线性代数习题
线性代数章节练习题
b b2 ac
c
a
c2 a2
ab abc
b b2 abc
c c2 abc
abc
111
(a b c) a2 b2 c2 (a b c) a b c
111
a2 b2 c2
(a b c)(b a)(c a)(c b)
246 427 327 1000 427 327 1000 100 327 (2) 1014 543 443 2000 543 443 2000 100 443
D 2 0
2 7
2 0
2 0
5 3 2 2
求第四行各元素的余子式之和的值。
8 计算 n 阶行列式
x y 00 0 0 x y0 0 Dn 0 0 0x y y 0 00 x
3 1 1 9 计算行列式 D 1 5 1 。
1 1 3
3 2 2 10 计算三阶行列式 D k 1 k 。
(C) C PT AP
(D) C PAPT
13 计算
0 1 0 2007 1 2 3 0 1 0 2006 1 0 0 4 5 61 0 0 0 0 1 7 8 9 0 0 1
14 设 A 为 n 阶可逆阵,交换 A 的第 i 行与第 j 行后得到 B。 (1)证明 B 可逆;(2)求 AB-1
(C)当 n m 时,必有 AB 0
(D)当 n m 时,必有 AB 0 18 证明 R( A B) R( A) R(B)
4 1 41 则
R(BA 2A)
19 A 为 m p 矩阵,B 为 p n 矩阵,若 AB=0 证明: R( A) R(B) P
20 设 A 为 n 阶矩阵,且 A2=A,若 R( A) . 证明 R( A E) n r ,其中 E 为 n 阶单位阵
线性代数练习题
一.填空1.若()r A r =,则A 中必有一个( )阶子式不为零.2.A 为n 阶反对称矩阵,当且仅当对于任意n 维列向量X 均有T X AX =( ). 3.同一个向量在不同基下的坐标( )是不同的. 4.设((,))L V P n σ∈,则{0}Im Ker σσ=⇔=( ). 5.n 阶矩阵,A B 均正定,则A B ( )正定. 6. 设三阶数字方阵A 的特征值为1,2,-2,则||A =().7.设⎪⎪⎪⎭⎫ ⎝⎛=110011001A ,则A 的初等因子为( ).8.若当块0()k J λ的初等因子组为 .9.正交矩阵的行列式为 .10.n 阶数字矩阵A 的所有不变因子的次数之和为 .11.已知n 阶实对称矩阵A 的特征值中共有t 个正实数,则A 的正惯性指数为 . 11. 设线性空间V 的任一向量都可由V 的线性无关向量组r ααα,,,21 线性表示,则V dim =( ).12. 设非零方阵A 的行列式为0,则()一定是A 的特征值.13. n 阶数字矩阵A 的所有初等因子的次数之和为( ). 14. 设三阶矩阵A 的元素均为1,则A 的最小多项式为().15. 若x 是方阵A 的属于特征值λ的特征向量,则()是AP P B 1-=的属于特征值λ的特征向量.参考答案:r,0,一般,V,不一定,3)1(-λ, 0()k λλ- , 1± ,n , t , r, 0,n,)3(-λλ,x P 1- 二.选择题1.设W 为V 的子空间,则W 中的零元必定是V 的零元. ( )2.在复数域C 作成自身上的线性空间中,令σαα=,则σ是C 的线性变换. ( )3.设A 为n 阶可逆矩阵,则A 的特征矩阵E A λ-一定可逆. ( )4.设σ是n 维欧氏空间V 的一个线性变换,则σ是正交变换的充要条件是σ把标准正交基变成标准正交基. ( ) 5.在3F 中定义变换σ(a a a 123,,)=(a a a 321,,),则σ是3F 的一个线性变换. ( )6. 若σ是线性空间V 的一个线性变换,n ααα,,,21 为V 的一组基,则)(,),(),(21n ασασασ 也为V 的一组基.()7. n 阶复矩阵A 与对角矩阵相似当且仅当它的不变因子全是一次的.( ) 8.任一线性空间一定含有无限多个向量. ( ) 9. n 阶复矩阵A 的最小多项式的根一定是A 的特征值.10.正定矩阵特征值都大于零. ( ) 11.同阶方阵,A B 相似的充要条件是有相同的最小多项式.( )12.线性空间的两个子空间的并集也是子空间. ( ) 13. n 阶复矩阵A 的零化多项式无重根,则A 可对角化. ( )14.若σ是线性空间V 的一个线性变换,n ααα,,,21 为V 的线性无关的向量组,则)(,),(),(21n ασασασ 也线性无关.15.有限维欧氏空间V 的正交变换在V 的任一组基下的矩阵皆为正交矩阵.()✓,✗, ✗ , ✓,✓, ✗,✗,✗,对, ✓ , ✗, ✗ , ✓ , ✗,错.三.选择题1.设矩阵A 的每行元素之和均为1,则( )一定是A 的特征值.A. 0B. 1C. 2D. 32.下列命题( )不是矩阵A 正定的判定条件.A .A 与单位矩阵等价. B.A 特征值都大于零.C.A 与单位矩阵合同.D. A 的顺序主子式都大于零.3.设复数域C 是定义在复数域C 上的线性空间,则此线性空间维数为( ).A .无限维 B. 3 C. 2 D. 14.设σ是数域F 上线性空间V 上的线性变换,若2I σ=,I 是恒等变换,则σ可能的特征值为( ). A. 0 B. 1 C. 2 D. 35.已知二次型),,(321x x x f 通过非退化线性替换化为标准形2221y y +-,则二次型),,(321x x x f ( ).A.正定B. 半正定C. 负定D. 不定 6.设矩阵A 的每行元素之和均为1,则()一定是A 的特征值.A. 0B. 1C. 2D. 37.设A 为2阶矩阵,21,λλ是A 的特征值,则正确的是( ).A.2121||,)(λλλλ=+=A A trB. 2121||,)(λλλλ=--=A A trC. 2121||,)(λλλλ+==A A trD. 以上都不对8.已知二次型),,(321x x x f 通过正交线性替换化为标准形2221y y +-,则二次型),,(321x x x f ( ). A.正定 B. 半正定 C. 负定 D. 不定9.下列命题( )不是n 阶实对称方阵A 正定的充要条件.A .A 合同于1(,,),0,1,,n i diag d d d i n >= B. A 的正惯性指数为n C. 存在可逆矩阵n n C R ⨯∈,使得T A C C = D.A 与单位矩阵等价.10.设A 是n 阶矩阵,E 是n 阶单位矩阵,线性方程组0)(=-x A E λ的两个不同解向量分别是,αβ,则( )必是A 对应于特征值λ的特征向量. A.αB. βC. αβ+D. αβ-B, A , D ,B ,D,B,A,D,D,D 四.计算1.设实对称矩阵⎪⎪⎪⎭⎫⎝⎛=122212221A ,求正交矩阵Q ,使得AQ Q T 为对角形矩阵. 1’ 已知实二次型323121232221321444),,(x x x x x x x x x x x x f +++++=.(1)写出二次型),,(321x x x f 的矩阵;(2)用正交替换化),,(321x x x f 为标准形,并写出所用的正交替换及二次型的标准形.2. 若数字矩阵A 的特征矩阵E A λ-与23(1,44,1,1,32)diag λλλλ-+--等价.(1)试写E A λ-的标准形. (2)试写A 的初等因子.(3)试写A 的Jordan 标准形.3.求矩阵⎪⎪⎪⎭⎫⎝⎛----=242422221A 在实数域上的全部特征值与特征向量. 4.设A =3452⎛⎝⎫⎭⎪.(1)求A 的特征值与特征向量.(2)A 是否可以对角化?若能对角化写出相应的过渡矩阵P ,使P AP -1为对角矩阵.1.解:A 的特征多项式)5()1(||)(2-+=-=λλλλA E f故A 的特征值为-1,-1,5.取-1的线性无关的特征向量)1,1,0(),1,0,1(21-=-=αα将其正交单位化得)61,62,61(),21,0,21(21--=-=γγ取特征值5的特征向量)1,1,1(3=α 将其单位化得)31,31,31(3=γ令⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---=31612131620316121Q 则)5,1,1(--=diag AQ Q T .2. 解:由条件知A 的初等因子为22(2),(2),(1)λλλ--+.(1) E A λ-的标准形为22(1,1,1,2,(2)(1))diag λλλ--+. (2) A 的初等因子为22(2),(2),(1)λλλ--+.(3) A 的Jordan 标准形2212111J ⎛⎫ ⎪⎪⎪= ⎪- ⎪ ⎪-⎝⎭3. 解:A 的特征多项式为2)2)(7(||)(-+=-=λλλλA E f故A 的特征值为-7,2,2.属于特征值2的特征向量为)1,0,2(),0,1,2(,,,21212211=-=∈+αααλR k k k k 属于特征值-7的线性无关的特征向量为)2,2,1(,,33-=∈ααR l l 4.解:(1)A 的特征多项式为34||(7)(2)52E A λλλλλ---==-+--故A 的特征值为7,2-.解其次线性方程组(7)0E A X -=,得其基础解系为1(1,1)ξ=,从而A 的属于特征值7的特征向量为1().k k ξ为任意数解其次线性方程组(2)0E A X --=,得其基础解系为2(4,5)ξ=-,从而A 的属于特征值2-的特征向量为2()k k ξ为任意数.(2)由(1)知A 有两个不同的特征值,故A 可以对角化.令 1415P ⎛⎫=⎪-⎝⎭则172PA P -⎛⎫=⎪-⎝⎭. 证明:1.设n n F ⨯是数域F 上的所有n 阶矩阵的集合,令}|{A APA S Tnn =∈=⨯,}|{A APA T Tnn -=∈=⨯.(1)证明:T S ,是n n F ⨯的子空间; (2)证明:TS F nn ⊕=⨯.证明: (1)由于S E ∈,故φ≠S .F l k S B A ∈∀∈∀,,,则lBkA lB kA T+=+)(故S lB kA ∈+,从而S 为n n F ⨯的子空间.同理可证T 是n n F ⨯的子空间.(法1)先证明TS F nn +=⨯.显然,nn FT S ⨯⊆+. nn FA ⨯∈∀,有22TTA A A A A -++=,而,22TTT A A A A +=⎪⎪⎭⎫⎝⎛+22TTT A A A A --=⎪⎪⎭⎫ ⎝⎛- ,故TA A S A A TT∈-∈+2,2,从而TSA +∈,故T S F nn +⊆⨯.故T S F n n +=⨯.再证T S F n n ⊕=⨯,T S A ∈∀,则A A A T -==,从而0=A ,故}0{=T S . 故结论成立.(法2) T S A ∈∀,则A A A T -==,从而0=A ,故}0{=T S . 从而nn Fnn n n n T S T S T S ⨯==--++=-+=+dim 022)dim(dim dim )dim(222又nn FTS ⨯⊆+,故T S F n n ⊕=⨯.2.设σ为数域F 上的n 维线性空间V 的线性变换.证明:n Ker =+σσdim Im dim . 证明: 设r =σker dim ,取σKer 基r ααα,,,21 扩充为V 的基r ααα,,,21 ,n r αα,,1 +.则))(,),(())(,),(),(,),(),((Im 1121n r n r r L L ασασασασασασασσ ++==下证)(,),(1n r ασασ +线性无关,设)()(11=++++n n r r k k ασασ由σ为线性变换,故0)(11=++++n n r r k k αασ从而σααKer k k n n r r ∈++++ 11,设rr n n r r k k k k k ααααα----=++++ 221111即0112211=++++++++n n r r r r k k k k k ααααα由r ααα,,,21 ,n r αα,,1 +线性无关得01===+n r k k ,故)(,),(1n r ασασ +线性无关,且是σIm 的基,故r n -=σIm dim ,而r Ker =σdim ,从而结论成立. 3.证明:欧氏空间V 上的对称变换的属于不同特征值的特征向量是正交的.证明:设σ为V 的对称变换,μλ,为σ的两个不同特征值,V ∈βα,是σ的分别属于μλ,的特征向量,即μββσλαασ==)(,)(由))(,()),((βσαβασ=可得 ),(),(ββμβαλ=,而μλ≠,故0),=(βα,从而结论成立.4. 证明:方阵A 的行列式为0的充要条件为0是A 的特征值. 证明:必要性.由于|0|||0A E A -==,故0是A 的特征值.充分性.由于0是A 的特征值,故||)1(|||0|0A A A E n-=-=-=,即0||=A .5. 设A 为n 阶可逆实矩阵,在n R 中,定义nT TRY X AY A XY X ∈∀=,,),(证明:),(Y X 是n R 的内积.证明:nRZ Y X ∈∀,,,R k ∈∀由于(1)),()(),(X Y AX A Y AY A XAY A XY X TT TT TTT====;(2)),()(),(Y X k AY A kXAY A kX Y kX TTTT ===;(3)),(),()(),(Z Y Z X AZ A Y AZ A XAZ A Y X Z Y XTTTTTT+=+=+=+;(4)由A A T 正定知,0),(≥=AX A XX X T T.若0=X,则0),(=X X .若AXA XX X TT==),(0,由A A T正定知0=X .6.数域F 上一个n 阶矩阵A (E A A n ≠≠>,0,1),满足A A =2.证明: (1)A 的特征值只能是0或1; (2) ()()Tr A r A =;(3) 对任意的自然数m k ,有()n A E r A r m k =-+)()(. 证明: (1)设λ为A 的任一特征值,α为对应的特征向量,即0,≠=αλααA由A A =2,有αλαλαααλα22)(=====A A A A A ,而0≠α,故λλ=2,于是0=λ或1.从而结论成立.(2) 由A A =2知λλλ-=2)(g 为A 的零化多项式,而)(λg 无重根,从而A 相似于对角阵,即存在可逆矩阵P使得P E PA r ⎪⎪⎭⎫ ⎝⎛=-01其中r A r =)(,而)(A tr 为对角阵对角元之和0011)(+++++= A tr ,故()()Tr A r A =.(3)由(2)有P E P A E P E PA rn m r k ⎪⎪⎭⎫⎝⎛=-⎪⎪⎭⎫ ⎝⎛=---0)(,011从而结论成立.7. 设σ是数域F 上的n 维线性空间V 的线性变换,且I =2σ.(1)证明:σ的特征值只能为1或1-;(2)用11,-V V 分别表示σ的属于特征值1和1-的特征子空间,证明:11-⊕=V V V.证明: (1) 设λ为σ的任意一个特征值,α为属于λ的一个特征向量,即λαασ=)(.由I =2σ,有αλλασασα22)()(===故12=λ,即σ的特征值为1或1-. (2)下证11-⊕=V V V .V ∈∀α,则))((21))((21ασαασαα++-=,且)))((21(21)(21)(21)(21)))((21(2ασααασασασασασ--=-=-=-)))((21(21)(21)(21)(21)))((21(2ασααασασασασασ+=+=+=+即11-+=V V V .11-∈∀V V α,则αασα-==)(,于是0=α.从而11-⊕=V V V8.证明反对称实矩阵的特征值是零或纯虚数.证明:设A 为n 阶反对称实矩阵,C λ∈为A 的任一特征值,n C α∈为对应的特征向量,即,0A αλαα=≠ 上式两边取共轭和转置得TTA A αλααλα=-=于是 TT TA λααααλαα-==而0Tαα>,故λλ-=.即λ为零或纯虚数.。
线性代数练习题及答案10套
1 0 1 14.设矩阵 A= 0 2 0 ,矩阵 B A E ,则矩阵 B 的秩 r(B)= __2__. 0 0 1 0 0 1 B A E = 0 1 0 ,r(B)=2. 0 0 0
15.向量空间 V={x=(x1,x2,0)|x1,x2 为实数}的维数为__2__. 16.设向量 (1,2,3) , (3,2,1) ,则向量 , 的内积 ( , ) =__10__. 17.设 A 是 4×3 矩阵,若齐次线性方程组 Ax=0 只有零解,则矩阵 A 的秩 r(A)= __3__. 18 . 已 知 某 个 3 元 非 齐 次 线 性 方 程 组 Ax=b 的 增 广 矩 阵 A 经 初 等 行 变 换 化 为 :
三、计算题(本大题共 6 小题,每小题 9 分,共 54 分)
Ibugua
交大打造不挂女神的领跑者
123 23 3 21.计算 3 阶行列式 249 49 9 . 367 67 7 123 23 3 100 20 3 解: 249 49 9 200 40 9 0 . 367 67 7 300 60 7
线代练习题及答案(一)
一、单项选择题(本大题共 10 小题,每小题 2 分,共 20 分)
1.设 A 为 3 阶方阵,且 | A | 2 ,则 | 2 A 1 | ( D A.-4 B.-1 C. 1 ) D.4
| 2 A 1 | 2 3 | A | 1 8
1 4. 2
)
1 2 3 1 2 2. 设矩阵 A= (1, 2) , B= C= 则下列矩阵运算中有意义的是 ( B 4 5 6 , 3 4 ,
行成比例值为零.
a1b2 a 2 b2 a 3 b2
线性代数习题及解答完整版
线性代数习题及解答 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】线性代数习题一说明:本卷中,A -1表示方阵A 的逆矩阵,r (A )表示矩阵A 的秩,||α||表示向量α的长度,αT表示向量α的转置,E 表示单位矩阵,|A |表示方阵A 的行列式. 一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
1.设行列式111213212223313233a a a a a a a a a =2,则111213313233213122322333333a a a a a a a a a a a a ------=( ) A .-6 B .-3 C .3D .62.设矩阵A ,X 为同阶方阵,且A 可逆,若A (X -E )=E ,则矩阵X =( ) A .E +A -1B .E -AC .E +AD .E -A -13.设矩阵A ,B 均为可逆方阵,则以下结论正确的是( )A .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B B .⎛⎫⎪⎝⎭A B 不可逆 C .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫ ⎪⎝⎭B AD .⎛⎫⎪⎝⎭A B 可逆,且其逆为-1-1⎛⎫⎪⎝⎭A B 4.设α1,α2,…,αk 是n 维列向量,则α1,α2,…,αk 线性无关的充分必要条件是( )A .向量组α1,α2,…,αk 中任意两个向量线性无关B .存在一组不全为0的数l 1,l 2,…,l k ,使得l 1α1+l 2α2+…+l k αk ≠0C .向量组α1,α2,…,αk 中存在一个向量不能由其余向量线性表示D .向量组α1,α2,…,αk 中任意一个向量都不能由其余向量线性表示5.已知向量2(1,2,2,1),32(1,4,3,0),T T+=---+=--αβαβ则+αβ=( ) A .(0,-2,-1,1)TB .(-2,0,-1,1)TC .(1,-1,-2,0)TD .(2,-6,-5,-1)T6.实数向量空间V ={(x , y , z )|3x +2y +5z =0}的维数是( ) A .1B .2C .3D .47.设α是非齐次线性方程组Ax =b 的解,β是其导出组Ax =0的解,则以下结论正确的是( )A .α+β是Ax =0的解B .α+β是Ax =b 的解C .β-α是Ax =b 的解D .α-β是Ax =0的解8.设三阶方阵A 的特征值分别为11,,324,则A -1的特征值为( ) A .12,4,3 B .111,,243C .11,,324D .2,4,39.设矩阵A =121-,则与矩阵A 相似的矩阵是( )A .11123--B .01102C .211- D .121-10.以下关于正定矩阵叙述正确的是( ) A .正定矩阵的乘积一定是正定矩阵 B .正定矩阵的行列式一定小于零 C .正定矩阵的行列式一定大于零D .正定矩阵的差一定是正定矩阵二、填空题(本大题共10小题,每空2分,共20分)请在每小题的空格中填上正确答案,错填、不填均无分。
线性代数练习题
一、选择题(3⨯15=45分)1.在行列式44det()ij a ⨯中,取“+”的有( )项。
A.8B.12C.16D.202.设D=1010det()1,ij a ⨯=则1010det()ij a ⨯-=( ).A.1B.-1C.10D.-103.设1235A ⎛⎫= ⎪⎝⎭,则1A -=( ). A. 1325-⎛⎫ ⎪-⎝⎭ B.5321-⎛⎫ ⎪-⎝⎭ C. 1235-⎛⎫ ⎪-⎝⎭ D.5231-⎛⎫ ⎪-⎝⎭4.设A,B 均为n 阶方阵,下列结论正确的是( )A.若A,B 可逆,则A+B 可逆;B.若A+B 可逆,则A-B 可逆;C.若A,B 可逆,则AB 可逆;D.若A+B 可逆,则A,B 可逆.5.适用于任意线性方程组的解法是( )A.逆矩阵求法 B 克拉默法则 C.消元法 D.以上方法都行6.已知n 元非齐次线性方程组m n A x b ⨯=关于任意常数项矩阵b 都有解,则( )A.R(A)=n;B.R(A)=m;C.R(A)<n;D.R(A)<m.7.设向量组12,,...,s ααα的秩为r,则( )A.必有s<r;B.向量组中任意小于r 个向量的部分组线性无关;C.向量组中任意r 个向量线性相关;D.向量组中任意r+1个向量线性相关.8.设A 为n 阶方阵,且()1R A n =-,12,αα是0Ax =的两个不同的解向量,则0Ax =的通解为( )A.1k αB.2k αC.12()k αα-D. 12()k αα+9.下列不可对角化的矩阵是( )A.实对称矩阵; B 有n 个不同特征值的的n 阶方阵;C.有n 个线性无关的特征向量的n 阶方阵;D.不足n 个线性无关的特征向量的n 阶方阵.10.若A,B 都是n 阶正定实矩阵,则AB 一定是( )A.实对称矩阵;B.正交矩阵;C.正定矩阵;D.可逆矩阵.11.由m 个n 维向量构成的向量组的秩最大为( )A. mB. nC. max(m, n)D. min(m, n)12.实二次型T f x Ax =正定的充要条件为( )A.0,x ∀≠都有0T x Ax >B.0A >C.存在n 阶矩阵C,使T A C C =D.A 的秩()R A n =13.已知P,Q 都是n (3)n ≥阶正交矩阵,则PQ 是( )A.正交矩阵B.对称矩阵C.正定矩阵D.反对称矩阵14.设A 是n (3)n ≥阶方阵,12,λλ是A 的特征值,12,ξξ是A 的分别对应于1212,()λλλλ≠的特征向量,下列说法正确的是( )A.若12λλ=,则12,ξξ必成比例;B.若12,ξξ≠且312λλλ=+也是A 的特征值,则12ξξ+是3λ对应的A 的特征向量;C.若12,ξξ≠则12ξξ+不可能是A 的特征向量;D.若10,λ=则10ξ=.15.设二阶方阵A 的行列式0A <,*A 是A 的伴随矩阵,则( ) A.0A -> B.A 可相似一对角矩阵 C.*0A > D.A 只有一个线性无关的特征向量二(5分)、设A 是n 阶方阵,2,A A A E =≠,证明:0A =.三(7分)验证123(1,3,1),(2,1,2),(1,2,2)T T T ααα===为3R 的一个极大无关组,并把12(3,0,9),(1,5,7)T T γγ==分别用这个极大无关组表示出来.四(10分)已知五阶行列式51234522211312451112243150D ==27求414243A A A ++和4445A A +,其中4(1,2,3,4,5)j A j =为5D 的第四行第j 个元素的代数余子式。
(完整版)线性代数试题和答案(精选版)
线性代数习题和答案第一部分选择题 (共28分)一、单项选择题(本大题共14小题,每小题2分,共28分)在每小题列出の四个选项中只有一个是符合题目要求の,请将其代码填在题后の括号内。
错选或未选均无分。
1.设行列式a aa a11122122=m,a aa a13112321=n,则行列式a a aa a a111213212223++等于( )A。
m+n B. —(m+n) C. n-m D. m—n2.设矩阵A=100020003⎛⎝⎫⎭⎪⎪⎪,则A-1等于()A。
130012001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪B.100120013⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪C。
13000100012⎛⎝⎫⎭⎪⎪⎪⎪⎪D。
120013001⎛⎝⎫⎭⎪⎪⎪⎪⎪⎪3。
设矩阵A=312101214---⎛⎝⎫⎭⎪⎪⎪,A*是Aの伴随矩阵,则A *中位于(1,2)の元素是()A. –6 B。
6C。
2 D. –24。
设A是方阵,如有矩阵关系式AB=AC,则必有( )A。
A =0 B. B≠C时A=0C. A≠0时B=C D。
|A|≠0时B=C5。
已知3×4矩阵Aの行向量组线性无关,则秩(A T)等于( )A. 1 B。
2C。
3 D. 46.设两个向量组α1,α2,…,αs和β1,β2,…,βs均线性相关,则( )A。
有不全为0の数λ1,λ2,…,λs使λ1α1+λ2α2+…+λsαs=0和λ1β1+λ2β2+…λsβs=0B.有不全为0の数λ1,λ2,…,λs使λ1(α1+β1)+λ2(α2+β2)+…+λs(αs+βs)=0C.有不全为0の数λ1,λ2,…,λs使λ1(α1—β1)+λ2(α2—β2)+…+λs(αs-βs)=0D。
有不全为0の数λ1,λ2,…,λs和不全为0の数μ1,μ2,…,μs使λ1α1+λ2α2+…+λsαs=0和μ1β1+μ2β2+…+μsβs=07。
设矩阵Aの秩为r,则A中( )A.所有r-1阶子式都不为0B.所有r—1阶子式全为0C。
线性代数习题及解答
线性代数习题说明:本卷中,A-1表示方阵A的逆矩阵,r(A)表示矩阵A的秩,||:. ||表示向量:.的长度,:.T表示向量:.的转置, 单位矩阵,A|表示方阵A的行列式.一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列岀的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
a11a12a133耳13a123a131.设行列式a21a22a23=2,则_a31_a32_a33=( )a31932a33a21 — a31a22 — a32323 —a33A . -6 B. -3C. 3D. 62 .设矩阵A,X为同阶方阵,且A可逆,若A (X七)=E,则矩阵X=( )■1A. E +A 1B. E-A■1C. E+AD. E-A 13•设矩阵A,B均为可逆方阵,则以下结论正确的是( )A 1A可逆,且其逆为"< A;B 1A不可逆I B丿丿I B丿r B、% )A-1C.. 可逆,且其逆为 D .. 可逆,且其逆为I B丿<A-1」I B丿< B J4. 设:• 1,「2,…,:-k是n维列向量,则1,2,…,:-k线性无关的充分必要条件是(A .向量组仆2,…,〉k中任意两个向量线性无关B .存在一组不全为0的数11,12,…,I k,使得11 1 + 12〉2+…+ l k二0C .向量组:-1,:- 2,…,〉k中存在一个向量不能由其余向量线性表示D .向量组:•仆〉2,…,〉k中任意一个向量都不能由其余向量线性表示5. 已知向量2:-(1,一2,-2,-1)丁,3二日'21 =(1,Y,-3,0)丁,则鳥-■'■=( )A.(0,-2, -1, 1) T B . (-2 , 0, -1, 1) TC.(1 , -1, -2 , o) T D . (2, -6 , -5, -1) T6 . 实数向量空间V={( x, y, z)|3x+2y+5z=0}的维数是( )A . 1B . 2E表示C . 3D . 47 •设:.是非齐次线性方程组 Ax =b 的解,1是其导出组Ax = 0的解,则以下结论正确的是B .+『■是Ax =b 的解D . :- - 是 Ax =0 的解、填空题(本大题共10小题,每空2分,共20 分)请在每小题的空格中填上正确答案,错填、不填均无分。
(完整版)线性代数习题集
一. 判断题(正确打√,错误打×)1. n 阶行列式ij a 的展开式中含有11a 的项数为1-n 。
( × ) 正确答案:)!1(-n解答:方法1因为含有11a 的项的一般形式是n nj ja a a 2211,其中n j j j 32是1-n 级全排列的全体,所以共有)!1(-n 项. 方法2 由行列式展开定理=nnn n n n a a a a a a a a a212222111211n n A a A a A a 1121211111+++ ,而n n A a A a 112121++ 中不再含有11a ,而11A 共有)!1(-n 项,所以含有11a 的项数是)!1(-n .注意:含有任何元素ij a 的项数都是)!1(-n 。
2. 若n 阶行列式ij a 中每行元素之和均为零,则ij a 等于零。
( √ )解答:将nnn n nn a a a a a a a a a212222111211中的n 、、、 32列都加到第一列,则行 列式中有一列元素全为零,所以ij a 等于零. 3.3322441144332211000000a b b a a b b a a b a b b a b a =。
( √ )解答:方法1按第一列展开332244114411414133224133224144332211)(0000000a b b a a b b a a b b a b b a a a b b a b b a b b a a a a b a b b a b a =-=-=。
方法2 交换2,4列,再交换2,4行2233441144332211443322110000000000000000000000a b b a a b b a a b b a a b b a a b a b b a b a =-==33224411a b b a a b b a 。
方法3 Laplace 展开定理:设在n 行列式D 中任意取定了)11(-≤≤n k k 个行,由这k 行元素所组成的一切k 阶子式与它们的代数余子式的乘积之和等于行列式D 。
线性代数练习题及答案
线性代数期中练习 一、单项选择题。
1.12021k k -≠-的充分必要条件是( )。
(A ) 1k ≠- (B ) 3k ≠ (C ) 1k ≠- 且3k ≠ (D ) 1k ≠-或3k ≠2.若AB =AC ,当( )时,有B =C 。
(A) A 为n 阶方阵 (B ) A 为可逆矩阵 (C) A 为任意矩阵 (D) A 为对称矩阵3.若三阶行列式M a a a a a a a a a =333231232221131211,则=---------333231232221131211222222222a a a a a a a a a ( ). (A) -6M (B) 6M (C ) 8M (D ) -8M4.齐次线性方程组123123123000ax x x x ax x x x x ++=⎧⎪++=⎨⎪++=⎩有非零解,则a 应满足( )。
(A) 0a ≠; (B ) 0a =; (C) 1a ≠; (D) 1a =. 5.设12,ββ是Ax b =的两个不同的解,12,αα是0=Ax 的基础解系,则Ax b = 的通解是( )。
(A)11212121()()2c c αααββ+-++ (B)11212121()()2c c αααββ+++-(C )11212121()()2c c αββββ+++- (D) 11212121()()2c c αββββ+-++二.填空题。
6.A = (1, 2, 3, 4),B = (1, -1, 3, 5),则A ·B T = 。
7.已知A 、B 为4阶方阵,且A =-2,B =3,则| 5AB | =。
| ( AB )-1 |=。
8. 在分块矩阵A=B O O C ⎛⎫ ⎪⎝⎭中,已知1-B 、1-C 存在,而O 是零矩阵,则 =-1A .9.设D =7345327254321111-,则=+++44434241A A A A 。
线性代数练习册附答案
第1章 矩阵 习 题1. 写出下列从变量x , y 到变量x 1, y 1的线性变换的系数矩阵:(1)⎩⎨⎧==011y x x ; (2)⎩⎨⎧+=-=ϕϕϕϕcos sin sin cos 11y x y y x x2.(通路矩阵)a 省两个城市a 1,a 2和b 省三个城市b 1,b 2,b 3的交通联结情况如图所示,每条线上的数字表示联结这两城市的不同通路总数.试用矩阵形式表示图中城市间的通路情况.3. 设⎪⎪⎪⎭⎫ ⎝⎛--=111111111Α,⎪⎪⎪⎭⎫ ⎝⎛--=150421321B ,求3AB -2A 和A TB .4. 计算(1) 2210013112⎪⎪⎪⎭⎫ ⎝⎛(2) ⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫⎝⎛1)1,,(212221211211y x c b b b a a b a a y x5. 已知两个线性变换 32133212311542322yy y x y y y x y y x ++=++-=+=⎪⎩⎪⎨⎧,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,写出它们的矩阵表示式,并求从321,,z z z 到321,,x x x 的线性变换.6. 设f (x )=a 0x m + a 1x m -1+…+ a m ,A 是n 阶方阵,定义f (A )=a 0A m + a 1A m -1+…+ a m E . 当f (x )=x 2-5x +3,⎪⎪⎭⎫⎝⎛--=3312A 时,求f (A ).7. 举出反例说明下列命题是错误的. (1) 若A 2= O ,则A = O .(2) 若A 2= A ,则A = O 或A = E ..7. 设方阵A 满足A 2-3A -2E =O ,证明A 及A -2E 都可逆,并用A 分别表示出它们的逆矩阵.8.用初等行变换把下列矩阵化成行最简形矩阵:(1)⎪⎪⎪⎭⎫⎝⎛------=132126421321A(2)⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=03341431210110122413B .9. 对下列初等变换,写出相应的初等方阵以及B 和A 之间的关系式.⎪⎪⎪⎭⎫ ⎝⎛--=121121322101A ~122r r -⎪⎪⎪⎭⎫⎝⎛---121123302101~13c c +⎪⎪⎪⎭⎫⎝⎛--131123302001=B .10. 设ΛAP P =-1,其中⎪⎪⎭⎫ ⎝⎛--=1141P ,⎪⎪⎭⎫ ⎝⎛-=2001Λ,求A 9.11. 设⎪⎪⎪⎭⎫⎝⎛-=200030004A ,矩阵B 满足AB =A+2B ,求B .12. 设102212533A--⎛⎫⎪=-⎪⎪-⎝⎭, 利用初等行变换求A-1.复习题一1. 设A , B , C 均为n 阶矩阵,且ABC =E ,则必有( ). (A) ACB =E ; (B) CBA =E ; (C) BAC =E ; (D) BCA =E .2. 设⎪⎪⎪⎭⎫⎝⎛=333231232221131211a a a a a a a a a A ,⎪⎪⎪⎭⎫⎝⎛+++=133312321131131211232221a a a a a a a a a a a a B , ⎪⎪⎪⎭⎫ ⎝⎛=1000010101P ,⎪⎪⎪⎭⎫⎝⎛=1010100012P ,则必有 ( ) .(A) AP 1P 2=B ; (B )AP 2P 1=B ; (C) P 1P 2A =B ; (D) P 2P 1A =B .3. 设A 为4阶可逆矩阵,将A 的第1列与第4列交换得B ,再把B 的第2列与第3列交换得C ,设⎪⎪⎪⎪⎪⎭⎫⎝⎛=00010100001010001P ,⎪⎪⎪⎪⎪⎭⎫⎝⎛=10000010010000012P ,则C -1=( ). (A) A -1P 1P 2; (B) P 1A -1P 2; (C) P 2P 1A -1; (D) P 2A -1P 1.4. 设n 阶矩阵A 满足A 2-3A +2E =O ,则下列结论中一定正确的是( ).(A) A -E 不可逆 ; (B) A -2E 不可逆 ; (C) A -3E 可逆; (D) A -E 和A -2E 都可逆. 5. 设A =(1,2,3),B =(1,1/2,1/3),令C =A TB ,求C n.6. 证明:如果A k =O ,则(E -A )-1=E +A +A 2+…+A k -1,k 为正整数.7.设A ,B 为三阶矩阵,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=710004100031A ,且A -1BA =6A +BA ,求B .8. 设n 阶矩阵A 及s 阶矩阵B 都可逆,求1-⎪⎪⎭⎫⎝⎛O O B A .9. 设⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-0000000000000000121n n aa a a X (021≠n a a a ),求X -1.第2章 行列式习 题1.利用三阶行列式解下列三元线性方程组⎪⎩⎪⎨⎧=-+-=-+-=+-013222321321321x x x x x x x x x2.当x 取何值时,0010413≠xx x .3.求下列排列的逆序数:(1) 315624; (2)13…(2n-1)24…(2n).4. 证明: 3232a cb a b a ac b a b a a c b a=++++++.5. 已知四阶行列式|A |中第2列元素依次为1,2,-1,3,它们的余子式的值依次为3,-4,-2,0 ,求|A |.6. 计算下列行列式: (1) 1111111111111111------ (2) y x yx x y x yy x y x+++(3) 011110111101111(4) 1222123312111x x x x x x(5)n n a a a D +++=11111111121,其中021≠n a a a .7.设n阶矩阵A的伴随矩阵为A*,证明:|A*|=|A|n-1,(n ≥2).8. 设A,B都是三阶矩阵,A*为A的伴随矩阵,且|A|=2,|B|=1,计算|-2A*B-1|.9.设⎪⎪⎪⎭⎫ ⎝⎛--=111012112A ,利用公式求A -1.复习题二1.设A , B 都是n 阶可逆矩阵,其伴随矩阵分别为A *、B *,证明:(AB )*= B *A *.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=2200020000340043A ,求A -1.3.已知A 1, A 2, B 1, B 2都是3⨯1矩阵,设A =( A 1, A 2, B 1,),B =( A 1, A 2, B 2),|A |=2,|B |=3,求|A+2B |.4.设A , B 都是n 阶方阵,试证:AB E E AB E-=.第3章向量空间习题1. 设α1=(1,-1,1)T, α2=(0,1,2)T, α3=(2,1,3)T,计算3α1-2α2+α3.2. 设α1=(2,5,1,3)T, α2=(10,1,5,10)T, α3=(4,1,-1,1)T,且3(α1- x)+2(α2+x)=5(α3+x) ,求向量x.3. 判别下列向量组的线性相关性:(1) α1=(-1,3,1)T, α2=(2,-6,-2)T, α3=(5,4,1)T;(2) β1=(2,3,0)T, β2=(-1,4,0)T, β3=(0,0,2)T .4. 设β1=α1, β2=α1+α2, β3=α1+α2+a3,且向量组α1, α2, α3线性无关,证明向量组β1, β2, β3线性无关.5. 设有两个向量组α1, α2, α3和β1=α1-α2+α3, β2=α1+α2-α3,β3= -α1+α2+α3,证明这两个向量组等价.6. 求向量组α1=(1,2,-1)T, α2=(0,1,3)T, α3=(-2,-4,2)T,α4=(0,3,9)T的一个极大无关组,并将其余向量用此极大无关组线性表示.7. 设α1, α2,…, αn是一组n维向量,已知n维单位坐标向量ε1,ε2,…,εn能由它们线性表示,证明:α1, α2,…,αn线性无关.8. 设有向量组α1, α2, α3,α4, α5,其中α1, α2, α3线性无关,α4=aα1+bα2,α5=cα2+dα3(a, b, c, d均为不为零的实数),求向量组α1, α3,α4, α5的秩.9. 设矩阵A= (1,2,…,n), B=(n,n-1,…,1),求秩R(A T B).10. 设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------=97963422644121121112A ,求A 的秩,并写出A 的一个最高阶非零子式.11. 已知矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--+---=120145124023021t t A ,若A 的秩R (A )=2,求参数t 的值.12. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=5913351146204532A ,求A 的列向量组的秩,并写出它的一个极大无关组.13. 设A 为n 阶矩阵,E 为n 阶单位矩阵,证明:如果A 2=A ,则R (A )+R (A -E )=n .14. 已知向量空间3R 的两组基为⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=010,01121αα,⎪⎪⎪⎭⎫ ⎝⎛=1130α和⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=111,01121ββ-,⎪⎪⎪⎭⎫ ⎝⎛-=1103β, 求由基α1, α2, α3到基β1, β2, β3的过渡矩阵.复习题三1.设矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=k k k k 111111111111A ,已知A 的秩为3,求k 的值.2.设向量组A : α1, …,αs 与B : β1,…,βr ,若A 组线性无关且B 组能由A 组线性表示为(β1,…,βr )=(α1, …,αs )K ,其中K 为r s ⨯矩阵, 试证:B 组线性无关的充分必要条件是矩阵K 的秩R (K )=r .3.设有三个n维向量组A:α1, α2, α3;B:α1, α2, α3,α4;C:α1, α2, α3,α5.若A组和C组都线性无关,而B组线性相关,证明向量组α1, α2, α3,α4-α5线性无关.4.设向量组A: α1=(1,1,0)T,α2=(1,0,1)T,α3=(0,1,1)T和B: β1=(-1,1,0)T,β2=(1,1,1)T,β3=(0,1,-1)T(1) 证明:A组和B组都是三维向量空间3R的基;(2) 求由A组基到B组基的过渡矩阵;(3) 已知向量α在B组基下的坐标为(1,2,-1)T,求α在A组基下的坐标.第4章 线性方程组习 题1. 写出方程组⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x 的矩阵表示形式及向量表示形式.2.用克朗姆法则解下列线性方程组⎪⎩⎪⎨⎧=+=+--=-0322az cx bc bz cy ab ay bx ,其中0≠abc3.问μλ,取何值时,齐次线性方程组⎪⎩⎪⎨⎧=++=++=++02 00 321321321x x x x x x x x x μμλ有非零解?4. 设有线性方程组⎪⎩⎪⎨⎧-=+-=++=++42 - 43212321321x x x k x kx x x k x x ,讨论当k 为何值时,(1)有唯一解?(2)有无穷多解?(3)无解?5. 求齐次线性方程组⎪⎩⎪⎨⎧=-++=-++=++-0 26 83054202108432143214321x x x x x x x x x x x x 的一个基础解系.6.设四元非齐次线性方程组的系数矩阵的秩为3,已知η1, η2, η3是它的三个解向量,且η1=(2,3,4,5)T , η2+η3=(1,2,3,4)T ,求此方程组的的通解.7 .求下列非齐次线性方程组的通解:⎪⎩⎪⎨⎧=+++=+++=+322 3512254321432121x x x x x x x x x x8. 设有向量组A :12122,131-==-⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭αα,3110-=⎛⎫ ⎪ ⎪ ⎪⎝⎭α及向量131β=-⎛⎫ ⎪ ⎪ ⎪⎝⎭, 问向量β能否由向量组A 线性表示?9. 设η*是非齐次线性方程组AX=b的一个解,ξ1, ξ2,…, ξn-r是它的导出组的一个基础解系,证明:(1)η*, ξ1, ξ2,…, ξn-r线性无关;(2)η*, η*+ξ1, η*+ξ2,…, η*+ξn-r线性无关.复习题四1.设⎪⎪⎪⎭⎫ ⎝⎛=101102121a a a A ,且方程组AX =θ的解空间的维数为2,则a = .2.设齐次线性方程组a 1x 1+a 2x 2+…+a n x n =0,且a 1,a 2,…,a n 不全为零,则它的基础解系所含向量个数为 .3.设有向量组π:α1=(a ,2,10)T , α2=(-2,1,5)T , α3=(-1,1,4)T 及向量β=(1,b ,-1)T ,问a , b 为何值时,(1)向量β不能由向量组π线性表示;(2)向量β能由向量组π线性表示,且表示式唯一;(3)向量β能由向量组π线性表示,且表示式不唯一,并求一般表示式.4.设四元齐次线性方程组(Ⅰ)⎩⎨⎧=-=+004221x x x x (Ⅱ)⎩⎨⎧=+-=+-00432321x x x x x x求: (1) 方程组(Ⅰ)与(Ⅱ)的基础解系;(2) 方程组(Ⅰ)与(Ⅱ)的公共解.5.设矩阵A =(α1, α2, α3, α4),其中α2, α3, α4线性无关,α1=2α2-α3,向量β=α1+α2+α3+α4,求非齐次线性方程组Ax= β的通解.6. 设⎪⎪⎪⎭⎫ ⎝⎛=321a a a α,⎪⎪⎪⎭⎫ ⎝⎛=321b b b β,⎪⎪⎪⎭⎫ ⎝⎛=321c c c γ,证明三直线⎪⎩⎪⎨⎧=++=++=++0:0:0:333322221111c y b x a l c y b x a l c y b x a l 3,2,1,022=≠+i b a i i相交于一点的充分必要条件是向量组βα,线性无关,且向量组γβα,,线性相关.第5章矩阵的特征值和特征向量习题1.已知向量α1=(1,-1,1)T,试求两个向量α2, α3,使α1, α2, α3为R 3的一组正交基.2.设A, B都是n阶正交矩阵,证明AB也是正交矩阵.3. 设A是n阶正交矩阵,且|A|=-1,证明:-1是A的一个特征值.4.求矩阵⎪⎪⎪⎭⎫ ⎝⎛----201335212的特征值和特征向量.5. 已知三阶矩阵A 的特征值为1,2,3,计算行列式|A 3-5A 2+7E |.6.设矩阵⎪⎪⎪⎭⎫ ⎝⎛------=12422421x A 与⎪⎪⎪⎭⎫ ⎝⎛-=40000005y Λ相似,求y x ,;并求一个正交矩阵P ,使P -1AP =Λ.7.将下列对称矩阵相似对角化:(1)⎪⎪⎪⎭⎫ ⎝⎛----020212022(2)⎪⎪⎪⎭⎫ ⎝⎛310130004.8. 设λ是可逆矩阵A 的特征值,证明:(1)A 是A *的特征值.(2)当1,-2,3是3阶矩阵A的特征值时,求A *的特征值.9.设三阶实对称矩阵A的特征值为λ1=6, λ2=λ3=3,属于特征值λ1=6的特征向量为p1=(1,1,1)T,求矩阵A.复习题五1.设n 阶矩阵A 的元素全为1,则A 的n 个特征值是 .2.已知3阶矩阵A , A -E , E +2A 都不可逆,则行列式|A +E |= .3.设⎪⎪⎪⎭⎫ ⎝⎛=11111b b a a A ,⎪⎪⎪⎭⎫ ⎝⎛=200010000B ,已知A 与B 相似,则a , b 满足 .4.设A 为2阶矩阵, α1, α2为线性无关的2维列向量,A α1=0, A α2=2α1+, α2,则A 的非零特征值为 .5.已知矩阵⎪⎪⎪⎭⎫ ⎝⎛=50413102x A 可相似对角化,求x .6.设矩阵A 满足A 2-3A +2E =O ,证明A 的特征值只能是1或2.7.已知p 1=(1,1,-1)T 是对应矩阵⎪⎪⎪⎭⎫ ⎝⎛---=2135212b a A 的特征值λ的一个特征向量. (1) 求参数a , b 及特征值λ; (2) 问A 能否相似对角化?说明理由.8. 设⎪⎪⎭⎫ ⎝⎛--=3223A ,求φ(A )=A 10-5A 9.第6章 二次型习 题1.写出下列二次型的矩阵表示形式:42324131212423222146242x x x x x x x x x x x x x x f -+-+-+++=2.写出对称矩阵⎪⎪⎪⎭⎫ ⎝⎛----=32201112121A 所对应的二次型.3. 已知二次型322123222132164),,(x x x x ax x x x x x f ++++=的秩为2,求a 的值.4.求一个正交变换将322322213214332),,(x x x x x x x x f +++=化成标准形.5.用配方法将二次型31212322214253x x x x x x x f -+++=化成标准形,并写出所用的可逆线性变换.6. 设二次型)0(233232232221>+++=a x ax x x x f ,若通过正交变换Py x =化成标准形23222152y y y f ++=,求a 的值.7. 判别下列二次型的正定性:(1)312123222122462x x x x x x x f ++---=(2)4342312124232221126421993x x x x x x x x x x x x f --+-+++=8. 设3231212322214225x x x x x ax x x x f +-+++=为正定二次型,求a 的取值范围.复习题六1. 设A 为n m ⨯矩阵,B =λE +A TA ,试证:λ>0时,矩阵B 为正定矩阵.2.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=2100120000010010A ,写出以A , A -1为矩阵的二次型,并将所得两个二次型化成标准形.3. 已知二次曲面方程5223121232221=-+++x x x bx ax x x ,通过正交变换X=PY 化为椭圆柱面方程522221=+y y ,求b a ,的值.4. 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=101020101A ,2)(A E B +=k ,其中k 为实数,求对角矩阵Λ,使B与Λ相似,并讨论k 为何值时,B 为正定矩阵.测试题一一、计算题:1.计算行列式111131112+=n D n . 2.设⎪⎪⎪⎭⎫ ⎝⎛-=201A ,⎪⎪⎪⎭⎫ ⎝⎛---=210530001B ,计算T B A 3. 3.设A 、B 都是四阶正交矩阵,且0<B ,*A 为A 的伴随矩阵,计算行列式 *2BAA -.4.设三阶矩阵A 与B 相似,且⎪⎪⎪⎭⎫ ⎝⎛=321A ,计算行列式 E B 22-. 5.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=2411120201b a A ,且A 的秩为2,求常数b a ,的值. 二、解答题:6.设4,3,2,1),,,1(32==i t t t T i i i i α,其中4321,,,t t t t 是各不相同的数,问4维非零向量β能否由4321,,,αααα线性表示?说明理由.7.求齐次线性方程组 ⎪⎩⎪⎨⎧=-++=--+=-++05105036302432143214321x x x x x x x x x x x x 的一个基础解系.8.问k 取何值时,线性方程组⎪⎩⎪⎨⎧=++=++=++23213213211k x x kx k x kx x kx x x(1)有唯一解;(2)有无穷多解;(3)无解.9.已知四阶方阵A =(4321,,,αααα),其中321,,ααα线性无关,3243ααα-=,求方程组4321αααα+++=Ax 的通解.10.三阶实对称矩阵A 的特征值是1,2,3.矩阵A 的属于特征值1,2的特征向量分别是T )1,1,1(1--=α,T )1,2,1(2--=α,求A 的属于特征值3的所有特征向量,并求A 的一个相似变换矩阵P 和对角矩阵Λ,使得Λ=-AP P 1.三、证明题:11.设2112ααβ+=,32223ααβ+=,13334ααβ+=,且321,,ααα线性无关,证明:321,,βββ也线性无关.12.设A 为实对称矩阵,且满足O E A A =--22,证明E A 2+为正定矩阵.。
线性代数同步习题及答案
c21 c c2源自1 d d2 d4a4
b4
c4
= (a − b)(a − c)(a − d )(b − c)(b − d )(c − d )(a + b + c + d )
5.试求一个 2 次多项式 f ( x ) ,满足 f (1) = 0, f ( −1) = 1, f ( 2) = −1 .
a 0 0 b
b a 0 0
0 ⋯ b ⋯ 0 ⋯ 0 ⋯
0 0 a 0
0 0 b a
a a
(6) ⋯ ⋯ ⋯ ⋯ ⋯ ⋯
⋯ ⋯ ⋯ ⋯
习 题 1.3
1. 解下列方程组
x1 + x 2 + x3 + x 4 = 5 5 x1 + 2 x 2 + 3x3 = −2 x + 2 x − x + 4 x = −2 1 2 3 4 (1) 2 x1 − 2 x 2 + 5 x3 = 0 (2) 2 x − 3 x − x − 5 x 2 3 4 = −2 3x + 4 x + 2 x = −10 1 2 3 1 3 x1 + x 2 + 2 x3 + 11x 4 = 0 2. k 取何值时,下列齐次线性方程组可能有非零:
3 2 − 1 − 3 − 2 (2) 2 − 1 3 1 − 3 7 0 5 − 1 8
1 1 (4) 0 0 0
0 1 0 0 1 0 0 0 1 1 0 0 0 1 1 0 1 0 1 1
2.问能否适当选取矩阵
1 − 2 − 1 3 A= 3 − 6 − 3 9 4 2 k − 2
《线性代数》练习题库参考答案
《线性代数》练习测试题库一.选择题1、=-0000000000121nn a a a a ( B )A. n n a a a 21)1(-B. n n a a a 211)1(+-C. n a a a 212、n 阶行列式0000000000a a a a= ( B )A.na B. (1)2(1)n n n a -- C. (1)n n a -3、n21= ( B )A. (1)!nn - B. (1)2(1)!n n n -- C. 1(1)!n n +-4、 A 是n 阶方阵,m, l 是非负整数,以下说法不正确的是 ( C ). A. ()m l mlA A = B. mlm lA A A+⋅= C. m m mB A AB =)(5、A 、B 分别为m n ⨯、s t ⨯矩阵, ACB 有意义的条件是 ( C ) A. C 为m t ⨯矩阵; B. C 为n t ⨯矩阵; C. C 为n s ⨯矩阵6、下面不一定为方阵的是 (C )A.对称矩阵.B.可逆矩阵.C. 线性方程组的系数矩阵.7、 ⎥⎦⎤⎢⎣⎡-1021 的伴随矩阵是 (A ) A. ⎥⎦⎤⎢⎣⎡1021 B. ⎥⎦⎤⎢⎣⎡-1201 C. ⎥⎦⎤⎢⎣⎡-1021 8、 分块矩阵 00A B ⎡⎤⎢⎥⎣⎦(其中A 、B 为可逆矩阵)的逆矩阵是 ( A )A. 1100A B --⎡⎤⎢⎥⎣⎦ B. 00BA ⎡⎤⎢⎥⎣⎦ C. 1100B A --⎡⎤⎢⎥⎣⎦9、线性方程组Ax b = 有唯一解的条件是 ( A )A.()()r A r A b A ==的列数B.()()r A r A b = .C.()()r A r A b A ==的行数10、线性方程组 ⎪⎩⎪⎨⎧=++=++=++23213213211a ax x x a x ax x x x ax 有唯一解的条件是 (A )A. 2,1-≠aB. 21-==a a 或.C. 1≠a11、 的是则下面向量组线性无关),,,=(),,,=()6,2,4(054312--=--γβα(B )A. 0,,βα B. γβ, C. γα, 12、设A 为正交矩阵,下面结论中错误的是 ( C )A. A T 也为正交矩阵.B. A -1也为正交矩阵.C. 总有 1A =-13、二次型()233221214321342,,,,x x x x x x x x x x f --+=的矩阵为 ( C )A 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---340402021B 、⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---320201011 C 、⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---0000032002010011 14、设r 是实二次型),,,(21n x x x f 的秩,p 是二次型的正惯性指数,q 是二次型的负惯性指数,s 是二次型的符号差,那么 ( B )A. q p r -=;B. q p r +=;C. q p s +=; 15、下面二次型中正定的是 ( B )A. 21321),,(x x x x x f =B.2322213212),,(x x x x x x f ++= C.22213212),,(x x x x x f +=二、判断题1、若行列式主对角线上的元素全为0,则此行列式为0. ( ⨯ )2、A 与B 都是3×2矩阵,则A 与B 的乘积也是3×2矩阵。
线性代数考试练习题带答案大全
线性代数考试练习题带答案一、单项选择题(每小题3分,共15分)1.设A 为m n ⨯矩阵,齐次线性方程组0AX =仅有零解的充分必要条件是A 的( A ). (A ) 列向量组线性无关, (B ) 列向量组线性相关, (C )行向量组线性无关, (D ) 行向量组线性相关. 2.向量,,αβγ线性无关,而,,αβδ线性相关,则( C )。
(A ) α必可由,,βγδ线性表出, (B )β必不可由,,αγδ线性表出, (C )δ必可由,,αβγ线性表出, (D )δ必不可由,,αβγ线性表出. 3. 二次型()222123123(,,)(1)1f x x x x x x λλλ=-+++,当满足( C )时,是正定二次型.(A )1λ>-; (B )0λ>; (C )1λ>; (D )1λ≥.4.初等矩阵(A );(A ) 都可以经过初等变换化为单位矩阵;(B ) 所对应的行列式的值都等于1; (C ) 相乘仍为初等矩阵; (D ) 相加仍为初等矩阵 5.已知12,,,n ααα线性无关,则(C )A. 12231,,,n n αααααα-+++必线性无关;B. 若n 为奇数,则必有122311,,,,n n n αααααααα-++++线性相关;C. 若n 为偶数,则必有122311,,,,n n n αααααααα-++++线性相关;D. 以上都不对。
二、填空题(每小题3分,共15分)6.实二次型()232221213214,,x x x x tx x x x f +++=秩为2,则=t7.设矩阵020003400A ⎛⎫⎪= ⎪ ⎪⎝⎭,则1A -=8.设A 是n 阶方阵,*A 是A 的伴随矩阵,已知5A =,则*AA 的特征值为 。
9.行列式111213212223313233a b a b a b a b a b a b a b a b a b =______ ____;10. 设A 是4×3矩阵,()2R A =,若102020003B ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则()R AB =_____________;三、计算题(每小题10分,共50分)11.求行列式111213212223313233a b a b a b D a b a b a b a b a b a b +++=++++++的值。
线性代数习题及答案解析
1. 三阶行列式()100420563= 。
A. 6B. 1C. 2 答:A 。
2. n 阶行列式()00100200n=。
A.!nB. 2!- C. 1(1)!--n nn答:C 。
二、讨论题1. n 阶行列式怎样定义的?答:n 阶行列式是这样定义的:(1)位于不同行,不同列n 个元素的乘积;(2)共有!n 项,每一项确定:行标为自然数排列,列标为1,,n m m ,当列标为偶数排列时取正号,为奇数排列时取负号;(3)一般项为11(1),-n N m nm a a 即11(1)=-∑n N m nm D a a 。
2.从左上角到右下角,对角线称为什么? 答:主对角线。
一、选择题1、将行列式转置,行列式值( )。
A. 变B. 不变C. 不确定 答:B 。
2、把行列式某一行的倍数加到另一行,行列式( )。
A. 不变B. 变C. 不确定 答:A 。
二、填空题1. 行列式123456789D =中12a 的代数余子式为 。
答 : 12(1)(6)+--。
三、讨论题1、按第一列展开行列式的定理指的是什么? 答:111111n n a A a A D ++=。
2.、按第一列展开行列式与第二列代数余子式乘积之和的定理指的是什么?答:1121120n n a A a A ++=。
一、选择题1、行列式100302540=( )。
A. 6B.(-8)C. 8答:B 。
2、行列式1000520067389104=( )。
A. 2!B. 3!C. 4!答:C 。
二、填空题1、行列式12345006D == 。
答:用上三角行列式24。
2、行列式127158169D =-=- 。
答:-8(其解题过程为:2131127715071588160816+==-+r r D r r )。
三、讨论题1、用化零降阶法计算行列式111111a D a a=等于什么?答:213222301111011(1)(1)(2)1111---+--=-=-+--a a r ar a Da a a a a r r a。
线性代数基础练习题
线性代数基础练习题一、选择题(每题2分,共20分)1. 矩阵的秩是指:A. 矩阵中非零行的最大个数B. 矩阵中非零列的最大个数C. 矩阵中线性无关行的最大个数D. 矩阵中线性无关列的最大个数2. 向量空间的基是指:A. 空间中任意向量的一组表示B. 空间中线性无关的向量集合C. 空间中所有向量的集合D. 空间中能生成整个空间的向量集合3. 线性变换的核是指:A. 变换后为零向量的集合B. 变换后为单位向量的集合C. 变换后保持不变的向量集合D. 变换后向量长度不变的集合4. 方程组有唯一解的条件是:A. 方程个数等于未知数个数B. 方程组的系数矩阵是可逆的C. 方程组的系数矩阵是方阵D. 方程组的系数矩阵是对称的5. 特征值和特征向量是:A. 线性变换中的特定值和向量B. 矩阵对角化过程中的值和向量C. 矩阵行列式为零的值D. 矩阵的秩二、填空题(每题2分,共20分)6. 向量空间 \( \mathbb{R}^3 \) 中,基 \( \{ \mathbf{v}_1,\mathbf{v}_2, \mathbf{v}_3 \} \) 的向量 \( \mathbf{v}_1 = (1, 0, 1) \),\( \mathbf{v}_2 = (0, 1, 1) \),那么\( \mathbf{v}_3 \) 可以是 _________ 。
7. 若矩阵 \( A \) 与 \( B \) 相似,则 \( A \) 和 \( B \) 有相同的 _________ 值。
8. 线性方程组 \( \begin{cases} x + y + z = 1 \\ 2x - y + z = 0 \\ 3x + y - z = 0 \end{cases} \) 的系数矩阵的秩是_________ 。
9. 矩阵 \( A \) 的迹(trace)是 _________ 矩阵元素的和。
10. 线性变换 \( T: \mathbb{R}^3 \rightarrow \mathbb{R}^3 \),若 \( T(\mathbf{e}_1) = \mathbf{e}_2 \) 且 \( T(\mathbf{e}_3) = \mathbf{e}_1 + \mathbf{e}_3 \),则 \( T(\mathbf{e}_2) \) 是_________ 。
线性代数练习题及答案解析(一)
线性代数练习题及答案解析(一)一、行列式1、排列25341的逆序数为 7 ;2、排列643125的逆序数是 9 ;3、方程211123049x x =的根为 2,3 ;(范德蒙行列式) 4、行列式D=162021304---中,元素-3的代数余子式是( A )(A )10 (B )2 (C )-10 (D )-2 考点:代数余子式定义5、(1)三阶行列式det()ij D a =中含有因子1322a a 的项为 132231-a a a ,含有因子1223a a 的项为 122331a a a . 考点:行列式展开式的定义规则(2)四阶行列式det()ij D a =中含有因子1123a a 的项为 12233144a a a a 或12233441-a a a a .6、设n 阶行列式60D =,且D 中的每列的元素之和为6,则D 中的第三行的代数余子式之和为 10 .考点:行列式的性质6,行列式按行(列)展开7、(1)设n 阶行列式det()ij D a =,j i A 是D 中元素j i a 的代数余子式,则下列各式中正确的是( C ). 考点:行列式按自己的行(列)展开等于行列式,如行(列)与代数余子式的行(列)不一致则等于零。
A 、10nijij i aA ==∑;B 、10nijij j aA ==∑; C 、1nijij j aA D ==∑; D 、121ni i i aA D==∑(2)若4阶行列式D 中第2行的元素212223242,1,3,0,a a a a ====余子式212M =,2223241,3,0M M M ===则D= -12 .注意:代数余子式与余子式的区别。
行列式的展开只与代数余子式有关。
(3)若3阶行列式D 中第1行的元素1112133,2,5,a a a ===代数余子式114A =,12131,2,A A =-=则D= 20 .8、行列式112233440000000a b a b b a b a =( B )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习 题 三1、()()()()12323521,2,333,2,152,3,11,13,4+-=+---=ααα.2、()()()()1231023521,1,131,4,352,1,35,5,4=---=------=x ααα,则()112,,225=x .3、()()23213122111111111111111200210110111102200021再↔---⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==-−−−→-−−−−→ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭r r r r r r r B A β ()()31223210011001101100102002110012---⎛⎫ ⎪⎛⎫ ⎪⎪−−−→−−−→ ⎪ ⎪ ⎪ ⎪-⎝⎭- ⎪⎝⎭r r r r r ,这时1231122=+-βααα. 4、()21231421203120312034711001120112234012012---⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪==−−−→--−−→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭r r r r r B A a a a β 12322102101120010-+-⎛⎫ ⎪−−−→-= ⎪ ⎪-⎝⎭r r r r F a . 当()3=R A 时1≠a ,β可由123,,ααα线性表示.这时,()3132312102110010112010200100010--+--⎛⎫⎛⎫⎪ ⎪−−−→-−−−→= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭r a r r r r F G ,F 为矩阵行阶梯形,G 为矩阵行最简形,于是12320=-++βααα.说明:这一题可用克莱姆法则求解.5、(1)记()()123123,,,,,==A B αααβββ,因为向量组B 不能由向量组A 线性表示,所以()3<R A ,从而()2123111110011110-10, 1.1111按第一行展开-=--==---c c A a a a a c c a a a a这时,()12311,1,1====Tαααβ;(2)()2131122111122111111111033000141111063000------⎛⎫⎛⎫⎪ ⎪=−−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭r r r r BA232332233122111100111011000011000021000001000+---⎛⎫⎛⎫ ⎪ ⎪−−→−−−→ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭r r r r r r 323100111100111011000010000001000001000--⎛⎫⎛⎫ ⎪ ⎪−−→−−−→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭r r r ,这时11232123312300,00,00=++=++=++αβββαβββαβββ.6、(1)因为1232463690358==ααα,所以123,,ααα线性相关.(2)因为211233112110022312730411473--=--=+--c c c c ααα,所以123,,ααα线性相关.(3)因为2112331123123122045202552211055+=-=-+=----r r r r ααα,所以123,,ααα线性无关.(4)因为123,,ααα是四维三个向量,所以123,,ααα线性无关. (5)因为123,,ααα是二维三个向量,所以123,,ααα线性相关.7、因为()211233114314321210857855710,272310117-=--=-+=-==+-r r a a a a a r r ααα,所以17=a .8、(1)()()()1231,1,1,0,0,0,1,2,3===ααα,则123,,ααα线性相关,但1α不能由23,αα线性表示. (2)()()()()121211111,1,,,1,1,,2323===--=--b b αα,则存在121,1==k k ,使 112211220+++=k k k b k b αα,但12,αα线性无关,12,b b 线性无关.(3)()()()()1212112,2,1,1,0,4,,23====b b αα,则只有120==k k 时,使121200000+++=b b αα,但这时12,b b 线性无关,而12,αα线性相关. 9、因为12,,,,s αααβ线性相关,由相关定义知,有一组不全为零的数12,,,,s k k k l 使得11220++++=s s k k k l αααβ,假设0=l ,则12,,,s k k k 不全为零,由上式得11220+++=s s k k k ααα.由相关定义知,12,,,s ααα线性相关,这与题设矛盾,故0≠l ,于是12112=----ssk k kl ll βααα,则β可由12,,,s ααα线性表示.10、用反证法,设β有两种不同表示法,11221122=+++=+++s s s s a a a b b b βαααααα,则()()()1112220-+-++-=s s s a b a b a b ααα,而12,,,s ααα线性无关,故()1,2,,==i i a b i s ,最后的结果说明表示式是唯一的. 11、先证必要性。
设12,,,n ααα线性无关,α为任意n 维向量,若()1,2,,==i i n αα,则12100100+=++++++i i n αααααα,即α可由12,,,n ααα线性表示。
若≠i αα,则12,,,,n αααα线性相关,因向量的个数大于向量的维数,而12,,,n ααα线性无关,故α可由12,,,n ααα线性表示(例9已证).再证充分性。
任一向量α可由12,,,n ααα线性表示,则n 维单位向量12,,,n εεε也可由12,,,n ααα线性表示,而向量组12,,,n εεε与向量组12,,,n ααα等价,因为12,,,n εεε线性无关,所以12,,,n ααα也线性无关.12、(1)因为123120,0,2≠≠=+ααααα,所以123,,ααα极大无关组为12,αα,亦或23,αα或31,αα。
(2)()123,,2=R ααα.13、()21243141234121012101210410207420313113603460346031303130742-↔-⎛⎫⎛⎫⎛⎫⎪ ⎪⎪---- ⎪ ⎪ ⎪==−−−→−−−→⎪ ⎪⎪------- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭r r r r r r A αααα ()()323242333712101210121011011011101133300390013034655005005074233--++⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪-- ⎪ ⎪- ⎪−−−→−−−→−−−→ ⎪ ⎪⎪---- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭r r r r r r 431312235123313110212101001310111010201133001300130130000000000+---⎛⎫⎛⎫⎛⎫⎪⎪⎪ ⎪-- ⎪- ⎪−−−→=−−−→−−−→= ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭r r r r r r r rB F ,B 为矩阵A 的行阶梯形,F 为矩阵A 的行最简形.(1)由矩阵B 可见,123,,ααα线性无关,这是所求的极大无关组;(2)()1234,,,3=R αααα;(3)由矩阵F 可见,记()1234,,,=F f f f f ,则412323=-+f f f f ,即412323=-+αααα。
14、(1)两个向量13,αα不成比例,故13,αα线性无关;(2)()2213144131234224101210121012131103030101212501010101420602420121+--⎛⎫⎛⎫⎛⎫⎪ ⎪⎪--⎪ ⎪ ⎪=−−−→−−→ ⎪ ⎪ ⎪⎪ ⎪⎪----⎝⎭⎝⎭⎝⎭r r r r r rr r αααα()323413423210121121001010101010101000000110011002200000000再-↔---⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪ ⎪ ⎪−−−→−−−−→−−−→⎪ ⎪⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭r r r r r r r r r包含13,αα的极大无关组为123,,ααα. (3)4123=++αααα.15、先证向量组,A B 等价.显然向量组A 可由向量组B 线性表示.又()()12121+++=-+++m m m αααβββ,即()121211+++=+++-m m m βββααα,从而()()()1123212212111111⎧=+++-⎪-⎪=+++-⎪-⎨⎪⎪⎪=+++--⎩m m m m mm m m βααααβααααβαααα 这说明向量组B 可由向量组A 线性表示,故向量组,A B 等价.再证秩相等。
则由向量组,A B 等价,且个数相同(均为m ),故()()1212,,,,,,=m m r r αααβββ。
16、由1212,,,ααββ作为列构成矩阵A .()1331121212235411531153,,,02640264026411532354051510再-↔------⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪==--−−−→--−−−→- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪----⎝⎭⎝⎭⎝⎭r r r r r A ααββ ()221332251153102101320132********-+----⎛⎫⎛⎫ ⎪ ⎪−−−→-−−−→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭r r r r r r ,故11221223,2=-=-+βααβαα,则11221223,2=+=+αββαββ,故两个向量组可以互相线性表示,因而向量组等价.17、(1)[]()(),1223252,3,=⨯-+⨯-+⨯==αβαβ(2)[],arccos==αβθαβ.18、(1)[]()(),2446480=⨯-+⨯-+⨯=αβ; (2)2=πθ,即⊥αβ.19、因为[]12,0=αα,所以12,αα已成正交,故1122,==b b αα,则[][][][]132333*********,,11100222,,011⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=--=---=- ⎪ ⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭b ααααααααααα,再单位化:3121231231111,0,2111⎛⎫⎛⎫⎛⎫⎪⎪⎪======-⎪⎪⎪⎪⎪⎪-⎭⎭⎭b b b e e e b b b . 20、取11101⎛⎫ ⎪== ⎪ ⎪⎝⎭b α,则[][]()12221111012,11012,1112⎛⎫⎪⎛⎫⎛⎫ ⎪ ⎪ ⎪-=-=-= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭ ⎪⎝⎭b b ααααα, [][][][]313233121122111132,,52000123,,411122⎛⎫-⎛⎫⎛⎫⎛⎫⎪- ⎪ ⎪ ⎪⎪==-=--= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪- ⎪⎝⎭⎝⎭⎝⎭⎝⎭b b b b b b b b b ααα,再单位化:3121231231110,2,1111-⎛⎫⎛⎫⎛⎫⎪⎪⎪======⎪⎪⎪⎪⎪⎪-⎭⎭⎭b b b e e e b b b . 21、(1)A 不是正交矩阵,因第一行元素平方之和()22211131+-+=≠;(2)B 是正交矩阵,因第i 行()1,2,3=i 元素平方之和等于1,第i 行、第j 行()1,2,3;1,2,3;==≠i j i j 对应元素之和等于零.22、先证M 为对称矩阵:()222⎡⎤=-=-=-=⎣⎦TTT T T T T T M E xx E x x E xx M再证M 为正交矩阵:()()()()22222222444==--=---=--+=-+=T T T T T T TTTTTTM M M E xx E xx E E xx xx E xx E xx xx xx xx E xx xx E23、因,A B 都是n 阶正交矩阵,故,==T T A A E B B E ; 而()()()=====TT T T T T T AB AB B A AB B A A B B EB B B E ,故,A B 为正交矩阵.。