求图形的最大面积

合集下载

人教版2019年初中九年级数学:计算图形面积的最大值、商品利润最大问题、拱桥问题和运动中的抛物线针对提高

人教版2019年初中九年级数学:计算图形面积的最大值、商品利润最大问题、拱桥问题和运动中的抛物线针对提高

)若商场平均
子可以使橙子的总产量在20
某类产品按质量共分为生产最低档次产品每件利润为
奶,
x
万元用于修建一条公路,两年修成,通车前该特产只能在当年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投
代入解析式可得出此抛物
,正
,求水面在正常水位基础上上涨多少米时,就会影响过往船只航行。

1m水面的宽度是多少?(结
现测得,当水面宽时,涵洞顶点与水面

.4m.请判断这辆汽车能否
在水池中央垂直于水面处安装一个柱子OA 水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在
处出手时离地面20/9 m,与篮筐中心
4m(B处),设篮球运行的路线
已知乙跳起后摸到的最大高度为 3.19m,他如何做才能盖
有一辆载有长方体体状集装箱的货车要想通过洞拱横截面为抛物线的隧道,如图1,已知沿
2.4m;集装箱顶部离地面
所示,现测得,当水面宽AB=1.6m
ED是多少?是否会超过。

高中-《求解三角形中周长(面积)最大值的方法(教师版)》

高中-《求解三角形中周长(面积)最大值的方法(教师版)》

高中-《求解三角形中周长(面积)最大值的方法(教师版)》引言三角形是几何学中常见的图形之一,通过研究三角形的特性和性质,可以解决许多与三角形相关的问题。

本文将重点介绍如何求解三角形中周长和面积的最大值的方法,帮助教师们更好地教授相关知识。

方法一:使用三角函数三角函数是研究三角形性质的重要工具之一。

在求解三角形中周长和面积的最大值时,可以利用三角函数的性质进行分析。

步骤:1. 首先,假设三角形的一个角度为θ,另外两个角度为α和β,且α+β+θ=180°。

2. 根据三角函数的定义和三角形周长的公式,可以得到三角形的周长为L = a + b + c = a + 2asin(θ/2),其中a和b为两边的长度,c为斜边的长度。

3. 而三角形的面积可以由海伦公式S = √[s(s - a)(s - b)(s - c)],其中s为周长的一半。

4. 接下来,我们需要确定如何选择θ的取值,使得周长或面积最大。

5. 对于周长最大值的求解,可以通过求导数的方法得到最优解。

6. 对于面积最大值的求解,也可以采用求导数的方法或者通过研究面积的性质进行分析。

方法二:使用几何图形的性质除了三角函数的方法外,我们还可以利用几何图形的性质来求解三角形中周长和面积的最大值。

步骤:1. 考虑一个固定的底边AC,底边两端点分别为A和C。

2. 假设顶点B在AC的一侧,并且以顶点B为顶点的两条边长度为x和y。

3. 则三角形的周长为L = AC + x + y,面积为S = (1/2) * AC * h,其中h为由顶点B到底边AC的垂直距离。

4. 可以通过分析底边AC不变的情况下,如何选择x和y的取值,使得周长或面积最大。

结论通过使用三角函数的方法或几何图形的性质,可以求解三角形中周长和面积的最大值。

在教学过程中,教师们可以根据学生的研究能力和兴趣,选择适用的方法进行教授,帮助学生理解并应用相关的数学知识。

请注意:本文介绍的方法仅供参考,具体的求解过程和结果可能因具体问题而有所不同。

二次函数应用几何图形的最大面积问题教学课件

二次函数应用几何图形的最大面积问题教学课件
根据几何图形的特性,选择合 适的二次函数模型来表示面积 。
求解极值点
通过求导数并令其为0,找到函 数的极值点。
确定最大面积
根据极值点和单调性,确定几 何图形的最大面积对应的点。
05
练习题与答案解析
练习题
01
02
03
题目1
一个矩形ABCD的面积为 12,其中AB=2,求BC的 最大值。
题目2
一个直角三角形ABC的面 积为6,其中∠C=90°, AC=3,求BC的最大值。
详细描述
首先设定三角形的底和高为二次函数 的变量,然后根据二次函数的性质, 找到使面积最大的底和高的值。
利用二次函数求圆形面积的最大值
总结词
通过设定圆的半径为二次函数的变量 ,利用二次函数的性质求圆的最大面 积。
详细描述
首先设定圆的半径为二次函数的变量 ,然后根据二次函数的性质,找到使 面积最大的半径的值。
02
几何图形可以由二次函数图像与x 轴、y轴的交点确定,进而形成三 角形、矩形、平行四边形等。
二次函数的最值与几何图形面积的关系
二次函数的最值出现在顶点处,此时 对应的x值为函数的零点或对称轴。
几何图形面积的最大值或最小值出现 在二次函数最值处,可以通过求导数 或配方法找到最值点。Βιβλιοθήκη 02常见几何图形面积公式
题目3
一个等腰三角形ABC的面 积为10,其中AB=AC, ∠B=45°,求BC的最大值 。
答案解析
解析1
设BC=x,则矩形的面积可以表 示为2x=12,解得x=6。由于AB 已经给定为2,所以BC的最大值
为6。
解析2
设BC=x,则直角三角形的面积 可以表示为1/2×3x=6,解得 x=4。由于AC已经给定为3,所

桐城市第三中学九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时几何图形的最大面积教

桐城市第三中学九年级数学上册第二十二章二次函数22.3实际问题与二次函数第1课时几何图形的最大面积教

22.3 实际问题与二次函数第1课时 几何图形的最大面积1.经历数学建模的基本过程,能分析实际问题中变量之间的二次函数关系. 2.会运用二次函数求实际问题中的最大值或最小值. 3.能应用二次函数的性质解决图形中最大面积问题.一、情境导入孙大爷要围成一个矩形花圃.花圃的一边利用足够长的墙,另三边用总长为32米的篱笆恰好围成.围成的花圃是如图所示的矩形ABCD .设AB 边的长为x 米,矩形ABCD 的面积为S 平方米.当x 为何值时,S 有最大值?并求出最大值.二、合作探究探究点:最大面积问题【类型一】利用二次函数求最大面积小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S (单位:平方米)随矩形一边长x (单位:米)的变化而变化.(1)求S 与x 之间的函数关系式,并写出自变量x 的取值范围; (2)当x 是多少时,矩形场地面积S 最大?最大面积是多少?解析:利用矩形面积公式就可确定二次函数.(1)矩形一边长为x ,则另一边长为60-2x2,从而表示出面积;(2)利用配方法求出顶点坐标. 解:(1)根据题意,得S =60-2x 2·x =-x 2+30x .自变量x 的取值范围是0<x <30.(2)S =-x 2+30x =-(x -15)2+225,∵a =-1<0,∴S 有最大值,即当x =15(米)时,S 最大值=225平方米.方法总结:二次函数与日常生活的例子还有很多,体现了二次函数这一数学模型应用的广泛性.解决这类问题关键是在不同背景下学会从所给信息中提取有效信息,建立实际问题中变量间的二次函数关系.【类型二】利用二次函数判断面积取值成立的条件用长为32米的篱笆围一个矩形养鸡场,设围成的矩形一边长为x 米,面积为y平方米.(1)求y 关于x 的函数关系式;(2)当x 为何值时,围成的养鸡场面积为60平方米?(3)能否围成面积为70平方米的养鸡场?如果能,请求出其边长;如果不能,请说明理由.解析:(1)先表示出矩形的另一边长,再利用矩形的面积公式表示出函数关系式;(2)已知矩形的面积,可以转化为解一元二次方程;(3)求出y 的最大值,与70比较大小,即可作出判断.解:(1)y =x (16-x )=-x 2+16x (0<x <16);(2)当y =60时,-x 2+16x =60,解得x 1=10,x 2=6.所以当x =10或6时,围成的养鸡场的面积为60平方米;(3)方法一:当y =70时,-x 2+16x =70,整理得:x 2-16x +70=0,由于Δ=256-280=-24<0,因此此方程无实数根,所以不能围成面积为70平方米的养鸡场.方法二:y =-x 2+16x =-(x -8)2+64,当x =8时,y 有最大值64,即能围成的养鸡场的最大面积为64平方米,所以不能围成70平方米的养鸡场.方法总结:与面积有关的函数与方程问题,可通过面积公式列出函数关系式或方程.【类型三】最大面积方案设计施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM 为12米.现以O 点为原点,OM 所在直线为x 轴建立直角坐标系(如图所示).(1)直接写出点M 及抛物线顶点P 的坐标; (2)求出这条抛物线的函数关系式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB ,使A 、D 点在抛物线上,B 、C 点在地面OM 上.为了筹备材料,需求出“脚手架”三根木杆AB 、AD 、DC 的长度之和的最大值是多少,请你帮施工队计算一下.解:(1)M (12,0),P (6,6).(2)设这条抛物线的函数关系式为y =a (x -6)2+6,因为抛物线过O (0,0),所以a (0-6)2+6=0,解得,a =-16,所以这条抛物线的函数关系式为:y =-16(x -6)2+6,即y=-16x 2+2x .(3)设OB =m 米,则点A 的坐标为(m ,-16m 2+2m ),所以AB =DC =-16m 2+2m .根据抛物线的轴对称,可得OB =CM =m ,所以BC =12-2m ,即AD =12-2m ,所以l =AB +AD +DC =-16m 2+2m +12-2m -16m 2+2m =-13m 2+2m +12=-13(m -3)2+15.所以当m =3,即OB =3米时,三根木杆长度之和l 的最大值为15米.三、板书设计教学过程中,强调学生自主探索和合作交流,引导学生设计有助于学生设计表格,经历计算、观察、分析、比较的过程,直观地看出变化情况.8 圆内接正多边形1.掌握正多边形和圆的关系.2.理解正多边形的中心、半径、中心角、边心距等概念.3.能运用正多边形的知识解决圆的有关计算问题.4.能利用尺规作一个已知圆的内接正多边形.重点掌握正多边形的概念与正多边形和圆的关系,并能进行有关计算.难点正多边形的半径、边心距及边长的计算问题转化为解直角三角形的问题.一、复习导入1.什么叫正多边形?2.正多边形是轴对称图形、中心对称图形吗?其对称轴有几条?对称中心是哪一点?3.以对称中心为圆心,以对称中心到正多边形的一个顶点的长为半径画圆,你有何发现?引导学生得出:①正多边形的顶点都在圆上;②圆经过正多边形的所有顶点.二、探究新知1.圆内接正多边形的概念定义:顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆.(1)把一个圆n等分(n≥3 ),依次连接各分点,我们就可以作出一个圆内接正多边形.(2)如图,五边形 ABCDE是⊙O的内接正五边形,圆心O叫做这个正五边形的中心;OA是这个正五边形的半径;∠AOB是这个正五边形的中心角;OM⊥BC,垂足为 M,OM 是这个正五边形的边心距.2.尺规作一个已知圆的内接正多边形(1)用尺规作一个已知圆的内接正六边形.作法:①作⊙O的任意一条直径FC;②分别以F,C为圆心,以⊙O的半径R为半径作弧,与⊙O相交于点E,A和D,B,则A,B,C,D,E,F是⊙O的六等分点;③顺次连接AB,BC,CD,DE,EF,FA,便得到正六边形ABCDEF.(2)用尺规作一个已知圆的内接正四边形. (3)思考:作正多边形有哪些方法? 三、举例分析例 如图,在圆内接正六边形 ABCDEF 中,半径OC =4,OG ⊥BC ,垂足为 G ,求这个正六边形的中心角、边长和边心距.(1)正六边形的中心角是多少度?(2)正六边形的中心角的一半是多少度? (3)如何作出正六边形的边心距?(4)你能利用已知条件构造直角三角形吗? (5)你能利用解直角三角形的知识解决问题吗? 解:连接OD.∵六边形ABCDEF 为正六边形. ∴ ∠COD =360°6=60°.∴ △COD 为等边三角形. ∴ CD =OC =4.在 Rt △COG 中,OC =4,CG =12BC =2,∴OG =2 3.∴正六边形ABCDEF 的中心角为60°,边长为4,边心距为 2 3.总结:正多边形的有关计算可转化为解直角三角形,这个直角三角形的构成是:斜边为半径,一直角边为边心距,另一直角边为边长的一半,顶点在中心的锐角为中心角的一半.四、练习巩固1.正三角形的边心距、半径和高的比是( )A .1∶2∶3B .1∶ 2 ∶ 3C .1∶ 2 ∶3D .1∶2∶ 32.已知正六边形的外接圆半径为3 cm ,那么它的周长为________cm .3.已知:如图,正三角形ABC ,求作:正三角形ABC 的外接圆和内切圆.(要求:保留作图痕迹,不写作法)五、课堂小结1.易错点:(1)求正多边形的中心角、边长和边心距;(2)用尺规作圆内接正多边形.2.归纳小结:(1)正多边形的概念:各边相等、各角也相等的多边形叫做正多边形;(2)顶点都在同一圆上的正多边形叫做圆内接正多边形.这个圆叫做该正多边形的外接圆;(3)一个正多边形的外接圆的圆心叫做这个正多边形的中心,外接圆的半径叫做正多边形的半径,正多边形每一边所对的圆心角叫做正多边形的中心角,中心到正多边形的一边的距离叫做正多边形的边心距.3.方法规律:(1)把一个圆分成几等分,连接各分点所得到的多边形是正多边形,它的中心角等于360°;边数(2)正多边形的有关计算可转化为解直角三角形,这个直角三角形的构成是:斜边为半径,一直角边为边心距,另一直角边为边长的一半,顶点在中心的锐角为中心角的一半.六、课外作业1.教材第98页“随堂练习”.2.教材第99页习题3.10第1、2、3、4、5题.本节课新概念较多,对概念的教学要注意从“形”的角度去认识和辨析,但对概念的严格定义不能要求过高.在概念教学中,要重视运用启发式教学,让学生从“形”的特征获得对几何概念的直观认识,鼓励学生用自己的语言表达有关概念,再进一步准确理解有关概念的文字表述,促进学生主动学习.所以在教学的过程中应尽量使用多媒体教学手段.22.1 比例线段第1课时相似图形1.把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为 .2.在方格纸中,每个小格的顶点叫做格点,以格点连线为边的三角形叫做格点三角形.请你在如图所示的4×4的方格纸中,画出两个相似但不全等的格点三角形(要求:所画三角形为钝角三角形,标明字母,并说明理由).4.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.5.如图,测量小玻璃管口径的量具ABC,AB的长为10cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是多大?。

小学数学图形求面积十大方法总结

小学数学图形求面积十大方法总结

小学数学图形求面积十大方法总结我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。

我们的面积及周长都有相应的公式直接计算。

如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。

一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

例题分析例1、如下图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2、如下图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积。

一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD 面积的三分之一,也就是12平方厘米。

解:S△ABE=S△ADF=S四边形AECF=12(平方厘米)在△ABE中,因为AB=6厘米,所以BE=4厘米,同理DF=4厘米,因此CE=CF=2厘米,∴△ECF的面积为2×2÷2=2(平方厘米)。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3、两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决求面积十大方法1.>>>相加法<<<这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积2.>>>相减法<<<这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差。

二次函数应用-几何图形的最大面积问题精品PPT课件

二次函数应用-几何图形的最大面积问题精品PPT课件
∵a<0, ∴抛物线开口向下 C
Q1cm/秒B
∴ 当P、Q同时运动2秒后ΔPBQ的面积y最大 最大面积是C,AD⊥BC, BC=160cm ,AD=120cm,
(1)设矩形EFGH的长HG=y,宽HE=x,确定y与x的函 数关系式;
(2)当x为何值时,矩形EFGH的面积S最大?
最 值。
2。有取值范围的在端点或顶点处取最值。
自学教材20页 “动脑筋”
例1:如图,在一面靠墙的空地上用长为24米 的篱笆,围成中间隔有两道篱笆的长方形花 圃,设花圃的宽AB为x米,面积为S平方米。 (1)求S与x的函数关系式及自变量的取值范围。
(2)当x取何值时所围成的花圃面积最大,
最大值是多少?
谢谢大家
荣幸这一路,与你同行
It'S An Honor To Walk With You All The Way
演讲人:XXXXXX 时 间:XX年XX月XX日
(四)课堂小结
1. 对于面积最值问题应该设图形一边长为自 变量,所求面积为函数建立二次函数的模型, 利用二次函数有关知识求得最值,要注意函数 的自变量的取值范围。
2. 用函数知识求解实际问题,需要把实际问 题转化为数学问题再建立函数模型求解,解要 符合实际题意,要注意数与形结合。
1.在一幅长60 cm,宽40 cm的矩形风景画的四周 镶一条金色纸边,制成一幅矩形挂图,如图所示, 如果要使整个挂图的面积是y cm2,设金色纸边 的宽度为x cm,那么y关于x的函数是( ) A.y=(60+2x)(40+2x)
(一)思前想后
1.二次函数y=ax2+bx+c(a≠0)的顶点坐标、 对称轴和最值
2.(1)求函数y=x2+2x-3的最值。 (2)求函数y=x2+2x-3 (0≤x ≤ 3)

【平面图形的面积问题】2023年小升初数学无忧衔接 (通用版)(解析版)

【平面图形的面积问题】2023年小升初数学无忧衔接 (通用版)(解析版)

平面图形的面积问题在初中几何中,随着变量和演绎推理证明等知识的进入,初中学生学习几何就需要提高相应的思维能力,比如抽象思维,推理等等。

难度自不必说,思维的层次也大为不同。

甚至一些证明,必须用演绎推理来完成,比如“两直线垂直于同一条直线,那么这两条直线平行”,这个命题就需要演绎推理思维,学生必须要在自己的心中构建直观图形,难度加大了。

如“三角形的内角和等于180°”这个定理,在小学教材中是由实验得出的,学生较熟悉。

因此,在教学中既让学生通过实验得出结论,又要强调说明不能满足于实验,而必须从理论上给予严格论证。

求几何图形面积常见方法及运用:【解题技巧】常见模型例1.(2022春·六年级统考期末)下图中阴影部分的面积是( )平方厘米。

【答案】8平方厘米【分析】观察图形可知,小正方形部分阴影面积等于长方形空白处面积,如下图:阴影部分面积等于长是(2+2)厘米,宽是2厘米长方形面积;根据长方形面积公式:面积=长×宽,代入数据,即可解答。

【详解】(2+2)×2=4×2=8(平方厘米)【答案】4平方厘米【分析】通过观察图形可知,把阴影部分通过“旋转”或“割补”法,把阴影部分拼成三角形的面积,根据三角形的面积公式:S=ah÷2,求出大三角形的面积,再除以2,即可求出阴影部分的面积。

【详解】如图:4×4÷2÷2=16÷2÷2=8÷2=4(平方厘米)变式1.(2023秋·北京西城·五年级统考期末)将等腰三角形ABC沿虚线对折,折下来的部分恰好拼成了一个长方形(如图)。

已知三角形ABC的底是6cm,高是4cm,图中涂色部分的面积是()cm2。

A.24 B.12 C.6 D.3【答案】D【分析】如图:观察图形可知,三角形ABC左右两边的涂色小三角形完全一样,把左边的涂色小三角形平移至右边,与右边涂色小三角形组合成一个与①一样大的三角形;这样三角形ABC平均分成4份,涂色部分占其中的一份;根据三角形的面积=底×高÷2,求出三角形ABC的面积,再除以4即是涂色部分的面积。

求图形面积的三种方法

求图形面积的三种方法

中考数学之求图形面积主讲:田伟涛一、知识点:1、公式法:(1)三角形面积:①S =21×底×高②C b a S sin 21=(任意三角形的面积等于两边及其夹角正弦乘积的一半)③S =()rc b a ∙++∙21(其中r 为三角形内切圆半径)(2)四边形:①平行四边形:A.一般的平行四边形:S =底×高B.特殊的平行四边形:S 矩形=长×宽;S 菱形=对角线乘积的一半;S 正方形=边长的平方。

②梯形:S =()高下底上底⨯+∙212(4)扇形:r l S r n ∙==213602π(5)圆锥①圆锥侧面积:Rr r S ∙∙=∙∙=ππ221侧②圆锥表面积:rS S S R r 2ππ+∙∙=+=底侧表2、面积和差:针对不规则图形常通过“割补法”将其化成规则图形,而后利用面积和差求解。

(1)S 总=各部分面积之和;(2)S 阴=S 总—S 白。

3、面积比:(1)等底等高的两个三角形面积之比等于1:1;(2)等底的两个三角形面积之比等于其高的比;(3)等高的两个三角形面积之比等于其底的比;(4)相似三角形的面积之比等于其相似比的平方。

二、经典例题:1、直角三角形ABC 的三条边分别是5cm,3cm 和4cm,将它的直角边AC 对折到斜边AB 上,使AC与AD 重合,如下图,则图中阴影部分(未重叠部分)的面积是多少cm 2?2、(2016天津)如图,在正方形ABCD 中,点E,N,P,G 分别在边AB,BC,CD,DA 上,点M,F,Q 都在对角线BD 上,且四边形MNPQ 和AEFG 均为正方形,则SSAEFGMNPQ正正的值等于________.3、如图,已知正方形ABCD的边长为3,E、F 分别是BC、DC 的中点,BF、DE 相交于点G,求四边形ABGD 的面积.4、如图,正方形ABCD 的边长是7,E、F 分别是AB、BC 的中点,求阴影部分的面积。

人教版九年级上册数学:第22章 二次函数 22.3.1-几何图形的最大面积 课件资料

人教版九年级上册数学:第22章 二次函数 22.3.1-几何图形的最大面积 课件资料

变式 1 如图,用一段长为 60m 的篱笆围成一个一边靠 墙的矩形菜园,墙长 32m ,这个矩形的长、宽各为多少
时,菜园的面积最大,最大面积是多少?
问题1 变式1与例题有什么不同? x
x
60-2x 问题2 我们可以设面积为S,如何设自变量? 设垂直于墙的边长为x米 问题3 面积S的函数关系式是什么? S=x(60-2x)=-2x2+60x.
是 h= 30t - 5t (0≤t≤6).小球的运动时间是多少时,
小球最高?小球运动中的最大高度是多少?
可以出,这个函数的图象是一 条抛物看线的一部分,这条抛物 h/m
2
40
h= 30t - 5t 2
线的顶点是这个函数的图象的最 20 高点.也就是说,当t取顶点的横
坐标时,这个函数有最大值.
O
1 2 3 4 5 6
讲授新课
一 求二次函数的最大(或最小)值
合作探究
2 y ax bx c 的最值由什么决定? 二次函数 y y b b
问题1
x
x
2a
2a
最大值
O
x 最小值
O
x
二次函数 y ax2 bx c的最值由a及自变量的取值范围决定.
问题2 当自变量x为全体实数时,二次函数
y ax2 bx c 的最值是多少?
解:根据题意得 S=l(30-l), 即 S=-l2+30l (0<l<30).
b 30 l 15 2a 2 (1)
2
s
200
因此,当 时, 4ac b
4a
100
S有最大值
302 225 4 (1)
O
5

二次函数应用几何图形的最大面积问题课件

二次函数应用几何图形的最大面积问题课件

对未来学习的思考和展望
深入学习二次函数和几何图形的基础知识,掌握更多解 决实际问题的技巧和方法。
拓展学习领域,了解更多与数学相关的学科知识,如线 性代数、微积分等,为解决更复杂的问题提供支持。
关注数学在实际生活中的应用,了解数学与其他学科的 交叉点,培养跨学科解决问题的能力。
THANKS
的最大面积。
03
几何图形面积的最大值问 题
几何图形面积最大值的求解方法
03
代数法
几何法
参数法
通过代数运算和不等式性质,求出几何图 形面积的最大值。
利用几何图形的性质和特点,通过作图和 观察,求出面积最大值。
引入参数表示几何图形,通过参数的变化 和约束条件,求出面积的最大值。
面积最大值在二次函数中的应用
二次函数应用几何图形的最 大面积问题课件
目录
• 二次函数与几何图形的关系 • 二次函数的最值问题 • 几何图形面积的最大值问题 • 实际应用案例分析 • 总结与思考
01
二次函数与几何图形的关 系
二次函数图像的几何意义
01
二次函数图像是抛物线,其 顶点是函数的极值点。
02
二次函数图像的对称轴是x=h ,顶点的纵坐标是k。
二次函数与几何图形面积最大值问题 紧密相关,通过合理设定函数参数, 可以找到几何图形面积的最大值。
在解决实际问题时,需要综合考虑多 种因素,如几何图形的形状、大小和 位置等,以及二次函数的参数和约束 条件。
二次函数开口方向和顶点位置对几何 图形面积的影响是关键,需要根据实 际情况调整函数表达式,以获得最佳 效果。
01
总结词
02
详细描述
矩形面积最大化
在给定长和宽的条件下,利用二次函数求矩形的最大面积。通过设定 长和宽为二次函数的形式,并利用求导数的方法找到面积的最大值。

动点产生的几何最值问题大全

动点产生的几何最值问题大全

动点产生的几何最值问题大全
动点产生的几何最值问题是数学中一类比较有挑战性的问题,通常涉及到几何图形中的动点以及与之相关的最值情况。

以下是一些常见的动点产生的几何最值问题类型:
1. 最短路径问题:在给定的几何图形中,寻找动点到某个点或线段的最短路径。

这可以涉及到直线、圆、多边形等图形。

2. 最大面积问题:确定动点在几何图形中移动时,如何使形成的图形面积最大。

例如,求动点构成的三角形、矩形等的最大面积。

3. 最长线段问题:找到在特定条件下,动点所形成的最长线段。

4. 最短时间问题:考虑动点在移动过程中,如何以最短时间到达目标点。

5. 最优位置问题:确定动点在几何图形中的最优位置,使得某个目标函数达到最大或最小值。

6. 角度最值问题:探究动点在运动过程中,相关角度的最大或最小值。

7. 对称问题:利用对称性质来解决与动点相关的最值问题。

这些只是一些常见的类型,实际问题可能更加复杂和多样化。

解决动点产生的几何最值问题通常需要结合几何学的知识、定理和方法,以及对运动轨迹和约束条件的分析。

具体的解决方法会根据问题的具体情况而有所不同。

一次函数与面积结合问题解题技巧

一次函数与面积结合问题解题技巧

一次函数与面积结合问题解题技巧全文共四篇示例,供读者参考第一篇示例:一次函数与面积结合问题解题技巧在数学中,一次函数是最基础的函数之一,它的图像是一条直线。

而面积则是一个二维概念,通常用来描述平面图形的大小。

一次函数与面积结合起来,可以帮助我们解决一些实际问题,例如求直线与X轴之间的面积、寻找最优解等。

在本文中,我们将介绍一些一次函数与面积结合问题的解题技巧。

一、基本概念在解决一次函数与面积结合问题时,首先需要了解一些基本概念。

一次函数的一般形式为y = kx + b,其中k为斜率,b为截距。

斜率表示函数的变化率,截距表示函数与Y轴的交点。

面积的计算公式为S = 底* 高,对于矩形和平行四边形,底和高即为长度和宽度;对于三角形,则一般取底边和高为两边。

二、求直线与X轴之间的面积当我们需要求一次函数与X轴之间的面积时,可以通过以下步骤进行:1. 找出函数与X轴的交点,即解方程kx + b = 0,得到交点的横坐标x0;2. 确定两个交点间的区间[a,b],其中a为交点的横坐标的较小值,b为较大值;3. 计算函数在区间[a,b]上的积分,即∫[a,b] (kx + b)dx;4. 根据积分的结果,确定函数与X轴之间的面积。

对于函数y = 2x + 3,我们需要求函数图像在[1,3]上与X轴之间的面积。

解方程2x + 3 = 0,得到交点的横坐标为-3/2;然后计算∫[1,3] (2x + 3)dx = x^2 + 3x,将上限和下限代入,得到面积为10.5。

三、寻找最优解在一些实际问题中,我们需要找到最优解,即使得面积最大或最小的情况。

在这种情况下,我们可以通过一次函数的性质来解决问题。

假设我们需要用一根长度为L的绳子围成一个长方形,求这个长方形的面积最大值。

设长方形的长为x,宽为y,则面积为xy。

根据题意,有2x + 2y = L,即x + y = L/2,可以将y表示为y = L/2 - x。

将y代入面积公式中,得到S = x(L/2 - x) = Lx/2 - x^2。

面积最值问题 初中数学

面积最值问题 初中数学

面积最值问题初中数学面积最值问题是初中数学中一个常见的应用题类型,主要涉及到几何图形的面积,并要求寻找出图形面积的最大值或最小值。

通过解决这类问题,学生们可以加强对图形面积计算的理解,并培养数学建模和解决实际问题的能力。

一、矩形面积最值问题矩形是最为简单的几何图形之一,其面积公式为“面积=长×宽”。

当矩形的周长一定时,如何确定矩形的面积最大或最小值成为了问题的关键。

在解决这类问题时,我们可以利用变量法。

假设矩形的长为x,宽为y,则有以下两个约束条件:1. 2x + 2y = 周长(常数)2. 长和宽都不能为负数,即x ≥ 0, y ≥ 0根据矩形的面积公式,在限定条件下,可以得到矩形的面积S和变量x、y之间的关系式:S = xy。

由此可得,在常数周长和约束条件下,我们需要求解的就是面积函数S = xy 的最值。

二、三角形面积最值问题三角形是常见的几何图形之一,其面积公式为“面积=底边×高/2”。

在解决三角形面积最值问题时,我们通常需要考虑两种情况。

情况一:确定一个边长,求解此边长对应的最大面积。

假设等腰三角形的底边长为x,两腰边长为y,则有以下两个约束条件:1. 2y + x = 周长(常数)2. 边长不能为负数,即x ≥ 0, y ≥ 0根据三角形的面积公式,在限定条件下,可以得到三角形的面积S和变量x、y之间的关系式:S = xy/2。

由此可得,在常数周长和约束条件下,我们需要求解的就是面积函数S = xy/2 的最值。

情况二:确定一个角度,求解此角度对应的最大面积。

假设三角形的底边长为x,底边两边夹角为θ,则有以下约束条件:1. θ为常数,0°≤θ≤180°2. 底边不能为负数,即x ≥ 0根据三角形的面积公式,在限定条件下,可以得到三角形的面积S和变量x之间的关系式:S = x^2 sin(θ)/2。

由此可得,在限定角度和约束条件下,我们需要求解的就是面积函数S = x^2 sin(θ)/2 的最值。

小学数学“求图形面积”的10种方法

小学数学“求图形面积”的10种方法

小学数学“求图形面积”的10种方法我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形,面积及周长都有相应的公式直接计算,如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

先看三道例题感受一下例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积.一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD 面积的三分之一,也就是12厘米.解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。

常用的基本方法有:一、相加法这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如:求下图整个图形的面积一句话:半圆的面积+正方形的面积=总面积二、相减法这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如:下图,求阴影部分的面积。

[详细讲解]利用二次函数求几何图形面积的最值问题

[详细讲解]利用二次函数求几何图形面积的最值问题

利用二次函数求几何图形面积的最值问题构造二次函数来确定几何图形中的有关面积最大值的问题是近年来常考的题型,求解这类问题,实际上,只要我们能充分运用条件,根据图形的特点,综合运用所学知识,如,勾股定理、全等三角形、相似三角形、解直角三角形、图形的面积公式等等来寻求等量关系,从而构造出二次函数,再利用二次函数的性质即可求解.现举例说明.方法:1、用含有自变量的代数式分别表示出与所求几何图形相关的量(如周长、长、宽、半径等)。

2、根据几何图形的特征,列出其面积的计算公式,用函数表示这个面积。

3、根据函数关系式求出最大值及取得最大值的自变量的值,当 的值不在自变量的取值范围内时,应根据取值范围来确定最大值。

例1(2006年旅顺口区中考试题)已知边长为4的正方形截去一个角后成为五边形ABCDE (如图1),其中AF =2,BF =1.试在AB 上求一点P ,使矩形PNDM 有最大面积.简析 设矩形PNDM 的边DN =x ,NP =y ,则矩形PNDM 的面积S =xy (2≤x ≤4), 易知CN =4-x ,EM =4-y .且有NP BC CN-=BFAF(作辅助线构造相似三角形),即34y x --=12,所以y =-12x +5,S =xy =-12x 2+5x (2≤x ≤4),此二次函数的图象开口向下,对称轴为x =5,所以当x ≤5时,函数的值是随x 的增大而增大,对2≤x ≤4来说,当x =4时,S 有最大值S 最大=-12×42+5×4=12.说明 本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给同学们探索解题思路留下了思维空间.例2(2006年南京市中考试题)如图2,在矩形ABCD 中,AB =2AD ,线段EF =10.在EF 上取一点M ,分别以EM 、MF 为一边作矩形EMNH 、矩形MFGN ,使矩形MFGN ∽矩形ABCD .令MN =x ,当x 为何值时,矩形EMNH 的面积S 有最大值?最大值是多少?简析 因为矩形MFGN ∽矩形ABCD ,所以MNAD=MF AB,因为AB =2AD ,MN =x ,所以MF =2x ,所以EM =EF -MF =10-2x ,所以S =x (10-2x )=-2x 2+10x =-2(x -52)2+252,所以当x =52时,S 有最大值为252.说明 本题是利用相似多边形的性质,求出矩形的边之间的关系,再运用矩形的面积构造出二次函数的表达式,使问题求解.例3(2006年泉州市中考试题)一条隧道的截面如图3所示,它的上部是一个以AD 为直径的半圆O ,下部是一个矩形ABCD .(1)当AD =4米时,求隧道截面上部半圆O 的面积;(2)已知矩形ABCD 相邻两边之和为8米,半圆O 的半径为r 米.①求隧道截面的面积S (米)关于半径r (米)的函数关系式(不要求写出r 的取值范围);②若2米≤CD ≤3米,利用函数图象求隧道截面的面积S 的最大值.(π取3.14,结果精确到0.1米)简析(1)当AD =4米时,S半圆=12π×22AD ⎛⎫ ⎪⎝⎭=12π×22=2π(米2).(2)①因为AD =2r ,AD +CD =8,所以CD =8-AD =8-2r ,所以S =12πr 2+AD ·CD =12πr 2+2r (8-2r )=(12π-4)r 2+16r ;②由①知CD =8-2r ,又因为2米≤CD ≤3米,所以2≤8-2r ≤3,图 2 图1所以 2.5≤r ≤3,由①知S =(12π-4)r 2+16r =(12×3.14-4)r 2+16r =-2.43r 2+16r =-2.43(r -82.43)2+642.43,因为-2.43<0,所以函数图象为开口向下的抛物线,因为函数图象对称轴r =82.43≈3.3.又2.5≤r ≤3<3.3,由函数图象的性质可知,在对称轴左侧S 随r 的增大而增大,故当r =3时,S 有最大值,S最大值=(12π-4)×32+16×3≈(12×3.14-4)×9+48=26.13≈26.1(米2).即隧道截面面积S 的最大值约为26.1米2.说明 本题是一道典型的代数与几何的综合题,集图形的面积、不等式与二次函数的知识有机的结合在一起,有助于培养同学们的综合应用能力.例4(2006年陕西中考课改试题)王师傅有两块板材边角料,其中一块是边长为60cm 的正方形板子;另一块是上底为30cm ,下底为120cm ,高为60cm 的直角梯形板子(如图4),王师傅想将这两块板子裁成两块全等的矩形板材.他将两块板子叠放在一起,使梯形的两个直角顶点分别与正方形的两个顶点重合,两块板子的重叠部分为五边形ABCDE 围成的区域(如图5),由于受材料纹理的限制,要求裁出的矩形要以点B 为一个顶点.(1)求FC 的长;(2)利用如图5求出矩形顶点B 所对的顶点到BC 边的距离x (cm)为多少时,矩形的面积最大?最大面积时多少?图3(3)若想使裁出的矩形为正方形,试求出面积最大的正方形的边长.简析(1)由题意,得△DEF ∽△CGF ,FC DF =CGDE,即603060=-FC FC , 所以FC =40(cm).(2)如图5,设矩形顶点B 所对顶点为P ,则①当顶点P 在AE 上时,x =60,y 的最大值为60×30=1800(cm 2);②当顶点P 在EF 上时,过点P 分别作PN ⊥BG 于点N ,PM ⊥AB 于点M .根据题意,得△GFC ∽△GPN ,所以CGFG NG DF =,所以NG =23x ,所以BN =120-23x ,所以y =x (120-23x )=-23(x -40)2+2400,所以当x =40时,y 的最大值为2400(cm 2);③当顶点P 在FC 上时,y 的最大值为60×40=2400(cm 2).综合①②③,得x =40cm 时,矩形的面积最大,最大面积为2400cm 2.(3)根据题意,正方形的面积y (cm 2)与边长x (cm)满足的函数表达式为: y =-23x 2+120x .当y =x 2时,正方形的面积最大,所以x 2=-23x 2+120x .解之,得 x 1=0(舍去),x 2=48(cm).图4图5所以面积最大得正方形得边长为48 cm.说明本题是一道典型的二次函数与几何综合应用的问题,在解第(2)小题时,一定不要忽视分类讨论来求出每一种情况的最大值后,再进行比较得出结论,第(3)小题只需根据题意列出方程就能解决.。

人教版四年级数学下册考试必考题型图形求面积的10个方法,有附例题解析,孩子学好面积必备!

人教版四年级数学下册考试必考题型图形求面积的10个方法,有附例题解析,孩子学好面积必备!

2020—2021学年度第二学期人教版四年级数学图形求面积的10个方法及配套练习题求图形的面积是小学数学常考的一种题型。

在数学考试中,很多图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算。

一般我们称这样的图形为不规则图形。

基本图形我们都有固定的面积和周长公式,直接套用就可以计算。

那么,不规则图形的面积和周长怎么计算呢三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形。

面积及周长都有相应的公式直接计算,如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。

那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。

先看三道例题感受一下例1:如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。

一句话:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。

例2:如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积。

一句话:因为△ABE、△ADF与四边形AECF的面积彼此相等,都等于正方形ABCD面积的三分之一,也就是12厘米.解:S△ABE=S△ADF=S四边形AECF=12在△ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF的面积为2×2÷2=2。

所以S△AEF=S四边形AECF-S△ECF=12-2=10(平方厘米)。

例3:两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。

如右图那样重合.求重合部分(阴影部分)的面积。

一句话:阴影部分面积=S△ABG-S△BEF,S△ABG和S△BEF都是等腰三角形总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决。

周长相等圆的面积最大证明

周长相等圆的面积最大证明

周长相等圆的面积最大证明针对小学生:《神奇的圆:为什么周长相等它面积最大》小朋友们,今天咱们来玩一个有趣的数学游戏。

想象一下,有一根长长的绳子,我们用它来围图形。

如果围成长方形,就像咱们的黑板,长长的,宽宽的。

但是如果我们把这根绳子围成正方形,是不是就变得更规整啦?那如果我们把这根绳子围成一个圆呢?这可就神奇啦!比如说,这根绳子长 12 厘米。

如果围成正方形,边长就是 3 厘米,面积就是 9 平方厘米。

要是围成长方形,可能长是 4 厘米,宽是 2 厘米,面积就是 8 平方厘米。

但是如果围成圆呢,经过计算,面积会比正方形和长方形都大!这是因为圆的形状很特别,它没有尖尖的角,每一处到中心的距离都一样。

所以当周长相等的时候,圆能占的地方最大。

小朋友们,是不是很神奇呀?《圆的秘密:周长一样,面积它最大》小朋友们,你们有没有想过,为什么在周长相等的情况下,圆的面积是最大的呢?让我来给你们讲个小故事。

有一天,小熊、小兔子和小猴子比赛,看谁用同样长的篱笆围出的地最大。

小熊围了一个长方形,小兔子围了一个正方形,小猴子围了一个圆。

小熊的长方形,长是 4 米,宽是 2 米,面积是 8 平方米。

小兔子的正方形,边长是 3 米,面积是 9 平方米。

小猴子的圆呢,经过计算,面积居然有 12 平方米多呢!这下子,小熊和小兔子都惊呆了。

这就告诉我们呀,圆可厉害啦,在周长一样的时候,它能占的地方最大。

所以小朋友们,以后看到周长相等的图形,要记住圆的面积是最大的哟!《圆,周长相等时的面积冠军》小朋友们,咱们来一起探索一个有趣的数学现象。

假设我们有一根魔法绳子,它的长度是固定的。

我们先用它围一个三角形,哎呀,三角形有尖尖的角,占的地方不大。

再用它围一个正方形,嗯,比三角形好多啦,但还是不够大。

我们把这根魔法绳子围成一个圆。

哇塞!圆占的地方一下子变得好大呀!比如说,这根绳子长 20 厘米。

围成正方形,面积大概是 25 平方厘米。

可要是围成圆,面积能有 30 多平方厘米呢!这是因为圆就像一个超级大胖子,浑身上下都很圆润,没有一点浪费的地方。

2020沪科版九年级数学上册 21.4 第1课时 几何图形的最大面积

2020沪科版九年级数学上册 21.4 第1课时 几何图形的最大面积

变式2 如图,用一段长为60m的篱笆围成一个一边靠墙的矩形 菜园,墙长18m,这个矩形的长、宽各为多少时,菜园的面积最 大,最大面积是多少?
x
x
问题1 变式2与变式1有什么异同?
问题2 可否模仿变式1设未知数、列函数关系式? 60-2x
问题3 可否试设与墙平行的一边为x米?则如何表示另一边?
答案:设矩形面积为Sm2,与墙平行的一边为x米,则
4
当x=20时,y最大=300.
E
30m D
C
B
F
A
40m
练一练
1.用一段长为15m的篱笆围成一个一边靠墙的矩形菜园,墙
长为18m,这个矩形的长,宽各为多少时?菜园的面积最大,
面积是多少?
解:设矩形菜园的长为xm,则宽为15 x m.
2
S 15 x x 1 x2 15 x
2
S 60 x x 1 x2 30x
2
2
问题4 当x=30时,S取最大值,此结论是否正确? 不正确. 问题5 如何求自变量的取值范围? 0 < x ≤18.
问题6 如何求最值?
由于30 >18,因此只能利用函数的增减性求其最值.当x=18时, S有最大值是378.
实际问题中求解二次函数最值问题,不一定都取图象顶点 处,要根据自变量的取值范围.通过变式1与变式2的对比,希 望同学们能够理解函数图象的顶点、端点与最值的关系,以及 何时取顶点处、何时取端点处才有符合实际的最值.
解: (1)设矩形一边长为x,则另一边长为(6-x), ∴S=x(6-x)=-x2+6x,其中0<x<6. (2)S=-x2+6x=-(x-3)2+9; ∴当x=3时,即矩形的一边长为3m时,矩形面积最大,为9m2. 这时设计费最多,为9×1000=9000(元)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(48-2x+2)m,围成的面积为y,根据题意得出:
y=x(48-2x+2)=-2x2+50x(0<x<24),

x
b 2a
2(50-2)=12.5
时,y最大=
4ac - b2 4a
= 625(平方米)
8
答:养鸡场的边长为12.5米时,
养鸡场占地面积最大, 最大面积是 625平方米.
8
ym2
xm
2m xm
S 225 4.02. 56
深化理解
用48米长的竹篱笆围建一矩形养鸡场,养鸡场一面 用砖砌成,另三面用竹篱笆围成,并且在与砖墙相对 的一面开2米宽的门(不用篱笆),问养鸡场的边长为 多少米时,养鸡场占地面积最大?最大面积是多少?
ym2
xm
2m xm
深化理解
解:设养鸡场的垂直于墙的边长为x米,则另一边长为
A
40m
N
2y xb x 12 x 24
25 或用公式 :当x b
2a
25 12 x2 24
25 25时, y最大值
x 12 x
25 4ac b2
4a
252
300.
300.
当堂检测 何时窗户通过的光线最多
某建筑物的窗户如图所示,它的上半部是半圆,下半部 是矩形,制造窗框的材料总长(图中所有的黑线的长 度和)为15m.当x等于多少时,窗户通过的光线最多(结 果精确到0.01m)?此时,窗户的面积是多少?
解:1由4 y 7x x 15, 得y 15 7x x
xx
4
0 x<15且y 15 7x x
y
4
0 x<1.479
何时窗户通过的光线最多
S
7
x5 .
22
2 14 56
或利用公式 :当x b 15 1.07时, 2a 14
y最大值
4ac b2 4a
如图,在一个直角三角形的内部作一个矩形ABCD, 其中点A和点D分别在两直角边上,BC在斜边上.
(1)设矩形的一边BC=xm,那么AB 边的长度如何表示?
M C
H
30m
(2)设矩形的面积为ym2,当x取何
D
B
值时,y的值最大?最大值是多少?
解:1由勾股定理得MN 50m, PH
P┐
24m.
G
设AB bm,易得b 12 x 24.
M
30m
(1) 设矩形的一边AB=xm,那么 D
C
AD边的长度如何表示?

(2)设矩形的面积为ym2,当x取何 A
B
40m
值时,y的值最大?最大值是多少?
如图,在一个直角三角形的内部作一个矩形ABCD, 其中AB和AD分别在两直角边上.
(1)设矩形的一边AB=xm,那么AD M
边的长度如何表示?
(2)设矩形的面积为ym2,当x取何 D
C
30m
bm
值时,y的值最大?最大值是多少?

解 : 1设AD bm,易得b 3 x 30.
4
A xm B
40m
N
2y xb x 3 x 30 3 x2 30x 3 x 202 300.
4
或用公式 :当x b
2a
4 20时,
y最大值
4 4ac b2
4a
300.
二次函数的应用
求图形的最大面积
学习目标
1. 经历探究图形的最大面积问题的 过程,进一步获得利用数学方法解 决实际问题的经验。 2.通过分析和表示不同背景下实际 问题中变量之间的二次函数关系, 培养分析判断能力。
何时面积最大
如图,在一个直角三角形的内部作一个矩形ABCD,
其中AB和AD分别在两直角边上.
天才就是无止境刻苦勤奋的 能力。——卡莱尔
相关文档
最新文档