离散数学符号表
离散数学第二章一阶逻辑知识点总结
离散数学第二章一阶逻辑知识点总结数理逻辑部分第2章一阶逻辑2.1 一阶逻辑基本概念个体词(个体): 所研究对象中能够独立存在的具体或抽象的客体个体常项:具体的事物,用a, b, c表示个体变项:抽象的事物,用x, y, z表示个体域: 个体变项的取值范围有限个体域,如{a, b, c}, {1, 2}无限个体域,如N, Z, R, …全总个体域: 宇宙间一切事物组成谓词: 表示个体词性质或相互之间关系的词谓词常项:F(a):a是人谓词变项:F(x):x具有性质F一元谓词: 表示事物的性质多元谓词(n元谓词, n2): 表示事物之间的关系如L(x,y):x与y有关系L,L(x,y):x y,…0元谓词: 别含个体变项的谓词, 即命题常项或命题变项量词: 表示数量的词全称量词: 表示任意的, 所有的, 一切的等如x 表示对个体域中所有的x存在量词: 表示存在, 有的, 至少有一具等如x表示在个体域中存在x一阶逻辑中命题符号化例1 用0元谓词将命题符号化要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲在命题逻辑中, 设p:墨西哥位于南美洲符号化为p, 这是真命题在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲符号化为F(a)例2 在一阶逻辑中将下面命题符号化(1) 人都爱美; (2) 有人用左手写字分不取(a) D为人类集合, (b) D为全总个体域.解:(a) (1) 设G(x):x爱美, 符号化为x G(x)(2) 设G(x):x用左手写字, 符号化为x G(x)(b) 设F(x):x为人,G(x):同(a)中(1) x (F(x)G(x))(2) x (F(x)G(x))这是两个基本公式, 注意这两个基本公式的使用.例3 在一阶逻辑中将下面命题符号化(1) 正数都大于负数(2) 有的无理数大于有的有理数解注意: 题目中没给个体域, 一律用全总个体域(1) 令F(x): x为正数, G(y): y为负数, L(x,y): x>y x(F(x)y(G(y)L(x,y))) 或x y(F(x)G(y)L(x,y)) 两者等值(2) 令F(x): x是无理数, G(y): y是有理数,L(x,y):x>yx(F(x)y(G(y)L(x,y)))或x y(F(x)G(y)L(x,y)) 两者等值几点注意:1元谓词与多元谓词的区分无特殊要求,用全总个体域量词顺序普通别能随便颠倒否定式的使用考虑:①没有别呼吸的人②别是所有的人都喜爱吃糖③别是所有的火车都比所有的汽车快以上命题应怎么符号化?2.2 一阶逻辑合式公式及解释字母表定义字母表包含下述符号:(1) 个体常项:a, b, c, …, a i, b i, c i, …, i1(2) 个体变项:x, y, z, …, x i, y i, z i, …, i 1(3) 函数符号:f, g, h, …, f i, g i, h i, …, i1(4) 谓词符号:F, G, H, …, F i, G i, H i, …, i1(5) 量词符号:,(6) 联结词符号:, , , ,(7) 括号与逗号:(, ), ,定义项的定义如下:(1) 个体常项和个体变项是项.(2) 若(x1, x2, …, x n)是任意的n元函数,t1,t2,…,t n是任意的n个项,则(t1, t2, …, t n) 是项.(3) 所有的项基本上有限次使用(1), (2) 得到的.个体常项、变项是项,由它们构成的n元函数和复合函数依然项定义设R(x1, x2, …, x n)是任意的n元谓词,t1,t2,…, t n 是任意的n个项,则称R(t1, t2, …, t n)是原子公式.原子公式是由项组成的n元谓词.例如,F(x,y), F(f(x1,x2),g(x3,x4))等均为原子公式定义合式公式(简称公式)定义如下:(1) 原子公式是合式公式.(2) 若A是合式公式,则(A)也是合式公式(3) 若A, B是合式公式,则(A B), (A B), (A B),(A B)也是合式公式(4) 若A是合式公式,则xA, xA也是合式公式(5) 惟独有限次地应用(1)~(4)形成的符号串是合式公式.请举出几个合式公式的例子.定义在公式xA和xA中,称x为指导变元,A为相应量词的辖域. 在x和x的辖域中,x的所有浮现都称为约束浮现,A中别是约束浮现的其他变项均称为是自由浮现的.例如, 在公式x(F(x,y)G(x,z)) 中,A=(F(x,y)G(x,z))为x的辖域,x为指导变元, A中x的两次浮现均为约束浮现,y与z均为自由浮现.闭式: 别含自由浮现的个体变项的公式.给定公式A=x(F(x)G(x))成真解释: 个体域N, F(x): x>2, G(x): x>1代入得A=x(x>2x>1) 真命题成假解释: 个体域N, F(x): x>1, G(x): x>2 代入得A=x(x>1x>2) 假命题咨询: xF(x)x F(x) 有成真解释吗?xF(x)x F(x) 有成假解释吗?被解释的公式别一定全部包含解释中的4部分.闭式在任何解释下基本上命题,注意别是闭式的公式在某些解释下也也许是命题.永真式(逻辑有效式):无成假赋值矛盾式(永假式):无成真赋值可满脚式:至少有一具成真赋值几点讲明:永真式为可满脚式,但反之别真谓词公式的可满脚性(永真性,永假性)是别可判定的利用代换实例可判某些公式的类型定义设A0是含命题变项p1, p2, …,p n的命题公式,A1,A2,…,A n是n个谓词公式,用A i处处代替A0中的p i (1i n),所得公式A称为A0的代换实例.例如:F(x)G(x), xF(x)yG(y) 等基本上p q的换实例,x(F(x)G(x)) 等别是p q 的代换实例.定理重言式的代换实例基本上永真式,矛盾式的代换实例基本上矛盾式.2.3 一阶逻辑等值式等值式定义若A B为逻辑有效式,则称A与B是等值的,记作A B,并称A B 为等值式.基本等值式:命题逻辑中16组基本等值式的代换实例如,xF(x)yG(y) xF(x)yG(y)(xF(x)yG(y)) xF(x)yG(y) 等消去量词等值式设D={a1,a2,…,a n} xA(x)A(a1)A(a2)…A(a n)xA(x)A(a1)A(a2)…A(a n)量词否定等值式设A(x)是含x自由浮现的公式xA(x)x A(x)xA(x)x A(x)量词分配等值式x(A(x)B(x))xA(x)xB(x)x(A(x)B(x))xA(x)xB(x)注意:对无分配律,对无分配律例将下面命题用两种形式符号化(1) 没有别犯错误的人(2) 别是所有的人都爱看电影解(1) 令F(x):x是人,G(x):x犯错误.x(F(x)G(x))x(F(x)G(x))请给出演算过程,并讲明理由.(2) 令F(x):x是人,G(x):爱看电影.x(F(x)G(x))x(F(x)G(x))给出演算过程,并讲明理由.前束范式定义设A为一具一阶逻辑公式, 若A具有如下形式Q1x1Q2x2…Q k x k B, 则称A为前束范式, 其中Q i(1i k)为或,B为别含量词的公式.例如,x y(F(x)(G(y)H(x,y)))x(F(x)G(x))是前束范式, 而x(F(x)y(G(y)H(x,y)))x(F(x)G(x))别是前束范式.定理(前束范式存在定理)一阶逻辑中的任何公式都存在与之等值的前束范式注意:公式的前束范式别惟一求公式的前束范式的办法: 利用重要等值式、置换规则、换名规则、代替规则举行等值演算.换名规则: 将量词辖域中浮现的某个约束浮现的个体变项及对应的指导变项,改成其他辖域中未曾浮现过的个体变项符号,公式中其余部分别变,则所得公式与原来的公式等值.代替规则: 对某自由浮现的个体变项用与原公式中所有个体变项符号别同的符号去代替,则所得公式与原来的公式等值.例求下列公式的前束范式(1) x(M(x)F(x))解x(M(x)F(x))x(M(x)F(x)) (量词否定等值式)x(M(x)F(x))两步结果基本上前束范式,讲明前束范式别惟一.(2) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x) (量词否定等值式)x(F(x)G(x)) (量词分配等值式)另有一种形式xF(x)xG(x)xF(x)x G(x)xF(x)y G(y) ( 换名规则) x y(F(x)G(y)) ( 量词辖域扩张) 两种形式是等值的(3) xF(x)xG(x)解xF(x)xG(x)xF(x)x G(x)x(F(x)G(x)) (为啥?)或x y(F(x)G(y)) (为啥?)(4) xF(x)y(G(x,y)H(y))解xF(x)y(G(x,y)H(y))zF(z)y(G(x,y)H(y)) (换名规则)z y(F(z)(G(x,y)H(y))) (为啥?)或xF(x)y(G(z,y)H(y)) (代替规则)x y(F(x)(G(z,y)H(y)))(5) x(F(x,y)y(G(x,y)H(x,z)))解用换名规则, 也可用代替规则, 这个地方用代替规则 x(F(x,y)y(G(x,y)H(x,z)))x(F(x,u)y(G(x,y)H(x,z)))x y(F(x,u)G(x,y)H(x,z)))注意:x与y别能颠倒。
离散数学异或符号
离散数学异或符号
异或符号是一种裸眼算法操作符,它有两个变量,可以与任何布尔值或数值运算。
它通常表示为XOR,是离散数学中的基础操作符。
异或符号也称为真伪逻辑,因为它只有当双方变量中的一个为真时才为真。
它是以丨竖线分割的两个操作符之间的关系的结果,类似于加法,但它只计算两个变量之间的多少。
两个变量之间的多少取决于真值表,一般情况下,当操作符两边都为真(值为1)时,结果为假;当两边变量都为假(值为0)时,结果也为假;当操作符两边只有一个为真时,结果为真。
异或符号可以用来实现密码、加密等功能,它可以用来把数据“加密”,即需要把原文加密为新的用于传输的文本,这样只有拥有加密密钥的用户才可以获取原文信息。
异或符号还可以用来分组,两个变量之间的值不同时,可以用异或符号来区分出来。
异或符号用于离散数学中,它可以用来实现运算,也可以用于程序设计、加密等等。
它和加减乘除运算是具有相似原理的,只不过是把操作符两边的变量做比较,根据真值表确定结果。
离散数学知识点总结
注意/技巧:析取符号为V,大写字母Vx + y = 3不是命题前件为假时,命题恒为真运用吸收律命题符号化过程中要注意命题间的逻辑关系,认真分析命题联结词所对应的自然语言中的联结词,不能只凭字面翻译。
也就是说,在不改变原意的基础上,按照最简单的方式翻译通用的方法:真值表法VxP(x)蕴含存在xP(x)利用维恩图解题证明两个集合相等:证明这两个集合互为子集常用的证明方法:任取待证集合中的元素<,>构造相应的图论模型第一章命题逻辑命题和联结词命题的条件:表达判断的陈述句、具有确定的真假值。
选择题中的送分题原子命题也叫简单命题,与复合命题相对简单联结词的真值表要记住非(简单)合取(当且仅当P,Q都为真时,命题为真)析取(当且仅当P,Q都为假时,命题为假),P,Q可以同时成立,是可兼的或条件(→)(当且仅当P为真,Q为假时,命题为假)P是前件,Q是后件只要P,就Q等价于P→Q只有P,才Q等价于非P→非Q,也就是Q→PP→Q特殊的表达形式:P仅当Q、Q每当P双条件(↔)(当且仅当P与Q具有相同的真假值时,命题为真,与异或相反)命题公式优先级由高到低:非、合取和析取、条件和双条件括号省略条件:①不改变先后次序的括号可省去②最外层的括号可省去重言式(永真式)、矛盾式(永假式)、偶然式可满足式:包括重言式和偶然式逻辑等价和蕴含(逻辑)等价:这是两个命题公式之间的关系,写作“⇔”,要与作为联结词的↔区分开来。
如果命题公式A为重言式,那么A⇔T常见的命题等价公式:需要背过被标出的,尽量去理解。
关键是掌握公式是将哪个符号转换为了哪个符号,这对于解证明题有很大的帮助!验证两个命题公式是否等价:当命题变元较少时,用真值表法。
当命题变元较多时,用等价变换的方法,如代入规则、替换规则和传递规则定理:设A、B是命题公式,当且仅当A↔B是一个重言式时,有A和B逻辑等价。
蕴含:若A→B是一个重言式,就称作A蕴含B,记作A⇒B常见的蕴含公式的运用方法同上面的命题等价公式证明A⇒B:①肯定前件,推出后件为真②否定后件,推出前件为假当且仅当A⇒B且B⇒A时,A⇔B,也就是说,要证明两个命题公式等价,可以证明它们相互蕴含联结词的完备集新的联结词:条件否定、异或(不可兼或)、或非(析取的否定)、与非(合取的否定)任意命题公式都可由仅含{非,析取}或{非,合取}的命题公式来等价地表示全功能联结词集合极小全功能联结词集合对偶式对偶式:将仅含有联结词非、析取、合取(若不满足,需先做转换)的命题公式A中的析取变合取,合取变析取,T变F,F变T得到的命题公式A*称为A的对偶式范式析取式:否定+析取合取式:否定+合取析取范式:(合取式)析取(合取式)……析取(合取式)。
离散数学命题符号
离散数学命题符号一、离散数学命题符号的定义在离散数学中,命题是一个陈述句,可以判断为真或为假。
为了准确地表示命题,在离散数学中引入了命题符号。
命题符号主要用于表示命题的逻辑关系,以及对命题的运算。
1. 命题变量和命题符号离散数学中,命题变量被表示为字母,常用的命题变量包括p、q、r等。
命题符号则用来表示对命题变量的操作和运算关系。
常用的命题符号包括逻辑与(∧)、逻辑或(∨)、非(¬)等。
2. 逻辑连接词离散数学中,逻辑连接词用于将多个命题连接起来,形成复合命题。
常见的逻辑连接词有:- 逻辑与(∧):表示两个命题都为真时,复合命题为真;否则为假。
- 逻辑或(∨):表示两个命题至少一个为真时,复合命题为真;否则为假。
- 非(¬):表示对命题的否定。
3. 命题符号的优先级为了保证命题的运算顺序和结果的准确性,在离散数学中,命题符号有一定的优先级。
常见的命题符号优先级从高到低依次为:- ¬(非)- ∧(逻辑与)- ∨(逻辑或)二、离散数学命题符号的应用1. 命题的合取和析取在离散数学中,逻辑与(∧)和逻辑或(∨)的运算被广泛应用于命题的合取和析取。
- 合取:当多个命题同时为真时,可以使用合取运算符(∧)将这些命题合并成为一个复合命题。
例如,当p表示“今天下雨”、q表示“今天天气阴沉”时,合取命题p∧q表示“今天同时下雨并且天气阴沉”。
- 析取:当多个命题至少一个为真时,可以使用析取运算符(∨)将这些命题合并成为一个复合命题。
例如,当p表示“今天下雨”、q表示“今天天气阴沉”时,析取命题p∨q表示“今天下雨或者天气阴沉”。
2. 命题的否定在离散数学中,非(¬)运算符常用于对命题的否定。
如果p为真,则¬p为假;如果p为假,则¬p为真。
例如,若p表示“今天下雨”,则¬p表示“今天不下雨”。
3. 命题的复合运算通过组合使用逻辑连接词和命题符号,可以对多个命题进行复合运算。
离散数学字母的定义
离散数学字母的定义
离散数学中,字母通常用于表示集合、元素、函数、关系等。
以下是一些常见字母的定义:
1、集合:离散数学中的集合用大括号{}表示,其中的元素用小写字母表示。
例如,{a,b,c}表示一个包含元素a、b和c的集合。
2、元素:用小写字母表示集合的元素,如a、b、c等。
3、函数:函数用大写字母表示,如F、G、H等。
函数的定义域和值域可以是集合,也可以是其他函数。
4、关系:关系用大写字母表示,如R、S、T等。
关系表示集合之间的关联,如笛卡尔积、偏序关系等。
5、运算:加法、减法、乘法等运算用符号表示,如+、-、×等。
6、逻辑运算:逻辑运算包括与(∧)、或(∨)、非(¬)等,用符号表示。
7、集合运算:集合运算包括并集(∪)、交集(∩)、补集(∁)等,用符号表示。
8、序关系:序关系用大写字母表示,如L、G等。
序关系表示元素之间的顺序关系,如线性序、良序等。
9、矩阵:矩阵用大写字母表示,如A、B、C等。
矩阵是一个二维数组,可以表示线性方程组、线性变换等。
10、图:图用大写字母表示,如G、H等。
图是一个离散结构,表示元素之间的连接关系。
离散数学第一章
离散数学第一章1.1命题及其表示法1.1.1 命题的概念数理逻辑将能够判断真假的陈述句称作命题。
1.1.2 命题的表示命题通常使用大写字母A,B,…,Z或带下标的大写字母或数字表示,如A i,[10],R等,例如A1:我是一名大学生。
A1:我是一名大学生.[10]:我是一名大学生。
R:我是一名大学生。
1.2命题联结词1.2.1 否定联结词﹁PP P0 11 01.2.2 合取联结词∧P∧P Q Q0 0 00 1 01 0 01 1 11.2.3 析取联结词∨P∨P Q Q0 0 00 1 11 0 11 1 11.2.4 条件联结词→P Q Q0 0 10 1 11 0 01 1 11.2.5 双条件联结词?P?P Q Q0 0 10 1 01 0 01 1 11.2.6 与非联结词↑P↑P Q Q0 0 10 1 11 0 11 1 0性质:(1)P↑P?﹁(P∧P)?﹁P;(2)(P↑Q)↑(P↑Q)?﹁(P↑Q)? P∧Q;(3)(P↑P)↑(Q↑Q)?﹁P↑﹁Q? P∨Q。
1.2.7 或非联结词↓P↓P Q Q0 0 10 1 01 0 0性质:(1)P↓P?﹁(P∨Q)?﹁P;(2)(P↓Q)↓(P↓Q)?﹁(P↓Q)?P∨Q;(3)(P↓P)↓(Q↓Q)?﹁P↓﹁Q?﹁(﹁P∨﹁Q)?P∧Q。
1.3 命题公式、翻译与解释1.3.1 命题公式定义命题公式,简称公式,定义为:(1)单个命题变元是公式;(2)如果P是公式,则﹁P是公式;(3)如果P、Q是公式,则P∧Q、P∨Q、P→Q、P?Q 都是公式;(4)当且仅当能够有限次的应用(1) 、(2)、(3) 所得到的包括命题变元、联结词和括号的符号串是公式。
例如,下面的符号串都是公式:((((﹁P)∧Q)→R)∨S)((P→﹁Q)?(﹁R∧S))(﹁P∨Q)∧R以下符号串都不是公式:((P∨Q)?(∧Q))(∧Q)1.3.2 命题的翻译可以把自然语言中的有些语句,转变成数理逻辑中的符号形式,称为命题的翻译。
离散数学第一章知识点
命题逻辑的基本概念命题与联结词命题:非真即假的陈述句。
真值:命题的陈述句所表达的判断结果,真值只取真或假两种情况。
假命题:真值为假的命题。
真命题:真值为真的命题。
简单命题(原子命题):无法继续拆分的命题。
复合命题:多个原子命题通过联结词联结而成的命题。
悖论:自相矛盾的陈述句。
否定联结词:符号﹁(复合命题非p称作p的否定式,记作﹁p)合取联结词:符号∧(复合命题p且q称作p与q的合取式记作p∧q)析取联结词:符号∨(复合命题p或q称作p与q的析取式记作p∨q)蕴涵联结词:符号→(复合命题如果p,则q称为p与q的蕴涵式记作p→q,p为蕴涵式的前件,q为蕴涵式的后件)蕴涵联结词的使用及判定方法:使用:1:因为p所以q这类直抒胸臆的表达时可以直接看作:p→q2:只有p才q这类具有转折性的表达时可以直接看作:q→p判定:1:同假时为真2:后件为真前件为假时为真3:后件为真前件为真时为真其他情况皆为假等价联结词:符号↔(复合命题p当且仅当q称为p与q的等价式)等价联结词的判定:1:当p与q同时为真时为真2:当p与q同时为假时为假命题公式及其赋值命题常项(命题常元):可以直接理解为原子命题或简单命题命题变项(命题变元):真值可以变化的陈述句,因此命题变项不是命题合式公式:命题变项使用联结词组合成的符号串(可以当作命题用联结词组合成的复合命题)合式公式层数的判定:下面p和q都是公式或者命题常项1:当个命题变项为0层公式。
2:﹁p为1层公式3:p∧q为n+1层公式,n=max(p的层数,q的层数)4:p∨q为n+1层公式,n=max(p的层数,q的层数)5:p→q为n+1层公式,n=max(p的层数,q的层数)6:p↔q为n+1层公式,n=max(p的层数,q的层数)赋值(解释):对公式中的命题变项指定一个真值,真值为1即该命题变项为成真赋值,真值为0即该命题变项为成假赋值。
重言式(永真式):即该合式公式在任意赋值下取值都是真矛盾式(永假式):即该合式公式在任意赋值下取值都是假可满足式:即至少存在一种赋值下取值为真故重言式必是可满足式,可满足式不一定是重言式,可满足式必不是矛盾式,矛盾式必不是可满足式。
常用数学符号大全
常用数学符号大全1、几何符号⊥∥∠⌒⊙≡≌△2、代数符号∝∧∨~∫≠≤≥≈∞∶3、运算符号如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。
4、集合符号∪∩∈5、特殊符号∑π(圆周率)6、推理符号|a| ⊥∽△∠∩∪≠≡±≥≤∈←↑→↓↖↗↘↙∥∧∨&; §①②③④⑤⑥⑦⑧⑨⑩ΓΔΘΛΞΟΠΣΦΧΨΩαβγδεζηθικλμνξοπρστυφχψωⅠ Ⅱ Ⅲ Ⅳ Ⅴ Ⅵ Ⅶ Ⅷ Ⅸ Ⅹ Ⅺ Ⅻⅰ ⅱ ⅲ ⅳ ⅴ ⅵ ⅶ ⅷ ⅸ ⅹ∈∏∑∕√∝∞∟ ∠∣∥∧∨∩∪∫∮∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙⊥⊿⌒℃指数0123:o1237、数量符号如:i,2+i,a,x,自然对数底e,圆周率π。
8、关系符号如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。
“→ ”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。
9、结合符号如小括号“()”中括号“[]”,大括号“{}”横线“—”10、性质符号如正号“+”,负号“-”,绝对值符号“| |”正负号“±”11、省略符号如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),∵因为,(一个脚站着的,站不住)∴所以,(两个脚站着的,能站住)总和(∑),连乘(∏),从n个元素中每次取出r个元素所有不同的组合数(C(r)(n) ),幂(A,Ac,Aq,x^n)等。
离散数学(高教)概念整理
p 等价 q 当且仅当,同时为真或假。(复合命题“p 当且仅当 q”称作 p 与 q 的等价式)
真值表
命题公式及其赋值 命题常项
原子命题(简单命题)的另一称呼,由于其真值确定
命题变项
真值可以变化的陈述句
合式公式(命题公式)A,B……
命题变项用联结词和圆括号用一定逻辑关系连接起来的符号串,简称公式
简单合取式中的命题变项及它的否定式恰好出现一次,并按照下标拍好,这样的简单合取式 叫做极小项。同理为极大项。 n 个命题变项可以产生 2 的 n 次方个极小项,每个极小项都有且仅有一个成真赋值,这一组 成真赋值(01 组成)转化为对应的十进制数 i,将这个极小项表示为 类似的,极大项为
主析取范式
主合取范式
公式中不含自由出现的个体变项.
解释 I
解释就是对抽象一阶语言的在 I 的具体含义,包括四个部分: ①非空个体域 D1②每一个个体常项在 D1 中的对应③每一个 n 元函数在 D1 上的对应④每一 个谓词符号在 D1 上的对应
永真式(逻辑有效式),永假式,可满足式
同上文。在任何解释下均为真的公式为永真式。这里不存在重言式的说法。
可满足式
命题公式 A 至少存在一个成真赋值
哑元
对公式 A 和 B 进行比较讨论,可知 A 和 B 共含有 n 个命题变项,其中 A 不含有的命题变项 称为 A 的哑元,其取值不影响 A 的值
命题逻辑等值演算 等值式⇔
如果命题 A 和 B 有相同的真值表,则有命题 A↔B 为重言式,这种情况下称 A 与 B 是等值的, 记作 A⇔B
所有简单合取式都是极小项的析取式,这是唯一的主析取范式。同理。
联结词的完备集
n 元真值函数 F
离散数学第二章一阶逻辑知识点总结
数理逻辑部分第2章一阶逻辑2。
1 一阶逻辑基本概念个体词(个体): 所研究对象中可以独立存在的具体或抽象的客体个体常项:具体的事物,用a, b,c表示个体变项:抽象的事物,用x,y,z表示个体域: 个体变项的取值范围有限个体域,如{a,b, c}, {1, 2}无限个体域,如N, Z, R,…全总个体域:宇宙间一切事物组成谓词:表示个体词性质或相互之间关系的词谓词常项:F(a):a是人谓词变项:F(x):x具有性质F一元谓词:表示事物的性质多元谓词(n元谓词, n≥2): 表示事物之间的关系如L(x,y):x与y有关系L,L(x,y):x≥y,…0元谓词: 不含个体变项的谓词, 即命题常项或命题变项量词:表示数量的词全称量词∀:表示任意的, 所有的,一切的等如∀x 表示对个体域中所有的x存在量词∃:表示存在,有的,至少有一个等如$x表示在个体域中存在x一阶逻辑中命题符号化例1 用0元谓词将命题符号化要求:先将它们在命题逻辑中符号化,再在一阶逻辑中符号化(1) 墨西哥位于南美洲在命题逻辑中,设p:墨西哥位于南美洲符号化为 p, 这是真命题在一阶逻辑中, 设a:墨西哥,F(x):x位于南美洲符号化为F(a)例2 在一阶逻辑中将下面命题符号化(1)人都爱美; (2) 有人用左手写字分别取(a) D为人类集合, (b)D为全总个体域。
解:(a) (1) 设G(x):x爱美, 符号化为∀x G(x)(2) 设G(x):x用左手写字, 符号化为$x G(x)(b) 设F(x):x为人,G(x):同(a)中(1) ∀x (F(x)→G(x))(2) $x (F(x)∧G(x))这是两个基本公式, 注意这两个基本公式的使用。
例3 在一阶逻辑中将下面命题符号化(1) 正数都大于负数(2)有的无理数大于有的有理数解注意: 题目中没给个体域, 一律用全总个体域(1)令F(x):x为正数,G(y):y为负数, L(x,y): x>y x(F(x)→y(G(y)→L(x,y))) 或∀x y(F(x)∧G(y)→L(x,y)) 两者等值(2) 令F(x):x是无理数,G(y): y是有理数,L(x,y):x>y∃x(F(x)∧∃y(G(y)∧L(x,y)))或$x$y(F(x)∧G(y)∧L(x,y)) 两者等值几点注意:1元谓词与多元谓词的区分无特别要求,用全总个体域量词顺序一般不能随便颠倒否定式的使用思考:①没有不呼吸的人②不是所有的人都喜欢吃糖③不是所有的火车都比所有的汽车快以上命题应如何符号化?2。
离散数学
离散数学复习题一. 有两个小题1.分别说明联结词⌝、∧、∨、→和↔的名称,再分别说明它们在自然语言中表示什么含义。
解:(1) ⌝叫做否定。
(2) ∧叫做合取。
(3) ∨叫做析取。
(4) →叫做蕴涵。
(5) ↔叫做等价。
“⌝”表示“…不成立”,“不…”。
“∧”表示“并且”、“不但…而且...”、“既…又...”等。
“∨”表示“或者”,是可兼取的或。
“→”表示如果… ,则…;只要… ,就…;只有… , 才…;仅当… 。
“↔”表示“当且仅当”、“充分且必要”。
2解:二. 将下面命题写成符号表达式。
(3,4题要使用句后给定的谓词。
)1.如果小张去,则小王与小李都不去,否则小王与小李不都去。
解:设P:小张去。
Q:小王去。
R:小李去。
此命题的表达式为:(P→(⌝Q∧⌝R))∧(⌝P→⌝(Q∧R))2.我们不能既划船又跑步。
解:令 P:我们划船。
Q:我们跑步。
此命题的表达式为⌝(P∧Q)3.有些运动员是大学生。
(L(x): x是运动员,S(x): x是大学生。
)解:∃x(L(x)∧S(x))4.每个运动员都钦佩一些教练。
( L(x):x是运动员,A(x,y):x钦佩y,J(x):x是教练。
)解:∀x(L(x)→∃y(J(y)∧A(x,y)))三. 有三个问题1.先说明什么叫永真式(也叫重言式)。
解:A(P1,P2,…,Pn) 是含有命题变元P1,P2,…, Pn的命题公式,如不论对P1,P2,…, Pn作任何指派,都使得A(P1,P2,…,Pn) 为真,则称之为重言式,也称之为永真式。
2.指出下面的命题公式中哪些是永真式(只写题号即可)。
(1). (P∨Q)→P (2). P→(P∨Q)(3). (P∧(P→Q))→Q (4). (P∧Q)→Q解:(2),(3),(4)为永真式。
3.然后对上面的永真式任选其中一个给予证明(方法不限)。
证明 (4). (P∧Q)→Q设前件(P∧Q)为真,则得Q为真。
所以(P∧Q)→Q是永真式。
(完整word版)离散数学符号表
《离散数学》符号表∀ 全称量词(任意量词)∃ 存在量词├ 断定符(公式在L 中可证)╞ 满足符(公式在E 上有效,公式在E 上可满足) ┐ 命题的“非”运算∧ 命题的“合取”(“与”)运算∨ 命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算↔ 命题的“双条件”运算的B A ⇔ 命题A 与B 等价关系B A ⇒ 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算( “异或门” ) ↑ 命题的“与非” 运算( “与非门” ) ↓ 命题的“或非”运算( “或非门” ) □ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于(∉不属于)A μ(·) 集合A 的特征函数P (A ) 集合A 的幂集A 集合A 的点数4434421ΛnA A A ⨯⨯⨯ (n A ) 集合A 的笛卡儿积R R R ο=2 )(1R R R n n ο-= 关系R 的“复合” 0ℵ 阿列夫零ℵ 阿列夫⊇ 包含⊃ 真包含∪集合的并运算 ∩集合的交运算 - (~)集合的差运算 ⊕集合的对称差运算 m + m同余加 m ⨯ m同余乘 〡限制 R x ][集合关于关系R 的等价类 A /R集合A 上关于R 的商集 )(A R π集合A 关于关系R 的划分 )(A R π集合A 关于划分π的关系 ][a元素a 产生的循环群 R a ][元素a 形成的R 等价类 r C由相容关系r 产生的最大相容类 I环,理想 )/(n Z模n 的同余类集合 )(mod k b a ≡a 与b 模k 相等 )(R r关系R 的自反闭包 )(R s关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则) US 全称特指规则(全称量词消去规则) A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数)(][A A K 集合A 的势(基数)R 关系r 相容关系 R 否关系R 补关系1-R (c R ) 逆关系S R ο 关系R 与关系S 的复合n nR R R R ,4434421οΛοο 关系R 的n 次幂r rB B B 222,43421Λ⨯⨯ 布尔代数2B 的r 次幂 r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域)ranf 函数f 的值域Y X f →: (Y X f −→−) f 是X 到Y 的函数 ),(y x GCD y x ,最大公约数 ),(y x LCM y x ,的最小公倍数 e 幺元θ 零元1-a 元素a 的逆元 )(Ha aH H 关于a 的左(右)陪集 )(f Ker 同态映射f 的核(或称f 的同态核) A ,B ,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21Λ 多项式系数[1,n] 1到n 的整数集合)1()1(][+--=k x x x x k Λ)1()1(][-++=k x x x x k Λk n C 组合数),(v u d 点u 与点v 间的距离 )(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构 *G 平面图G 的对偶图 W(G) 图G 的连通分支数 )(G κ 图G 的点连通度 )(G λ 图G 的边连通度 )(G δ图G 的最小点度 )(G ∆图G 的最大点度 A(G)图G 的邻接矩阵 P(G)图G 的可达矩阵 M(G)图G 的关联矩阵 n Kn 阶完全图 m n K ,完全二分图 C复数集 N自然数集(包含0在内) +N正自然数集 P素数集 Q有理数集 +Q正有理数集 -Q负有理数集 R实数集 Z整数集 m Z]}[,,]2[,]1{[m Λ Set集范畴 Top拓扑空间范畴 Ab交换群范畴 Grp群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。
离散数学知识点整理
离散数学一、逻辑和证明命题逻辑命题:是一个可以判断真假的陈述句。
联接词:∧、∨、→、↔、¬。
记住“p仅当q”意思是“如果p,则q”,即p→。
记住“q除非p”意思是“¬p→q”。
会考察条件语句翻译成汉语。
构造真值表语句翻译系统规范说明的一致性是指系统没有可能会导致矛盾的需求,即若pq无论取何值都无法让复合语句为真,则该系统规范说明是不一致的。
命题等价式逻辑等价:在所有可能情况下都有相同的真值的两个复合命题,可以用真值表或者构造新的逻辑等价式。
证逻辑等价是通过p推导出q,证永真式是通过p推导出T。
量词谓词+量词变成一个更详细的命题,量词要说明论域,否则没有意义,如果有约束条件就直接放在量词后面,如∀x>0P(x)。
当论域中的元素可以一一列举,那么∀xP(x)就等价于P(x1)∧P(x2)...∧P(xn)。
同理,∃xP(x)就等价于P(x1)∨P(x2)...∨P(xn)。
两个语句是逻辑等价的,如果不论他们谓词是什么,也不论他们的论域是什么,他们总有相同的真值,如∀x(P(x)∧Q(x))和(∀xP(x))∧(∀xQ(x))。
量词表达式的否定:¬∀xP(x) ⇔∃x¬P(x),¬∃xP(x) ⇔∀x¬P(x)。
量词嵌套我们采用循环的思考方法。
量词顺序的不同会影响结果。
语句到嵌套量词语句的翻译,注意论域。
嵌套量词的否定就是连续使用德摩根定律,将否定词移入所有量词里。
推理规则一个论证是有效的,如果它的所有前提为真且蕴含着结论为真。
但有效论证不代表结论正确,因为也许有的前提是假的。
命题和量化命题的组合使用。
二、集合、函数、序列、与矩阵集合∈说的是元素与集合的关系,⊆说的是集合与集合的关系。
常见数集有N={0,1,2,3...},Z整数集,Z+正整数集,Q有理数集,R实数集,R+正实数集,C复数集。
A和B相等当仅当∀x(x∈A↔x∈B);A是B的子集当仅当∀x(x∈A→x∈B);A是B的真子集当仅当∀x(x∈A→x∈B)∧∃x(x∉A∧x∈B)。
离散数学集合
离散数学集合离散数学是数学中的一个分支,研究非连续性的结构,包括集合、函数、关系、图论、逻辑等等。
其中,集合是离散数学中的基本概念之一,下面将详细介绍集合的概念和相关内容。
一、集合的定义和符号集合是由一些确定的、独立的对象组成的整体。
这些对象可以是数字、字母、符号、图形等等,称为集合的元素,用大写字母表示整个集合,用小写字母表示集合中的元素。
例如:集合A={1,2,3,4,5},其中元素1、2、3、4、5是集合A的成员;集合B={a,b,c,d,e},其中元素a、b、c、d、e是集合B的成员。
表示集合的符号主要有两种:花括号{},用来表示集合中的元素,如集合A和B的表示方法;省略号…,用来表示集合的连续性,如集合C={1,2,3,…,100}。
二、集合的基本运算集合的基本运算有四个,分别是并、交、差和补。
并、交、差和补四种运算的含义和符号如下表所示:运算符号含义并集∪ 将两个集合中所有元素组成的新集合交集∩ 两个集合中共同拥有的元素组成的新集合差集 - 求一个集合A中存在,另一个集合B中不存在的元素所组成的集合补集 A' 补集实际上也是差集,即A与全集U之间的差集例如,若集合A={1,2,3,4,5},集合B={4,5,6,7,8},则它们之间的并、交、差和补分别为:三、集合的特殊情况1. 空集空集是不含任何元素的集合,用∅表示。
空集是任何集合的子集,常常用于证明一个子集是空集或不为空集。
集合表达式结果A∩B ∅即A和B没有任何公共元素A-∅ {1,2,3} 即A中存在的元素∅-B ∅即空集和任何集合之间的差集都是空集2. 子集集合A是集合B的子集,当且仅当A中的任何元素都在B中出现,用符号A⊆B表示。
如果集合A不是集合B的子集,则用符号A⊈B表示。
集合表达式结果A⊆B TRUE 即A中的任何元素都在B中出现B⊆A FALSE 即B中的元素不全在A中出现3. 并、交的结合律和分配律并、交的结合律和分配律也称为结合律和分配律,它们分别是:并、交的结合律:A∪(B∪C)=(A∪B)∪C,A∩(B∩C)=(A∩B)∩C;并、交的分配律:A∪(B∩C)=(A∪B)∩(A∪C),A∩(B∪C)=(A∩B)∪(A∩C)。
离散数学1_3
对偶与范式
从上节可看到命题公式的最小联结 词组为{┒,∨}或{┒,∧} ,但实际上为了 使用方便,命题公式常常同时包含 {┒,∨,∧} 。我们认为这样的公式∨与 ∧ 存在对偶规律。 定义1-7、1 在给定的命题公式中,将联 结词∨ 换成∧ ,将∧ 换成∨ ,若有特殊 变元F和T亦相互取代,所得公式A*称为 A的对偶式。
四、或非(P↓ Q)
运算法则: P T T F F Q T F T F
P↓ Q
F F F T
BACK
最小联结词组
指可表示出其它所有联结词的最小联结 词集合。如: {┒,∨},{┒, ∧} ,{↑} ,{↓} 都可构成最 小联结词组。
例:写出P ∨Q分别用{┒, ∧} ,{↑} , {↓} 表示的等价式。
注:任何一个命题公式,求它的合取范式或 析取范式,可以通过下面三个步骤进行:
(1)将公式中的联结词化归成∧, ∨ 及┒ 。
(2)利用德· 摩根律将否定符号┒直接到各个命 题变元之前。 (3)利用分配律、结合律将公式归约为合取范 式或析取范式。 例题3 求 ( P (Q R)) S 的合取范式。 例题4 求 (P Q) 的析取范式。 ( P Q)
其他联结词
一、异或(不可兼析取) 定义:两个命题P和Q的异或是一个复 合命题,记作P⊽Q,异或也称为不可兼析取。 当且仅当P、Q不同时为T时, P ⊽ Q为T, 其他情况下的真值都是F。 即:相异为T,相同为F。 注意:或(∨)与异或( )区别,可举例说 明如下: 他是100米或200米冠军。(可兼析取∨) 他是7点或8点离开的。(不可兼析取∨)
( P Q) ( P Q) (( P Q) ( P Q)) ((P Q) ( P Q)) (P Q P Q) ((P Q) (P Q)) (P Q P Q) ( P P) (Q P) ( P Q) (Q Q)
离散数学且符号
离散数学且符号
离散数学是一门研究离散对象及其结构、性质和相互关系的数学学科。
它关注离散的、离散的数学对象,而不是连续的数学对象。
离散数学的主要研究内容包括集合论、数论、图论、布尔代数、关系代数等。
离散数学的符号化方法是它的一大特点。
符号化方法通过使用符号来表达数学概念、定理和推理步骤,帮助我们进行更具形式化的推理和论证。
在离散数学中,常用的符号包括集合符号、逻辑符号、关系符号等,这些符号能够精确地描述数学结构和性质。
通过符号化方法,我们可以进行精确的推理,发现规律和性质,从而解决问题。
离散数学且符号的特点使得它在计算机科学、信息技术等领域有广泛应用,为我们研究和解决实际问题提供了有效的工具和方法。
《离散数学》符号表
《离散数学》符号表《离散数学》符号表∀ 全称量词(任意量词)∃ 存在量词├ 断定符(公式在L 中可证)╞ 满足符(公式在E 上有效,公式在E 上可满足) ┐ 命题的“非”运算∧ 命题的“合取”(“与”)运算∨ 命题的“析取”(“或”,“可兼或”)运算 → 命题的“条件”运算↔ 命题的“双条件”运算的B A ⇔ 命题A 与B 等价关系B A ⇒ 命题A 与B 的蕴涵关系*A 公式A 的对偶公式wff 合式公式iff 当且仅当V 命题的“不可兼或”运算( “异或门” ) ↑ 命题的“与非” 运算( “与非门” ) ↓ 命题的“或非”运算( “或非门” ) □ 模态词“必然”◇ 模态词“可能”φ 空集∈ 属于(∉不属于)A μ(·) 集合A 的特征函数 P (A ) 集合A 的幂集A 集合A 的点数nA A A ⨯⨯⨯ (n A ) 集合A 的笛卡儿积R R R =2 )(1R R R n n -= 关系R 的“复合” 0ℵ 阿列夫零ℵ 阿列夫⊇ 包含⊃ 真包含∪集合的并运算 ∩集合的交运算 - (~)集合的差运算 ⊕集合的对称差运算 m + m同余加 m ⨯ m同余乘 〡限制 R x ][集合关于关系R 的等价类 A /R集合A 上关于R 的商集 )(A R π集合A 关于关系R 的划分 )(A R π集合A 关于划分π的关系 ][a元素a 产生的循环群 R a ][元素a 形成的R 等价类 r C由相容关系r 产生的最大相容类 I环,理想 )/(n Z模n 的同余类集合 )(mod k b a ≡a 与b 模k 相等 )(R r关系R 的自反闭包 )(R s关系R 的对称闭包+R ,)(R t 关系R 的传递闭包*R ,)(R rt 关系R 的自反、传递闭包.i H 矩阵H 的第i 个行向量j H . 矩阵H 的第j 个列向量CP 命题演绎的定理(CP 规则)EG 存在推广规则(存在量词引入规则)ES 存在量词特指规则(存在量词消去规则) UG 全称推广规则(全称量词引入规则) US 全称特指规则(全称量词消去规则) A I ,0R 恒等关系A 集合A 的补集X X 所有X 到自身的映射X Y 所有从集合X 到集合Y 的函数)(][A A K 集合A 的势(基数)R 关系r 相容关系R 否关系R 补关系1-R (c R ) 逆关系S R 关系R 与关系S 的复合n nR R R R ,关系R 的n 次幂 r rB B B 222,⨯⨯ 布尔代数2B 的r 次幂 r B 2 含有r 2个元素的布尔代数domf 函数f 的定义域(前域)ranf 函数f 的值域Y X f →: (Y X f −→−) f 是X 到Y 的函数 ),(y x GCD y x ,最大公约数 ),(y x LCM y x ,的最小公倍数 e 幺元θ 零元1-a 元素a 的逆元 )(Ha aH H 关于a 的左(右)陪集 )(f Ker 同态映射f 的核(或称f 的同态核) A ,B ,C 合式公式⎪⎪⎭⎫ ⎝⎛k n 二项式系数⎪⎪⎭⎫ ⎝⎛p n n n n ,,,21 多项式系数[1,n] 1到n 的整数集合)1()1(][+--=k x x x x k)1()1(][-++=k x x x x kk nC 组合数 ),(v u d 点u 与点v 间的距离 )(v d 点v 的度数)(v d + 点v 的出度)(v d - 点v 的入度),(E V G = 点集为V ,边集为E 的图 G 图G 的补图G G '≅ 图G 与图G '同构 *G 平面图G 的对偶图 W(G) 图G 的连通分支数 )(G κ 图G 的点连通度 )(G λ 图G 的边连通度 )(G δ图G 的最小点度 )(G ∆图G 的最大点度 A(G)图G 的邻接矩阵 P(G)图G 的可达矩阵 M(G)图G 的关联矩阵 n Kn 阶完全图 m n K ,完全二分图 C复数集 N自然数集(包含0在内) +N正自然数集 P素数集 Q有理数集 +Q正有理数集 -Q负有理数集 R实数集 Z整数集 m Z]}[,,]2[,]1{[m Set集范畴 Top拓扑空间范畴 Ab交换群范畴 Grp群范畴Mon 单元半群范畴Ring 有单位元的(结合)环范畴Rng 环范畴CRng 交换环范畴R-mod 环R的左模范畴mod-R 环R的右模范畴Field 域范畴Poset 偏序集范畴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∪ ∩ - (~) ⊕
包含 真包含 集合的并运算 集合的交运算 集合的差运算 集合的对称差运算 m 同余加 m 同余乘 限制 集合关于关系 R 的等价类 集合 A 上关于 R 的商集 集合 A 关于元素 a 形成的 R 等价类 由相容关系 r 产生的最大相容类 环,理想 模 n 的同余类集合
二项式系数
n ⎛ ⎞ ⎜ ⎟ ⎜ n , n ,!, n ⎟ p ⎠ ⎝ 1 2
[1,n]
多项式系数 1 到 n 的整数集合
[ x]k = x( x − 1)!( x − k + 1) [ x]k = x( x + 1)!( x + k − 1)
C nk
组合数 点 u 与点 v 间的距离 点 v 的度数 点 v 的出度 点 v 的入度 点集为 V,边集为 E 的图 图 G 的补图 图 G 与图 G ʹ′ 同构 平面图 G 的对偶图 图 G 的连通分支数 图 G 的点连通度 图 G 的边连通度 图 G 的最小点度 图 G 的最大点度 图 G 的邻接矩阵 图 G 的可达矩阵 图 G 的关联矩阵
Q+ Q−
R Z
Zm
Set Top Ab Grp Mon Ring Rng CRng R-mod mod-R Field Poset
{[1] , [2] , ! , [m]}
集范畴 拓扑空间范畴 交换群范畴 群范畴 单元半群范畴 有单位元的(结合)环范畴 环范畴 交换环范畴 环 R 的左模范畴 环 R 的右模范畴 域范畴 偏序集范畴
d (u , v) d (v )
d + (v) d − (v )
G = (V , E )
G
G ≅ G ʹ′
G∗
W(G)
κ (G ) λ (G ) δ (G )
Δ(G )
A(G) P(G) M(G)
Kn
K n ,m
C N
n 阶完全图
完全二分图 复数集 自然数集(包含 0 在内)
N+
P Q
正自然数集 素数集 有理数集 正有理数集 负有理数集 实数集 整数集
R + , t ( R)
R ∗ , rt ( R)
Hi. H. j
CP EG ES UG
US
全称特指规则(全称量词消去规则) 恒等关系 集合 A 的补集 所有 X 到自身的映射 所有从集合 X 到集合 Y 的函数 集合 A 的势(基数) 关系 相容关系 否关系 补关系 逆关系 关系 R 与关系 S 的复合 关系 R 的 n 次幂 布尔代数 B2 的 r 次幂 含有 2 个元素的布尔代数 函数 f 的定义域(前域) 函数 f 的值域
r
I A , R0
A
XX
YX
K [ A] ( A)
R
r
R
R
R −1 ( R c )
R!S
R% R %& % R , Rn $ !# ! !" !
n
r B2 × % × B 2 , B 2 $ !#!" r
B2 r
domf ranf
f f:X → Y ( X ⎯ ⎯→ Y)
f 是 X 到 Y 的函数
《离散数学》符号表 全称量词(任意量词) 存在量词 断定符(公式在 L 中可证) 满足符(公式在 E 上有效,公式在 E 上可满足) 命题的“非”运算 命题的“合取” ( “与” )运算 命题的“析取” ( “或” , “可兼或” )运算 命题的“条件”运算 命题的“双条件”运算的 命题 A 与 B 等价关系 命题 A 与 B 的蕴涵关系 公式 A 的对偶公式 合式公式 当且仅当 命题的“不可兼或”运算( “异或门” ) 命题的“与非” 运算( “与非门” ) 命题的“或非”运算( “或非门” ) 模态词“必然” 模态词“可能” 空集 属于(∉ 不属于) 集合 A 的特征函数 集合 A 的幂集 集合 A 的点数 (A )
GCD( x, y) LCM ( x, y )
x, y 最大公约数 x, y 的最小公倍数
幺元 零元 元素 a 的逆元
e
θ
a −1 aH ( Ha) Ker ( f )
A, B, C
H 关于 a 的左(右)陪集
同态映射 f 的核(或称 f 的同态核) 合式公式
⎛ n ⎞ ⎜ ⎜ k ⎟ ⎟ ⎝ ⎠
+m ×m
〡
[ x] R
A/R
π R ( A)
Rπ ( A)
[a]
[a] R Cr
I
Z /(n) a ≡ b(mod k ) r ( R) s( R)
a 与 b 模 k 相等
关系 R 的自反闭包 关系 R 的对称闭包 关系 R 的传递闭包 关系 R 的自反、传递闭包 矩阵 H 的第 i 个行向量 矩阵 H 的第 j 个列向量 命题演绎的定理(CP 规则) 存在推广规则(存在量词引入规则) 存在量词特指规则(存在量词消去规则) 全称推广规则(全称量词引入规则)
n
∀ ∃ ├ ╞ ┐ ∧ ∨ → ↔
A⇔ B A⇒ B
A∗
wff iff
V
↑ ↓ □ ◇ φ ∈
µ A (· )
P(A)
A
A× A# ×% A $ ! ! !× ! "
n
集合 A 的笛卡儿积 关系 R 的“复合”
n n −1 R 2 = R ! R ( R = R ! R)
ℵ0
ℵ
阿列夫零 阿列夫
⊇