无线传感器网络中基于能量感知的骨干网数据分发方法性能分析(IJWMT-V6-N5-8)
基于IPv6的无线传感器网络技术研究
基于IPv6的无线传感器网络技术研究随着物联网技术的发展,无线传感器网络成为了新的热门技术,它可以广泛应用于智慧城市、智能家居、环境监测等领域。
其中,IPv6作为新一代互联网协议,正式成为了无线传感器网络的核心技术之一。
本文将对基于IPv6的无线传感器网络技术进行深入研究。
一、无线传感器网络概述无线传感器网络是由大量的无线传感器节点组成的分布式网络,通常用于环境监测、智慧城市等领域。
无线传感器节点通常由微处理器、传感器和通信模块组成,可以采集环境信息,并将信息传递给基站或其他传感器节点。
无线传感器网络的特点是能够进行自组织、自修复和自适应,与传统的有线网络相比,具有低成本、易部署、易维护等优点。
二、IPv6协议概述IPv6是互联网协议的新一代标准,与IPv4相比,其主要特点是地址空间更大,支持更多的网络设备连接和更多的应用场景。
IPv6还引入了许多新的特性,例如多播技术、流媒体传输、QoS等功能。
IPv6协议的地址格式为一个128位的地址,相比IPv4的32位地址更加精细,支持更多的网络设备进行连接。
IPv6支持隧道技术,可以在IPv4网络上运行,实现IPv6的兼容性,其可扩展性也更强。
三、基于IPv6的无线传感器网络技术研究由于传感器网络中节点数量众多,而且节点分布范围广泛,传统的无线通信技术不能满足其需求。
IPv6作为一种新型协议,可以很好地解决无线传感器网络中的通信问题。
1、IPv6地址配置IPv6协议中,每个节点都有一个不重复的IPv6地址,这一点对于无线传感器网络来说尤其重要。
传感器网络中节点数量较多,需要有一种自动配置的方法来分配地址。
IPv6引入了移动IPv6和无状态地址自动配置等技术,可以实现无需手动配置,在网络中进行自动地址分配。
2、IPv6通信协议IPv6协议实现了无线传感器网络中数据的传输,通过TCP/IPv6或UDP/IPv6等协议进行通信,建立起端到端的连接。
3、IPv6路由协议路由是无线传感器网络中最重要的问题之一。
无线传感器网络中的群智感知技术研究
无线传感器网络中的群智感知技术研究无线传感器网络(Wireless Sensor Networks, WSN)作为一种新兴的信息感知和处理技术,已经被广泛应用于环境监测、农业生产、智能交通等领域。
群智感知技术是WSN中的重要研究领域,通过将分布在网络中的多个传感器节点组织起来,实现对环境的智能感知和信息收集。
首先,群智感知技术为WSN中的节点设计了合适的协作方式,以便高效地完成数据收集任务。
传感器节点之间的数据传递和协作是群智感知的核心。
一种常见的协作方式是数据融合,即将从不同传感器节点收集到的数据进行融合和处理,得到更准确、可靠的信息。
此外,还可以利用无线网络中的多跳传输机制,通过中继节点传递数据,以便覆盖更广的感知区域。
其次,群智感知技术可以通过优化传感器节点的能量消耗,延长整个网络的生命周期。
能源是无线传感器网络中的重要限制因素,传感器节点的能量有限,无法长时间工作。
为了减少能量消耗,可以通过分配合理的任务负载,使得传感器节点按需工作。
此外,可以设计能量感知的路由协议,将数据传输的路径通过能量消耗进行调整,以避免节点能量耗尽。
另外,群智感知技术还可以提高无线传感器网络的抗干扰性能和容错性。
无线环境中存在很多干扰源,如电磁干扰、噪声干扰等,这些干扰对传感器节点的数据采集和通信都会产生负面影响。
通过部署多个传感器节点,可以实现数据冗余和容错。
当部分节点受到干扰时,其他节点可以协同工作,并提供可靠的数据。
此外,群智感知技术在数据处理和决策方面也具有重要作用。
传感器节点收集到的数据往往是海量的、分散的,如何从中提取有价值的信息是一个挑战。
群智感知技术可以通过协作的方式,将不同节点的数据进行融合和处理,提供更全面和准确的信息。
在环境监测领域,可以通过群智感知技术提供的数据,实时分析环境状况,进行预测和决策。
在实际应用中,群智感知技术已经取得了一定的成果。
例如,在城市交通领域,通过部署大量的传感器节点,可以实时监测路况、交通流量等信息,为交通管理部门提供决策支持。
论文-能量高效的传感器网络虚拟骨干网构造算法研究
能量高效的传感器网络虚拟骨干网构造算法研究摘要:无线传感器网络是由大量能量受限的传感器节点组织成的无中心结构的无线自组织多跳网络。
通过构造虚拟骨干网,可以大幅度降低传感器网络的路由复杂度,显著地延长网络的寿命。
本文提出一种新的可用于传感器网络路由的能量高效的虚拟骨干网构造算法,在分簇的基础上,通过求解连通支配集的方法优化簇内结构。
仿真结果表明该算法具有良好的性能,可以有效的提高能量的利用。
关键词:无线传感器网络;虚拟骨干网;分簇;连通支配集Research on Energy-Efficient Algorithm for Virtual Backbone Construction in Wireless Sensor NetworkZHAO shi-jun 1, CHEN lin2 , LI xiao-dong2(1. Dept of Information engineering, University of Science & Technology Beijing, Beijing 100083;2. Institute of instrument, University of Petroleum, DongYing 257061, China)Abstract: Wireless sensor network, which is consisted of a huge number of energy-limited sensor nodes, is a self-organization, multi-hop, wireless network without fixed infrastructure. Building a virtual backbone in wireless sensor network can effectively reduce the complexity of routing protocol and prolong the life of the network. In this paper, a new energy-efficient algorithm for virtual backbone construction is proposed. The virtual backbone is constructed based on clustering, and then we use a CDS finding algorithm to construct the inner-cluster topology. Simulation shows the proposed algorithm has a great performance.Keywords: Wireless Sensor Network; Virtual Backbone; Clustering; Connected Dominating Set0引言无线传感器网络(Wireless Sensor Network,WSN)就是由部署在监测区域内大量的廉价微型传感器节点组成,通过无线通信方式形成的一个多跳的自组织的网络系统,其目的是协作地感知、采集和处理网络覆盖区域中感知对象的信息,在环境与军事监控,地震与气候预测、地下、深水以及外层空间探索等许多方面都具有广泛的应用前景。
无线传感器网络中的分簇路由算法研究与实现
无线传感器网络中的分簇路由算法研究与实现摘要:无线传感器网络是由大量分布在监测区域内的低功耗传感器节点组成的,这些节点能够自组织地协同工作,实现环境感知和数据采集的任务。
由于节点具有有限的能量和计算资源,设计高效的路由算法是无线传感器网络中的一个重要挑战。
本文主要对无线传感器网络中的分簇路由算法进行了研究与实现,着重探讨了分簇算法的基本原理、优缺点以及在实际应用中的性能。
关键词:无线传感器网络,分簇路由算法,自组织,能量效率。
1. 引言无线传感器网络(Wireless Sensor Network, WSN)是一种由大量的低功耗、小型、分布式的传感器节点组成的无线网络,能够实时监测、收集和处理环境中的各种信息。
WSN在环境监测、农业、医疗、交通等领域具有广泛的应用前景。
然而,由于节点具有有限的能量和计算资源,设计高效的路由算法成为无线传感器网络中的一个重要问题。
2. 分簇路由算法基本原理分簇路由算法是无线传感器网络中一种常见的路由机制,它将网络中的节点分成多个簇(cluster),每个簇中有一个簇头(cluster head)负责与其他簇头进行通信,并将数据传输到基站。
分簇路由算法的基本原理如下:(1)簇头选举:节点根据自身的一些参数(如能量、距离等)来竞选成为簇头。
通常情况下,具有充足能量和较高的剩余能量的节点更容易被选为簇头。
(2)簇内通信:簇头负责接收簇内其他节点的数据,并将其聚合后发送给其他簇头。
簇内节点之间的通信通常采用近距离的无线通信方式,以减少能量消耗和网络拥塞。
(3)簇间通信:簇头之间进行远距离通信,将聚合后的数据传输到基站。
簇头之间的通信通常采用更高功率和更远距离的无线通信方式。
3. 分簇路由算法的优缺点分簇路由算法具有如下优点:(1)降低能量消耗:通过节点之间的局部通信,分簇路由算法能够减少每个节点的长距离通信次数,从而降低能量消耗。
(2)提高网络生命周期:通过平衡簇头的负载以及合理分配簇头节点,分簇路由算法能够延长网络的生命周期。
无线传感器网络分布式定位算法的关键分析(IJWMT-V6-N4-7)
I.J. Wireless and Microwave Technologies, 2016, 4, 72-83Published Online July 2016 in MECS()DOI: 10.5815/ijwmt.2016.04.07Available online at /ijwmtCritical Analysis of Distributed Localization Algorithms for WirelessSensor NetworksSantar Pal Singh a*, S. C. Sharma ba,b Wireless Network Lab, Electronics and Computer Discipline, DPT, Indian Institute of Technology Roorkee,Roorkee-247667, IndiaAbstractIn the past decade, Wireless sensor networks (WSNs) have attracted very much attention from the research and industrial community. Various WSN based projects produced fruitful and interesting results. In various applications, the location information of node is vital for the service. The reason is that users usually need to know what happens, but also where the concerned events happen. For example, in battlefield surveillance, the knowledge of where the enemy comes from can be much more important than only knowing the appearance of the enemy, it is much important that sensors reports the information along with their location. Localization is one of the primary and widely useful middle-ware services in sensor networks, mostly allows every node to obtain its location information. The localization schemes can be categorized on the basis of various parameters like availability of GPS, presence of anchors, range measurements, model of computation etc. On the basis of computation model, the localization approaches can be categorized into: centralized and distributed localization techniques. Due to certain advantages, distributed localization is flattering as an active stem in sensor localization. In this paper, we have been reported a detailed analysis on distributed localization techniques and outline the merits and limitations of distributed localization schemes in WSNs. Finally, we conclude the paper with some open issues.Index Terms: Wireless sensor networks, range measurements, anchors, services, distributed localization.© 2016 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research Association of Modern Education and Computer Science1.IntroductionRecent advancement in wireless communication and low-cost sensor technology has enabled the emergence and evolution of wireless sensor networks (WSNs) as new paradigm of computer networking [1], [2]. A wireless sensor network is poised of huge number of low-cost, tiny sensor nodes enabled with sensing, processing and transmitting capabilities [3], [4]. A simple wireless sensor network is shown in fig. 1. * Corresponding author. Tel.: +91-9897858828; Fax: +91-132-2714310E-mail address: spsingh78@For this Procedia the files must be in MS Word format only and should be formatted for direct printing.Fig.1.A simple wireless sensor network (Source: [8])The wireless sensor networks were initially motivated by military applications but nowadays, WSNs are used in various civilian application areas like: monitoring, tracking, control, automation and healthcare applications. In many applications, the location information of sensor node is of much importance. Location of sensor node is crucial to find. Localization is a method of determining the position on a node. The localization schemes can be categorized on the basis of various parameters like availability of GPS, presence of anchors, computation model,range measurements etc [5],[6],[7],[33]. On the basis of computation model, the localization approaches can be classified into two categories: centralized and distributed localization techniques. In centralized model, all the measurements are collected and processed at central base station while in distributed model, computation take place at every node. Due to hardware restrictions of sensors, solutions in distributed schemes are being considered as cost effective solutions. In this paper, various distributed localization schemes have been discussed. The rest of the paper is organized as follows. Section 2, describes the overview of localization process and the taxonomy of localization algorithms. Section 3, describes the distributed localization algorithms and its variants. Section 4 covers the analysis and discussion. Section 5 concludes the paper.2.Localization OverviewLocalization is anticipated through the communication between localized or known node and unlocalized node for obtaining their geometrical situation or position [9],[10]. The localization overview contains the brief overview of localization process and the taxonomy of the localization scheme.2.1.Localization ProcessLocalization process situates sensor nodes on the basis of input data. The common inputs are the anchor positions (if anchor available), connectivity information, distance or angle between nodes. The measurement techniques can be proximity based, distance based or angle based. The proximity based techniques are based on radio or acoustic waves. Localization algorithm is executed in an important step in the localization process. A localization process objective varies accordingly. The overview of a localization process is shown in fig 2.Fig.2.Overview of a localization process2.2.Localization AlgorithmsOn the basis of input data, a localization algorithm determines the nodes location in the network. The Inputs be the range estimates with or without the position of beacons or access point. The localization algorithms are classified on the basis of various parameters like availability of GPS, presence of anchors, computation model, range measurements etc [6],[7],[34]. The taxonomy of localization techniques is shown in fig. 3.Fig.3.Taxonomy of localization schemes in WSNsOn the basis of computation model, the localization approaches can be categorized into two types: centralized and distributed localization schemes [11], [35]. In continuation, the localization algorithms are broadly classified into two types given as:∙Centralized localization algorithms∙Distributed localization algorithms3.Distributed Localization AlgorithmsIn distributed techniques, each sensor node gives restricted communication with nearer nodes to obtain the position information [11],[12]. In distributed localization, sensor nodes perform the required computation themselves and communicate with each other to get their own location in network. There is no clustering in distributed schemes. The taxonomy of distribute localization is shown in fig.4.Fig.4.Taxonomy of distributed localization algorithms in WSNs3.1.Beacon based distributed localization algorithmsBeacon based localization algorithms [13],[14],[15],[16] begin with group of beacons and unknown nodes to obtain measurement to a less number of sensor After that measurements are used to find out their own locations. These algorithms can be classified into diffusion an d gradients algorithms. In diffusion, node’s most probable location is at the centroid of its nearby recognized nodes. The popular algorithms in this category are:Approximate Point in Triangle (APIT)APIT is an area based range free scheme which assumes that some of nodes those are aware of their positions outfitted with high powered transmitters. APIT [13] is located in area to carry out position estimation by separating the area into triangular zones between anchors. Each node’s presence inside or outsid e the triangle regions allows declining the viable location until and unless every possible sets have reached to an acceptable accuracy. The flowchart representation of APIT algorithm is shown in fig. 5.Fig.5.Flow sheet of APIT AlgorithmGradientIn gradient algorithm, unknown nodes obtain their locations through multilateration. It hop count which is initially set to zero and incremented as it pass on to other nearby nodes. This algorithm follows certain steps such as:∙In the first step, anchor nodes broadcasts a message carrying it’s coordinated and hop count value.∙In the second step, unknown node determines the shortest path between itself and anchor node from which it receives beacon message [17]. The estimated distance can be calculated by following equation:∙In the third step, minimum error in which node calculate its coordinate is computed by following equation:Where d ji is gradient propagation based estimated distance.3.2.Relaxation based distributed localization algorithmsThe relaxation based algorithms can be classified on basis of two approaches: spring model approach and cooperative ranging approach. Anchor free localization algorithms [18](AFL) are based on spring model approach. The assumption based coordinate system (ABC) are based on cooperative ranging [19], exploits the soaring network connectivity. The benefit of this approach is that there is no need of global resource or communication.3.3.Relaxation based distributed localization algorithmsCoordinate system stitching based techniques divides the whole network into small and overlapping sub regions, all of them construct an optimal local map. After that those local maps are merged into a single large map known as global map. The coordinate system stitching based distributed algorithms are generally based on two approaches: cluster based and inter node distance based approach. In the cluster based distributed algorithm [20], the node have distance estimation ability in close proximity. Cluster based distributed localization is mainly consists of two phases. First one is cluster localization phase and second one is cluster transformation phase. The benefit of this approach is that it supports lively node inclusion and mobility. The inter node distance approach based distributed localization algorithm [21] construct a map along with distance matrix. This approach possibly curtails the differences among them by some transformations. The benefit of this approach is that it is anchor free localization.3.4.Hop based distributed localization algorithmsHop based localization techniques works on the basis of the hop based connectivity range between the anchor nodes and nearby nodes. Hop based techniques are categorized as: one hop and multi hop localization techniques. The popular hop based techniques are given as:DV-HopDV-Hop localization [13] uses a mechanism similar to the classical distance vector routing method. One anchor node broadcasts a message which contains the anchors’ positions with hop count. Each receiving no de keeps the minimum value, which it receives. After that it ignores the other message with higher values [22,23]. Messages broadcasted out with hop count values incremented at every middle hop. In this scheme, all nodes in the network and other anchors obtain the shortest distance in hops. On the whole single hop distance in anchor i can be computed as:Where anchor j is at location (x i, y j) and h j is the distance in hops from j to i. The triangulation is used location estimation of unknown nodes. In this algorithm for two dimensional deployment of network, minimum 3 anchor’s locations are used as shown by symbol A in fig.6.Fig.6.DV- Hop Algorithm through triangulationMulti-HopMulti Hop techniques are able to compute a connectivity graph. The multi dimensional scaling (MDS) uses connectivity information considering the nodes range. This scheme has following steps [14] given as:∙In first step, the distance estimation between each viable pair of nodes is done.∙In second step, MDS is used for deriving the locations to fit the estimated distance.∙Finally in last step, optimization is done by putting the known locations into account.In large scale sensor networks, there are several kind of MDS methods are used such as metric, non metric, classical, weighted. The multi hop based process allows multi hop nodes to collaborate in finding better position estimates [24].3.5.Interferometric ranging based distributed localization algorithmsThe radio interferometric positioning system (RIPS) [25],[26],[27] exploits interfering RF signal emitted from two locations to obtain the essential ranging information. The synchronization problems cause relative phase offset of the signal. Relative offset is utility of the comparative positions of the involved sensor nodes and the carrier frequency.3.6.Error propagation aware distributed localization algorithmsError propagation aware (EPA) algorithm [28] integrates the path loss and measurement error model. Initially, beacon nodes disseminate their information that contains their IDs, global coordinates, and the error variance. After that, node positions are computed by integrating its weight matrix into weighted least square (WLS) algorithm [29]. After obtaining its own position the node becomes beacon and start broadcasting its ID, global coordinates, and ranging variance. This method is repetitive and continues until and unless each node obtains its positions.3.7.Hybrid distributed localization algorithmsHybrid localization can be depicted with the combination of two or more localization techniques. In [30] the authors’ presents a scheme composed of two techniques: multidimensional scaling (MDS) and proximity based distance mapping (PDM). Initially a few anchors are deployed as primary anchors. In the first phase, some anchors are chosen as secondary anchors those are localized through MDS. In the second phase, the normal sensors are localized through PDM.4.Analysis and DiscussionWSNs have many constraints such as node size, energy, and cost etc. It is indeed necessary to consider these constraints before designing any localization mechanism. Node communication and data transmission take much power and consume more energy. Many localization algorithms have been proposed; however most of them are application specific. So the comparison of various localization algorithms and some open issues in localization schemes are discussed in this section.parisonAll localization techniques have their own merits and limitations, making them appropriate for diverse applications. In this paper, we have performed comprehensive review on various localization techniques and compare them. After that we summarized then comparison in tabular form. The comparison between centralized and distributed localization is summarized in table 1. The comparison of some distributed localization schemes is summarized in table 2. The summary of comparison between distributed localization is shown in table 3.Table parison between centralized and distributed techniquesPower consumption More LessAccuracy 70-75% 75-90%No YesDependency onadditional hardwareDeployability Hard EasyTable 2. Comparison between some distributed localization schemesDV-Hop >8 Medium Good Largest NoMulti-Hop >12 High Good Large NoGradient >6 Low Average Large Yes Table 3. Summary of comparison between distributed localization schemes in WSNs4.2.Issues in localization techniquesSensor network localization is an active research area and has numerous issues so still has a lot of scope for research community. Some of the issues need to be addressed are:∙Cost effective algorithms:During the design of localization algorithm, designer must keep in mind the cost incurred in hardware and deployment. GPS is not suitable because of its cost and size of hardware. ∙Robust algorithms for mobile sensor networks: Mobile sensors are much useful in some environments because of mobility and coverage facility. Hence, development of new algorithms is needed to accommodate these mobile nodes.∙Algorithms for 3 Dimensional spaces:For many WSN applications, accurate location information is crucial. The most of the reported algorithms are pertinent to 2D space. On the other hand, some the application needs 3 D positioning of WSNs.∙Accuracy:If there is incorrect estimation of node position, then localization accuracy is compromised.Designer must keep in mind that accuracy is very much important factor in sensor localization.∙Scalability:In large scale deployment, it is generally desirable to enlarge the monitoring area amid nodes. So careful observations are required to check the scalability of localization techniques.∙Security: localization accuracy of algorithms is of much importance. Some algorithms have very good localization accuracy. But, at real time usage they are prone to attacks. Hence, the security of node localization is crucial.5.ConclusionsWireless sensor network localization has gain lot of attention of research community. This concern is likely to grow further with the rise in WSN based applications. This paper had performed a review of various distributed localization techniques and their corresponding localization algorithms for sensor network. In this paper, the taxonomy of localization techniques has been discussed. In this work, we compare the different localization techniques and represent that comparison in tabular form. This paper reported the classification of distributed localization algorithms on the basis of various measurements. Among all reported schemes, the comparative analysis done by us to conclude that each algorithm has its own features and none is absolutely best. On the whole, the centralized techniques are either expensive or susceptible to network dynamics. However, the distributed techniques are imprecise and easily affected by node density. Regardless of significant research development in this area, some unsolved problems are still there. At the end, we focused on the certain issues need to be addressed. This paper is very useful for the research group those are interested in development, modification and optimization of localization algorithms for wireless sensor networks. AcknowledgementsThe authors would like to thanks the ministry of human resource development (MHRD) for providing financial support for this work under research scholar’s grant.References[1]Akyildiz, I.F., Su, W., Sankarasubramaniam, y., Cyirci, E.: Wireless sensor networks: a puterNetworks 38(4), 393--422, 2002.[2]Romer, K., Friedemann, M.: The Design Space of Wireless Sensor Networks. IEEE WirelessCommunications11 (6), 54--61, 2004.[3]Sohraby, K., Minoli, D., Znati,T.: Wireless Sensor Networks: Technology. Protocols, and Applications,John wiley & sons, 2007.[4]Yick, J., Biswanath, M., Ghosal, D.: Wireless Sensor Network puter Networks 52(12), 2292--2330, 2008.[5]Mao, G., Fidan, B., Anderson, B. D..: Wireless sensor networks localization techniques. ComputerNetworks 51(10), 2529--2553, 2007.[6]Samira A.: A Review of Localization Techniques for wireless sensor networks. J.Basic Appl.Sci.Res2(8),795--7801, 2012.[7]Jing W., Gosh, R.K., Das,S.K.: A survey on sensor localization. J Control Theory Appl8(1), 2--11, 2010.[8]/1424-8220/9/11/8399.[9]Langerdoen, K., Reijers, N.: Distributed localization in wireless sensor networks: a quantative comparison.Computer Networks 43(4), 499--518, 2003.[10]Yunhao, L., Zeng, Y., Xiaoping, W., Lirong J.: A Location, localization and localizability.,Journal ofComputer Science and Technology 25(2),274--297, 2010.[11]Tareq, A. A., Shuang H. Y: A survey: localization and tracking mobile targets through wireless sensornetworks. ISBN:1-9025-6016-7@PGNet, 2007.[12]Stojmenovic, I., Bachrach, J., Taylor, C.:Localization in Sensor Network. In: Handbook of SensorNetworks: Algorithms and Architecture s, pp.277--310, 2005.[13]He, T., Huang, C., Blum, B., Stankovic, J., Abdelzaher,T.:Range-free localization schemes in large scalesensor networks In:Ninth Annual International Conference on Mobile Computing and Networking (MobiCom'03),pp.81--95, San Diego, CA, USA, 2003.[14]Savvides, A., Park, H., Srivastava, M.: The bits and flops of the n-hop multilateration primitive for nodelocalization problems. In: 1st ACM international Workshop on Wireless Sensor Networks and Applications (WSNA'02), pp.112--121, Atlanta, USA, 2002.[15]S. Simic and S. Sastry, “Distributed localization in wireless ad hoc networks”, Technical ReportUCB/ERL M02/26, UC Berkeley, 2002[16]Bachrach, J., Nagpal, R., Salib, M., Shrobe, H.: Experimental Results and Theoritical Analysis of a Self-Organizing a Global Coordinate System from Ad Hoc Sensor Networks. Telecommunications System Journal 26(2-4), 213--233, 2004.[17]Tanvir, S., Jabeen, F., Khan, M.I., Ponsard, B.:On propagation properties of beacon based localizationprotocols for wireless sensor networks. Middle East Journal of Scientific Research 12(2), 131--140, 2012.[18]Priyantha, N., Balakrishnan, H., Demaine, E., Teller, S.: Anchor free distributed localization in sensornetworks. MIT laboratory for computer science, Technical Report.[19]C. Savarese, J. Rabaey, and J. Beutel.: Locationing in distributed ad-hoc wireless sensor networks. In:Proceedings of IEEE International conference on acoustics, speech, and signal processing (ICASSP),Salt lake city, Utah, USA, pp.2037-2040, 2001[20]Moore ,D., Leonard, J., Rus, D.,Teller, S.: Robust distributed network localization with noisy rangemeasurements. In: Second ACM Conference on Embedded Networked Sensor Systems (SenSys), Baltimore, MD, 2004.[21]Meertens, L., Fitzpatrick, S.: The distributed construction of a global coordinate system in a network ofstatic computational nodes from inter node distances. Kestrel Institute Technical Report KES .U.04.04,Kestrel Institute, Palo Alto, 2004.[22]Brito,, L.M.P.L., Peralta, L.M.R.: An analysis of localization problems and solutions in wireless sensornetworks. Tekhne Revista de Estudos politecnicos Polytechnical Studies Review 6, 2008.[23]Labraoui, N., Gueroui, M., Aliouat, M.: Secure DV-hop localization schemes against wormhole attacks inWireless sensor networks. Transactions on Emerging Telecommunication Technologies 23(4), 303--312, 2012.[24]Pal, A.: Localization algorithms in wireless sensor networks: current approaches and future challenges.Network Protocols and Algorithms (2), 45--73, 2010.[25]Maroti, M., Kusy, B., Balogh, G., Olgyesi, P.V., Nadas, A, Molnar,K., Dora, S., Ledeczi,, A.: RadioInterferometric Geolocation. In: 3rd International Conference on Embedded Networked Sensor Systems (Sensys), San Diego, California, USA, pp.1--12, 2005.[26]Patwari, N., Hero, A.A.: Indirect Radio Interferometric Localization via Pairwise Distances. In: 3rdInternational Workshop on Embedded Networked Sensor Systems (Emnets 2006), Bostan, MA , 2006. [27]Huang, R., Gergley, V. Z., Huber,M.: Complexity and Error Propagation of Localization usingInterferometric Ranging. In:IEEE International Conference on Communications (ICC 2007), Glassgow, Scotland, pp.3063--3069, 2007.[28]Alsindi, N.A., Pahlavan, K., Alavi, B.:An Error Propagation Aware Algorithms for Precise CooperativeIndoor Localization. In:IEEE Military Communication Conference (MILCOM 2006), Washington DC, USA, pp.1--7, 2006.[29]Kim, E., Kim, K.: Distributed estimation with weighted least squares for mobile beacon based localizationin wireless sensor networks. IEEE Signal Processing Letters 7(6), 559--562, 2010.[30]Cheng, K.Y., Lui, K.S., Tam, V.: Localization in Sensor Networks with Limited number of anchors andClustered Placement. In:wireless communication and Networking Conference, 2007 (IEEE WCNC), pp.4425--4429 (2007).[31]Lloret, J., Tomas, J., Garcia, M. Canovas, A.: A hybrid stochastic approach for self location of wirelesssensors in indoor environments. Sensors 9(5), 3695-3712, 2009.[32]Ahmad, A.A., Shi, H.. Shang, Y.: Sharp: A new approach to relative localization in wireless sensornetworks. In:IEEE International Conference on Distributed Computing Systems (ICDCS), 2005, Columbia, USA (2005).[33]Santar Pal Singh, S. C. Sharma.: Range Free Localization Techniques in Wireless Sensor Networks: AReview. Procedia Computer Science 57, pp.7-16, 2015.[34]L. H. Zhao, W. Liu, H. Lei, R. Zhang, and Q. Tan.: The detection of boundary nodes and coverage holesin wireless sensor networks. Mobile Information Systems, 2016.[35]Guangjie Han , Huihui Xu, Trung Q.Duong, Jinfang Jiang, Takahiro Hara.: Localization algorithms ofWireless Sensor Networks: a survey. Telecommunication Systems, April 2013.Authors’ ProfilesSantar Pal Singh received his B.Tech. degree in Computer Sc. & Engineering from KamlaNehru Institute of Technology, Sultanpur (U.P.) in 2001 and the M.Tech. degree inComputer Sc. & Engineering from Samrat Ashok Technological Institute, Vidisha (M.P.) in2006. Now he is student of Ph.D. degree in Computer Sc. & Engineering discipline, DPT,Indian Institute of Technology Roorkee (India). His research interest includes data mining,data security and wireless sensor networks.ProfessoS. C. Sharma received his M.Sc.(Electronics), M.Tech. (Electronics &Communication Engg.) and Ph.D. (Electronics & Computer Engg.) from IIT Roorkee(erstwhile University of Roorkee).He has published over two hundred research papers innational and international journals/conferences and supervised more than 30projects/dissertation of PG students. He has supervised 12 Ph.D. in the area of ComputerNetworking, Wireless Network, Computer Communication and continuing supervising Ph.D.students in the same area.He has successfully completed several major research projects independently funded by various Govt. Agencies like AICTE, CSIR, MHRD, DST,and DRDO.How to cite this paper: Santar Pal Singh, S. C. Sharma,"Critical Analysis of Distributed Localization Algorithms for Wireless Sensor Networks",International Journal of Wireless and Microwave Technologies(IJWMT), Vol.6, No.4, pp.72-83, 2016.DOI: 10.5815/ijwmt.2016.04.07。
无线传感器网络技术研究
无线传感器网络技术研究一、背景介绍无线传感器网络(Wireless Sensor Network,WSN)是一种由大量低功率传感器节点组成的自组织网络,通过无线方式实现无线感知、数据处理、信息传输等功能。
由于其在环境监测、智能家居、工业自动化等领域的广泛应用,WSN技术已成为当今科技领域的热点和难点之一。
二、基本原理WSN系统由多个传感器节点组成,每个节点都可以采集周围环境的数据,并将其传输到网络中心。
传感器节点通常包括感知模块、处理器、通信模块和电源模块。
感知模块负责采集环境信息,处理器将采集的数据进行分析处理,通信模块负责与其他节点进行通信,电源模块则提供能源支持。
在传感器节点之间的通信中,使用无线传输方式适用于这种网络模式。
该网络中的节点通常采用"自组织"的分布式拓扑结构,即不需要第三方管理机构的核心,节点可以相互配合完成整个网络的数据传递。
三、核心技术如何实现WSN的有效通信,是该技术的核心研究方向。
其中涉及到多个关键技术,本文将依次进行介绍:1. 低功耗通信WSN技术的应用场景通常都需要节点在长时间内运行,这要求节点必须具备超低功耗通信能力。
因此,低功耗通信技术一直是该领域研究的重点之一。
该技术的核心思想是降低节点的能耗,从而延长网络寿命。
2. 数据处理与存储WSN网络收集到的数据量往往会非常庞大,因此数据的处理和存储成为了该技术研究的重点。
传统的方法是,将数据采集到的每一组值进行传输。
但是这种方法会导致传输带宽浪费、通信所消耗的能量增加等问题。
因此,如何以最小的代价将数据处理并存储成为了WSN技术的研究方向之一。
3. 网络拓扑WSN网络的拓扑结构是一个关键环节。
目前,常用的网络拓扑结构包括星型、树形、网格等。
各种网络拓扑结构各有千秋。
以树形网络为例,树形网络结构与智能监测系统相兼容,不仅可实现监测分量直接通讯,也可实现对其它监测分量监测信息的转移和传送,而且网络中信息的可靠性有所提高。
无线传感器网络中基于网格的能量感知路由协议
无线传感器网络中基于网格的能量感知路由协议
刘曙;庄艳艳;王芳芳;陶军
【期刊名称】《东南大学学报(英文版)》
【年(卷),期】2009(025)004
【摘要】通过建立无线传感器网络环境中的能耗模型, 研究了高效能耗以及由路径损耗模型不同带来的数据干扰问题. 采用二维网格分簇机制, 其中簇头选举算法基于节点的剩余能量和随机退避时间, 以一种高效且分散的方式使簇头在所有传感器节点中均匀轮换. 节点除了在传输和接收数据过程中消耗能量, 在干扰重传时也需要消耗额外的能量. 根据平面几何学, 通过分析和数学推导, 得出网络的总能耗与分簇机制中的网格结构直接相关的结论, 其中簇的大小决定传输范围, 节点距离决定路径损耗指数, 网络结构决定同时传输数据的节点产生的干扰总数. 通过分析和仿真实验, 提出了在无线传感器网络中优化的网格结构和对应的网格大小, 从而在最大化降低能耗和最小化总体冲突之间达成平衡.
【总页数】6页(P445-450)
【作者】刘曙;庄艳艳;王芳芳;陶军
【作者单位】东南大学计算机网络和信息集成教育部重点实验室,南京,210096;东南大学计算机网络和信息集成教育部重点实验室,南京,210096;东南大学计算机网络和信息集成教育部重点实验室,南京,210096;东南大学计算机网络和信息集成教育部重点实验室,南京,210096
【正文语种】中文
【中图分类】TP393
因版权原因,仅展示原文概要,查看原文内容请购买。
物联网的关键技术无线传感器网络
物联网的关键技术无线传感器网络物联网的关键技术:无线传感器网络摘要:物联网的发展推动了无线传感器网络(Wireless Sensor Network,WSN)的快速发展,成为物联网的重要支撑技术之一。
本文将围绕无线传感器网络的概念、架构、节点设计与通信协议等方面进行探讨,并阐述在物联网中无线传感器网络的关键技术。
一、无线传感器网络的概念无线传感器网络是一种由大量分布式传感器节点组成的网络系统,节点之间通过无线通信进行数据传输。
每个传感器节点通常由传感器、嵌入式处理器、电源和通信模块等组成,能够感知和采集环境中的各种信息,并将数据传输至网络中。
二、无线传感器网络的架构无线传感器网络的架构一般包括传感器节点、中继节点、基站节点等。
传感器节点负责采集环境数据,并通过无线通信将数据传输至中继节点。
中继节点对数据进行处理和转发,将数据传输至基站节点。
基站节点负责数据的接收与处理,并可以与外界网络进行通信。
三、无线传感器网络的节点设计1. 能源管理:由于无线传感器节点通常采用电池供电,节点应具备低功耗特性。
节点设计中应考虑功耗优化技术,如睡眠模式、动态功率管理等,以延长传感器节点的工作寿命。
2. 传感器选择:根据应用需求选择合适的传感器,如温度传感器、湿度传感器、光照传感器等。
同时,还需考虑传感器的精确度、功耗、可靠性等指标。
3. 硬件设计:节点的硬件设计应满足小尺寸、低功耗的要求。
采用先进的制造工艺和集成电路设计,以提高性能并降低节点成本。
四、无线传感器网络的通信协议1. 网络层协议:常用的网络层协议包括LEACH、PEGASIS、SEP 等。
这些协议通过节点选择、数据聚合等技术,提高了传感器网络的能效和可扩展性。
2. 传输层协议:传输层协议用于数据的可靠传输。
常用的传输层协议有RTP、UDP、TCP等。
根据应用需求选择合适的传输层协议,以保证数据的可靠性和实时性。
五、无线传感器网络在物联网中的应用无线传感器网络在物联网中具有广泛的应用前景,包括智能家居、智慧城市、环境监测、农业领域等。
无线传感器网络中的数据聚类与分簇算法研究
无线传感器网络中的数据聚类与分簇算法研究第一章引言无线传感器网络(Wireless Sensor Networks, WSN)是由大量分布式传感器节点组成的网络,这些节点能够自动感知环境中的各种信息,并将收集到的数据通过无线通信传输给汇聚节点。
在实际应用中,由于节点数量庞大、自组织性强以及传感器资源有限等特点,数据聚类与分簇算法成为无线传感器网络中重要的研究内容。
第二章无线传感器网络中的数据聚类算法2.1 数据聚类的定义与目标数据聚类旨在将相似的数据对象划分为一组,不相似的数据对象划分到不同的组中。
聚类算法的目标是使同一组内的数据对象相似度最大化,不同组之间的相似度最小化。
2.2 传统数据聚类算法在WSN中的局限性对于传统的数据聚类算法,如K-means等,在WSN中存在着一些局限性。
首先,传统算法对于大规模网络处理效率低下,很难适应节点数量庞大的情况。
其次,传统算法在节点功耗、网络稳定性等方面无法满足WSN的需求。
因此,需要针对WSN的特点设计适用的数据聚类算法。
2.3 基于能量优化的数据聚类算法为了提高WSN的能源利用效率,一些基于能量优化的数据聚类算法被提出。
这些算法通过调整网络中各个节点的工作状态或选择合适的簇头节点,来降低整个网络的能耗。
第三章无线传感器网络中的分簇算法3.1 分簇的定义与目标分簇是将无线传感器网络中的传感器节点组织成一个个集群的过程。
分簇算法的目标是在维护网络整体功能的前提下,实现资源的合理利用,延长网络寿命。
3.2 低延时分簇算法低延时分簇算法旨在减少数据传输的延迟,提高网络的响应速度。
常见的低延时分簇算法有LEACH和PEGASIS等。
3.3 均衡能量分簇算法均衡能量分簇算法考虑到节点的能量消耗不均衡问题,通过合理地选择簇头节点实现能量的平衡分布,从而延长网络寿命。
第四章算法性能评估与比较4.1 算法性能评估指标算法性能评估指标包括簇头节点选举延时、网络生命周期、能耗等方面的指标。
无线传感器网络中的节点分配算法研究
无线传感器网络中的节点分配算法研究无线传感器网络(Wireless Sensor Network, WSN)是由大量分布式、自组织的节点组成的网络系统,节点通过无线通信协作工作。
在WSN中,节点的位置分配是一项关键任务,对整个网络的性能和效率具有重要影响。
因此,研究无线传感器网络中的节点分配算法是一项具有重要意义的工作。
节点分配算法是指将有限数量的传感器节点合理分配到网络拓扑结构中的方法。
一个合理的节点分配算法应该能够最大化网络覆盖范围,同时最小化能源消耗和网络负载,以提高网络的性能和寿命。
首先,节点分配算法需要考虑网络覆盖范围。
在无线传感器网络中,节点的主要任务是感知环境并收集数据。
因此,节点的分布对网络的覆盖范围具有重要影响。
合理的节点分配算法应该能够保持节点之间的均匀分布,避免出现覆盖重叠或覆盖盲区。
常用的节点分配算法包括最大覆盖算法、贪心算法和遗传算法等。
其次,节点分配算法需要考虑能源消耗。
在无线传感器网络中,节点通常由电池供电,能源是一个重要的限制因素。
因此,节点的分配应该能够在能源有限的情况下最大限度地延长网络的寿命。
一种常见的能源节约方法是通过调整节点的活动模式来减少能源消耗,例如通过周期性地进入休眠状态来减少能量消耗。
优化节点分配算法应该能够合理地调整节点的活动模式,以最大限度地降低能源消耗。
此外,节点分配算法还需要考虑网络负载均衡。
在无线传感器网络中,节点之间的通信是通过互相转发数据包来实现的。
当网络中的某些节点负载过重时,容易导致网络拥塞和性能下降。
因此,节点分配算法应该能够合理地分配节点任务,使得网络负载能够平衡。
一种常见的负载均衡策略是基于节点的距离和处理性能来调整节点的工作负载。
值得一提的是,节点分配算法还应该能够考虑网络拓扑的动态变化。
在实际应用中,无线传感器网络往往面临着节点故障、节点随机移动等问题。
因此,节点分配算法需要具备适应网络拓扑动态变化的能力。
一种常见的解决方法是通过网络中的节点自组织机制来调整节点分配,使得网络的扩展和缩减能够自动适应网络拓扑变化。
无线传感器网络技术考核试卷
5.由于传感器节点的限制,无线传感器网络通常不采用复杂的加密算法来保障数据安全。()
6.在无线传感器网络中,节点定位的准确性直接影响网络的应用效果。(√)
7.无线传感器网络的路由协议只需要考虑能量效率,无需考虑数据传输的可靠性。(×)
1. √
2. √
3. ×
4. √
5. ×
6. √
7. ×
8. √
9. ×
10. ×
五、主观题(参考)
1.无线传感器网络由传感器节点、汇聚节点和用户接口组成,通过传感器节点采集数据,汇聚节点处理数据,用户接口显示结果。应用于环境监测、医疗健康等领域。
2.能量管理技术包括动态电压调整、睡眠调度等,通过降低能耗延长网络生存周期。
8.睡眠调度技术是无线传感器网络中一种常用的能量管理技术,可以通过关闭不活跃的节点来节省能量。(√)
9.无线传感器网络的覆盖范围和节点密度是影响网络性能的无关因素。(×)
10.无线传感器网络中的时间同步技术主要应用于数据采集,与节点定位无关。(×)
五、主观题(本题共4小题,每题10分,共40分)
1.请简述无线传感器网络的基本组成及其工作原理,并说明其在现实生活中的应用实例。
A.生存周期
B.延迟
C.吞吐量
D.抗干扰能力
17.以下哪种传感器节点部署方式适用于大规模无线传感器网络?()
A.随机部署
B.规则部署
C.确定性部署
D.基于梯度部署
18.无线传感器网络中的数据压缩技术主要目的是()
A.提高能量效率
B.提高传输速率
C.降低节点成本
D.提高网络容量
无线传感器网络中数据重传策略分析
无线传感器网络中数据重传策略分析无线传感器网络(Wireless Sensor Network,简称WSN)是由大量分布在环境中的微型传感器节点组成的自组织网络。
这些传感器节点能够感知、采集和传输环境中的数据,并通过无线通信将这些数据传输到基站。
数据重传策略是WSN中的一项重要技术,用于确保数据传输的可靠性和数据质量,本文将对WSN中的数据重传策略进行分析。
数据重传策略在WSN中起着至关重要的作用。
由于传感器节点通常分布在复杂的环境中,其能量和计算资源有限。
因此,当数据传输过程中发生错误时,节点往往无法简单地重新发送数据,而是需要采用一种有效的重传策略。
首先,数据重传策略需要考虑网络中传感器节点的能耗问题。
在WSN中,传感器节点的能量通常是有限的。
因此,为了延长网络的生命周期,重传策略应该尽量减少节点的能耗。
一种常用的策略是选择具有最低能量消耗的节点进行数据重传。
这种策略可以通过对节点的能量消耗进行监测和统计来实现,并根据能量消耗情况选择适当的节点进行数据重传。
其次,数据重传策略还需要考虑网络中的节点密度和信号传输质量。
在WSN中,节点的分布通常是不均匀的,并且节点之间可能存在信号传输质量差异。
因此,重传策略应该根据节点的密度和信号传输质量进行调整。
当网络中的节点密度较高时,可以选择邻近节点进行数据重传,以减少能量和带宽消耗。
当节点之间的信号传输质量较差时,可以采用增加重传次数或选择距离较近的节点进行数据重传的策略,以保证数据传输的可靠性。
此外,数据重传策略还需要考虑网络的实时性要求。
在某些应用场景中,数据传输的实时性是非常重要的,例如环境监测、火灾报警等。
为了满足这些应用的实时性要求,重传策略应该优先考虑近期发生错误的数据重传,以保证这些数据及时传输到基站。
最后,数据重传策略还需要考虑网络的拓扑结构和路由方式。
由于WSN中的节点通常是无线通信的,网络的拓扑结构和路由方式对数据重传策略有着重要影响。
能量收集技术在无线传感器网络中的应用
能量收集技术在无线传感器网络中的应用无线传感器网络(Wireless Sensor Network,WSN)是一种由多个无线传感器节点组成的网络系统。
这些节点可以感知环境并采集数据,然后将数据传输到集中处理中心。
WSN的应用极其广泛,包括环境监测、智能家居、安防监控等,但是由于无线传感器的供电限制,如何提高能源效率一直是WSN技术发展的瓶颈。
能量收集技术是一种能够从环境中捕获能量,并将其转换为电能的技术。
在WSN中,能量收集技术能够大大延长无线传感器的电池寿命,提高能源利用效率,为WSN的实际应用提供了保障。
1. 光能收集技术光能收集技术是通过太阳能电池板(Solar Cell)将光能转换为电能。
太阳能电池板是常用的能量收集器,它采用光伏效应,将太阳光转化为电能。
太阳能电池板的输出电能随着光照强度的变化而变化,因此能量收集效果受到环境的影响比较大。
太阳能电池板仅在白天有输出能量,在阴雨天或晚上则无法产生输出能量。
2. 热能收集技术热电转换是将温度差转化为电能的技术。
热电元件由P型半导体和N型半导体构成,通过热电效应产生电能。
因此,在热点和冷点温差较大时,可以采用热电元件将热能转换为电能。
例如,在火车轮轴上安装热电元件,当火车行驶时,轮轴的高温和环境的低温产生的温差就可以被利用,将其转换为电能来供给WSN节点。
3. 振动收集技术振动收集技术是通过振动能量转化为电能的技术。
采用振动收集器可以将机械运动能量转化为电能,从而为WSN节点供电。
例如,将振动收集器装置在机械结构上,如汽车的悬挂系统、风力发电机的风叶等,通过机械震动产生能量。
4. 无线能量收集技术无线能量收集技术是将收集器传输的无线信号作为能源的技术。
该技术利用收集器从无线信号中提取微小能量,并将其转换为电能。
普通的无线电波(如WiFi、蓝牙、ZigBee信号)都可以作为能源,某些收集器的能量收集效果高达80%以上。
总体来说,能量收集技术能够为WSN实现长时间、稳定、可靠的供电,并解决传统WSN设备的能量不足问题。
无线传感器网络的核心技术解析
无线传感器网络的核心技术解析无线传感器网络(Wireless Sensor Network,WSN)是由大量无线传感器节点组成的网络系统,节点之间通过无线通信进行数据传输与共享。
WSN被广泛应用于农业、环境监测、工业自动化等领域,其应用前景十分广阔。
本文将深入解析无线传感器网络的核心技术,包括传感器节点、协议体系、能量管理等。
一、传感器节点无线传感器网络的核心组成部分是传感器节点。
传感器节点通常由传感器、无线通信模块、处理器和电源组成。
传感器负责采集环境信息,如温度、湿度、光照等;无线通信模块用于节点之间的通信;处理器负责数据处理与存储;电源提供节点所需的能量。
在无线传感器网络中,传感器节点的设计要考虑功耗、通信距离和计算能力等因素。
由于节点通常使用电池供电,因此功耗是一个非常重要的考量因素。
另外,由于传感器节点通常分布在广泛的区域内,节点之间的通信距离也是需要考虑的问题。
同时,为了实现节点间的协同工作,节点上的处理器需要具备一定的计算能力。
二、协议体系无线传感器网络的通信需要依赖协议来进行管理和控制。
无线传感器网络的协议体系主要分为三个层次:物理层、介质访问控制层(MAC层)和网络层。
物理层负责将数字数据转换为无线信号进行传输,并进行信号调制和解调、编码与解码等处理。
常用的物理层技术包括频分多址(FDMA)、时分多址(TDMA)和码分多址(CDMA)等。
MAC层主要负责节点之间的数据传输控制,包括冲突避免、媒介接入控制和链路管理等。
常见的MAC层协议有CSMA/CA(载波监听多址/碰撞避免)和TDMA(时分多址)等。
网络层负责数据的路由和转发,保证数据能够从源节点传输到目的节点。
网络层协议通常有LEACH(低能耗自适应聚簇层次协议)和AODV(自适应调试协议)等。
三、能量管理能量管理是无线传感器网络中一个至关重要的问题。
由于传感器节点通常使用电池供电,节点能量的有效利用和延长节点寿命是非常关键的。
无线传感器网络中能量管理技术的性能评估
无线传感器网络中能量管理技术的性能评估无线传感器网络(Wireless Sensor Networks,WSN)是由大量分布在监测区域内的无线传感器节点组成的网络系统。
这些节点可以感知环境中的物理或化学变化,并将这些信息传输到基站或其他节点进行处理和分析。
然而,由于节点在大规模和分散的环境中部署,其电池寿命是WSN设计中的一项重要问题。
因此,能量管理技术的性能评估是WSN系统提高可靠性和延长寿命的关键。
能量管理技术是一种通过有效地利用节点能量来延长系统寿命的策略。
这些技术主要包括能量收集、能量感知、能量转移和能量节省等。
为了确保WSN系统的可靠性和性能,在设计和实施这些能量管理技术时,需要进行性能评估来确定其优势和不足之处。
首先,能量收集是一项重要的能量管理技术,它通过从环境中获取能量来为节点供电。
太阳能板、热能收集协议和振动能收集器等都是常见的能量收集方式。
对于这些能量收集器,性能评估一般涉及到收集效率、能量转换效率和稳定性等方面的指标。
例如,可以通过对收集器在不同环境条件下的工作效果进行实验评估,以准确评估其在实际应用中的性能。
其次,能量感知是指通过监测和分析节点能量消耗情况来提取有关节点能量状况的信息。
能量感知技术可以帮助系统决策者更好地了解节点的能量情况,从而优化能量分配和调度策略。
在对能量感知技术进行性能评估时,可以考虑一些关键指标,如感知精度、能量消耗和延迟等。
这些指标可以通过实验模拟或实际部署来测试和测量。
另外,能量转移技术是指将能量从一组节点传输到另一组节点的过程。
这种技术通常用于解决某些节点能量消耗过快或能量耗尽的问题,以确保整个网络系统的可靠性。
在对能量转移技术进行性能评估时,可以考虑传输效率、能量转移范围和稳定性等指标。
这些指标可通过实验模拟或基于真实场景的测试来得出。
最后,能量节省技术是指通过降低节点的功耗来延长其寿命。
这些技术包括休眠调度、感知范围调整和路由优化等。
性能评估侧重于评估这些技术在节能方面的有效性和可行性。
无线传感器网络中能量有效的加权分簇路由协议研究的开题报告
无线传感器网络中能量有效的加权分簇路由协议研究的开题报告一、选题背景与意义随着科技的快速发展,人们对传感器网络的需求也越来越强烈,而无线传感器网络是传感器网络的一个重要组成部分。
在无线传感器网络中,如何提高网络的能量效率和延长网络寿命是一个很重要的问题。
因此,开展能量有效的加权分簇路由协议的研究对网络的发展和应用都有着重要的意义。
二、研究主要内容本课题主要研究能量有效的加权分簇路由协议,在无线传感器网络中使得节点能够更加有效地进行通信,从而减少网络能量的消耗,延长网络的寿命。
具体的研究内容包括以下几个方面:1. 研究无线传感器网络中常用的路由协议,分析其优缺点;2. 设计能量有效的加权分簇路由协议,实现对能量的有效利用;3. 对设计的协议进行性能评估,分析其能效和稳定性。
三、研究现状及不足目前已有很多针对无线传感器网络中路由协议的研究,如LEACH、PEGASIS等,这些协议基本能够保证节点的能量有效利用,但在实际应用中还存在以下不足:1. 在网络规模较大或节点密集的情况下,通信效率往往较低;2. 协议中的数据处理算法相对较简单,存在一定的误差,影响了数据准确性;3. 大多数协议对网络拓扑结构要求较高,限制了网络的扩展性。
四、研究目标本研究旨在设计一种能够克服现有协议不足的、能量有效的加权分簇路由协议,具体研究目标如下:1. 提高协议的通信效率,使其能够更好地适应不同规模和密度的网络;2. 设计复杂度较低、数据准确性高的数据处理算法;3. 充分利用节点能量,延长网络寿命。
五、研究方法及技术路线本研究将采用以下研究方法:1. 分析现有的无线传感器网络路由协议,总结其优缺点;2. 确定研究对象,设计能量有效的加权分簇路由协议;3. 实现设计的协议,并进行性能评估。
本研究的技术路线如下:1. 首先,通过对现有的无线传感器网络路由协议进行分析和总结,明确研究的方向和目标;2. 其次,设计能量有效的加权分簇路由协议,确定节点分簇和数据处理算法;3. 针对设计的协议,进行仿真实验和性能测试,评估协议的能效和稳定性。
水下无线传感网中基于能量效率的簇路由
水下无线传感网中基于能量效率的簇路由冯光辉;廖金菊【摘要】在水下无线传感网(underwater wireless sensor networks,UWSNs)中,通过融合水下声通信和网络拓扑特性可设计高性能的路由协议,提高UWSNs数据传输性能.为此,提出基于能量效率的簇路由协议,记为EECR (energy-efficient cluster routing)协议.为最小化能量消耗,平衡节点负担,使每个节点被选为簇头的概率相同,提高簇结构的稳定性;引入剩余能量因子和距离因子修正LEACH的阈值函数,降低簇头能量消耗.仿真结果表明,所提EECR协议有效地提高了数据包传递率,降低了节点能量消耗.%In underwater wireless sensor networks (UWSNs),one way to improve the data collection in UWSNs is through the design of routing protocols considering the unique characteristics of the underwater acoustic communication and network topology.Therefore,energy-efficient cluster routing for underwater wireless sensor networks was proposed,which was marked as EECR.To minimize the energy consumption,loads among all the nodes were distributed equally.The energy consumption of each node was equally utilized as each node with equal probability was selected as a cluster head (CH).Residual energy factor and distance factor were introduced to correct threshold function for LEACH protocol,which reduced the energy consumption of cluster head.Simulation results show that EECR protocol has good performance in terms of energy consumption and packet delivery ratio.【期刊名称】《计算机工程与设计》【年(卷),期】2018(039)003【总页数】5页(P668-672)【关键词】水下无线传感网;簇路由;簇头;能量;阈值【作者】冯光辉;廖金菊【作者单位】郑州工业应用技术学院信息工程学院,河南郑州451150;郑州工业应用技术学院信息工程学院,河南郑州451150【正文语种】中文【中图分类】TP3930 引言考虑水域特性,相比无线射频,声通信更适合于无线传感网络(underwater wireless sensor networks,UWSNs)[1]。
无线传感器网络中不同节点分布模型的性能分析
无线传感器网络中不同节点分布模型的性能分析周智勇;陈晖;王海涛【摘要】针对传感器网络中较为关心的生存时间和覆盖率问题,对不同分布模型下的网络性能进行了分析.根据传感器网络中节点密度的分布规律,基于传统的分簇LEACH协议,选择对均匀分布、一次衰落和0.5方衰落三种随机分布场景下传感器网络的生存时间、覆盖率等指标进行了研究,仿真实验表明:对于三种传感器节点的撒布模型:一次衰落模型网络生存时间最长,但覆盖率最低;均匀分布网络生存时间最短,覆盖率最高;0.5次衰落模型下两项性能折中,更加符合现实需求.【期刊名称】《通信技术》【年(卷),期】2015(048)011【总页数】5页(P1270-1274)【关键词】网络生存时间;覆盖率;节点分布模型;性能分析【作者】周智勇;陈晖;王海涛【作者单位】解放军理工大学通信工程学院研三队,江苏南京210007;解放军理工大学训练部,江苏南京210007;解放军理工大学训练部,江苏南京210007【正文语种】中文【中图分类】TP393当前无线传感器网络(WSNs)技术迅猛发展,其在目标监控、物联网、战场信息收集和工业等领域有着广泛的应用前景 [1]。
如图1,无线传感器网络由分布在一定区域内的大量传感器节点和收集所有节点信息的汇聚节点Sink组成。
传感器节点通常由自身携带的电池供电,而在大多数情况下,电池携带能量有限且不能再次充电,因而降低传感器网络中的能量消耗成为当前对于传感器网络研究的重点问题,也是制约传感器网络应用的瓶颈之一。
降低无线传感器网络的能耗的方法有很多种,如在网络层方面,文献[2]提出通过合理规划选路协议提升传感器网络的能量利用效率,文献[3]引入空闲节点休眠机制,使处于不工作状态的节点及时转变为休眠状态,减少传感器网络中节点的待机能耗;在物理层方面,人们提出了一些能够降低单位比特传输能量的新技术[4-5]。
文献[6-7]研究了合理选择节点分布模型对于提升网络生存时间的作用,并且针对节点能耗不均衡的问题提出了各自的解决方案,但是这些研究都是基于确定性的节点分布模型,并不适用于很多实际的应用场景。
传感器网络中一种新的基于能量的分簇算法
传感器网络中一种新的基于能量的分簇算法
苏梅英;李超;王世军;姜宇;牛斗
【期刊名称】《计算机工程与应用》
【年(卷),期】2008(44)8
【摘要】传感器网络节点大部分采用电池供电,致使节点能量非常有限.为了节省能量进而延长网络寿命,文中提出了一种新的簇头选择算法EBC,EBC算法除了能够在局部网络内完成数据采集和数据处理外,还能够形成由簇头和网关节点组成的骨干网并完成整个网络通信.通过在Mambo节点上的实验证明,该算法能够有效地均衡整个网络的能量,并很好地应用于实际的传感器网络中.
【总页数】3页(P139-141)
【作者】苏梅英;李超;王世军;姜宇;牛斗
【作者单位】东北电力大学,信息工程学院,吉林,吉林,132012;东北电力大学,信息工程学院,吉林,吉林,132012;东北电力大学,信息工程学院,吉林,吉林,132012;吉林市曼博科技有限公司,吉林,吉林,132012;东北电力大学,信息工程学院,吉林,吉
林,132012
【正文语种】中文
【中图分类】TP393
【相关文献】
1.无线传感器网络中一种能量有效的分簇组网算法 [J], 孙雨耕;周寅;边桂年;武晓光
2.无线传感器网络中一种能量有效的分簇算法 [J], 袁辉勇;戴经国;李小龙
3.无线传感器网络中一种能量有效的分簇算法 [J], 王雍;杨海波;冯淑娟
4.异构传感器网络中一种基于局部簇的分簇算法 [J], 裘君娜;徐小良
5.BPEC:无线传感器网络中一种能量感知的分布式分簇算法 [J], 周新莲;吴敏;徐建波
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Performance Analysis of Energy Aware Backbone based Approaches for Data Dissemination in Wireless Sensor Network
1
Vinay Kumar, 2Prabhat Singh, 3Awadhesh Kumar, 4Dr. Neeraj Tyagi
Proposed Protocol
Our proposed protocol, namely “Energy Aware Cluster-based Data Dissemination (EACBDD) protocol”, has been designed to reduce energy consumption of SNs by reducing the transmission of sensed data within a cluster by idle listening. There are two phases in our proposed scheme namely network establishment phase and data dissemination phase. In Network establishment phase clusters are formed and a CH is elected for each cluster. In data dissemination phase actual transmission of data takes place. A. Network Establishment Phase of EACBDD In the proposed scheme, entire network is divided into clusters with a cluster-head (CH) with maximum energy and a gateway node (GN) which is common to more than one cluster. Each cluster contains one CH and several GNs and cluster members (CMs). CH is chosen on the basis of maximum residual energy of SNs. The steps followed for cluster formation are given below:
Internet
Base Station
Target User
Fig.1.1. Architecture of Wireless sensor networks.
WSNs consist of many SNs which sense the objects and disseminate this sensed information to the sink node or BS. Data get disseminated through several intermediate nodes. In good data dissemination scheme, energy consumed in data dissemination should be less. We have proposed an efficient cluster based data dissemination scheme for WSNs which is discussed in this section. [1], [2], [3] Assumptions 1. 2. 3. 4. 5. 6. 7. 2. All the SNs are time synchronized with respect to sink. All SNs are uniformly distributed within the sensor area. Each SN may have different energy level. Every SN overhears the packets transmitted by the other nodes within a cluster. Sink node is static in nature and is placed in the centre of the sensor area. Each immediate neighbor has unique node_id. Nodes within cluster can transmit or receive packets from sink/CH with one hop become most popular. It is more viable for variety of real life applications. In WSNs each SN has capability to sense the data, perform some computation on that data and communicate to other nodes. Once SNs are deployed in the network, they can keep operating until their energy depletes. WSNs can be used in variety of applications such as military programs, forest monitoring, land slide detection, water monitoring, agriculture, structural monitoring etc. Architecture of WSNs for various applications is shown in fig 1.1.
2
Senior Lecturer in Computer Science & Engineering Department, Amity University, Greater Noida Assistant Professor in Computer Science & Engineering Department, ABES Engineering College, Ghaziabad 3 Associate Professor, Computer Science and Engineering Department, KNIT Sultanpur 4 Professor, Computer Science and Engineering Department, MNNIT, Allahabad
Wireless sensor network (WSN) is growing rapidly and is hot area for researchers. WSNs consist of large number of sensor nodes (SNs) and provide fine observation about phenomenon. SNs are electronic devices which are deployed in the environment. SNs are low cost small devices and have limited memory, limited processing capability, low power and limited communication bandwidth. WSNs consist of large number of such SNs which are able to collect data and disseminate the collected data towards sink. SNs are capable of performing the tasks of sensing, processing and transmission. Due to small size of SNs, it has limited power. After deployment of SNs in hostile environment, it is difficult to replace their battery. Due to the low cost of
* Corresponding author. E-mail address: vkumar@, Prabhat.singh@abes.ac.in, Awadhesh.kumar@knit.ac.in, neeraj@mnnit.ac.in
Performance Analysis of Energy Aware Backbone based Approaches for Data Dissemination in Wireless Sensor Network
1
Abstract In Wireless Sensor Networks, large amount of energy is consumed in the process of data dissemination to mobile sinks. Various cluster-based data dissemination schemes have been proposed over the years to reduce the energy consumption in Wireless Sensor Networks. Energy is one of the most important aspects for designing a data dissemination protocol for the applications such as battle-field monitoring, habitat monitoring etc. We present EACBDD, an Energy Aware Cluster-based Data Dissemination scheme for randomly deployed wireless sensor networks. Our proposed protocol, namely “Energy -Aware Cluster-based Data Dissemination (EACBDD) protocol”, has been designed to reduce energy consumption of SNs by reducing the transmission of sensed data within a cluster by idle listening. There are two phases in our proposed scheme namely network establishment phase and data dissemination phase. Index Terms: Wireless Sensor Networks; Data dissemination © 2016 Published by MECS Publisher. Selection and/or peer review under responsibility of the Research Association of Modern Education and Computer Science 1. Introduction