电动机效率与损耗分析
电动机效率与损耗分析
电动机效率与损耗分析 Final revision on November 26, 2020异步电动机输入电功率,输出机械功率,在运行过程中产生恒定损耗和负载损耗。
恒定损耗包含风摩耗和铁心损耗,是不随负载大小变化的损耗。
负载损耗包含定子绕组损耗、转子绕组损耗和负载附加损耗(或称负载杂散损耗),对绕线转子电机还包含电刷及转子外接电路的电损耗。
恒定损耗是电动机运行时的固有损耗,它与电动机材料、制造工艺、结构设计、转速等参数有关,而与负载大小无关。
1、铁心损耗(含空载杂散损耗),亦简称铁耗,是恒定损耗的一种,由主磁场在电动机铁心中交变所引起的涡流损耗和磁滞损耗组成。
铁心损耗大小取决于铁心材料、频率及磁通密度,近似的表示为:磁通密度B与输入电压U成正比,对某一台电动机而言,其铁耗近似于与电压的平方成正比。
铁耗一般占电动机总损耗的20%~25%。
2、风摩耗也称机械损耗(何不称为“机械损耗”),是另一种恒定损耗,通常包括轴承摩擦损耗及通风系统损耗,对绕线式转子还存在电刷摩擦损耗。
机械损耗一般占总损耗的10%~50%,电动机容量越大,由于通风损耗变大,在总损耗中所占比重也增大。
3、负载损耗主要是指电动机运行时,定子、转子绕组通过电流而引起的损耗,亦称铜耗。
它包括定子铜耗和转子铜耗,其大小取决于负载电流及绕组电阻值。
铜耗约占总损耗的20%~70%。
4、杂散损耗(附加损耗)P主要由定子漏磁通和定子、转子的各种高次谐波在导线、铁心及其他金属部件内所引起的损耗。
这些损耗约占总损耗的10%~15%。
§1-2电动机的效率电动机的效率与损耗相对值(P)的关系如下式所示=1一ΣP式中ΣP——电机总损耗ΣP=(++++P)/PlP1——电机输入功率当一台电机效率为0.87时,由上式可见其损耗相对值为0.13,如损耗下降20%,则由上式可求得效率为0.896,即效率提高了2.6个百分点。
并由此可见,如一通用系列的效率平均值为0. 87,作为高效率电机系列,其损耗如平均下降20%以上,则系列的平均值也应提高2.6个百分点以上。
异步电动机损耗及效率
异步电动机损耗及效率电动机系统节能:是指对整个系统效率提高,它不仅提高异步电动机和被拖动的设备(如风机、水泵、空气压缩机等)单元效率最优化,而且要求系统各单元相匹配及整个系统效率的最优化。
异步电动机的损耗可分成五种(1)定子铜耗(2)转子铜耗(3)铁芯损耗(4)风摩损耗(5)杂散损耗异步电动机降低损耗提高效率的措施提高电动机效率,必然应该着眼于降低电机的5种损耗,即定子绕组损耗、转子绕组损耗、铁芯损耗、风摩损耗和杂散损耗。
1、减小定子绕组电阻,降低定子绕组损耗(1) 采用性能好的绝缘材料。
减薄槽绝缘厚度,可增大导线截面、绝缘整体性好、绝缘温降小、电机温升可降低。
(2) 改进绝缘处理工艺,提高绕组导热性能,降低绕组温升。
(3) 减小线圈端部长度,对于绕组电阻起很大作用,但是要求线圈制造、端部装配工艺和下线技术水平高。
(4) 增大定子槽尺寸,增加槽内导线数量,用铜导线代替铝导线,减少绕组电阻。
2、减小绕子绕组电阻,降低转子绕组损耗(1) 增加空气隙中的磁通。
(2) 满足性能要求前提下,增大转子槽面积和端环尺寸。
(3) 提高铸铝工艺,增大转子导条及端环的导电率。
(4) 用铸铜的转子,取代铸铝转子,转子损耗可下降38%。
3、降低铁芯损耗(1) 增大磁路截面,降低磁密。
(2) 采用高导磁,低损耗硅片,选用冷轧硅钢片,高导磁、低损耗。
(3) 减薄硅钢片厚度。
(4) 工艺上改进,如转子冲片连接冲出气隙,减少冲片毛刺及硅钢片退火处理。
4、降低风摩损耗(1) 改进风路结构,使电机绕组温升均匀。
(2) 电动机温升允许条件下,尽量减小风扇尺寸,2极电机风扇外径减少12%〜16%,风摩损耗职降低27%〜63%,噪声下降3〜10dB。
4极电机外径缩小20%,风摩损耗下降10%。
(3) 电机使用时为单向旋转,可选单向旋转风扇。
(4) 采用冷却效率高的热管结构。
(5) 选择优质轴承和润滑油脂。
(6) 提高加工精度,提高装配质量。
直流电动机的效率低的原因
直流电动机的效率低的原因
直流电动机效率低的原因可以从多个角度进行分析。
首先,直流电动机效率低的原因之一是摩擦损失和机械损耗。
在电机运转过程中,摩擦力和机械部件之间的摩擦会导致能量损失,从而降低了电动机的效率。
此外,由于电机内部存在齿轮传动等机
械结构,这些传动结构也会带来一定的机械损耗。
其次,铁心和电磁线圈的损耗也是直流电动机效率低的原因之一。
在电机工作时,铁心和电磁线圈会因为铁损和铜损而产生热量,从而导致能量损失,影响电机的效率。
此外,电机在运行过程中会产生铜损,即电流通过线圈时产生
的导体损耗,也会降低电机的效率。
另外,电机的设计和制造质量也会影响其效率。
如果电机设计
不合理或者制造过程中存在缺陷,比如线圈绕组不均匀、磁场不稳
定等问题,都会导致电机效率降低。
最后,电机的负载特性和工作环境也会对效率产生影响。
如果
电机长时间在超载或者恶劣环境下工作,比如高温、潮湿等条件下,都会导致电机效率下降。
综上所述,直流电动机效率低的原因主要包括摩擦损失和机械
损耗、铁心和电磁线圈的损耗、铜损、设计和制造质量以及负载特
性和工作环境等多个方面。
要提高直流电动机的效率,需要从这些
方面入手,改进电机的设计制造工艺,减少能量损失,并合理使用
和维护电机。
电动机经济运行分析
电动机经济运行分析电动机是一种利用电能转换成机械能的装置,广泛应用于各个领域,如工业生产、交通运输、家庭电器等。
为了实现更高效、更节能、更可持续的运行,对电动机的经济运行进行分析是非常重要的。
本文将从电动机的效率、负载率、维护保养和优化控制等方面进行详细分析。
首先,电动机的效率是评估其经济运行的重要指标。
电动机的效率可以简单地定义为输出功率与输入功率的比值。
通常情况下,电动机的效率在80%到95%之间。
效率越高,表示电动机转换电能为机械能的能力越强,从而能够更高效地完成工作。
因此,在选择电动机时,应优先选择效率高的电动机,以提高生产效率和降低能源消耗。
其次,电动机的负载率也是评估其经济运行的重要指标之一、负载率是指电动机的实际工作负荷与额定工作负荷之比。
电动机在负荷率较低的情况下运行,会导致电动机的效率降低、电能损耗增加和寿命缩短。
因此,在使用电动机时,应尽量保持其运行在额定负载范围内,避免低负载率运行,从而提高电动机的经济运行。
第三,定期维护保养是保证电动机经济运行的重要措施之一、定期维护保养可以包括定期检查电动机的绝缘性能、润滑油的添加和更换、传动装置的调整等。
通过定期维护保养,可以及时发现电动机存在的问题和隐患,及时进行维修和更换,保证电动机的正常运行,并避免因电动机故障而导致的停机时间和生产损失。
最后,优化控制是实现电动机经济运行的关键手段之一、通过优化电动机的控制方式、控制参数和控制策略,可以使电动机在不同负载工况下运行的效率更高,能耗更低。
例如,在电动机的启动过程中,可以使用软启动器来降低启动电流,减少对电网的冲击;在电动机的运行过程中,可以根据负载工况的变化,调整电动机的供电电压和频率,保证电动机以最佳状态运行。
综上所述,电动机的经济运行分析涉及到多个方面,包括效率、负载率、维护保养和优化控制等。
只有在充分考虑这些因素的前提下,才能实现电动机的高效、节能和可持续的运行,从而提高生产效率,降低能源消耗,减少环境污染。
电机设计--损耗与效率
第五章 损耗与效率§5-1 概述一、损耗与效率的关系效率是电机的一个重要性能指标↑↑↓→↓↓∑耗材尺寸,,,:,δδB A p B A 效率高低取决→损耗大小p ∑→材料性能、绕组型式、电机结构等 高效电机就是设法降低电机的损耗、多用材料。
二、电机损耗分类铁心中的基本损耗——主要是主磁场在铁心中交变产生的磁滞、涡流损耗 表面损耗:定转子开槽而引起的气隙磁导谐波磁场在对方铁心表面产生的损耗空载铁心中附加损耗脉振损耗:定、转子开槽使对方齿中磁通因电机旋损耗 转而变化所产生的损耗 电气损耗:工作电机在绕组铜中产生的损耗,包括接触损耗负载时附加损耗:漏磁场包括谐波磁场在定、转子绕组中、铁心及结构件中引起的各种损耗机械损耗:通风损耗、轴承磨擦损耗、电刷和换向器(集电环)磨擦损耗§5-2 基本铁耗产生的原因:由主磁场在铁心内发生变化时所产生的主磁场的变化:①交变磁化性质:变压器铁心、定转子齿中发生②旋转磁化性质:定、转子铁轭中发生的一、磁滞损耗1、磁滞损耗系数:单位质量铁磁物质内由交变磁化引起的磁滞损耗h p2、磁滞损耗耗系数计算在电机铁心内磁通密度T B 6.10.1≤≤时:磁密振幅交变磁化的频率下测在周波频率取决于材料性能的常数------=B f HZ fB p h h h h )50(2σσσ(h p 与f 、B 有关,与材料有关) 任意频率下: 250B f p hh σ= 3、旋转磁化引起的磁滞损耗一般较交变磁化放大45-65%(轭磁密一般在1.0-1.5T ) 这在以后计算基本铁耗时用系数a k 考虑。
二、涡流损耗 1、产生的原因:铁心中的磁场发生变化时,在铁心中感应电势,会产生电流,这电流即涡流。
由它引起的损耗为涡流损耗。
2、涡流损耗系数计算电阻率钢片密度钢片厚度------∆∆==ρρπσσFe Fe FeFee e e d d fB p 6)(222任意频率下: 2)50(B fp e e σ= 涡流损耗系数e p 与B 、f 及材料厚度平方Fe ∆成正比。
电动机的效率、功率因数及其影响因素
精品电动机的效率、功率因数及其影响因素一、什么是电动机的功率因数?异步电动机的功率因数是衡量在异步电动机输入的视在功率(即容量等于三倍相电流与相电压的乘积)中,真正消耗的有功功率所占比重的大小,其值为输入的有功功率P1 与视在功率 S 之比,用 cos ψ来表示。
cos ψ=P/S电动机在运行中,功率因数是变化的,其变化大小与负载大小有关,电动机空载运行时,定子绕组的电流基本上是产生旋转磁场的无功电流分量,有功电流分量很小。
此时,功率因数很低,约为0.2 左右,当电动机带上负载运行时,要输出机械功率,定子绕组电流中的有功电流分量增加,功率因数也随之提高。
当电动机在额定负载下运行时,功率因数达到最大值,一般约为 0.7-0.9 。
因此,电动机应避免空载运行,防止“大马拉小车”现象。
二、什么是电动机的输入功率和输出功率电动机从电源吸取的有功功率,称为电动机的输入功率,一般用P1 表示。
而电动机转轴上输出的机械功率,称为输出功率,一般用 P2 表示。
在额定负载下, P2 就是额定功率 Pn。
电动机运行时,内部总有一定的功率损耗,这些损耗包括:绕组上的铜(或铝)损耗,铁芯上的铁损耗以及各种机械损耗等。
因此输入功率等于损耗功率与输出功率之和,也就是说,输出功率小于输入功率。
三、什么是电动机的效率电动机内部功率损耗的大小是用效率来衡量的,输出功率与输入功率的比值称为电动机的效率,其代表符号为η1、三相交流异步电动机的效率:η=P/ (√ 3*U*I*COSφ)其中, P—是电动机轴输出功率U—是电动机电源输入的线电压I—是电动机电源输入的线电流COSφ—是电动机的功率因数2、电动机的输出功率:指的是电动机轴输出的机械功率3、电动机的输入功率:指的是电源给电动机输入的有功功率:P=√ 3*U*I*COSφKW()其时,这个问题有些含糊,按说电动机的输入功率应该指的是电源输入的视在功率:S== √3*U*I 这个视在功率包括有功功率(电动机的机械损耗、铜损、铁损等)、无功功率。
各类电机效率确定试验方法
在日常生活中,我们知道,由于用途和负载不同,各类电机的效率会有所区别,以便对所在的工作有更精确的运作。
但是,也正因为各电机效率五花八门,在某些特定的科研等环境下,难以确认新接入电机的效率如何。
下面就给大家讲解一下各类电机效率如何确定的试验方法。
《GB/T1032-2012三相异步电动机试验方法》中电机效率的测试方法有A 法、B法、C法、E法或E1法、F法或F1法、G法或G1法、H法,另外对于支持调速的电机,其中常用的有A法(输入-输出法)、B法(测量输入和输出功率的损耗分析法)、E法(测量输入功率的损耗分析法)。
对于支持调速的电机,像变频电机、伺服电机等,就需要用电机效率MAP图测试法。
一、三相异步电动机效率确定之A法——输入-输出法A法适用于不大于1KW的异步电动机,A法的特点是由测得的输入功率与输出功率之比就可知电机的效率。
此直观效率值与测试时的冷却介质温度值有关。
为提高测试结果的准确性和便于分析比较,需用修正到基准冷却介质温度(25度)的输出功率和输入功率,计算电机的效率。
二、三相异步电动机效率确定之B法——测量输入和输出功率的损耗分析法B法适用于不大于400KW的异步电动机,常用于高效电机测试。
由于属于低不确定度测试方法而B法准确度最高,是推荐的好方法。
B法采用的是使用转矩测量装置,根据测试结果求取负载杂散耗损耗值,测试过程经历了热(温升)试验、负载试验、空载试验。
实现B法的关键是具备符合要求的输出机械功率仪器、负载设备、及输入测量仪表。
三、三相异步电动机效率确定之C法——成对电机双电源对拖回馈试验损耗分析法有两台完全相同的成对电机可用时,可用C法确定电机的效率。
将两台电机耦合接在一起。
电气上接在两个电源上,其中一个可调(电压、频率)电源。
两个电源都必须符合国标要求,必须既能输出功率又能吸收功率。
四、三相异步电动机效率确定之E法或E1法——测量输入功率的损耗分析法测量定子输入功率,从输入功率中减去总损耗即为输出功率。
电动机的效率、功率因数及其影响因素知识分享
电动机的效率、功率因数及其影响因素一、什么是电动机的功率因数?异步电动机的功率因数是衡量在异步电动机输入的视在功率(即容量等于三倍相电流与相电压的乘积)中,真正消耗的有功功率所占比重的大小,其值为输入的有功功率P1与视在功率S之比,用cos ψ来表示。
cosψ=P/S电动机在运行中,功率因数是变化的,其变化大小与负载大小有关,电动机空载运行时,定子绕组的电流基本上是产生旋转磁场的无功电流分量,有功电流分量很小。
此时,功率因数很低,约为0.2左右,当电动机带上负载运行时,要输出机械功率,定子绕组电流中的有功电流分量增加,功率因数也随之提高。
当电动机在额定负载下运行时,功率因数达到最大值,一般约为0.7-0.9。
因此,电动机应避免空载运行,防止“大马拉小车”现象。
二、什么是电动机的输入功率和输出功率电动机从电源吸取的有功功率,称为电动机的输入功率,一般用P1表示。
而电动机转轴上输出的机械功率,称为输出功率,一般用P2表示。
在额定负载下,P2就是额定功率Pn。
电动机运行时,内部总有一定的功率损耗,这些损耗包括:绕组上的铜(或铝)损耗,铁芯上的铁损耗以及各种机械损耗等。
因此输入功率等于损耗功率与输出功率之和,也就是说,输出功率小于输入功率。
三、什么是电动机的效率电动机内部功率损耗的大小是用效率来衡量的,输出功率与输入功率的比值称为电动机的效率,其代表符号为η1、三相交流异步电动机的效率:η=P/(√3*U*I*COSφ)其中,P—是电动机轴输出功率U—是电动机电源输入的线电压I—是电动机电源输入的线电流COSφ—是电动机的功率因数2、电动机的输出功率:指的是电动机轴输出的机械功率3、电动机的输入功率:指的是电源给电动机输入的有功功率:P=√3*U*I*COSφ(KW)其时,这个问题有些含糊,按说电动机的输入功率应该指的是电源输入的视在功率:S==√3*U*I 这个视在功率包括有功功率(电动机的机械损耗、铜损、铁损等)、无功功率。
电动机的效率
电动机的效率电动机是将电能转化为机械能的重要设备,其效率指标对于电动机的性能和节能性能有着至关重要的影响。
本文将从电动机效率的定义、计算方式、影响因素以及提高效率的方法等方面进行论述。
一、电动机效率的定义电动机的效率是指电动机输出功率与输入功率之比,通常用η表示。
电动机的效率越高,能够将输入的电能更好地转化为机械能,减少能量的浪费。
二、电动机效率的计算方式电动机的效率可以通过以下计算方式进行求解:η = (输出功率 / 输入功率) × 100%其中,输出功率可以通过测量电动机的输出转矩和转速,计算得出。
输入功率即为电动机接收的电能,可以通过电流和电压测量得到。
三、影响电动机效率的因素1. 电动机电磁设计:电动机的电磁设计直接影响着电动机的效率。
合理的磁路设计、线圈布局和参数选择可以减小电机的磁阻损耗和铜耗,提高效率。
2. 电动机负载:电动机的负载情况也是影响效率的重要因素。
当电动机处于额定负载状态时,其效率通常可以达到最高值。
过高或过低的负载都会降低电动机的效率。
3. 电动机损耗:电动机损耗包括铁损耗和机械损耗。
减小损耗可以提高电动机效率。
采用高性能磁性材料、提高轴承的润滑效果等方法可以降低电动机的损耗。
4. 电动机冷却系统:电动机工作时会产生热量,恰当的冷却系统可以有效地降低电动机的温升。
降低温升可以减小电动机的电阻损耗,提高效率。
5. 电动机运行环境:电动机的效率还受到运行环境的影响。
恶劣的工作环境可能会导致电动机的散热不良、受潮和污垢等问题,降低电动机的效率。
四、提高电动机效率的方法1. 优化设计:在电动机的设计阶段,合理选择电磁、结构和材料等方面的参数,提高电动机整体的效率。
2. 负载匹配:根据实际使用需求,选择合适的电动机,避免过载或者欠载,以提高电动机的效率。
3. 定期维护:定期对电动机进行清洁、润滑和检查,保持电动机的正常运行状态,降低电动机的损耗。
4. 采用高效率设备:对于需要更新或更换电动机的情况,可考虑采购更高效率的电动机设备,以实现能源的节约和效率的提高。
电动机的效率和功率
电动机的效率和功率在工业和家庭应用中,电动机是一种常见且关键的设备。
它的效率和功率是决定其性能和能源利用率的重要指标。
本文将介绍电动机的效率和功率,并探讨如何提高电动机的效率。
一、电动机的效率电动机的效率是指其输出功率与输入功率之间的比值。
输出功率是指电动机正在开展的有用功,而输入功率是指电动机消耗的总能量。
电动机的效率计算公式如下:效率 = 输出功率 / 输入功率 × 100%在实际应用中,电动机的效率通常在70%至95%之间。
这意味着只有部分电能被转换为有用的功率,而其他部分被转化为热或其他形式的能量损失。
电动机效率的提高对于减少能源消耗和节约成本具有重要意义。
二、电动机的功率电动机的功率是指电动机进行功率转换的速率。
它是衡量电动机能力的重要指标。
功率可以分为输入功率和输出功率。
输入功率是指电动机从电源获得的总能量,通常以千瓦(kW)为单位。
输出功率是指电动机实际转换为有用功的能量,同样以千瓦为单位。
功率的计算公式如下:功率 = 功率转化的能量 / 时间间隔电动机的功率与其效率密切相关。
功率越高,电动机所能执行的工作越多。
在选择电动机时,需要根据实际需求确定所需功率。
三、提高电动机效率的方法1. 选择高效率电动机:在购买电动机时,应选择高效率的型号。
高效率电动机能够最大程度地转化电能为有用功,减少能量损失。
2. 正确安装和使用:电动机的安装和使用过程中,应遵循相关的使用说明和操作规范。
确保电动机得到正确维护和保养,减少摩擦损耗和能量损失。
3. 避免过载运行:过载运行是指电动机超过其额定工作负荷的运行情况。
长期过载运行会降低电动机的效率并增加能源消耗。
因此,要避免电动机过载运行,合理调度和分配工作负荷。
4. 优化传动系统:电动机的传动系统(如齿轮和皮带传动等)也会引起能量损失。
通过使用高效传动系统和优化设计,可以减少能量损失,提高电动机的效率。
5. 使用变频器:变频器是一种能够调节电动机转速和负载的设备。
无刷直流电动机功率和效率、铜损耗和电流有效值计算
无刷直流电动机功率和效率、铜损耗和电流有效值计算
对于无刷直流电动机,其输入功率为:P1=UI av
输出电磁功率:
得电磁效率:
设空载损耗为P0,则输出机械功率P2为
效率
电磁效率是只计算绕组铜损耗时的电机效率,式(4-40)显示了电机电磁效率与电机的K u和x的函数关系。
在不计电感时电机的电磁效率ηemr与K u的关系为
得
值得注意的是,上式表明:在同一个转速(即同一个K u)下,计及电感时的电磁效率比不计电感时的电磁效率要高。
而且,电感作用越大,即x越小,电磁效率提高得越多。
但是,应当注意到的是,这时的电磁转矩要比同一个转速下的不计电感时的电磁转矩小了许多。
由式(4-40),计算绕组铜损耗P cu:
如果等效电流有效值表示为I rms,定义它与铜损耗关系为
由
即
得到电流有效值和平均值之比的表达式:
式(4-41)表明,电流有效值和平均值之比是X和K u的函数,图4-23是式(4-41)计算得到电流有效值与电流平均值比的函数曲线图。
如图所示,随着x的
减少,电流有效值和平均值之间的差异越来越大。
对于K u大于0.5,只当x大于5以后,其差别才可以忽略。
由于无刷电机电流波动明显,等效电流有效值要比电流平均值大许多,甚至可能到几倍,如果按电流平均值计算无刷电机绕组总铜损耗将带来明显的原理性误差。
在近似计算时,近似取K T/K E≈1
得
或
式(4-42)表明,按电流有效值计算的铜损耗和按电流平均值计算的铜损耗之比与平均电流比K A近似成反比关系。
图4-23 电流有效值/平均值比的函数曲线图。
高速永磁同步电机的损耗分析与温度场计算
高速永磁同步电机的损耗分析与温度场计算一、概述高速永磁同步电机(HighSpeed Permanent Magnet Synchronous Motor, HSPMSM)作为现代工业自动化领域的关键设备,因其高效率、高功率密度和良好的控制性能,在航空航天、高速列车、电动汽车等重要领域得到广泛应用。
高速运行条件下,电机内部的热效应和温升问题成为限制其性能和可靠性的关键因素。
电机的损耗分析和温度场计算对于理解其热行为、优化设计以及确保运行安全至关重要。
本论文旨在对高速永磁同步电机的损耗和温度场进行系统分析。
将对电机的损耗类型进行分类,包括铁损、铜损和杂散损耗,并探讨各种损耗在高速运行条件下的变化规律。
将详细介绍基于有限元方法的电机温度场计算流程,涉及热生成、对流散热、热传导等关键物理过程。
通过实验验证和仿真结果对比,评估所提方法的有效性和准确性,为高速永磁同步电机的热管理提供理论依据和技术支持。
1. 高速永磁同步电机的发展背景和应用领域随着科技的不断进步和工业的快速发展,电机作为转换电能为机械能的核心设备,其性能的提升与技术的革新显得尤为重要。
高速永磁同步电机(HighSpeed Permanent Magnet Synchronous Motor,HSPMSM)作为现代电机技术的一个重要分支,凭借其高效、高功率密度、高转速和低维护等特性,在多个领域展现出了广阔的应用前景。
发展背景方面,随着全球能源危机的加剧和环境保护意识的提升,高效节能型电机成为了研究的热点。
高速永磁同步电机正是在这一背景下应运而生,它不仅继承了传统永磁同步电机的高效率特性,而且通过提高转速,进一步提升了能量转换效率和功率密度。
新材料、新工艺的不断涌现,也为高速永磁同步电机的设计与制造提供了更多的可能性。
应用领域方面,高速永磁同步电机已被广泛应用于风力发电、新能源汽车、航空航天、高速机床、压缩机等多个领域。
在风力发电中,高速永磁同步电机的高效性能和稳定性为风能的高效利用提供了保障在新能源汽车中,其高功率密度和快速响应特性使得车辆加速更加迅速和平稳在航空航天领域,其高转速和轻量化特点使得其在飞行器的动力系统中占据了重要地位。
变频器供电交流电动机确定损耗和效率的特定试验方法
变频器供电交流电动机确定损耗和效率的特定试验方法变频器供电的交流电动机在工业生产中得到广泛应用,其损耗和效率的测定是电机设计和运行管理的重要内容。
为了确定变频器供电交流电动机的损耗和效率,需要进行特定试验方法。
本文将介绍这种特定试验方法的原理、方法和注意事项,以期提供客观完整的参考信息。
下面是本店铺为大家精心编写的4篇《变频器供电交流电动机确定损耗和效率的特定试验方法》,供大家借鉴与参考,希望对大家有所帮助。
《变频器供电交流电动机确定损耗和效率的特定试验方法》篇1 1. 试验原理变频器供电交流电动机的损耗和效率特定试验方法基于电机的实际运行情况,通过测量电机的电压、电流、功率因数、温度等参数,计算出电机的损耗和效率。
该方法主要包括以下几个步骤:(1) 将变频器供电的交流电动机安装在试验台上,并连接好电源和测量仪器。
(2) 设置变频器的输出频率和电压,使电机运行在指定的工作点上。
(3) 测量电机的电压、电流、功率因数和温度等参数,并记录下来。
(4) 根据测量数据,计算电机的损耗和效率。
2. 试验方法变频器供电交流电动机损耗和效率的试验方法具体包括以下几个方面:(1) 测量仪表的选择和安装为了保证试验数据的准确性,应选择精度高、可靠的测量仪表。
仪表的安装应符合相关标准和规定。
(2) 试验条件的设置试验条件应根据电机的实际运行情况进行设置,包括变频器的输出频率、电压、电机的负载情况等。
(3) 试验数据的测量和记录测量数据应包括电机的电压、电流、功率因数、温度等参数。
测量数据应准确记录,并及时进行数据处理和分析。
(4) 损耗和效率的计算根据测量数据,应用相应的公式计算电机的损耗和效率。
计算结果应与标准值进行比较,以判断电机的运行状态是否符合要求。
3. 注意事项(1) 试验前应充分准备,包括检查试验设备、测量仪表的完好程度,确认试验条件等。
(2) 试验过程中应严格遵守安全操作规程,防止意外事故的发生。
(3) 试验数据应及时进行处理和分析,以便准确判断电机的运行状态和损耗情况。
电机功率损耗系数
电机功率损耗系数
电机功率损耗系数是指电机在运行过程中,由于内部能量交换而产生的无效功率与总功率的比值。
它是衡量电机效率的重要指标,损耗系数越低,说明电机的效率越高。
电机运行时的功耗包括有效功率和无效功率。
有效功率是电机产生驱动负载的机械扭矩所需的电功率。
而无效功率则是用于电机内部的电场和磁场随电源频率反复变化,以及负载和电源之间持续能量交换所消耗的电能。
在实际运行中,从电源提供给电机的总电流是有效电流和无效电流的矢量和。
当电机满负荷运行时,有效电流大于无效电流,总电流的功率因数变高。
如果负载减小,有效电流会减小,无效电流基本不变,因此功率因数会降低。
因此,在设计和使用电机时,应尽可能降低功率损耗系数,以提高电机的效率和节能效果。
这可以通过优化设计、选用高效材料、改进制造工艺等方式来实现。
旋转电机损耗和效率的试验测定方法
旋转电机损耗和效率的试验测定方法
旋转电机的损耗和效率可以通过以下试验测定方法来进行测量:
1. 铜损耗测定:通过测量电机的电流和电压,计算出电机的铜损耗。
首先,连接电机的绕组与电源,并测量电流和电压。
然后,使用以下公式计算铜损耗:
铜损耗 = 电流^2 * 电阻
2. 机械损耗测定:通过测量电机的输入功率和输出功率,计算出电机的机械损耗。
首先,将电机的轴与负重连接,并测量输入功率和输出功率。
然后,使用以下公式计算机械损耗:
机械损耗 = 输入功率 - 输出功率
3. 总损耗测定:通过测量电机的输入功率和总损耗,计算出电机的总损耗。
首先,测量电机的输入功率和总损耗。
然后,使用以下公式计算总损耗:
总损耗 = 输入功率 - 输出功率
4. 效率测定:通过测量电机的输出功率和输入功率,计算出电机的效率。
首先,测量电机的输出功率和输入功率。
然后,使用以下公式计算效率:
效率 = 输出功率 / 输入功率 * 100%
需要注意的是,为了确保测量结果的准确性,试验中应尽量避免电机过载或过热,同时使用准确的电流和电压测量设备。
新能源汽车高压系统的能量损耗与效率分析
优化方向
为了提高电池效率,可以从电池管理系统的控制策略、充电方式、电池容量等方面进行优 化,例如优化电池管理系统的控制算法、采用高效的充电方式、提高电池的能量密度等。
04
新能源汽车高压系统的效率 分析
电机效率分析
01
电机效率
电机是新能源汽车中的主要动力源,其效率直接影响到车辆的整体性能
。电机的效率主要受到设计、制造工艺、使用环境等多种因素的影响。
02 03
影响因素
电机的设计参数、制造工艺、材料选择、冷却系统等都会影响其效率。 此外,电机的工作环境,如温度、湿度、海拔等也会对其效率产生影响 。
05
新能源汽车高压系统优化建 议
降低电机能量损耗的建议
优化电机设计
01
采用先进的电机设计技术,降低电机的铜损和铁损,提高电机
的效率。
合理匹配电机功率
02
根据车辆行驶需求,合理匹配电机功率,避免过大或过小的电
机功率造成的能量浪费。
采用高效的冷却系统
03
优化电机的冷却系统,确保电机在最佳温度下运行,降低因过
提高转换器效率的建议
采用高效的转换器拓扑结构
选用合适的转换器拓扑结构,降低转换器在能量转换过程 中的损耗。
优化转换器控制策略
通过改进转换器控制算法,提高转换器的响应速度和效率 ,降低能量损耗。
加强转换器的散热设计
优化转换器的散热系统,确保转换器在最佳温度下运行, 降低因过热引起的能量损耗。
提高系统整体效率的建议
新能源汽车高压系统的功能
电动车用电机效率
电动车用电机效率评价电动自行车性能的优劣最重要的指标是充电一次续驶里程。
它除了和配置的电池容量大小等因素有关外,还与电动自行车驱动系统的效率密切相关。
所谓效率,是指一系统(装置)的输出功率和其输入功率的比值,一般用η表示。
输出、输入功率可以是电功率,也可以是机械功率。
对于电动机而言,输入是电功率,输出是机械功率。
因为任何系统内总存在有损耗,所以效率总是小于1。
电动自行车驱动系统效率ηs可表示为:ηs=ηC·ηm·ηT·ηR式中ηc——控制器效率ηm=P2m/P1m——电动机效率P2m——电动机输出机械功率P1m——电动机输入(即控制器输出)电功率ηT——传动装置效率对于直接驱动无传动装置的驱动方式,ηT=1ηR——轮胎效率它和轮胎宽度、和地面接触面积大小、花纹、轮胎材料等有关。
本文重点介绍电动自行车电机效率的相关问题。
1.电动机效率电动机效率ηm=P2m/P1m=(P1m-∑Pm)/ P1m =1 -∑Pm/P1m式中∑Pm为电机总损耗,主要包括机械损耗(轴承摩擦损耗、转子空气摩擦损耗、换向器和电刷间的机械磨损等)和铁心损耗(含磁滞损耗和涡流损耗),二者又可称为空载损耗或不变损耗。
电动机负载后又产生铜损和附加损耗,因为它们随负载大小而变化,又称为可变损耗。
显然,电机的总损耗越小,其效率越高。
换言之,要想提高电机效率,应采取降低损耗的措施。
对于电动自行车用低速直接驱动电机,机械损耗较小,而铁损亦不大。
而高速电机(线绕式或印制绕组)+齿轮减速器系统,电机的机械损耗和减速器的磨损相对于低速电机较大,而铁损较小。
总之,对于电动自行车用电机,其空载损耗均不大,约10~20W。
在总损耗中占有较大比重的是电枢绕组铜损。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对于大中型电动机而言,起停损耗需要考虑的因素还要多,比如电动机直接起动方式时,考虑到起动困难、对相邻设备可能造成影响等因素,管理人员往往会让电动机长时间的空转而减少电动机的起动次数,从而造成大量的能源浪费。另一方面,感应电动机的全压直接起动对电力系统短路容量的要求较高,为此电力系统必须提供更高的供电能力,用户也因此必须支付更多的费用。第三方面是电力系统长时间的运行在相对较低的符合率,系统供电效率较低。因此对于大中型电动机来说,起停损耗问题要从系统角度来周全考虑,通过改变起动方式来节约电力是一种选择。
对于风机泵类负载,由于轴转矩与转速的平方成正比变化,频率降低后,转速下降,转矩也下降,使定子及转子电流下降,因而电机效率有所提高,再加上轴功率有大幅度下降,电机输入功率同样大幅度下降,所以风机泵类负载采用变频调速,在低速时可获得好的节能效果。[风量减小,是否允许?]
§1-6非正弦波形电源下的异步电动机损耗
§1-7电动机起停损耗
有些负载要求断续运行,停止部分时间比运行时间长得多,采用起-运-停循环运行方式(ON-OFF)有可能比负载运行-空转-负载运行节约大量能耗(即电机空载损耗乘停运时间)。但起-运-停方式,需多次起动电机,使定子绕组频繁受到冲击力,鼠笼转子也会因发热不均匀,产生热应力,多次疲劳会使转子导条断裂。起动时电机发热增多而散热条件较稳态运行差,多次起动也会使电机过热。因此对起动次数都有规定。
§1-5电源频率变化对电机损耗的影响
目前各国对于电源频率允许偏差范围的规定是不同的。在实际正常运行中,日、美控制在±0.01周/秒,而我国许多缺电系统有时频率偏差超过±0.2周/秒。在电力系统网络化的今天,公共电源频率的稳定是有保证的。这里只需要考虑专用电源(比如变频电源)频率变化对电机损耗的影响。
大多数静止变频器的输出电压波形是非正弦的,通过傅里叶级数分析其中除基本分量外尚有大量谐波分量。这在异步电动机中产生谐波电流及谐波磁动势。与分析三相电动机磁动势空间谐波一样,可以对此分析,例如相电流中有5次时间谐波分量,则A,B及C相5次(时间)谐波磁动势分别为:
这说明5次时间谐波产生的旋转磁动势,其转速为5倍基波同步速,方向与基波旋转方向相反。同样可以证明7次谐波磁动势转速为7倍基波同步速,方向与基波旋转方向相同。
1、铁心损耗(含空载杂散损耗),亦简称铁耗,是恒定损耗的一种,由主磁场在电动机铁心中交变所引起的涡流损耗和磁滞损耗组成。铁心损耗大小取决于铁心材料、频率及磁通密度,近似的表示为:
磁通密度B与输入电压U成正比,对某一台电动机而言,其铁耗近似于与电压的平方成正比。铁耗一般占电动机总损耗的20%~25%。
§1-3端电压变动时电机的损耗
电机铭牌上电压值是电机设计时的依据,实际运行时电网上电压是波动的,我国规定低压系统中电压允许变化±10%,在一个工厂中电压变动往往超过这一范围,电压变动对电机各部分损耗有什么影响,电压调节在什么范围内变动能够节电,这是值得分析的问题。
国内外许多资料表明,电压低于额定值不超过10%,对一个系统,一个工厂往往是节电的。例如在保证供电电压合格范围内,降低配电压2—3%,无论对住宅、商业、工业负荷都起到节电的效果。工厂降压运行(-5%左右)同样能够节电,而升压(+5%左右)则增加电能消耗。当然降压范围不能太大,否则引起电动机过负荷能力降低及某些重载负荷过电流等问题。但-5%范围内,一般不会出现这些问题。
§1-8电动机的节能潜力
电压变化在负载不同时对电机效率影响是不同的。在重载时提高电压在一定范围(从342伏提到380伏)可以提高效率,再提(412伏)则效率反而下降。但轻载时,电压从342伏上升则效率越来越低,如何调整线路电压及个别调整电机端电压力可以达到节能的效果。
§1-4三相电压不平衡时异步电动机运行损耗分析
由于三相负载不对称,常常引起供电电压不平衡。这不平衡电压在异步电机中产生三相不平衡电流。用对称分量法可以分成正序、负序及零序电流。当定子绕组Y接时,则零序电流为零。其中正序电流产生转矩,使电机转运,负序电流产生一反转矩,使输出转矩有所减少,当电压不平衡值小于10%时,负转矩不大,一般可以不计。但对于负序磁场在转子中产生损耗以及定子电流由于不平衡而使损耗增加必须给予关注。一般电压不平衡时,其三相相位差不能保持120度,而相位变动后,产生的负序损耗及定子铜耗增加随电压不平衡度的增大而达到不允许的结果。因而保持供电电压平衡,可以节约电能。
2、风摩耗也称机械损耗(何不称为“机械损耗”?),是另一种恒定损耗,通常包括轴承摩擦损耗及通风系统损耗,对绕线式转子还存在电刷摩擦损耗。
机械损耗一般占总损耗的10%~50%,电动机容量越大,由于通风损耗变大,在总损耗中所占比重也增大。
3、负载损耗主要是指电动机运行时,定子、转子绕组通过电流而引起的损耗,亦称铜耗。它包括定子铜耗和转子铜耗,其大小取决于负载电流及绕组电阻值。铜耗约占总损耗的20%~70%。
4、杂散损耗(附加损耗)P主要由定子漏磁通和定子、转子的各种高次谐波在导线、铁心及其他金属部件内所引起的损耗。
这些损耗约占总损耗的10%~15%。
§1-2电动机的效率
电动机的效率与损耗相对值(P)的关系如下式所示
=1一ΣP
式中ΣP——电机总损耗
ΣP=(++++P)/Pl
P1——电机输入功率
当一台电机效率为0.87时,由上式可见其损耗相对值为0.13,如损耗下降20%,则由上式可求得效率为0.896,即效率提高了2.6个百分点。并由此可见,如一通用系列的效率平均值为0.87,作为高效率电机系列,其损耗如平均下降20%以上,则系列的平均值也应提高2.6个百分点以上。
第一章电动机效率与损耗分析
异步电动机输入电功率,输出机械功率,在运பைடு நூலகம்过程中产生恒定损耗和负载损耗。恒定损耗包含风摩耗和铁心损耗,是不随负载大小变化的损耗。负载损耗包含定子绕组损耗、转子绕组损耗和负载附加损耗(或称负载杂散损耗),对绕线转子电机还包含电刷及转子外接电路的电损耗。
恒定损耗是电动机运行时的固有损耗,它与电动机材料、制造工艺、结构设计、转速等参数有关,而与负载大小无关。