高数学解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的通项公式与求和知识点及题型归纳总结知识点精讲一、基本概念(1)若已知数列的第1项(或前项),且从第2项(或某一项)开始的任一项与它的前一项(或前几项)间的关系可以用一个公式来表示,那么该公式就叫做这个数列的递推公式.递推公式也是给出数列的一种方法.(2)数列的第n 项n a 与项数n 之间的函数关系,可以用一个公式()n a f n =来表示,那么n a 就是数列的通项公式.注:①并非所有的数列都有通项公式;②有的数列可能有不同形式的通项公式; ③数列的通项就是一种特殊的函数关系式; ④注意区别数列的通项公式和递推公式.题型归纳及思路提示题型1 数列通项公式的求解 思路提示常见的求解数列通项公式的方法有观察法、利用递推公式和利用n S 与n a 的关系求解. 观察法根据所给的一列数、式、图形等,通过观察法归纳出其数列通项. 利用递推公式求通项公式 ①叠加法:形如1()n n a a f n +=+的解析式,可利用递推多式相加法求得n a②叠乘法:形如1()nn a f n a -= (0)n a ≠*(2,)n n N ≥∈的解析式, 可用递推多式相乘求得n a③构造辅助数列:通过变换递推公式,将非等差(等比)数列构造成为等差或等比数列来求其通项公式.常用的技巧有待定系数法、取倒数法、对称变换法和同除以指数法.利用n S 与n a 的关系求解 形如1(,)()n n n f S S g a -=的关系,求其通项公式,可依据1*1(1)(2,)n n n S n a S S n n N -=⎧=⎨-≥∈⎩,求出n a 观察法观察法即根据所给的一列数、式、图形等,通过观察分析数列各项的变化规律,求其通项.使用观察法时要注意:①观察数列各项符号的变化,考虑通项公式中是否有(1)n-或者1(1)n -- 部分.②考虑各项的变化规律与序号的关系.③应特别注意自然数列、正奇数列、正偶数列、自然数的平方{}2n 、{}2n与(1)n-有关的数列、等差数列、等比数列以及由它们组成的数列. 例6.20写出下列数列的一个通项公式:(1)325374,,,,,,;751381911---L(2)2,22,222,L ,222L ;(3)数列{}n a 中各项为:12,1122,111222,L,{111222n n L L 123个个,L 分析:通过观察,找出所给数列的特征,求出其通项.解析:(1)①原数列中的数的符号一正一负,故摆动数列乘以(1)n-;②绝对值后分子分母无明显的规律,但通过对偶数各项分子分母同乘以2,可使分子出现规律为3,4,5,6,L ,则2(1)34nn n a n +=-+. 解法一:1212021021022(101010)1(110)22(101)1109n n n n n n n a ----=⨯+⨯++=+++-==--L L g g 解法二:原数列⇔2229,99,999999n ⨯⨯⨯L L 123个,即2=(10-1)9nn a (3)121=(10-1)10+(10-1)=(10-1)(10+2)999n n n n n n a g 变式1 将全体正整数排成一个三角形数阵,如下所示,则第n 行(3n ≥)从左到右的第3个数为__________ 12 34 5 67 8 9 10L L L L L L L L L 变式2 观察下列等式:211122ni i n n ==+∑,2321111326ni i n n n ==++∑34321111424ni i n n n ==++∑45431111152330ni i n n n n ==++-∑5654211151621212ni i n n n n ==++-∑67653111111722642ni in n n n n ==++-+∑ L L L L1111101nk k k k k k k i i a n a n a n a n a +-+-==+++++∑L ,可以推测,当*2()k k N ≥∈时,111k a k +=+,12k a =,1_____k a -=,2_____k a -=利用递推公式求通项公式叠加法 数列有形如1()n n a a f n +=+的递推公式,且(1)(2)()f f f n +++L 的和可求,则变形为1()n n a a f n +-=,利用叠加法求和例6.21 已知数列{}n a 满足132n n a a n +=++ *()n N ∈,且12a =,求数列{}n a 的通项公式.分析:式子132n n a a n +=++ *()n N ∈是形如1()n n a a f n +=+的形式,故利用叠加法求和. 解析:132n n a a n +-=+ *()n N ∈可得131n n a a n --=-,(2n ≥) 1234n n a a n ---=-,L L L215a a -=相加可得:232n n n a +=(2n ≥),且12a =也满足上式,故232n n na +=*()n N ∈ 变式1 已知数列{}n a 中,12a =,12n n na a +-=*()n N ∈,求数列{}n a 的通项公式变式2 已知数列{}n a 中,12a =,11ln(1)n n a a n+=++ *()n N ∈,则n a =____A 、2ln n +B 、2(1)ln n n +-C 、2ln n n +D 、1ln n n ++ 变式3 已知数列{}n a 中,11a =,22a =,且11(1)n n n a q a qa +-=+-,(2n ≥,0q ≠)(1)设1n n n b a a +=-*()n N ∈,证明:{}n b 是等比数列. (2)求数列{}n a 的通项公式 变式4 数列{}n a 中,12a =,1n n a a cn +=+(c 为常数)*()n N ∈,且123,,a a a 成公比不为1的等比数列.(1)求c 的值;(2)求数列{}n a 的通项公式2、叠乘法 数列有形如1()nn a f n a -=g 的递推公式,且(1)(2)()f f f n g g L g 的积可求,则将递推公式变形为1()nn a f n a -=,利用叠乘法求出通项公式n a 例6.22 已知数列{}n a 中,11a =,12(1)n n na n a +=+,则数列{}n a 的通项公式为( ) A 、2n n B 、12n n - C 、21n n - D 、12n n +分析:数列的递推公式是形如1()nn a f n a -=的形式,故可以利用叠乘法求解. 解析:由12(1)n n na n a +=+变形得112n n a n a n ++=,从而 12(1)n n a na n -=-,L , 2122a a =,故1132112211132()212212n n n n n n a a a a n n na a a a n n ------==--g g L g g g g g L g g (2n ≥) 即112n n a n a -=(2n ≥),所以12n n n a -=(2n ≥,*n N ∈),且11a =满足上式,故12n n na -=(*n N ∈),选B变式1 已知数列{}n a 中,11a =,12n n a n a n++=,求数列{}n a 的通项公式 3、构造辅助数列法 (1)待定系数法形如1n n a pa q +=+(,p q 为常数,0pq ≠且1p ≠)的递推式,可构造1()n n a p a λλ++=+,转化为等比数列求解.也可以与类比式1n n a pa q -=+作差,由11()n n n n a a p a a +--=-,构造{}1n n a a +-为等比数列,然后利用叠加法求通项.例6.23 已知数列{}n a 中,11a =,1112n n a a +=+,求{}n a 的通项公式. 分析:式子1112n n a a +=+形如1n n a pa q +=+(,p q 为常数,0pq ≠且1p ≠),故利用构造法转化. 解析:解法一、设1112n n a a +=+等价于11()2n n a a λλ++=+,得到11122n n a a λ+=-,对应1112n n a a +=+,得到2λ=-故原递推式等价于112(2)2n n a a +-=-,因此数列{}2n a -为首项为1-,公比为12的等比数列,所以112()2n n a --=-,故112()2n n a -=- 解法二、由1112n n a a +=+得 1112n n a a -=+(2n ≥,*n N ∈), 因此111()2n n n n a a a a +--=-(2n ≥,*n N ∈),所以数列{}1n n a a -- 是首项为2112a a -=,公比为12的等比数列.2112111()()()22n n n n a a a a ----=-=2121()2n n n a a ----=L L L L1211()2a a -= 叠加得到:211111()111122()()1()1222212n n n n a a ----=+++==--L 故112()2n n a -=- (*n N ∈)变式1 已知11a =,132n n a a -=+(2n ≥,*n N ∈),求{}n a 的通项公式.例6.24 在数列{}n a 中,12a =,1431n n a a n +=-+ (*n N ∈),求数列{}n a 的通项公式.分析:将原递推公式转化为1(1)4()n n a a n a an λλ++++=++,即1433n n a a an a λ+=++-,比较1431n n a a n +=-+,得1a =-,0λ=,所以数列{}n a n -是首项为1,公比为4的等比数列,故14n n a n --=,即14n n a n -=+ (*n N ∈)2、同除以指数形如 1nn n a pa d +=+ (0p ≠且1p ≠,1d ≠)的递推式,当p d =时,两边同除以1n d +转化为关于n n a d ⎧⎫⎨⎬⎩⎭的等差数列;当p d ≠时,两边人可以同除以1n d +得111n n n n a a p d d d d ++=+g ,转化为11n np b b d d+=+g ,同类型(1).例6.25 已知数列{}n a 中,11a =-,1132n n n a a --=+(2n ≥,*n N ∈),求数列{}n a 的通项公式.解析:解法一、将1132n n n a a --=+两边同除以3n得11112()3333n n n nn a a ---=+⨯, 则1111121212()()()33333333n n nna a -=+⨯++⨯=-L ,则132n nn a -=- 解法二、将1132n n n a a --=+两边同除以2n得11312222n n n n a a --=+g ,令2nnna b =,得13122n n b b -=+,构造13()2n n b b λλ-+=+,得1λ=,因此数列{}1n b +为等比数列,且111331(1)()22n n n n b b --+=+=,则1312n n n b -=- (*n N ∈), 故13122n n n n a -=-,进而得到132n nn a -=- 评注:一般地,对于形如 1nn n a pa d +=+ (0p ≠且1p ≠,1d ≠)的数列求通项公式,两边同除以1n d +转化为待定系数法求解;两边同除以1n p+转化为叠加法求解.变式1 在数列{}n a 中,11a =,122nn n a a +=+(1)设12nnn a b -=,试证明:数列{}n b 是等差数列. (2)求数列{}n a 的前n 项的和n S取倒数法 对于1(0)n n n aa a ac b ca +=≠+,取倒数得111n n n n b ca b ca aa a a a++==+g .当a b =时,数列1n a ⎧⎫⎨⎬⎩⎭是等差数列;当a b ≠时,令1nnb a =,则1n n b c b b a a+=+g ,可用待定系数法求解. 例6.26 在数列{}n a 中,11a =,122nn na a a +=+,求数列{}n a 的通项公式. 分析:式中含有形如1n a +和n a 的分式形式,故考虑利用倒数变换求其通项公式. 解析:因为1121122n n n n a a a a ++==+,所以11112n n a a +-=,即数列1n a ⎧⎫⎨⎬⎩⎭是等差数列,11111(1)22n n n n a a ++=+-=,故21n a n =+(*n N ∈) 变式1 已知数列{}n a 中首项135a =,1312n n n a a a +=+(*n N ∈),求数列{}n a 的通项公式.变式2 已知数列{}n a 中首项11a =,前n 项的和为n S ,且满足1112n n n S S S --=+(2n ≥,*n N ∈),求数列{}n a 的通项公式. 取对数法 形如1(0,0)k n n n a ca c a +=>>的递推公式,则常常两边取对数转化为等比数列求解.例6.27 已知数列{}n a 中首项13a =,且31n na a += (*n N ∈),则数列的通项n a =_______ 分析:取对数时,常用以1a 为底的对数,便于计算. 解析:因为13a =,所以对31n na a +=两边取以3为底的对数,得到313log 2log n n a a +=,故{}3log n a 是以1为首项,2为公比的等比数列,所以13log 2n n a -=,所以123n na -=(*n N ∈)变式1 已知数列{}n a 中首项110a =,且2110n na a +=g (*n N ∈),求数列的通项n a 已知通项公式n a 与前n 项的和n S 关系求通项问题对于给出关于n a 与n S 的关系式的问题,解决方法包括两个转化方向,在应用时要合理选择.一个方向是转化n S 为n a 的形式,手段是使用类比作差法,使nS 1n S --=n a (2n ≥,*n N ∈),故得到数列{}n a 的相关结论,这种方法适用于数列的前n 项的和的形式相对独立的情形;另一个方向是将n a 转化为n S 1n S --(2n ≥,*n N ∈),先考虑n S 与1n S -的关系式,继而得到数列{}n S 的相关结论,然后使用代入法或者其他方法求解{}n a 的问题,这种情形的解决方法称为转化法,适用于数列的前n 项和的形式不够独立的情况.简而言之,求解n a 与n S 的问题,方法有二,其一称为类比作差法,实质是转化n S 的形式为n a 的形式,适用于n S 的形式独立的情形,如已知142nn S a -=+(2n ≥,*n N ∈);其二称为转化法,实质是转化n a 的形式为n S 的形式,适用于n S 的形式不够独立的情形,如已知2221n n n S a S =-(2n ≥,*n N ∈);不管使用什么方法,都应该注意解题过程中对n 的范围加以跟踪和注意,一般建议在相关步骤后及时加注n 的范围.例6.28 已知正项数列{}n a 中,前n 项的和n S,且满足1n a =+,求数列{}n a 的通项公式.解析:由已知,可得24(1)n n S a =+ ①类比得到2114(1)n n S a --=+(2n ≥,*n N ∈)②式①-式②得 221114422n n n n n n S S a a a a ----=-+-即1112()()()n n n n n n a a a a a a ---+=+-所以11()(2)0n n n n a a a a --+--=,又因为10n n a a -+>,故120n n a a ---=(2n ≥,*n N ∈),因此数列{}n a 为等差数列,且首项为1,公比为2 故21na n =- (*n N ∈)评注:本题是关于n a 与n S 的关系式问题中第一个方向的典型题目,本题的闪光点是未给出n S 的直接形式,需要考生稍加变形,转化为24(1)nn S a =+后,才可使求解方向变得更为明朗.变式1 已知数列{}n a 的前n 项的和n S ,11a =,142n n S a +=+(*n N ∈)(1)设12n n n b a a +=-,求n b ;(2)设112nn nc a a +=-,求数列{}n c 的前n 项和n T ;(3)设2n nna d =,求2010d例6.29 已知数列{}n a 中,0n a >,且对于任意正整数n 有11()2n n nS a a =+,求数列{}n a 的通项公式分析:已知n a 与n S 的关系,求数列的通项公式利用n a =n S 1n S --(2n ≥,*n N ∈)求解,将试题右边的含n a 的式子换成n S 1n S --来处理.解析:当1n =时,111111()2S a a a ==+,及0n a >,解得 11a =当2n ≥时,由11()2n n n S a a =+得1111()2n n n n n S S S S S --=-+-,变形整理得2211n n S S --=,数列{}2n S 是等差数列,首项为1, 公差为1 故21(1)1nS n n =+-⨯=,所以n S =1n =适合上式,故n S =(*n N ∈)故当2n ≥时,n a =n S 1n S --= 1n =适合上式,故na =*n N ∈)变式1 已知数列{}n a 中,0n a ≠(1)n ≥,112a =,前n 项和n S 满足2221n n n S a S =-(2n ≥,*n N ∈)(1)求证:数列1n S ⎧⎫⎨⎬⎩⎭是等差数列; (2)求数列{}n a 的通项公式变式2 设数列{}n a是正数组成的数列,且有*2)n a n N +=∈,求数列{}n a 的通项公式.例6.30 设数列{}n a 的前n 项的和为n S ,已知111,42n n a S a +==+. (1)设12n n n b a a +=-,证明:数列{}n b 是等比数列. (2)求数列{}n a 的通项公式.解析 (1)在142n n S a +=+中,令1n =,得2142S a =+,即12142a a a +=+,故25a =,由142n n S a +=+知2142n n S a ++=+,两式相减得2144n n n a a a ++=-,即211224n n n n a a a a +++-=-,故12n n b b +=,且121230b a a =-=≠,即{}n b 是以2为公比的等比数列.(2)由2142S a =+且11a =知26S =,故2215a S a =-=,所以212523a a -=-=,即有111232n n n b b --==g g ,所以11232n n n a a -+-=g ,于是113224n n n n a a ++-=,因此数列{}2n na 是首项为12,公差为34的等差数列.所以1331(1)22444n na n n =+-⨯=-,故2(31)2n n a n -=-g . 变式1 已知数列{}n a 的前n 项之和为n S ,且*585()n n S n a n N =--∈. (1)证明:数列{1}n a -是等比数列;(2)求数列{}n S 的通项公式,请指出n 为何值时,n S 取得最小值,并说明理由.变式2 已知数列{}n a 的前n 项和为n S ,且满足2*24()n n S a n n n N =+-∈. (1)写出数列{}n a 的前3项123,,a a a ; (2)求证:数列{21}n a n -+为等比数列; (3)求n S .变式3 设数列{}n a 的前n 项和为n S .已知2*112121,()33n n S a a n n n N n +==---∈. (1)求2a 的值;(2)求数列{}n a 的通项公式.题型2 数列的求和 思路提示求数列前n 项和的常见方法如下: (1)通项分析法.(2)公式法:对于等差、等比数列,直接利用前n 项和公式.(3)错位相减法:数列的通项公式为n n a b g 或n nab 的形式,其中{}n a 为等差数列,{}n b 为等比数列.(4)分组求和法:数列的通项公式为n n a b +的形式,其中{}n a 和{}n b 满足不同的求和公式.常见于{}n a 为等差数列,{}n b 为等比数列或者{}n a 与{}n b 分别是数列的奇数项和偶数项,并满足不同的规律. (5)裂项相消法:将数列恒等变形为连续两项或相隔若干项之差的形式,进行消项. (6)倒序相加:应用于等差数列或转化为等差数列的数列求和. 一、通项分析法例6.31 求数列2211,12,122,,1222,n -+++++++L L L 的前n 项的和. 解析 数列的通项21122221n n n a -=++++=-L ,即*21()n n a n N =-∈, 所以数列的前n 项的和为121212(12)(21)(21)(21)(222)2212n nnn n S n n n +-=-+-++-=+++-=-=---L L即1*22()n n S n n N +=--∈.评注 先分析数列通项的特点,再选择合适的方法求和是求数列的前n 项和问题应该强化的意识. 变式1 求数列9,99,999,L ,999nL 123的前n 项和. 二、公式法利用等差、等比数列的前n 项和公式求和.例6.32 已知等差数列{}n a 中,259,21,2n a n a a b ===,求数列{}n b 的前n 项和n S .分析 根据数列{}n a 为等差数列,259,21a a ==,求出数列{}n a 的通项, 从而知数列{}n b 为等比数列,利用等比数列的求和公式求n S .解析 设等差数列{}n a 的首项为1a ,公差为d ,依题意得119421a d a d +=⎧⎨+=⎩,解得154a d =⎧⎨=⎩.数列{}n a 的通项公式为41n a n =+,由2na nb =得412n n b +=,因为454141222n n n n b b +++==,所以数列{}n b 是首项为512b =,公比为42q =的等比数列.于是得数列{}n b 的前n 项和54442[1(2)]32(21)1215n n n S --==-. 评注 针对数列的结构特征,确定数列的类型,符合等差或等比数列时,直接利用等差、等比数列相应公式求解.变式1 如图6-4所示,从点1(0,0)P 作x 轴的垂线交曲线xy e =于点1(0,1)Q ,曲线在点1Q 处的切线与x 轴交于点2P .再从2P 作x 轴的垂线交曲线于点2Q ,依次重复上述过程得到一系列点:1122,;,;;,n n P Q P Q P Q L ,记点k P 的坐标为(,0)(1,2,,)k x k n =L .(1)试求k x 与1k x -的关系(2)k n ≤≤; (2)求1122||||||n n PQ P Q P Q +++L .三、错位相减法 求数列{n n a b g }和{nna b }的前n 项和,数列{}n a , {}n b 分别为等差与等比数列.求和时,在已知求和式的两边乘以等比数列公比q 后,与原数列的和作差,即n n S qS -,然后求n S 即可.例6.33 已知数列{}n a 的前n 项和为n S ,且*22()n n S a n N =-∈,数列{}n b 中,11b =,点1(,)n n P b b +在直线20x y -+=上.(1)求数列{}n a , {}n b 的通项公式;(2)设n n n c a b =g ,数列{}n c 的前n 项和为n T ,求n T . 解析 (1)22n n S a =-,*1122(2,)n n S a n n N --=-≥∈上两式相减得1122n n n n S S a a ---=-,得122n n n a a a -=-,故12n n a a -=, 令1*11111,22,2,2()n n n n a a a a a q n N -==-===∈.点1(,)n n P b b +在直线20x y -+=上,则120n n b b +-+=,12n n b b +=+, 则{}n b 是首项为1,公差为2的等差数列,*1(1)221()n b b n n n N =+-⨯=-∈.(2)(21)2n n n n c a b n ==-gg , 121232(21)2(1)n n T n =⨯+⨯++-⨯L 23`21232(21)2(2)n n T n +=⨯+⨯++-⨯L由(1)-(2)得112118(12)22222(21)22(21)212n nn n n T n n -++--=+⨯++⨯--⨯=+--⨯-L12(32)6n n +=--,故1(23)26n n T n +=-+.评注 由于结果的复杂性,自己可以通过代入1,2n =等验证,111222,T a b T a b ==等以确保所求结果的准确性. 变式1 已知数列{}n a 的前n 项和21(*)2n S n kn k N =-+∈,且n S 的最大值为8.(1)确定常数k ,并求n a ; (2)求数列92{}2nna -的前n 项和n T . 变式2已知{}n a 是等差数列,其前n 项和为n S ,{}nb 是等比数列,且1144442,27,10a b a b S b ==+=-=. (1)求数列{}n a 与{}n b 的通项公式;(2)记1121(*)n n n n T a b a b a b n N -=+++∈L ,证明:12210(*)n n n T a b n N +=-+∈.四、分组求和法对于既非等差又非等比数列的一类数列,若将数列的项进行适当地拆分,可分成等差、等比或常数列,然后求和.例6.34 在数列{}n a 中11111,(1)2n n n n a a a n ++==++.(1)设nn a b n=,证明1{}n n b b +-为等比数列; (2)求数列{}n a 的前n 项和n S . 解析 (1)由已知得1111(1)12112n nn n n n n a a a n b n n n +++++===+++,即112n n nb b +=+, 故112n n nb b +-=,且111(2,*)2n n n n b b n n N b b +--=≥∈-,因此1{}n n b b +-是公比为12的等比数列. (2)由(1)知当2n ≥时,1121111,,22n n n b b b b ---=-=L ,叠加得 11122111122n n n n n b b b b b b -----+-++-=++L L , 所以111112211212n n n b b ---==--,得11112n n b b -=+-,1n =时也成立,又111b a ==,所以112(*)2n n b n N -=-∈,得12(*)2n nn na nb n n N -==-∈. 12123(21)(4)(6)(2)24223(2462)(1)222n n n nS n nn --=-+-+-++-=++++-++++L L L令21231222n n nT -=++++L , 23111231222222n n n n nT --=+++++L , 故2111(1)11112212(1)2122222222212n n n n n n n nT nn n n --+=++++-=-=--=--g L ,故1242n n nT -+=-,又2462(1)n n n ++++=+L , 所以12(1)42n n nS n n -+=++-. 变式 1 已知数列{}n a 中的相邻两项212,k k a a -是关于x 的方程2(32)320k k x k x k -++=g 的两个根,且212(1,2,3,)k k a a k -≤=L .(1)求1357,,,a a a a ;(2)求数列{}n a 的前2n 项和2n S .变式2 等比数列{}n a 中,123,,a a a 分别是下表第一、二、三行中的某一个数,且123,,a a a 中的任何两个数不在下表6-1的同一列.表6-1第1列 第2列 第3列 第1行 3 2 10 第2行 6 4 14 第3行 9 8 18(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足:(1)ln n n n n b a a =+-,求数列{}n b 的前2n 项和2n S .五、裂项相消法将数列恒等变形为连续两项或相隔若干项之差的形式,进行消项. 常用的裂项相消变换有: 1.分式裂项1111()()n n p p n n p=-++;1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++.2.根式裂项1p=.3.对数式裂项lg lg()lgn pn p nn+=+-.4.指数式裂项1()(1)1n n naaq q q qq+=-≠-;11111()(1)(1)(1)111nn n n nqqq q q q q++=-≠-----.使用裂项法,要注意正负项相消时消去了哪些项,保留了哪些项;应注意到,由于数列{}na中每一项na均裂成一正一负两项,所以互为相反数的项合并为零后,所剩正数项与负数项的项数必是一样的多,切不可漏写未被消去的项.未被消去的项有前后对称的特点,即经过裂项后有“对称剩项”的特征.另外从实质上看,正负项相消是裂项法的根源和目的.例6.35 求数列1111,,,,,132435(2)n n⨯⨯⨯+L L的前n项和nS.解析先分析通项公式1111()(2)22nan n n n==-++,所以1111111111311[(1)()()](1)(*)23242221242224 nS n Nn n n n n n=-+-++-=+--=--∈+++++L评注如果数列的通项公式可以写成()()f n p f n+-的形式,常采用裂项求和的方法.特别地,当数列形如11{}n na a+,其中{}na是等差数列时,可尝试使用此法.变式1 已知数列1111,,,,,12123123n+++++++L LL,求它的前n项和nS.例6.36已知等差数列{}na满足3577,26a a a=+=,{}na的前n项和nS.(1)求na及nS;(2)令21(*)1nnb n Na=∈-,求数列{}nb的前n项和nT.解析(1)设{}na的首项为1a,公差为d,由已知可得111273210262a d aa d d+==⎧⎧⇒⎨⎨+==⎩⎩.所以1(1)21(*)na a n d n n N=+-=+∈,1()(2)(*)2nna a nS n n n N+==+∈.(2)因为21na n=+,所以214(1)na n n-=+,因此1111()4(1)41nbn n n n==-++,故1211111111(1)(1)(*)42231414(1)n n nT b b b n N n n n n =+++=-+-++-=-=∈+++L L .故数列{}n b 的前n 项和4(1)n nT n =+.评注 采用裂项相消法求解数列的前n 项和,消项时要注意相消的规律,可将前几项和表示出来,归纳规律.一般来说,先注意项数,如果是每两项作为一组相消,则最终剩余项数为偶数项;再看大小,若前面保留的是分母最小的若干项,则最后必会保留分母最大的若干项. 变式1 设正项数列{}n a 前n 项和n S 满足21(1)4n n S a =+.(1)求数列{}n a 的通项公式; (2)设11n n n b a a +=g ,求数列{}n b 的前n 项和n T .变式2 在数1和100之间插入n 个实数,使得这2n +个数构成递增的等比数列,将这2n +个数的乘积记作n T ,再令lg ,1n n a T n =≥. (1)求数列{}n a 的通项公式;(2)设1tan tan n n n b a a +=g 求数列{}n b 的前n 项和n S .六、倒序相加法将一个数列倒过来排列,当它与原数列相加时,若有规律可循,并且容易求和,则这样的数列求和时可用倒序相加法(等差数列前n 项和公式的推导即用此方法).例6.37设()f x (7)(6)(5)(0)(8)f f f f f -+-+-++++L L 的值.解析因为1()(1)22x xf x f x +-==+=+x =+==所以(7)(6)(5)(0)(8)8f f f f f -+-+-++++==L L . 变式1 函数121()(0),,4xf x m x x R m =>∈+,当121x x +=时,121()()2f x f x +=. (1)求m 的值;(2)已知数列{}n a 满足121(0)()()()(1)n n a f f f f f n n n-=+++++L ,求n a ;(3)若12n n S a a a =+++L ,求n S .变式2 已知函数()f x 对任意x R ∈都有1()(1)2f x f x +-=.(1)求1()2f 的值;(2)若数列{}n a 满足121(0)()()()()(*)n n na f f f f f n N n n n n-=+++++∈L ,数列{}n a 是等差数列吗?试证明之;(3)设4(*)41n n b n N a =∈-,1n n n c b b +=,求数列{}n c 的前n 项和n T .变式3 已知数列{}n a 是首项为1,公差为2的等差数列,求0121231n n nn n n n S C a C a C a C a +=++++L .最有效训练题1.L ,则 )A .第18项B .第19项C .第17项D .第20项2.已知各项均不为零的数列{}n a ,定义向量1(,),(,1),*n n n n c a a b n n n N +==+∈u u r u u r,则下列命题为真命题的是( )A .若对任意的*n N ∈,总有//n n c b u u r u u r 成立,则数列{}n a 是等差数列B .若对任意的*n N ∈,总有//n n c b u u r u u r成立,则数列{}n a 是等比数列 C .若对任意的*n N ∈,总有n n c b ⊥u u r u u r成立,则数列{}n a 是等差数列 D .若对任意的*n N ∈,总有n n c b ⊥u u r u u r成立,则数列{}n a 是等比数列3.设{}n a 是单调递减的等差数列,前3项的和是15,前3项的积是105,当该数列的前n 项和最大时,n =( )A .4B .5C .6D .74.已知数列{}n a 满足111n n a a +=-,若112a =,则2011a =( )A .12B .2C .-1D .1 5.设等比数列{}n a 的各项均为正数,公比为q ,前n 项和为n S ,若对*n N ∀∈,有23n n S S <,则q 的取值范围是( )A .(0,1]B .(0,2)C .[1,2)D .(0)6.对于数列{}n a ,如果*k N ∃∈及12,,,k R λλλ∈L ,使1122n k n k n k k n a a a a λλλ++-+-=+++L 成立,其中*n N ∈,则称{}n a 为k 阶递推数列,给出下列三个结论: ①若{}n a 为等比数列,则是1阶递推数列; ②若{}n a 为等差数列,则是2阶递推数列;③若数列{}n a 的通项公式为2n a n =,则是3阶递推数列. 其中正确结论的个数是( )A .0B .1C .2D .37.根据数列的前几项,写出数列的一个通项公式: (1)-1,7,-13,19,L ,n a =_____________; (2)0.8,0.88,0.888,L ,n a =_____________; (3)115132961,,,,,,248163264--L ,n a =_____________;(4)0,1,0,1,L ,n a =_____________. 8.若数列{}n a 满足111n n d a a +-=(*n N ∈,d 为常数),则称{}n a 为调和数列.已知数列1{}nx 为调和数列,且1220200x x x +++=L ,则56x x +=__________.9.在数列{}n a 中,121,2a a ==,且21(1)(*)n n n a a n N +-=+-∈,则100S =__________. 10.根据下列条件,确定数列{}n a 的通项公式. (1)已知数列{}n a 的前n 项和2231n S n n =-+; (2)已知数列{}n a 的满足132n n n a a +=++,且12a =; (3)1111,(2,*)n n n a a a n n N n--==≥∈; (4)在数列{}n a 中,111,2(*)n n n a a a n N +==+∈; (5)在数列{}n a 中,113,21(*)n n a a a n N +==+∈;(6)在数列{}n a 中,2111,2(*)n nn a a a a n N +==+∈. 11.设数列{}n a 的前n 项和为n S ,点(,)(*)nS n n N n∈均在函数32y x =-的图像上. (1)求数列{}n a 的通项公式; (2)设13n n n b a a +=,n T 是数列{}n b 的前n 项和,求使得20n mT <对所有*n N ∈都成立的最小正整数m .12. 已知数列{}n a 的首项1122,(*)31n n n a a a n N a +==∈+(1)证明:数列1{1}na -是等比数列; (2)求数列{}nna 的前n 项和n S .。

相关文档
最新文档