圆幂定理及其证明#(优选.)

合集下载

圆(圆幂定理、根轴,托勒密定理、帕斯卡定理、牛顿定理Ⅰ、Ⅱ)

圆(圆幂定理、根轴,托勒密定理、帕斯卡定理、牛顿定理Ⅰ、Ⅱ)

圆(圆幂定理、根轴,托勒密定理、帕斯卡定理、牛顿定理
Ⅰ、Ⅱ)
一、圆幂定理、根轴
1. 圆幂定理:
圆幂定理为以下三个定理的统称,即
相交弦定理(Ⅰ:AP·PB=CP·PD)
割线定理(Ⅱ:PA·PB=PC·PD)
切割线定理(Ⅲ:PA2=PC·PD)
2. 根轴:
到两圆幂相等的点的集合为一条垂直于两圆圆心连线的直线且:若两圆相交则根轴为公共弦所在直线
若两圆相切则根轴为公切线
同心圆无根轴
二、几条重要的定理
1. 托勒密定理
凸四边形 ABCD 中有
AC · BD ≥ AB · CD + AD · BC
等号当且仅当四边形 ABCD 是圆内接四边形时成立
2. 帕斯卡定理
圆内接六边形三组对边所在直线交点共线
3. 牛顿定理Ⅰ
圆外切四边形的对角线交点和以切点为顶点的四边形对角线交点重

4. 牛顿定理Ⅱ
圆外切四边形两条对角线中点和该圆圆心,三点共线
本文素材来源网络!。

圆幂定理及运用

圆幂定理及运用

D
D
圆幂定理及运用
一、圆幂定理研究与证明
1、如图,AB 、CD 是⊙O 两条弦,相交于点P 。

求证:P A ·PB =PC ·PD
2、PT 是⊙O 的切线,PAB 是⊙O 的割线。

求证:PT 2=P A ·PB
3、PAB 、PCD 是⊙O 的割线。

求证:P A ·PB =PC ·PD
二、圆幂定理的运用
1、已知:如图,⊙O 的弦AB 与CD 相交于点P ,AP =6,BP =3,CP =2,求CD 的长。

变式1:若AP =6,BP =3,CD =11,求CP 的长
变式2:已知P 为⊙O 内一点,OP =2,过P 作任一弦AB ,若PA =2,PB =。

求⊙O 的半径
2、已知:如图,AB =4,BP =2,CP =4。

求CD 的长
变式1:AB =4,BP =2,CD =1。

求CP 的长
变式2:若PT 是⊙O 的切线。

求PT 的长
变式3:连结PO ,若PO =5,求⊙O 的半径
3、如图,若⊙O 的半径OA =5,P 在OA 上,PA =2,MN 过点P ,MP :PN =1:2.求弦心距OQ 的长
4、过⊙O 外一点P 的一条割线PAB 交⊙O 于A 、B 两点,PO 交⊙O 于C ,AB =7,PA =4,⊙O 的半径为10,求PO 的长。

A
P。

(完整版)圆幂定理

(完整版)圆幂定理

一、圆幂定理:平面几何中的一个定理,是相交弦定理、切割线定理、割线定理(切割线定理推论)的统一。

1、切割线定理:从圆外一点引圆的切线和割线,切线长是割线和这点到割线与
圆交点的两条线段长的比例中项LA·LB=LC·LD=LT²
2、割线定理(切割线定理的推论):例如如果交点为L的两条相交直线与圆O相交于
A、B与C、D,则LA·LB=LC·LD。

3、相交弦定理:若圆内任意弦AB、弦CD交于点P,则PA·PB=PC·PD
二、弦切角定理:弦切角的度数等于它所夹的弧所对的圆心角度数的一半,
等于它所夹的弧所对的圆周角度数。

(∠TCB=1/2∠BOC=∠BAC)
1、弦切角:角的顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角。

五大圆幂定理证明

五大圆幂定理证明

五大圆幂定理证明五大圆幂定理是指:1. 圆内接正多边形的边数是多边形周长与直径之比的平方。

2. 圆外切正多边形的边数是多边形周长与直径之比的平方。

3. 任意一个正n边形的内切圆半径等于半径与n之和的1/n。

4. 任意一个正n边形的外接圆半径等于半径的n倍。

5. 任意一个正n边形的周长等于n倍的外接圆周长。

下面给出五大圆幂定理的证明:1. 周长与直径之比的平方设正n边形的周长为P,直径为d,则n个边的长度之和为2P/n。

因为每个边上的弧长等于周长除以360度,所以每个边的长度为(2P/n)/360度。

因为正n边形的每个内角都相等,所以内角和为(180度/n) * n,即180度。

因此,每个边所对的圆心角为180度除以n,即36度。

又因为圆周角的大小与圆心角的大小成正比,所以每个圆周所对的圆心角为36度,即每个圆周的长度为2πr,其中r为圆的半径。

因此,每个边的长度等于2πr * (2/360) * n,即πr/3。

因此,直径d等于πr/3,周长P等于3πr,所以正n边形的边数n等于周长P除以直径d的平方,即n=3P/d²。

2. 外切正多边形的边数是周长与直径之比的平方证明同上,只是将周长P替换为周长与直径之比的平方P/d²。

3. 内切圆半径等于半径与n之和的1/n设正n边形的边长为a,内接圆的半径为r,则内接圆的周长为2πr,因为内接圆与正n边形相切,所以内接圆的周长等于正n边形的周长除以n,即2πr=P/n。

因此,πr=P/n,即r=P/nπ。

又因为内接圆的半径等于边长a与半径r之差的一半,即r=a-(a/2r)=a*(1-1/n),所以a=2r/n。

因此,内切圆半径等于半径与n之和的1/n,即r=P/2nπ/(n-1)。

4. 外接圆半径等于半径的n倍设正n边形的边长为a,外接圆的半径为R,则外接圆的周长为2πR,因为外接圆与正n边形相切,所以外接圆的周长等于正n边形的周长除以n,即2πR=P/n。

圆幂定理及其证明

圆幂定理及其证明

圆幂定理是相交弦定理、切割线定理及割线定理 (切割线定理推论)以及他们推论 如图,AB 、CD 为圆0的两条任意弦。

相交于点 P ,连接 AD 、BC ,则/ D= ZB , AP PD PC BP AP BP PC PD (2) 切割线定理: 从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项。

圆幕定理圆幕的定义:一点P 对半径 R 的圆0的幕定义如下: OP 2 R 2 所以圆内的点的幕为负数,圆外的点的幕为正数,圆上的点的幕为零。

的统称。

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

Z A= Z C 。

所以△ APD S /BPC 。

所以如图,PT 为圆切线,PAB 为割线。

连接 TA , TB ,则Z PTA= ZB (弦切角等于同弧圆周角)所以△PTA “△□BT ,所以 TPT PAPT2PA PBPB PT(3)割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D 则有PA PB=PC PD。

这个证明就比较简单了。

可以过P做圆的切线,也可以连接CB和AD。

证相似。

存在:PA PB PC PD进一步升华(推论):过任意在圆0外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B (可重合,即切线),L2与圆交于C、D。

贝U PA PB=PC PD。

若圆半径为r,则2 2 2 2PC PD (PO R)(PO R) PO R | PO R | (一定要加绝对值,原因见下)为定值。

这个值称为点P到圆O的幕。

(事实上所有的过P点与圆相交的直线都满足这个值)2 2 2 2若点P在圆内,类似可得定值为R PO | PO R |故平面上任意一点对于圆的幕为这个点到圆心的距离与圆的半径的平方差的绝对值。

(这就是圆幕”的由来)。

圆幂定理及其证明[1]

圆幂定理及其证明[1]

补充:圆幂定理圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。

图1 图2 图3 图4 一、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

(如图,弦AB 和CD 交于O ⊙内一点P ,则PA PB PC PD ⋅=⋅).1、证 明:如图1,AB 、CD 为圆O 的两条任意弦。

相交于点P ,连接AD 、BC ,则∠D=∠B , ∠A=∠C 。

所以△APD ∽△BPC 。

所以AP PDAP BP PC PD PC BP=⇒⋅=⋅ 2、练习:如图2,在O ⊙中,弦AB 与CD 相交于点P ,已知3cm 4cm 2cm PA PB PC ===,,,那么PD = cm .二、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项。

(如图,PT 是O 的切线,PB 是O 的割线,则有PT 2=PA PB)1、证明:如图3,PT 为圆切线,PAB 为割线。

连接TA ,TB ,则∠PTA=∠B (弦切角等于同弧圆周角)所以△PTA ∽△PBT ,所以2PT PAPT PA PB PB PT=⇒=⋅ 2、练习如图4,PC 是半圆的切线,且PB OB =,过B 的切线交PC 与D ,若6PC =,则O ⊙半径长= ,:CD DP =__________.三、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

(从圆外一点P 引两条割线与圆分别交于A.B.C.D 则有 PA·PB=PC·PD )1、证明:这个证明就比较简单了。

可以过P 做圆的切线,也可以连接CB 和AD 。

证相似。

存在:PA PB PC PD ⋅=⋅2、练习如下图,过点P 作O ⊙的两条割线分别交O ⊙于点A B 、和点C D 、,已知32PA AB PC ===,,则PD 的长是( )A .3B .7.5C .5D .5.5。

圆幂定理

圆幂定理

圆幂定理定义圆幂=PO^2-R^2|所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD。

统一归纳:过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。

(推论)过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B (可重合,即切线),L2与圆交于C、D。

则PA·PB=PC·PD。

若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (要加绝对值,原因见下)为定值。

这个值称为点P到圆O的幂。

(事实上所有的过P点与圆相交的直线都满足这个值)若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2| 故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。

(这就是“圆幂”的由来)证明圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统一归纳为圆幂定理)问题1相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等。

证明:连结AC,BD,由圆周角定理的推论,得∠A=∠D,∠C=∠B。

∴△PAC∽△PDB,∴PA:PD=PC:PB,PA·PB=PC·PD问题2割线定理:从圆外一点P引两条割线与圆分别交于A.B.C.D 则有PA·PB=PC·PD,当PA=PB,即直线AB重合,即PA切线时得到切线定理PA^2=PC·PD 证明:(令A在P、B之间,C在P、D之间)因为ABCD为圆内接四边形,所以角CAB+角CDB=180度,又角CAB+角PAC=180度,所以角PAC=角CDB,又角APC公共,所以三角形APC与三角形DPB相似,所以PA/PD=PC/PB,所以PA*PB=PC*PD 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项几何语言:∵PT 切⊙O于点T,PBA是⊙O的割线∴PT^2=PA·PB(切割线定理)推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PBA、PDC是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)问题3过点P任作直线交定圆于两点A、B,证明PA·PB为定值(圆幂定理)。

数学圆幂定理

数学圆幂定理

数学圆幂定理圆幂定理,是平面几何中的一个重要定理,它描述了一个点到一个圆或两个圆的幂的关系。

圆幂定理有多种形式和推广,是解决几何问题的有力工具。

圆幂定理的基本形式是:如果一条直线同时切割两个圆,那么这条直线上的任意一点到两个圆的切线段的乘积是一个常数,这个常数叫做这个点到两个圆的幂。

数学上,可以用公式表示为:$$PA \cdot PB = PC \cdot PD$$其中,$P$是直线上的任意一点,$A$和$B$是直线分别与第一个圆的两个交点,$C$和$D$是直线分别与第二个圆的两个交点,如下图所示:!圆幂定理的基本形式圆幂定理的一个特殊情况是:如果一条直线同时切割一个圆,那么这条直线上的任意一点到圆的切线段的平方是一个常数,这个常数叫做这个点到这个圆的幂。

数学上,可以用公式表示为:$$PA^2 = PB^2$$其中,$P$是直线上的任意一点,$A$和$B$是直线与圆的两个切点,如下图所示:!圆幂定理的特殊情况圆幂定理的一个推广是:如果一条直线同时切割两个圆,那么这条直线上的任意一点到两个圆的切线段的比值是一个常数,这个常数叫做这个点到两个圆的幂比。

数学上,可以用公式表示为:$$\frac{PA}{PC} = \frac{PB}{PD}$$其中,$P$是直线上的任意一点,$A$和$B$是直线分别与第一个圆的两个切点,$C$和$D$是直线分别与第二个圆的两个切点,如下图所示:!圆幂定理的推广圆幂定理的一个应用是:如果一个三角形的外接圆和内切圆相切于一点,那么这个点到三角形的三条边的垂线段的乘积是一个常数,这个常数叫做这个三角形的幂积。

数学上,可以用公式表示为:$$PH \cdot PK \cdot PL = rR^2$$其中,$P$是外接圆和内切圆的切点,$H$,$K$,$L$是$P$到三角形的三条边的垂足,$r$是内切圆的半径,$R$是外接圆的半径,如下图所示:!圆幂定理的应用圆幂定理是一个简单而深刻的定理,它揭示了点和圆之间的一种基本的几何关系,它可以用来解决很多关于圆和三角形的几何问题,也可以推导出很多其他的几何定理,是平面几何中的一个重要的基础知识。

圆幂定理及其证明

圆幂定理及其证明

圆幂的定义假设平面上有一圆O,其半径为R,有一点P在圆O外,则OP^2-R^2即为P 点到圆O的幂;若P点在圆内,则圆幂为R^2-OP^2;综上所述,圆幂为|OP^2-R^2|。

圆幂恒大于或等于零。

圆幂的由来过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。

则PA·PB=PC·PD。

若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (要加绝对值,原因见下)为定值。

这个值称为点P到圆O的幂。

(事实上所有的过P点与圆相交的直线都满足这个值)若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2|故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。

圆幂定理定理内容过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有。

[1]圆幂定理的所有情况考虑经过P点与圆心O的直线,设PO交⊙O与M、N,R为圆的半径,则有圆幂定理的证明图Ⅰ:相交弦定理。

如图,AB、CD为圆O的两条任意弦。

相交于点P,连接AB、BD,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以。

所以有:,即:图Ⅱ:割线定理。

如图,连接AD、BC。

可知∠B=∠D,又因为∠P为公共角,所以有,同上证得图Ⅲ:切割线定理。

如图,连接AC、AD。

∠PAC为切线PA 与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有易证图Ⅳ:PA、PC均为切线,则∠PAO=∠PCO=直角,在直角三角形中:OC=OA=R,PO为公共边,因此所以PA=PC,所以综上可知,是普遍成立的。

证明完毕。

圆幂定理证明

圆幂定理证明

圆幂定理证明
引言:
圆幂定理又称华罗庚公式,它表明在多项式中,二次项、四次项等次项的系数可以从非二次项的系数中求出来,它最早由科学家英国自然哲学家华罗庚在16世纪完成。

圆幂定理的性质:当z的n次幂展开时(z的n次幂为z的n个相同的因子),各项系数满足公式:a(n)=( -1)^( n-1 ) / ( n - 1 )! * 求和(k= 0到 n-1) [n^k 开始 * a (k)],其中 n 称作次数,k 称作幂数。

证明:
首先,假设z的n次幂有如下公式:z^n = a0 +a1z+...+an-1zn-1 + anzn
我们分类讨论,首先当n为偶数时,如:
z^2 =a0+a1z+a2z^2
因为每一项的系数都是可以由未知系数a0,a1,a2求出来,即:
a0 = ( -1 )^ 1 / 1! * 求和(k= 0到 1) [2^k * a(k)]
当n为奇数时,如:
通过上述两种情况的分析,当n为任意正整数时,它们满足的条件都是一样的,即:a(n)=( -1)^( n-1 ) / ( n - 1 )! * 求和(k= 0到 n-1) [n^k * a(k)],其中n 称作次数,k 称作幂数。

五大圆幂定理

五大圆幂定理

五大圆幂定理
欧拉-莱布尼兹大五角定理,又称为欧拉-莱布尼兹大五圆定理,是一个
被认为是数学史上最重要的定理之一。

它最初是由十七世纪的意大利
数学家拉斐尔·欧拉(L.Euler)提出的。

欧拉-莱布尼兹大五角定理犹如一颗闪耀着数学之光的明珠,它说明了
五角形内每个角度凑成三等分之和为1800度,这也被称为五角形角和
定理。

欧拉-莱布尼兹大五角定理的证明报告书可以归纳为以下五个主要结论:
1.几何定义:五角形是一个形状有五个角的多边形,每个角的面积都是一样的。

2.加和定理:五角形的五个角的面积加起来等于1800度。

3.三平分定理:五角形中每个角都可以分成三等份,每份等于600度。

4.对称定理:五角形的五个角都是对称的,形状也是对称的。

5.圆周定理:五角形的每个角必须满足360度的圆周定理,即每个角都
必须和圆周长度一样。

欧拉-莱布尼兹大五角定理由这五点概括,实际上它涵盖了五角形形状、加法、三平分、对称以及圆周的概念,因此它也被称为圆幂定理。


拉-莱布尼兹的大五角定理,让我们看到了数学在自然界中的应用,也
成为数学家们进行数学研究的基础。

圆幂定理大总结

圆幂定理大总结

圆幂定理大总结
圆幂定理是一个总结性的定理,它是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论的统一与归纳。

根据两条与圆有相交关系的线的位置不同,有以下定理:
1.相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

2.切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交
点的两条线段长的比例中项。

3.割线定理:从圆外一点P引两条割线与圆分别交于A、B、C、D,则有 P
A P
B = P
C P
D 。

如需证明圆幂定理,可参考以下步骤:
1.设两条与圆相交的线段分别为PA和PB,P为交点。

由相交弦定理,有
PA PB = PC PD (式(1))。

2.设另一条与圆相交的线段为PC,与圆交于点D。

由切割线定理,有 PD^2 = PA * PB
(式(2))。

3.将式(2)代入式(1),得 PA PB = PA PB。

这个等式显然成立,所以圆幂定
理得证。

希望以上信息对您有帮助,如果需要更详细的解释和证明,可以查阅相关的数学书籍或者咨询数学专家。

圆幂定理

圆幂定理

圆幂定理圆幂定理就是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论统一归纳的结果。

ﻩﻩﻩﻩ圆幂=PO^2-R^2(该结论为欧拉公式)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

切割线定理:从圆外一点引圆的切线与割线,切线长就是这点到割线与圆交点的两条线段长的比例中项。

割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD。

线),L2与圆交于C、D(可重合),则有PA·PB=PC·PD。

问题1相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的乘积相等。

证明:连结AC,BD,由圆周角定理的推论,得∠A=∠D,∠C=∠B。

∴△PAC∽△PDB∴PA/PD=PC/PB∴PA·PB=PC·PD问题2割线定理:从圆外一点P引两条割线与圆分别交于A、B.C、D 则有PA·PB=PC·PD,当PA=PB,即直线AB重合,即PA切线时得到切线定理PA^2=PC·PD证明:(令A在P、B之间,C在P、D之间)∵ABCD为圆内接四边形∴∠CAB+∠CDB=180°又∠CAB+∠PAC=180°∴∠PAC=∠CDB∵∠APC公共∴△APC∽△DPB∴PA/PD=PC/PB∴PA·PB=PC·PD切割线定理:从圆外一点引圆的切线与割线,切线长就是这点到割线与圆交点的两条线段长的比例中项几何语言:∵PT切⊙O于点T,PBA就是⊙O的割线∴PT^2=PA·PB(切割线定理)推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PBA、PDC就是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)问题3过点P任作直线交定圆于两点A、B,证明PA·PB为定值(圆幂定理)。

圆幂定理及其证明

圆幂定理及其证明

1 / 1圆幂定理圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。

图1 图2图3 图4一、相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

(如图,弦AB 和CD 交于O ⊙内一点P ,则PA PB PC PD ⋅=⋅).1、证 明:如图1,AB 、CD 为圆O 的两条任意弦。

相交于点P ,连接AD 、BC ,则∠D=∠B , ∠A=∠C 。

所以△APD ∽△BPC 。

所以AP PDAP BP PC PD PC BP=⇒⋅=⋅ 2、练习:如图2,在O ⊙中,弦AB 与CD 相交于点P ,已知3cm 4cm 2cm PA PB PC ===,,,那么PD = cm .二、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项。

(如图,PT 是O 的切线,PB 是O 的割线,则有PT 2=PA PB)1、证明:如图3,PT 为圆切线,PAB 为割线。

连接TA ,TB ,则∠PTA=∠B (弦切角等于同弧圆周角)所以△PTA ∽△PBT ,所以2PT PAPT PA PB PB PT=⇒=⋅ 2、练习 如图4,PC 是半圆的切线,且PB OB =,过B 的切线交PC 与D ,若6PC =,则O ⊙半径长= ,:CD DP =__________.三、割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

(从圆外一点P 引两条割线与圆分别交于A.B.C.D 则有 PA·PB=PC·PD )1、证明:这个证明就比较简单了。

可以过P 做圆的切线,也可以连接CB 和AD 。

证相似。

存在:PA PB PC PD ⋅=⋅2、练习如下图,过点P 作O ⊙的两条割线分别交O ⊙于点A B 、和点C D 、,已知32PA AB PC ===,,则PD 的长是( )A .3B .7.5C .5D .5.5。

4个圆幂定理及其证明

4个圆幂定理及其证明

相交弦定理欧阳学文如图,⊙P中,弦AB,CD相交于点P,则AP·BP=CP·PD 证明:连结AC,BD,由圆周角定理的推论,得∠A=∠D,∠C=∠B。

∴△PAC∽△PDB,∴PA∶PD=PC∶PB,PA·PB=PC·PD注:其逆定理可作为证明圆的内接三角形的方法.CB切割线定理如图,ABT是⊙O的一条割线,TC是⊙O的一条切线,切点为C,则TC²=TA·TB证明:连接AC、BC∵弦切角∠TCB对弧BC,圆周角∠A对弧BC∴由弦切角定理,得∠TCB=∠A又∠ATC=∠BTC∴△ACT∽△CBT∴AT:CT=CT:BT, 也就是CT²=AT·BT弦切角定义:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角弦切角定理:弦切角等于它所夹的弧所对的圆周角.定义弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半. (弦切角就是切线与弦所夹的角)弦切角定理证明证明:设圆心为O,连接OC,OB,OA。

过点A作T P的平行线交BC于D,则∠TCB=∠CDA∵∠TCB=90∠OCD∵∠BOC=1802∠OCD∴,∠BOC=2∠TCB切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角。

如图中,切线长AC=AB。

∵∠ABO=∠ACO=90°BO=CO=半径AO=AO公共边∴RtΔABO≌RtΔACO(HL)∴AB=AC∠AOB=∠AOC∠OAB=∠OAC割线定理如图,直线ABP和CDT是自点P引的⊙O的两条割线,则PA·PB=PC·PD证明:连接AD、BC∵∠A和∠C都对弧BD∴由圆周角定理,得∠A=∠C又∵∠APD=∠CPB∴△ADP∽△CBP∴AP:CP=DP:BP, 也就是AP·BP=CP·DP圆幂定理圆幂定理是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论统一归纳的结果。

圆幂定理

圆幂定理

圆幂定理圆幂的定义:一点P 对半径R 的圆O 的幂定义如下:22OP R -所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

圆幂定理是相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们推论的统称。

(1) 相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

如图,AB 、CD 为圆O 的两条任意弦。

相交于点P ,连接AD 、BC ,则∠D=∠B , ∠A=∠C 。

所以△APD ∽△BPC 。

所以 AP PD AP BP PC PD PC BP=⇒⋅=⋅ (2) 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆焦点的两条线段长的比例中项。

如图,PT 为圆切线,PAB 为割线。

连接TA ,TB ,则∠PTA=∠B (弦切角等于同弧圆周角)所以△PTA ∽△PBT ,所以2PT PA PT PA PB PB PT=⇒=⋅ (3) 割线定理:从圆外一点P 引两条割线与圆分别交于 A.B.C.D 则有PA·PB=PC·PD 。

这个证明就比较简单了。

可以过P 做圆的切线,也可以连接CB 和AD 。

证相似。

存在:PA PB PC PD ⋅=⋅进一步升华(推论):过任意在圆O 外的一点P 引一条直线L1与一条过圆心的直线L2,L1与圆交于A 、B (可重合,即切线),L2与圆交于C 、D 。

则PA·PB=PC·PD 。

若圆半径为r ,则 2222()()||PC PD PO R PO R PO R PO R ⋅=-⋅+=-=-(一定要加绝对值,原因见下)为定值。

这个值称为点P 到圆O 的幂。

(事实上所有的过P 点与圆相交的直线都满足这个值)若点P 在圆内,类似可得定值为2222||R PO PO R -=-故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝 对值。

(这就是“圆幂”的由来)这些就是圆中非常重要的几个定理,当然在现在的教材中,这几个定理已经被删掉了,教材中唯一余下的就是垂径定理了。

圆定理证明

圆定理证明

圆幂定理定义圆幂=PO^2-R^2 (该结论为欧拉公式)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。

相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

割线定理:从圆外一点P 引两条割线与圆分别交于A、B;C、D, 则有PA ·PB=PC ·PD。

统一归纳:过任意不在圆上的一点P 引两条直线L1、L2,L1 与圆交于A、B(可重合,即切线),L2 与圆交于C、D(可重合),则有PA ·PB=PC ·PD。

相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。

(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)相交弦说明几何语言:若弦AB 、CD 交于点P则PA ·PB=PC ·PD (相交弦定理)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的例中项几何语言:若AB 是直径,CD 垂直AB 于点P, 则PC^2=PA ·PB (相交弦定理推论)相交弦定理CADPo°B⊙O中,AB、CD 为弦,交于PPA ·PB=PC·PD连结AC、BD,证:△APC△DPB切割线定理定义从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

是圆幂定理的一种。

几何语言:∵PT 切⊙O于点T,PBA 是⊙O的割线∴PT 的平方=PA ·PB (切割线定理)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PT是⊙O切线,P BA,PDC 是⊙O的割线∴PD·PC=PA ·PB (切割线定理推论)(割线定理)由上可知:PTA2 (平方)=PA ·PB=PC ·PD证明切割线定理证明:设ABP 是⊙O的一条割线,PT 是⊙O的一条切线,切点为T, 则PT^2=PA ·PB证明:连接AT,BT∵∠PTB=∠PAT (弦切角定理)∠P=∠P(公共角)∴△PBTO△PTA (两角对应相等,两三角形相似)则PB:PT=PT:AP即:PT^2=PB ·PA割线定理定义从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。

圆幂定理浙教版八年级上册

圆幂定理浙教版八年级上册

圆幂定理浙教版八年级上册圆幂定理是几何学中一个重要的定理,出现在我国初中数学教材的八年级上册。

它涉及到圆、线段、角度等几何元素,为我们解决实际问题提供了有力的工具。

下面,我们将详细介绍圆幂定理的相关内容。

一、圆幂定理的定义及意义圆幂定理是指:在同一个圆中,相交弦(非直径)的长度乘以其所对的圆心角的正弦值,等于两弦端点与圆心构成的直角三角形的面积的两倍。

用数学公式表示为:AC × sinA = 2 × △ABC的面积。

这个定理在实际应用中具有很大的价值,可以帮助我们快速计算几何图形的面积、周长等参数。

二、圆幂定理的应用1.求解弦心距:已知弦长和弦所对的圆心角,可以利用圆幂定理求解弦心距。

2.求解三角形面积:已知三角形的一条边和对应的角度,可以利用圆幂定理求解三角形面积。

3.求解圆的半径:在已知弦长和弦所对的圆心角的情况下,可以利用圆幂定理求解圆的半径。

4.求解扇形面积:已知扇形的半径和圆心角,可以利用圆幂定理求解扇形面积。

三、圆幂定理的证明证明圆幂定理的方法有很多,这里我们以向量法为例进行证明。

设圆心为O,弦AB的两端点分别为A、B,圆心角为AOB,弦心距为OC。

根据向量加法、减法及数乘运算,我们可以得到以下关系:1.OA × OB = OC × OA + OC × OB2.OC × OA = △AOC的面积× 23.OC × OB = △BOC的面积× 2将上述三个式子相加,可以得到:OA × OB +OC × OA + OC × OB = 2 × (△AOC的面积+ △BOC的面积)根据向量数量积的性质,我们知道:OA × OB = △AOB的面积× R(R为圆的半径)将上式代入前面的等式,可以得到:△AOB的面积× R + OC × OA + OC × OB = 2 × (△AOC的面积+△BOC的面积)整理后,我们可以得到圆幂定理的公式:AC × sinA = 2 × △ABC的面积四、总结与拓展圆幂定理是几何学中的一个基本定理,掌握它有助于我们更好地解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆幂的定义
假设平面上有一圆O,其半径为R,有一点P在圆O外,则OP^2-R^2即为P点到圆O的幂;
若P点在圆内,则圆幂为R^2-OP^2;
综上所述,圆幂为|OP^2-R^2|。

圆幂恒大于或等于零。

圆幂的由来
过任意在圆O外的一点P引一条直线L1与一条过圆心的直线L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D。

则PA·PB=PC·PD。

若圆半径为r,则PC·PD=(PO-r)·(PO+r)=PO^2-r^2=|PO^2-r^2| (要加绝对值,原因见下)为定值。

这个值称为点P到圆O的幂。

(事实上所有的过P点与圆相交的直线都满足这个值)
若点P在圆内,类似可得定值为r^2-PO^2=|PO^2-r^2|
故平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差,而过这一点引任意直线交圆于A、B,那么PA·PB等于圆幂的绝对值。

圆幂定理
定理内容
过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合),则有。

[1]
圆幂定理的所有情况
考虑经过P点与圆心O的直线,设PO交⊙O与M、N,R为圆的半径,则有
圆幂定理的证明
图Ⅰ:相交弦定理。

如图,AB、CD为圆O的两条任意弦。

相交于点P,连接AB、BD,由于∠B与∠D同为弧AC所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以。

所以有:
,即:
图Ⅱ:割线定理。

如图,连接AD、BC。

可知∠B=∠D,又因为∠P为公共角,所以有
,同上证得
图Ⅲ:切割线定理。

如图,连接AC、AD。

∠PAC为切线PA与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有
易证
图Ⅳ:PA、PC均为切线,则∠PAO=∠PCO=直角,在直角三角形中:OC=OA=R,PO为公共边,因此
所以PA=PC,所以
综上可知,
是普遍成立的。

证明完毕
最新文件仅供参考已改成word文本。

方便更改。

相关文档
最新文档