【高二数学试题精选】高二数学下册期末测试试题73
高中高二数学下学期期末复习试卷(含解析)-人教版高二全册数学试题
2014-2015学年某某省某某市东海县石榴高中高二(下)期末数学复习试卷一、填空题:1.已知集合P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},则P∩Q=.2.若复数z1=3+4i,z2=1+2i(i是虚数单位),则z1﹣z2=.3.命题:∀x∈R,sinx<2的否定是.4.复数z=(1+3i)i(i是虚数单位),则z的实部是.5.已知函数y=f(x),x∈[0,2π]的导函数y=f′(x)的图象,如图所示,则y=f(x)的单调增区间为.6.已知则满足的x值为.7.函数在[2,4]上是增函数的充要条件是m的取值X围为.8.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值X 围是.9.设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为.10.曲线在点(4,e2)处的切线与坐标轴所围三角形的面积为.11.在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.12.已知实数a,b,c满足a+b+c=9,ab+bc+ca=24,则b的取值X围是.13.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是.14.观察下面的数阵,第20行第20个数是.12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25…二、解答题(共6小题,满分0分)15.给定两个命题:p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2﹣x+a=0有实数根,如果p和q中至少有一个为真命题,某某数a的取值X围.16.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.17.已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)x0的值;(Ⅱ)a,b,c的值.18.因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=.若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:取1.4).19.试比较n n+1与(n+1)n(n∈N*)的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论.20.对于定义在区间D上的函数f(x)和g(x),如果对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,那么称函数f(x)在区间D上可被函数g(x)替代.(1)若,试判断在区间[[1,e]]上f(x)能否被g(x)替代?(2)记f(x)=x,g(x)=lnx,证明f(x)在上不能被g(x)替代;(3)设,若f(x)在区间[1,e]上能被g(x)替代,某某数a的X围.2014-2015学年某某省某某市东海县石榴高中高二(下)期末数学复习试卷参考答案与试题解析一、填空题:1.已知集合P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},则P∩Q={0,2} .考点:交集及其运算.专题:计算题.分析:通过理解集合的表示法化简集合P和集合Q,两集合的交集是集合P和Q中的共同的数.解答:解:∵P={﹣4,﹣2,0,2,4},Q={x|﹣1<x<3},∴P∩Q={0,2}故答案为:{0,2}点评:本题考查集合的表示法、集合交集的求法.2.若复数z1=3+4i,z2=1+2i(i是虚数单位),则z1﹣z2= 2+2i .考点:复数代数形式的加减运算.专题:计算题.分析:根据复数减法的运算法则,当且仅当实部与虚部分别相减可求.解答:解:Z1﹣Z2=(3+4i)﹣(1+2i)=2+2i故答案为:2+2i点评:本题主要考查了复数减法的基本运算,运算法则:当且仅当实部与虚部分别相减,属于基础试题.3.命题:∀x∈R,sinx<2的否定是“∃x∈R,sinx≥2”.考点:命题的否定.分析:根据命题“∀x∈R,sinx<2”是全称命题,其否定为特称命题,即“∃x∈R,sinx≥2”.从而得到本题答案.解答:解:∵命题“∀x∈R,sinx<2”是全称命题.∴命题的否定是存在x值,使sinx<2不成立,即“∃x∈R,sinx≥2”.故答案为:“∃x∈R,sinx≥2”.点评:本题给出全称命题,求该命题的否定形式.着重考查了含有量词的命题的否定、全称命题和特称命题等知识点,属于基础题.4.复数z=(1+3i)i(i是虚数单位),则z的实部是﹣3 .考点:复数的基本概念.专题:计算题.分析:利用两个复数代数形式的乘法,虚数单位i的幂运算性质,化简=(1+3i)i,依据使不得定义求得z的实部.解答:解:复数z=(1+3i)i=﹣3+i,故实部为﹣3,故答案为﹣3.点评:本题考查两个复数代数形式的乘法,虚数单位i的幂运算性质,以及复数为实数的条件.5.已知函数y=f(x),x∈[0,2π]的导函数y=f′(x)的图象,如图所示,则y=f(x)的单调增区间为[0,π].考点:函数的单调性与导数的关系.专题:数形结合.分析:根据据f′(x)≥0,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减;从图中找到f′(x)≥0的区间即可.解答:解:据f′(x)≥0,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减由图得到x∈[0,π]时,f′(x)≥0故y=f (x)的单调增区间为[0,π]故答案为[0,π]点评:本题考查函数的单调性与导函数符号的关系:f′(x)≥0时,函数f(x)单调递增;f′(x)≤0时,f(x)单调递减6.已知则满足的x值为 3 .考点:分段函数的解析式求法及其图象的作法;函数的值.分析:分x≤1和x>1两段讨论,x≤1时,得,x>1时,得,分别求解.解答:解:x≤1时,f(x)=,x=2,不合题意,舍去;x>1时,,=3综上所示,x=3故答案为:3点评:本题考查分段函数求值问题,属基本题.7.函数在[2,4]上是增函数的充要条件是m的取值X围为.考点:利用导数研究函数的单调性;必要条件、充分条件与充要条件的判断.专题:计算题.分析:先求导函数,要使函数在[2,4]上是增函数,则﹣x2+mx+2≥0在[2,4]上恒成立,故可建立不等式,解之即可求得m的取值X围.解答:解:求导函数要使函数在[2,4]上是增函数,则﹣x2+mx+2≥0在[2,4]上恒成立,构建函数g(x)=﹣x2+mx+2,因为函数图象恒过点(0,2),所以﹣x2+mx+2≥0在[2,4]上恒成立,只需m根据函数的单调递增,解得,即所求m的X围为故答案为:点评:本题考查利用导数研究函数的单调性,解题的关键是求导函数,将问题转化为﹣x2+mx+2≥0在[2,4]上恒成立.8.已知函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,则实数a的取值X 围是﹣1≤a<7 .考点:函数在某点取得极值的条件.专题:计算题.分析:首先利用函数的导数与极值的关系求出a的值,由于函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,所以f′(﹣1)f′(1)<0,进而验证a=﹣1与a=7时是否符合题意,即可求答案.解答:解:由题意,f′(x)=3x2+4x﹣a,当f′(﹣1)f′(1)<0时,函数f(x)=x3+2x2﹣ax+1在区间(﹣1,1)上恰有一个极值点,解得﹣1<a<7,当a=﹣1时,f′(x)=3x2+4x+1=0,在(﹣1,1)上恰有一根x=﹣,当a=7时,f′(x)=3x2+4x﹣7=0在(﹣1,1)上无实根,则a的取值X围是﹣1≤a<7,故答案为﹣1≤a<7.点评:考查利用导数研究函数的极值问题,体现了数形结合和转化的思想方法.9.设x,y满足约束条件,若目标函数z=abx+y(a>0,b>0)的最大值为35,则a+b的最小值为8 .考点:简单线性规划.专题:计算题;压轴题;数形结合.分析:本题考查的知识点是线性规划,处理的思路为:根据已知的约束条件,画出满足约束条件的可行域,再根据目标函数z=abx+y(a>0,b>0)的最大值为35,求出a,b的关系式,再利用基本不等式求出a+b的最小值.解答:解:满足约束条件的区域是一个四边形,如图4个顶点是(0,0),(0,1),(,0),(2,3),由图易得目标函数在(2,3)取最大值35,即35=2ab+3∴ab=16,∴a+b≥2 =8,在a=b=8时是等号成立,∴a+b的最小值为8.故答案为:8点评:用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.10.曲线在点(4,e2)处的切线与坐标轴所围三角形的面积为e2.考点:定积分在求面积中的应用.专题:计算题.分析:先利用复合函数求导法则求已知函数的导函数,再利用导数的几何意义求切线斜率,进而利用直线的点斜式写出切线方程,最后求直线与坐标轴的交点,计算直角三角形的面积即可解答:解:y′=,y′|x=4=e2∴曲线在点(4,e2)处的切线方程为y﹣e2=e2(x﹣4)即y=e2x﹣e2令x=0,得y=﹣e2,令y=0,得x=2∴此切线与坐标轴所围三角形的面积为×2×e2=e2故答案为e2点评:本题主要考查了导数的几何意义,求曲线在某点出的切线方程的方法,利用导数求切线方程是解决本题的关键11.在平面直角坐标系xOy中,若直线y=2a与函数y=|x﹣a|﹣1的图象只有一个交点,则a的值为.考点:函数的零点与方程根的关系.专题:函数的性质及应用.分析:由已知直线y=2a与函数y=|x﹣a|﹣1的图象特点分析一个交点时,两个图象的位置,确定a.解答:解:由已知直线y=2a是平行于x轴的直线,函数y=|x﹣a|﹣1的图象是折线,所以直线y=2a过折线顶点时满足题意,所以2a=﹣1,解得a=﹣;故答案为:.点评:本题考查了函数的图象;考查利用数形结合求参数.12.已知实数a,b,c满足a+b+c=9,ab+bc+ca=24,则b的取值X围是[1,5].考点:函数最值的应用.专题:计算题;综合题.分析:根据a+b+c=9,ab+bc+ca=24,得到a+c=9﹣b,并代入ab+bc+ca=24,得到ac=24﹣(a+c)b,然后利用基本不等式ac,即可求得b的取值X围.解答:解:∵a+b+c=9,∴a+c=9﹣b,∵ab+ac+bc=(a+c)b+ac=24,得ac=24﹣(a+c)b;又∵ac,∴24﹣(a+c)b,即24﹣(9﹣b)b,整理得b2﹣6b+5≤0,∴1≤b≤5;故答案为[1,5].点评:此题考查了利用基本不等式求最值的问题,注意基本不等式成立的条件为一正、二定、三等,以及消元思想的应用,属中档题.13.设f(x),g(x)分别是定义在R上的奇函数和偶函数.当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).考点:利用导数研究函数的单调性;函数奇偶性的性质.专题:导数的概念及应用.分析:构造函数h(x)=f(x)g(x),利用已知可判断出其奇偶性和单调性,进而即可得出不等式的解集.解答:解:令h(x)=f(x)g(x),则h(﹣x)=f(﹣x)g(﹣x)=﹣f(x)g(x)=﹣h(x),因此函数h(x)在R上是奇函数.①∵当x<0时,h′(x)=f′(x)g(x)+f(x)g′(x)>0,∴h(x)在x<0时单调递增,故函数h(x)在R上单调递增.∵h(﹣3)=f(﹣3)g(﹣3)=0,∴h(x)=f(x)g(x)<0=h(﹣3),∴x<﹣3.②当x>0时,函数h(x)在R上是奇函数,可知:h(x)在(0,+∞)上单调递增,且h (3)=﹣h(﹣3)=0,∴h(x)<0,的解集为(0,3).∴不等式f(x)g(x)<0的解集是(﹣∞,﹣3)∪(0,3).故答案为(﹣∞,﹣3)∪(0,3).点评:恰当构造函数,熟练掌握函数的奇偶性单调性是解题的关键.14.观察下面的数阵,第20行第20个数是381 .12 3 45 6 7 8 910 11 12 13 14 15 1617 18 19 20 21 22 23 24 25…考点:归纳推理.专题:综合题;推理和证明.分析:观察这个数列知,第n行的最后一个数是n2,第19行的最后一个数是192=361,由此可求出第20行第20个数.解答:解:观察这个数列知,第n行的最后一个数是n2,第19行的最后一个数是192=361,∴第20行第20个数是361+20=381.故答案为:381.点评:本题给出三角形数阵,求第20行第20个数,着重考查了递归数列和归纳推理等知识点,属于基础题.二、解答题(共6小题,满分0分)15.给定两个命题:p:对任意实数x都有ax2+ax+1>0恒成立;q:关于x的方程x2﹣x+a=0有实数根,如果p和q中至少有一个为真命题,某某数a的取值X围.考点:复合命题的真假.专题:简易逻辑.分析:根据二次函数恒成立的充要条件,我们可以求出命题p为真时,实数a的取值X围,根据二次函数有实根的充要条件,我们可以求出命题q为真时,实数a的取值X围,则命题p,q中一个为真,分类讨论后,即可得到实数a的取值X围.解答:解:对任意实数x都有ax2+ax+1>0恒成立⇔a=0或⇔0≤a<4;关于x的方程x2﹣x+a=0有实数根⇔△=1﹣4a≥0⇔a≤;p和q中至少有一个为真命题如果p真q假,则有0≤a<4,且a>,∴<a<4;如果p假q真,则有a<0,或a≥4,且a≤∴a<0;如果p真q真,则有0≤a<4,且a≤,∴0≤a≤;所以实数a的取值X围为(﹣∞,4)点评:本题考查的知识点是命题的真假判断与应用,复合命题的真假,函数恒成立问题,其中判断出命题p与命题q为真时,实数a的取值X围,是解答本题的关键.16.已知复数z1满足(z1﹣2)(1+i)=1﹣i(i为虚数单位),复数z2的虚部为2,且z1•z2是实数,求z2.考点:复数代数形式的混合运算.专题:计算题.分析:利用复数的除法运算法则求出z1,设出复数z2;利用复数的乘法运算法则求出z1•z2;利用当虚部为0时复数为实数,求出z2.解答:解:∴z1=2﹣i设z2=a+2i(a∈R)∴z1•z2=(2﹣i)(a+2i)=(2a+2)+(4﹣a)i∵z1•z2是实数∴4﹣a=0解得a=4所以z2=4+2i点评:本题考查复数的除法、乘法运算法则、考查复数为实数的充要条件是虚部为0.17.已知函数f(x)=ax3+bx2+cx在点x0处取得极大值5,其导函数y=f′(x)的图象经过点(1,0),(2,0),如图所示,求:(Ⅰ)x0的值;(Ⅱ)a,b,c的值.考点:利用导数研究函数的极值.专题:计算题.分析:(1)观察图象满足f′(x)=0的点附近的导数的符号的变化情况,来确定极大值,求出x0的值;(2)根据图象可得f'(1)=0,f'(2)=0,f(1)=5,建立三个方程,联立方程组求解即可.解答:解:(Ⅰ)由图象可知,在(﹣∝,1)上f'(x)>0,在(1,2)上f'(x)<0.在(2,+∝)上f'(x)>0.故f(x)在(﹣∝,1),(2,+∝)上递增,在(1,2)上递减.因此f(x)在x=1处取得极大值,所以x0=1.(Ⅱ)f'(x)=3ax2+2bx+c,由f'(1)=0,f'(2)=0,f(1)=5,得解得a=2,b=﹣9,c=12.点评:本题主要考查了利用导数研究函数的极值,以及观察图形的能力,属于基础题.18.因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=.若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:取1.4).考点:函数模型的选择与应用.专题:函数的性质及应用.分析:(Ⅰ)通过a=4可知y=,分别令每段对应函数值大于等于4,计算即得结论;(Ⅱ)通过化简、利用基本不等式可知y=2•(5﹣x)+a[﹣1]=(14﹣x)+﹣a﹣4≥﹣a﹣4,再令﹣a﹣4≥4,计算即得结论.解答:解:(Ⅰ)∵a=4,∴y=,当0≤x≤4时,由﹣4≥4,解得x≥0,∴此时0≤x≤4;当4<x≤10时,由20﹣2x≥4,解得x≤8,∴此时4<x≤8;综上所述,0≤x≤8,即若一次投放4个单位的制剂,则有效治污时间可达8天;(Ⅱ)当6≤x≤10时,y=2•(5﹣x)+a[﹣1]=10﹣x+﹣a=(14﹣x)+﹣a﹣4,∵14﹣x∈[4,8],而1≤a≤4,∴∈[4,8],∴y=(14﹣x)+﹣a﹣4≥2﹣a﹣4=﹣a﹣4,当且仅当14﹣x=即x=14﹣4时,y有最小值为﹣a﹣4,令﹣a﹣4≥4,解得24﹣16≤a≤4,∴a的最小值为24﹣16≈1.6.点评:本题考查函数模型的选择与应用,考查分析问题、解决问题的能力,注意解题方法的积累,属于中档题.19.试比较n n+1与(n+1)n(n∈N*)的大小,分别取n=1,2,3,4,5加以试验,根据试验结果猜测一个一般性结论.考点:数学归纳法.专题:点列、递归数列与数学归纳法.分析:本题考查的知识点是归纳推理与数学归纳法,我们可以列出n n+1与(n+1)n(n∈N*)的前若干项,然后分别比较其大小,然后由归纳推理猜想出一个一般性的结论,然后利用数学归纳法进行证明.解答:解:当n=1时,n n+1=1,(n+1)n=2,此时,n n+1<(n+1)n,当n=2时,n n+1=8,(n+1)n=9,此时,n n+1<(n+1)n,当n=3时,n n+1=81,(n+1)n=64,此时,n n+1>(n+1)n,当n=4时,n n+1=1024,(n+1)n=625,此时,n n+1>(n+1)n,根据上述结论,我们猜想:当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.证明:①当n=3时,n n+1=34=81>(n+1)n=43=64即n n+1>(n+1)n成立.②假设当n=k时,k k+1>(k+1)k成立,即:>1则当n=k+1时,=(k+1)()k+1>(k+1)()k+1=>1即(k+1)k+2>(k+2)k+1成立,即当n=k+1时也成立,∴当n≥3时,n n+1>(n+1)n(n∈N*)恒成立.点评:本题考查了数学归纳法的应用,证明步骤的应用,归纳推理,考查计算能力,属于中档题.20.对于定义在区间D上的函数f(x)和g(x),如果对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,那么称函数f(x)在区间D上可被函数g(x)替代.(1)若,试判断在区间[[1,e]]上f(x)能否被g(x)替代?(2)记f(x)=x,g(x)=lnx,证明f(x)在上不能被g(x)替代;(3)设,若f(x)在区间[1,e]上能被g(x)替代,某某数a的X围.考点:函数恒成立问题;函数单调性的性质.专题:证明题;综合题;压轴题.分析:(1)构造函数,通过研究h(x)的导数得出其单调性,从而得出其在区间[[1,e]上的值域,可以证出f(x)能被g(x)替代;(2)构造函数k(x)=f(x)﹣g(x)=x﹣lnx,可得在区间上函数k(x)为减函数,在区间(1,m)上为增函数,因此函数k(x)在区间的最小值为k(1)=1,最大值是k(m)大于1,所以不满足对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,故f(x)在上不能被g(x)替代;(3)根据题意得出不等式,去掉绝对值,再根据x﹣lnx的正负转化为或,通过讨论右边函数的最值,得出实数a的X围解答:解:(1)∵,令,∵,∴h(x)在[1,e]上单调增,∴.∴|f(x)﹣g(x)|≤1,即在区间[[1,e]]上f(x)能被g(x)替代.(2)记k(x)=f(x)﹣g(x)=x﹣lnx,可得当时,k′(x)<0,在区间上函数k(x)为减函数,当1<x<m时,k′(x)>0,在区间(1,m)上函数k(x)为增函数∴函数k(x)在区间的最小值为k(1)=1,最大值是k(m)>1,所以不满足对于任意x∈D,都有|f(x)﹣g(x)|≤1成立,故f(x)在上不能被g(x)替代;(3)∵f(x)在区间[1,e]上能被g(x)替代,即|f(x)﹣g(x)|≤1对于x∈[1,e]恒成立.∴.,由(2)知,当x∈[1,e]时,x﹣lnx>0恒成立,∴有,令,∵=,由(1)的结果可知,∴F'(x)恒大于零,∴.②,令,∵=,∵,∴G'(x)恒大于零,∴,即实数a的X围为点评:本题考查了利用导数研究函数的单调性,通过分类讨论解决了不等式恒成立的问题,属于难题.。
2023年年高二下学期数学(理)期末试卷(附答案)
年高二下学期数学(理)期末试卷考试说明:(1)本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分, 满分150分.考试时间为120分钟;(2)第I 卷,第II 卷试题答案均答在答题卡上,交卷时只交答题卡.第I 卷 (选择题, 共60分)一、选择题(本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若复数z 满足()543=-z i ,则z 的虚部为 A. i 54- B.54- C. i 54 D.542. 命题“0232,2≥++∈∀x x R x ”的否定为A.0232,0200<++∈∃x x R xB. 0232,0200≤++∈∃x x R xC. 0232,2<++∈∀x x R xD. 0232,2≤++∈∀x x R x3. 已知随机变量ξ服从正态分布2(1,)N σ,且(2)0.6P ξ<=,则(01)P ξ<<= A. 0.4 B. 0.3 C. 0.2 D. 0.14. 在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为 A.()()q p ⌝∨⌝ B.()q p ⌝∨ C.()()q p ⌝∧⌝ D.q p ∨5. 某校从高一中随机抽取部分学生,将他们的模块测试成绩分成6组:[)[),60,50,50,40[)[),80,70,70,60 [)[)100,90,90,80加以统计,得到如图所示的频率分布直方图.已知 高一共有学生600名,据此 统计,该模块测试成绩不少于60分的学生人数为A.588B.480C.450D.120 6. 若不等式62<+ax 的解集为()2,1-,则实数a 等于A.8B.2C.4-D.8- 7. 在极坐标系中,圆2cos 2sin ρθθ=+的圆心的极坐标是A. (1,)2πB. (1,)4πC. (2,)4πD. (2,)2π8. 已知2=x 是函数23)(3+-=ax x x f 的极小值点, 那么函数)(x f 的极大值为 A. 15 B. 16 C. 17 D. 189. 阅读如下程序框图, 如果输出5=i ,那么在空白矩形框中应填入的语句为 A. 22-*=i S B. 12-*=i S C. i S *=2 D. 42+*i10. 袋中有20个大小相同的球,其中记上0号的有10个,记上n 号的有n 个(n =1,2,3,4).现从袋中任取一球,ξ表示所取球的标号. 若η2-=ξa ,1)(=ηE , 则a 的值为0,1==S i1+=i i 输出i结束开始i 是奇数12+*=i S10<S是否否 是第9题图A. 2B.2-C. 5.1D. 311. 观察下列数的特点:1,2,2,3,3,3,4,4,4,4,… 中,第100项是A .10 B. 13 C. 14 D.100 12. 若函数x x f a log )(=的图象与直线x y 31=相切,则a 的值为 A. 2ee B. e3e C. e e5D. 4ee第Ⅱ卷 (非选择题, 共90分)二、填空题(本大题共4小题,每小题5分,共20分.将答案填在答题卡相应的位置上)13. 曲线⎩⎨⎧==ααsin 4cos 6y x (α为参数)与曲线⎩⎨⎧==θθsin 24cos 24y x (θ为参数)的交点个数 为__________个.14. 圆222r y x =+在点()00,y x 处的切线方程为200r y y x x =+,类似地,可以求得椭圆183222=+y x 在()2,4处的切线方程为________.15. 执行右面的程序框图,若输入的ε的 值为25.0,则输出 的n 的值为_______.16. 商场每月售出的某种商品的件数X 是一个随机变量, 其分布列如右图. 每售出一件可 获利 300元, 如果销售不出去, 每件每月需要保养费100元. 该商场月初进货9件这种商品, 则销售该商品获利的期望为____.X1 2 3···12P121 121 121 ···121三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17. 在平面直角坐标系xOy 中,直线l 的参数方程为232252x t y t ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数).在极坐标系(与直角坐标系xOy 取相同的单位长度,且以原点O 为极点,以x 轴正半轴 为极轴)中,圆C 的方程为25sin ρθ=. (I )求圆C 的直角坐标方程;(II )设圆C 与直线l 交于,A B 两点,若点P 坐标为(3,5),求PB PA ⋅的值.18. 目前四年一度的世界杯在巴西举行,为调查哈三中高二学生是否熬夜看世界杯用简单随机抽样的方法调查了110名高二学生,结果如下表:男 女 是 40 20 否2030(I )若哈三中高二共有1100名学生,试估计大约有多少学生熬夜看球; (II )能否有99%以上的把握认为“熬夜看球与性别有关”? 2()P K k ≥0.050 0.010 0.001 k3.8416.63510.82822()()()()()n ad bc K a b c d a c b d -=++++性别是否熬夜看球19. 数列{}n a 中,11=a ,且12111+=++n a a nn ,(*∈N n ). (Ⅰ) 求432,,a a a ;(Ⅱ) 猜想数列{}n a 的通项公式并用数学归纳法证明.20. 已知函数x x f ln )(=,函数)(x g y =为函数)(x f 的反函数.(Ⅰ) 当0>x 时, 1)(+>ax x g 恒成立, 求a 的取值范围; (Ⅱ) 对于0>x , 均有)()(x g bx x f ≤≤, 求b 的取值范围.21. 哈三中高二某班为了对即将上市的班刊进行合理定价,将对班刊按事先拟定的价格进行单价x (元) 8 8.2 8.4 8.6 8.8 9 销量y (元)908483807568(I )求回归直线方程y bx a =+;(其中121()(),()n i i i ni i x x y y b a y bx x x ==∑--==-∑-)(II )预计今后的销售中,销量与单价服从(I )中的关系,且班刊的成本是4元/件,为了获得最大利润,班刊的单价定为多少元?22. 已知函数a x f -=)(x2ex a e )2(-+x +,其中a 为常数.(Ⅰ) 讨论函数)(x f 的单调区间; (Ⅱ) 设函数)e 2ln()(x ax h -=2e 2--+x a x (0>a ),求使得0)(≤x h 成立的x 的最小值;(Ⅲ) 已知方程0)(=x f 的两个根为21,x x , 并且满足ax x 2ln 21<<. 求证: 2)e e (21>+x x a .数学答案一. 解答题:22. (Ⅰ) 因为)1)(12()(+-+='xxae e x f ,所以, 当0≤a 时, 函数)(x f 在),(+∞-∞上为单调递增函数; 当0>a 时, 函数)(x f 在)1ln,(a-∞上为单调递增, 在).1(ln ∞+a 上为单调递减函数.(Ⅲ) 由(Ⅰ)知当0≤a 时, 函数)(x f 在),(+∞-∞上为单调递增函数, 方程至多有一根,所以0>a , 211ln,0)1(ln x ax af <<>, 又因为 =--)())2(ln(11x f e a f x 022)2ln(111>--+-x ae e a xx ,所以0)())2(ln(11=>-x f e a f x , 可得2)2ln(1x e ax<-.即212xx e e a<-, 所以2)(21>+x x e e a .。
高二数学下学期期末考试试题理含解析试题
智才艺州攀枝花市创界学校一中、石门、顺德一中、国华纪中四校二零二零—二零二壹高二数学下学期期末考试试题理〔含解析〕一、选择题:此题一共12小题,每一小题5分,一共60分。
在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的。
()211z a a i =-+-〔i 为虚数单位〕是纯虚数,那么复数13zi=+〔〕 A.3155i + B.3155i - C.3155i -+ D.3155i -- 【答案】D 【解析】 【分析】通过复数z 是纯虚数得到1a =-,得到z ,化简得到答案. 【详解】复数()211z a a i =-+-〔i 为虚数单位〕是纯虚数故答案选D【点睛】此题考察了复数的计算,属于根底题型.2.某班有50人,从中选10人均分2组〔即每组5人〕,一组清扫教室,一组清扫操场,那么不同的选派法有〔〕A.1055010CC⋅ B.10550102C C ⋅C.105250102C C A ⋅⋅D.55250452C C A ⋅⋅【答案】A 【解析】 【分析】根据先分组,后分配的原那么得到结果.【详解】由题意,先分组,可得10550102C C ⋅,再一组清扫教室,一组清扫操场,可得不同的选派法有1052105501025010A =2C C C C ⋅⋅⋅. 应选:A .【点睛】不同元素的分配问题,往往是先分组再分配.在分组时,通常有三种类型:①不均匀分组;②均匀分组;③局部均匀分组.注意各种分组类型中,不同分组方法的求解.3.组织同学参加社会调查,某小组一共有5名男同学,4名女同学。
现从该小组中选出3位同学分别到A ,B ,C 三地进展社会调查,假设选出的同学中男女均有,那么不同安排方法有〔〕A.70种B.140种C.420种D.840种【答案】C 【解析】 【分析】将情况分为2男1女和2女1男两种情况,相加得到答案. 【详解】2男1女时:213543240C C A ⨯⨯=2女1男时:123543180C C A ⨯⨯=一共有420种不同的安排方法 故答案选C【点睛】此题考察了排列组合的应用,将情况分为2男1女和2女1男两种情况是解题的关键.4.一辆汽车在平直的公路上行驶,由于遇到紧急情况,以速度()201241vt t t =-++〔t 的单位:s ,v 的单位:/m s 〕紧急刹车至停顿.那么刹车后汽车行驶的路程〔单位:m 〕是〔〕 A.1620ln 4+ B.1620ln5+ C.3220ln 4+D.3220ln5+【答案】B 【解析】 【分析】先计算汽车停顿的时间是,再利用定积分计算路程.【详解】当汽车停顿时,()2012401vt t t =-+=+,解得:4t =或者2t =-〔舍去负值〕, 所以()()442002012412220ln 11s t dt t t t t ⎛⎫=-+=-++ ⎪+⎝⎭⎰1620ln5=+. 故答案选B【点睛】此题考察了定积分的应用,意在考察学生的应用才能和计算才能. 5.将三枚骰子各掷一次,设事件A 为“三个点数都不一样〞,事件B 为“至少出现一个6点〞,那么概率(A |B)P 的值是〔〕A.6091B.12C.518D.91216【答案】A 【解析】考点:条件概率与HY 事件.分析:此题要求条件概率,根据要求的结果等于P 〔AB 〕÷P〔B 〕,需要先求出AB 同时发生的概率,除以B 发生的概率,根据等可能事件的概率公式做出要用的概率.代入算式得到结果. 解:∵P〔A|B 〕=P 〔AB 〕÷P〔B 〕,P 〔AB 〕=3606=60216P 〔B 〕=1-P 〔B 〕=1-3356=1-125216=91216∴P〔A/B 〕=P 〔AB 〕÷P〔B 〕=6021691216=6091 应选A .()210,0.1N 〔单位:kg 〕现抽取500袋样本,X表示抽取的面粉质量在()10,10.2kg 的袋数,那么X的数学期望约为〔〕 附:假设()2,ZN μσ,那么()0.6872P Z μσμσ-<≤+≈,()220.9545P Z μσμσ-<≤+≈A.171B.239C.341D.477【答案】B 【解析】 【分析】根据正态分布中特殊区间上的概率得到面粉质量在()10,10.2上的概率为0.47725,然后根据0(500,).47725XB 可求出X 的数学期望.【详解】设每袋面粉的质量为Z kg ,那么由题意得()210,0.1Z N ,∴()()()111010.29.810.2220.4772522PZ P Z P Z μσμσ<≤=<≤=-<≤+≈. 由题意得0(500,).47725X B ,∴0.4772()500238.6255239E X =⨯=≈. 应选B .【点睛】此题考察正态分布中特殊区间上的概率,解题时注意把所求概率转化为三个特殊区间上的概率即可.另外,由于面粉供应商所供应的某种袋装面粉总数较大,所以可认为X的分布列近似于二项分布,这是解题的关键.()21001121002a a x a x a x x +++=+-,那么0123102310a a a a a ++++⋅⋅⋅+=〔〕A.10B.-10C.1014D.1034【答案】C 【解析】 【分析】先求出0a ,对等式两边求导,代入数据1得到答案. 【详解】()21001121002a a x a x a x x +++=+-取10.002xa =⇒=对等式两边求导1231902923110(2)0a a a x x x x a +++⋅⋅⋅+⇒--=取1x =1231001231023102310140110a a a a a a a a a +++⋅⋅⋅+++++⋅⋅⋅+=⇒-=⇒故答案为C【点睛】此题考察了二项式定理,对两边求导是解题的关键.8.甲罐中有5个红球,2个白球和3个黑球,乙罐中有6个红球,2个白球和2个黑球,先从甲罐中随机取岀一个球放入乙罐,分别以1A ,2A ,3A 表示由甲罐取岀的球是红球、白球和黑球的事件,再从乙罐中随机取出一个球,以B 表示由乙罐取出的球是红球的事件,以下结论中不正确的选项是.......〔〕 A.事件B 与事件1A 不互相HYB.1A ,2A ,3A 是两两互斥的事件C.()35PB =D.()17|11PB A =【答案】C 【解析】 【分析】依次判断每个选项得到答案.【详解】A.乙罐取出的球是红球的事件与前面是否取出红球相关,正确 B.1A ,2A ,3A 两两不可能同时发生,正确C.()5756131011101122PB =⨯+⨯=,不正确 D.()11117()7211|1()112P BA P B A P A ⨯===,正确 故答案选C【点睛】此题考察了HY 事件,互斥事件,条件概率,综合性强,意在考察学生的综合应用才能和计算才能.9.*n N ∈,设215nx x ⎛⎫- ⎪⎝⎭的展开式的各项系数之和为M ,二项式系数之和为N ,假设992M N -=,那么展开式中x 的系数为〔〕A.-250B.250C.-500D.500【答案】A 【解析】 【分析】分别计算各项系数之和为M ,二项式系数之和为N ,代入等式得到n ,再计算x 的系数.【详解】215nx x ⎛⎫- ⎪⎝⎭的展开式获得1x =到4n M=二项式系数之和为2n N=5251031551(5)()5(1)r r r r r r r r T C x C x x---+=-=-取3r =值为-250故答案选A【点睛】此题考察了二项式定理,计算出n 的值是解题的关键.10.针对时下的“抖音热〞,某校团委对“学生性别和喜欢抖音是否有关〞作了一次调查,其中被调查的女生人数是男生人数的12,男生喜欢抖音的人数占男生人数的16,女生喜欢抖音的人数占女生人数23,假设有99%的把握认为是否喜欢抖音和性别有关,那么男生至少有〔〕参考公式:()()()()()22n ad bc K a b c d a c b d -=++++A.12人B.18人C.24人D.30人【答案】B 【解析】 【分析】设男生人数为x ,女生人数为2x,完善列联表,计算2 6.635K >解不等式得到答案. 【详解】设男生人数为x ,女生人数为x男女人数为整数 故答案选B【点睛】此题考察了HY 性检验,意在考察学生的计算才能和应用才能. 11.在复平面内,复数(),za bi a Rb R =+∈∈对应向量OZ 〔O 为坐标原点〕,设OZ r =,以射线Ox 为始边,OZ 为终边逆时针旋转的角为θ,那么()cos sin z r i θθ=+,法国数学家棣莫弗发现棣莫弗定理:()1111cos sin z r i θθ=+,()2222cos sin z r i θθ=+,那么()()12121212cos sin z z rr i θθθθ=+++⎡⎤⎣⎦,由棣莫弗定理导出了复数乘方公式:()()cos sin cos sin nn n z r i r n i n θθθθ=+=+⎡⎤⎣⎦,那么()101-+=〔〕A.1024-B.1024-+C.512-D.512-+【答案】D 【解析】 【分析】 将复数化为()1111cos sin z r i θθ=+的形式,再利用棣莫弗定理解得答案.【详解】()10101010222020112(cos sin )2(cos sin )2()51233332i i ππππ⎛⎫-+=+=+=-+=-+ ⎪⎝⎭【点睛】此题考察复数的计算,意在考察学生的阅读才能,解决问题的才能和计算才能.()xae f x x=,[]1,2x ∈,且[]12,1,2x x ∀∈,12x x ≠,()()12121f x f x x x -<-恒成立,那么实数a的取值范围是〔〕A.24,e ⎛⎤-∞ ⎥⎝⎦B.24,e ⎡⎫+∞⎪⎢⎣⎭C.(],0-∞D.[)0,+∞【答案】A 【解析】 【分析】 构造函数()()F x f x x =-,根据函数的单调性得到()'0F x ≤在[]1,2上恒成立,参数别离得到()()21x x a g x e x ≤=-,计算()g x 的最小值得到答案.【详解】不妨设12x x <,()()12121f x f x x x -<-,可得:()()1122f x x f x x ->-.令()()Fx f x x =-,那么()F x 在[]1,2单调递减,所以()'0F x ≤在[]1,2上恒成立,()()21'10x ae x F x x-=-≤, 当1x =时,a R ∈,当(]1,2x ∈时,()()21x x a g x e x ≤=-,那么()()()2222'01xx x x g x e x --+=<-, 所以()gx 在[]1,2单调递减,是()()2min 42g x g e ==,所以24,a e ⎛⎤∈-∞ ⎥⎝⎦. 【点睛】此题考察了函数的单调性,恒成立问题,构造函数()()F x f x x =-是解题的关键.二、填空题:此题一共4小题,每一小题5分,一共20分。
高二下学期期末数学考试试卷含答案(共5套)
i A. > B. > 1 C. a 2 > b 2 D. ab < a + b - 18、已知 x > 0 , y > 0 ,若 2 y + > m 2 + 2m 恒成立,则实数 m 的取值范围是()高二年级下学期期末考试数学试卷一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1、不等式 2x - 3 < 5 的解集为()A. (-1,4)B. (1,4)C. (1,-4)D. (-1,-4)2、设复数 z 满足 (1 + i) z = 2 ( i 为虚数单位),则复数 z 的共轭复数在复平面中对应的点在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限3、某市对公共场合禁烟进行网上调查,在参与调查的 2500 名男性市民中有 1000 名持支持态度,2500 名女性市民中有 2000 人持支持态度,在运用数据说明市民对在公共场合禁烟是 否支持与性别有关系时,用什么方法最有说明力( ) A. 平均数与方差 B. 回归直线方程 C. 独立性检验 D. 概率4、若函数 f ( x ) = ax 4 + bx 2 + c 满足 f '(1) = 2 ,则 f '(-1) 等于()A. - 1B. - 2C. 2D. 05 、函数 y = f ( x ) 的图象过原点,且它的导函数y = f '( x ) 的图象是如图所示的一条直线,y = f ( x ) 的图象的顶点在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、在一组样本数据 ( x , y ) , ( x , y ) ,……, ( x , y ) (n ≥ 2, x , x ⋅ ⋅ ⋅ x 不全相等)的散点图中, 1 122nn12n若所有样本点 ( x , y ) (i = 1,2 ⋅ ⋅ ⋅ n) 都在直线 y = i i ( )1 2x + 1上,则这组样本数据的样本相关系数为A. - 1B. 0C. 12D. 17、若 a < 1 , b > 1 那么下列命题正确的是( )1 1 b a b a8xx yA. m ≥ 4 或 m ≤ -2B. m ≥ 2 或 m ≤ -4C. - 4 < m < 2D. - 2 < m < 49、某同学为了了解某家庭人均用电量( y 度)与气温( x o C )的关系,曾由下表数据计算回归直线方程 y = - x + 50 ,现表中有一个数据被污损,则被污损的数据为()+ 的取值范围A. ⎢ ,+∞ ⎪B. - ∞, ⎥C. ⎢ ,+∞ ⎪D. - ∞,- ⎥气温 30 2010 0 人均用电量20 30*50A. 35B. 40C. 45D. 4810、已知函数 f ( x ) 的导函数 f '( x ) = a( x + 1)( x - a) ,若 f ( x ) 在 x = a 处取得极大值,则a 的取值范围是()A. (-∞,1)B. (-1,0)C. (0,1)D. (0,+∞ )11、已知函数 f ( x ) = x 3 - 2ax 2 - bx 在 x = 1 处切线的斜率为 1 ,若 ab > 0 ,则 1 1a b( )⎡ 9 ⎫ ⎛ 9 ⎤ ⎡ 1 ⎫ ⎛ 1 ⎤ ⎣ 2 ⎭⎝ 2 ⎦ ⎣ 2 ⎭ ⎝2 ⎦12、已知 a > b > c > 1 ,设 M = a - cN = a - bP = 2( a + b- ab ) 则 M 、 N 、 P 的大小2关系为( )A. P > N > MB. N > M > PC. M > N > P二、填空题(本大题共 4 个小题,每小题 5 分,共 20 分) 13、下列的一段推理过程中,推理错误的步骤是_______ ∵ a < b∴ a + a < b + a 即 2a < b + a ……①∴ 2a - 2b < b + a - 2b 即 2(a - b ) < a - b ……②∴ 2(a - b )(a - b ) < (a - b )(a - b ) 即 2(a - b )2 < (a - b )2 ……③∵ (a - b )2 > 0∴ 可证得 2 < 1 ……④D. P > M > N14、已知曲线 y = x 2 4- 3ln x 在点( x , f ( x ) 处的切线与直线 2 x + y - 1 = 0 垂直,则 x 的值为0 0 0________15、 f ( x ) = x +1( x > 2) 在 x = a 年取得最小值,则 a =________x - 216、设 a 、 b ∈ R , a - b > 2 ,则关于实数 x 的不等式 x - a + x - b > 2 的解集是_______三、解答题(本大题共 6 小题,共 70 分。
潍坊市高二数学下学期期末考试试题含解析
学生
甲
乙
丙
丁
戊
己
庚
辛
壬
癸
平均
标准差
数学
88
62
物理
75
63
若这10位同学的成绩能反映全班的成绩状况,且全班成绩服从正态分布,用实线表示全班数学成绩分布曲线,虚线表示全班物理成绩分布曲线,则下列正确的是( )
∴ 面 ,又 面 ,即有 ,故B正确
选项C中,点 运动到 中点时,即在△ 中 、 均为中位线
∴Q为中位线的交点
∴根据中位线的性质有: ,故C错误
选项D中,由于 ,直线 与 所成角即为 与 所成角:
结合下图分析知:点 在 上运动时
当 在 或 上时, 最大为45°
当 在 中点上时, 最小为
∴ 不可能是30°,故D正确
故选:B
【点睛】本题主要考查利用棱柱侧面展开图求解距离最值问题,意在考查学生对该知识的理解掌握水平.
8. 在桌面上有一个正四面体 .任意选取和桌面接触的平面的三边的其中一条边,以此边为轴将正四面体翻转至另一个平面,称为一次操作.如图,现底面为 ,且每次翻转后正四面体均在桌面上,则操作3次后,平面 再度与桌面接触的概率为( )
二、多项选择题:
9。 已知复数 的共轭复数为 ,且 ,则下列结论正确的是( )
A。 B。 虚部为 C。 D.
【答案】ACD
【解析】
【分析】
先利用题目条件可求得 ,再根据复数的模的计算公式,以及复数的有关概念和复数的四则运算法则即可判断各选项的真假.
【详解】由 可得, ,所以 , 虚部为 ;
2023-2024学年高二数学下学期期末试卷与答案
本套试卷根据九省联考题型命制,题型为8+3+3+52023-2024学年高二数学下学期期末试卷模式考试时间:120分钟 满分:150分 测试范围:新高考全部内容一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|1}A x x a =< ,{|12}B x x =<<,若A B A = ,则实数a 的取值范围是( ) A .(1,)+∞B .(1,2]C .(2,)+∞D .[2,)+∞2.已知复数(12)(1)2i z i +−=−+,则||(z = ) AB .2CD .33.若点(1,1)P −在角α的终边上,则sin()(4πα+= )A .1−B. C .0 D .14.在直三棱柱111ABC A B C −中,各棱长均为2,其顶点都在同一球面上,则该球的表面积为( ) A .283πBC .163π D5.设两个单位向量a ,b 的夹角为θ,若a在b 上的投影向量为13b ,则cos (θ= )A .13−B .13C. D.36.推动小流域综合治理提质增效,推进生态清洁小流域建设是助力乡村振兴和建设美丽中国的重要途径之一.某乡村落实该举措后因地制宜,发展旅游业,预计2023年平均每户将增加4000元收入,以后每年度平均每户较上一年增长的收入是在前一年每户增长收入的基础上以10%的增速增长的,则该乡村每年度平均每户较上一年增加的收入开始超过12000元的年份大约是( )(参考数据:3 1.10ln ≈,10 2.30ln ≈,11 2.40)ln ≈A .2033年B .2034年C .2035年D .2036年7.已知1F ,2F 分别为双曲线22126x y −=的左,右焦点,直线l 过点2F ,且与双曲线右支交于A ,B 两点,O 为坐标原点,△12AF F ,△12BF F 的内切圆的圆心分别为1O ,2O ,则△12OO O 面积的取值范围是( ) A. B.C.)+∞ D. 8.已知01a b <<<,e 为自然对数的底数,则下列不等式不成立的是( ) A .a b ae be <B .b a ae be <C .alna blnb >D .b a a b <二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分 9.下列说法错误的是( )A .事件A 的概率P (A )必满足0P <(A )1<B .事件A 的概率P (A )0.999=,则事件A 是必然事件C .用某种药物对患有胃溃疡的500名病人进行治疗,结果有380人有明显的疗效,现有患胃溃疡的病人服用此药,则估计此药有明显的疗效的可能性为76%D .某奖券的中奖率为50%,则某人购买此券10张,一定有5张中奖10.圆锥内半径最大的球称为该圆锥的内切球,若圆锥的顶点和底面的圆周都在同一个球面上,则称该球为圆锥的外接球.如图,圆锥PO 的内切球和外接球的球心重合,且圆锥PO 的底面直径为2a ,则( )A .设内切球的半径为1r ,外接球的半径为2r ,则212r r =B .设内切球的表面积1S ,外接球的表面积为2S ,则124S S =C .设圆锥的体积为1V ,内切球的体积为2V ,则1294V V = D .设S ,T 是圆锥底面圆上的两点,且ST a =,则平面PST 截内切球所得截面的面积为215a π11.古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状,把数分成许多类,如图中第一行图形中黑色小点个数:1,3,6,10,…称为三角形数,第二行图形中黑色小点个数:1,4,9,16,…称为正方形数,记三角形数构成数列{}n a ,正方形数构成数列{}n b ,则下列说法正确的是( )A .312123122221n n b b b b a a a a n ⋅…=+B .1849既是三角形数,又是正方形数C .12311113320n b b b b +++…+<D .*m N ∀∈,2m ,总存在p ,*q N ∈,使得m p q b a a =+成立 三、填空题:本题共3小题,每小题5分,共15分. 12.已知甲组样本数据(1i x i =,2,…,6),如下表所示:= . 13.从1,2,3,4,7,9六个数中任取不相同的两个数,分别作为对数的底数和真数,可得到 个不同的对数值.14.已知抛物线2:2(0)C y px p =>与圆22:5O x y +=交于A ,B 两点,且||4AB =,直线l 过C 的焦点F ,且与C 交于M ,N 两点,则||2||MF NF +的最小值为 .四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.已知函数()sin()cos()sin cos ,(0,||)222f x x x πππωϕωϕωϕ=+−+><的最小正周期为π,且()f x 图象关于直线6x π=对称.(1)求()f x 的解析式;(2)设函数2()()2sin g x f x x =+,求()g x 的单调增区间.16.华容道是古老的中国民间益智游戏,以其变化多端、百玩不厌的特点与魔方、独立钻石一起被国外智力专家并称为“智力游戏界的三个不可思议”.据《资治通鉴》注释中说“从此道可至华容也”.通过移动各个棋子,帮助曹操从初始位置移到棋盘最下方中部,从出口逃走.不允许跨越棋子,还要设法用最少的步数把曹操移到出口.2021年12月23日,在厦门莲坂外图书城四楼佳希魔方,厦门市新翔小学六年级学生胡宇帆现场挑战“最快时间解44×数字华容道”世界纪录,并以4.877秒打破了“最快时间解44×数字华容道”世界纪录,成为了该项目新的世界纪录保持者. (1)小明一周训练成绩如表所示,现用ˆˆy bxa =+作为经验回归方程类型,求出该回归方程; 第x (天) 1 2 3 4 5 6 7 用时y (秒)105844939352315(2)小明和小华比赛破解华容道,首局比赛小明获得胜利的概率是0.6,在后面的比赛中,若小明前一局胜利,则他赢下后一局的概率是0.7,若小明前一局失利,则他赢下后一局比赛的概率为0.5,比赛实行“五局三胜”,求小明最终赢下比赛的概率是多少.参考公式:对于一组数据1(u ,1)v ,2(u ,2)v , ,(n u ,)n v ,其回归直线ˆˆˆv u αβ=+的斜率和截距的最小二乘估计公式分别为:1ˆi β==,ˆˆv u αβ=− 参考数据:721140ii x ==∑,71994i i i x y ==∑17.如图,在多面体ABCDEF 中,四边形ABCD 为平行四边形,且112BD CD ==,BD CD ⊥.DE ⊥平面ABCD ,且12DEBF ==,//DE BF .点H ,G 分别为线段DC ,EF 上的动点,满足(02)DH EG λλ==<<.(1)证明:直线//GH 平面BCF ;(2)是否存在λ,使得直线GH 与平面AEF 所成角的正弦值为14?请说明理由.18.已知椭圆2222:1(0)x y C a b a b+=>>的上顶点为(0,2)D ,直线:l y kx =与椭圆C 交于A ,B 两点,且直线DA 与DB 的斜率之积为13−,(1)求椭圆C 的方程;(2)若直线//l l ′,直线l ′与椭圆C 交于M ,N 两点,且直线DM 与DN 的斜率之和为1,求l ′与l 之间距离的取值范围.19.已知函数2cos ()x xf x x −=,(0,)x ∈+∞. (1)证明:函数()f x 在(0,)+∞上有且只有一个零点; (2)当(0,)x π∈时,求函数()f x 的最小值; (3)设()i i g x k x b =+,1i =,2,若对任意的[2x π∈,)+∞,12()()()g x f x g x 恒成立,且不等式两端等号均能取到,求12k k +的最大值.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符2023-2024学年高二数学下学期期末试卷答案合题目要求的.1.已知集合{|1}A x x a =< ,{|12}B x x =<<,若A B A = ,则实数a 的取值范围是( ) A .(1,)+∞B .(1,2]C .(2,)+∞D .[2,)+∞【分析】由题知B A ⊆,再根据集合关系求解即可. 【解答】解:因为A B A = , 所以B A ⊆,因为{|1}A x x a =< ,{|12}B x x =<<, 则2a ,所以实数a 的取值范围是[2,)+∞. 故选:D .【点评】本题主要考查并集及其运算,属于基础题. 2.已知复数(12)(1)2i z i +−=−+,则||(z = ) AB .2CD .3【分析】利用复数的除法运算法则求出复数,再利用复数模的公式,即可求解. 【解答】解:2(2)(12)5111112(12)(12)5i i i iz i i i i −+−+−=+=+=+=+++−,则||z = 故选:A .【点评】本题主要考查复数模公式,属于基础题. 3.若点(1,1)P −在角α的终边上,则sin()(4πα+= )A .1−B. C .0 D .1【分析】由任意角的三角函数求出sin α,cos α,再由两角和的正弦公式代入即可得出答案. 【解答】解:因为点(1,1)P −在角α的终边上,则sin α=,cos α==所以sin()sin coscos sin0444πππααα+=+==. 故选:C .【点评】本题考查了任意角的三角函数的定义,两角和的正弦公式在三角函数求值中的应用,考查了转化思想,属于基础题.4.在直三棱柱111ABC A B C −中,各棱长均为2,其顶点都在同一球面上,则该球的表面积为( )A .283πB .27C .163π D 【分析】作出图形,找到球心,解三角形求出半径,再根据球的表面积公式,即可求解. 【解答】解:如图,设上下底面中心分别为E ,F , 取EF 的中点O ,连接BO ,BF ,则三棱柱111ABC A B C −外接球的半径R OB =,根据题意易知23BF =1OF =, 222247133R OB BF OF ∴==+=+=,∴三棱柱111ABC A B C −外接球的表面积为22843R ππ=. 故选:A .【点评】本题考查正三棱柱的外接球问题,属基础题.5.设两个单位向量a ,b 的夹角为θ,若a在b 上的投影向量为13b ,则cos (θ= )A .13−B .13C . D【分析】根据投影向量的定义可得13||||a b b b b b ⋅⋅=,结合向量的数量积运算求解即可. 【解答】解: a在b 上的投影向量为13b ,∴13||||a b b b b b ⋅⋅=, ∴211||33a b b ⋅== , ∴1||||cos 3a b θ=,1cos 3θ∴=. 故选:B .【点评】本题主要考查了向量的数量积运算,考查了投影向量的定义,属于基础题.6.推动小流域综合治理提质增效,推进生态清洁小流域建设是助力乡村振兴和建设美丽中国的重要途径之一.某乡村落实该举措后因地制宜,发展旅游业,预计2023年平均每户将增加4000元收入,以后每年度平均每户较上一年增长的收入是在前一年每户增长收入的基础上以10%的增速增长的,则该乡村每年度平均每户较上一年增加的收入开始超过12000元的年份大约是( )(参考数据:3 1.10ln ≈,10 2.30ln ≈,11 2.40)ln ≈A .2033年B .2034年C .2035年D .2036年【分析】设经过n 年之后,每年度平均每户收入增加y 元,且4000(110%)12000n y =⋅+>,解不等式可得答案.【解答】解:设经过n 年之后,每年度平均每户收入增加y 元, 由题得4000(110%)12000n y =⋅+>,即1.13n >, 则 1.13nln ln >,33111.11110ln ln n ln ln ln >=≈−,又*n N ∈,则12n =.所以所求年份大约是2035年. 故选:C .【点评】本题考查函数模型的运用,考查学生的计算能力,属于中档题.7.已知1F ,2F 分别为双曲线22126x y −=的左,右焦点,直线l 过点2F ,且与双曲线右支交于A ,B 两点,O 为坐标原点,△12AF F ,△12BF F 的内切圆的圆心分别为1O ,2O ,则△12OO O 面积的取值范围是( )A. B.C.)+∞ D. 【分析】先根据切线长定理判定两个内切圆的横坐标值,再设△12AF F 的内切圆半径为1r ,根据图形性质计算得△12OO O面积的解析式12112)OO O S r r =+ ,再利用函数单调性即可求得△12OO O 面积的取值范围.【解答】解:设圆1O 与1AF ,2AF ,12F F 分别切于点M ,N ,P ,由双曲线定义知,12||||2AF AF a −=,∴12||||||||2AM MF AN NF a +−−=||||AM AN = ,11||||MF F P =,22||||NF F P =,∴12||||F P F P −12||||2F P F P c +=∴12|||F P F P c a ==−,即点P 为双曲线的右顶点,1O P x ⊥ 轴,1O2O12O F 平分21AF F ∠,22O F 平分21BF F ∠,∴1222O F O π∠=, 设△12AF F 、△12BF F 的内切圆半径分别为1r ,2r ,12O O x ⊥ 轴,∴2122||2r r PF ⋅==,||OP =∴12121112()||)2OO O S r r OP r r =+⋅=+ ,设直线AB 倾斜角为α,又AB 为双曲线右支上两点,又渐近线方程为y=,∴由题意得2(,)33ππα∈,∴121(,)63O F Fππ∠∈,∴121tan O F F∠,即1(3r∈,又12112)OO OS rr=+在单调递减,在单调递增,当1r=时,122OO OS=,此时取得最小值,当1r=12OO OS=,当1r=时,12OO OS=,∴12OO OS∈.故选:B.【点评】本题考查了双曲线的性质,属于中档题.8.已知01a b<<<,e为自然对数的底数,则下列不等式不成立的是()A.a bae be<B.b aae be<C.alna blnb>D.b aa b<【分析】采用逐一验证的方法,通过构造函数()xf x xe=,()xeh xx=,()t x xlnx=,()lnxg xx=,根据这些函数在(0,1)上的单调性可得结果.【解答】解:因为01a b<<<,e为自然对数的底数,对于A,设()xf x xe=,01x<<,则()()0xf x x e′=+>,()f x在(0,1)上单调递增,故f(a)f<(b),即a bae be<,故A正确;对于B,设()xeh xx=,01x<<,则2(1)()0xe xh xx−′=<在(0,1)上恒成立,故()h x在(0,1)上单调递减,故h(a)h>(b),即a be ea b>,故b aae be<,故B正确;对于C,设()t x xlnx=,01x<<,则()1t x lnx′=+,当1(0,)xe∈时,()0t x′<,当1(xe∈,1)时,()0t x′>,故()t x在1(0,)e上单调递减,在1(e,1)上单调递增,故t(a)与t(b)得大小关系不确定,故C错误;对于D,设()lnxg xx=,01x<<,则21()0lnxg xx−′=>,故函数()g x在(0,1)上单调递增,所以g (a )g <(b ),即lna lnba b<,化为blna alnb <,即b a lna lnb <,即b a a b <,故D 正确. 故选:C .【点评】本题考查了利用导数研究函数的单调性,依题意合理构造函数,并判断出所构造的函数的单调性是解决问题的关键,考查逻辑推理能力与数学运算能力,属于中档题.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分 9.下列说法错误的是( )A .事件A 的概率P (A )必满足0P <(A )1<B .事件A 的概率P (A )0.999=,则事件A 是必然事件C .用某种药物对患有胃溃疡的500名病人进行治疗,结果有380人有明显的疗效,现有患胃溃疡的病人服用此药,则估计此药有明显的疗效的可能性为76%D .某奖券的中奖率为50%,则某人购买此券10张,一定有5张中奖 【分析】根据概率的定义和性质逐个判断各个选项即可.【解答】解:对于A ,由概率的基本性质可知,0P (A )1 ,故A 错误; 对于B ,事件A 的概率P (A )0.999=,则事件A 是随机事件,故B 错误; 对于C ,由题意可知,估计此药有明显的疗效的可能性为380100%76%500×=,故C 正确; 对于D ,某奖券的中奖率为50%,则某人购买此券10张,可能有5张中奖,故D 错误. 故选:ABD .【点评】本题主要考查了概率的定义和性质,属于基础题.10.圆锥内半径最大的球称为该圆锥的内切球,若圆锥的顶点和底面的圆周都在同一个球面上,则称该球为圆锥的外接球.如图,圆锥PO 的内切球和外接球的球心重合,且圆锥PO 的底面直径为2a ,则( )A .设内切球的半径为1r ,外接球的半径为2r ,则212r r =B .设内切球的表面积1S ,外接球的表面积为2S ,则124S S =C .设圆锥的体积为1V ,内切球的体积为2V ,则1294V V = D .设S ,T 是圆锥底面圆上的两点,且ST a =,则平面PST 截内切球所得截面的面积为215a π【分析】作出圆锥的轴截面,依题意可得PAB ∆为等边三角形,设球心为G (即为PAB ∆的重心),即可求出PAB ∆的外接圆和内切圆的半径,即可为圆锥的外接球、内切球的半径,即可判断A 、B ,由圆锥及球的体积公式判断C , ST 所对的圆心角为3π(在圆O 上),设ST 的中点为D ,即可求出OD ,不妨设D 为OB 上的点,连接PD ,过点G 作GE PD ⊥交PD 于点E ,利用三角形相似求出GE ,即可求出截面圆的半径,从而判断D . 【解答】解:作出圆锥的轴截面如下:因为圆锥PO 的内切球和外接球的球心重合,所以PAB ∆为等边三角形, 又2PB a =,所以OP ,设球心为G (即为PAB ∆的重心),所以23PGPO ==,13OG PO ==,即内切球的半径为1r OG ==,外接球的半径为2r PG ==, 所以212r r =,故A 正确;设内切球的表面积1S ,外接球的表面积为2S ,则214S S =,故B 错误; 设圆锥的体积为1V,则23113V a a π==, 内切球的体积2V,则3324)3V a π==, 所以1294V V =,故C 正确;设S 、T 是圆锥底面圆上的两点,且ST a =,则ST 所对的圆心角为3π(在圆O 上),设ST 的中点为D,则sin3OD a π==,不妨设D 为OB 上的点,连接PD ,则PD ,过点G 作GE PD ⊥交PD 于点E ,则PEG POD ∆∆∽, 所以GE PG OD PD ==,解得GE =, 所以平面PST截内切球截面圆的半径r 所以截面圆的面积为2215a r ππ=,故D 正确.故选:ACD .【点评】本题考查圆锥的内切球与外接球问题,属中档题.11.古希腊毕达哥拉斯学派的数学家用沙粒和小石子来研究数,他们根据沙粒或小石子所排列的形状,把数分成许多类,如图中第一行图形中黑色小点个数:1,3,6,10,…称为三角形数,第二行图形中黑色小点个数:1,4,9,16,…称为正方形数,记三角形数构成数列{}n a ,正方形数构成数列{}n b ,则下列说法正确的是( )A .312123122221n n b b b b a a a a n ⋅…=+B .1849既是三角形数,又是正方形数C .12311113320n b b b b +++…+<D .*m N ∀∈,2m ,总存在p ,*q N ∈,使得mp q b a a =+成立 【分析】利用累加法分别求出n a ,n b ,进而分别利用裂项求和法、放缩法,逐个分析各个选项即可. 【解答】解:三角形数构成数列{}:1n a ,3,6,10,…,易发现212a a −=,323a a −=,434a a −=,…,1(2)n n a a n n −−= , 累加得,1(1)(2)2342n n n a a n −+−=+++…+=,(1)(2)2n n n a n +∴= , 显然11a =满足上式, (1)2n n n a +∴=, 正方形数构成数列{}:1n b ,4,9,16,…,易发现213b b −=,325b b −=,437b b −=,…,121(2)n n b b n n −−=− , 累加得1(22)(1)2n n n b b +−−=, 2(2)n b n n ∴= , 显然11b =满足上式,2n b n ∴=,对于A ,22(1)1n n b n na n n n ==++, 3121231231222223411n n b b b b n a a a a n n ⋅⋅⋅…⋅=×××…×=++,故A 正确; 对于B ,令(1)18492nn n a +==,得(1)3698n n +=, 606136603698×=< ,616238443698×=>,(1)3698n n ∴+=无正整数解,即1849不是三角形数,令21849nb n ==,43n ∴=,即1849是正方形数,故B 错误; 对于C ,22114112()412121n b n n n n ==<=−−−+, ∴2212311111115111111511332331()2()2()434577921214521202120nb b b b nn n n n +++…++++…+<+−+−+…+−+−−<−+++,故C 正确;对于D ,取m p q ==,且*m N ∈, 令2(1)(1)22m m m m m +−=+,有1mm m b a a −=+,故*m N ∀∈,2m ,总存在p ,*q N ∈,使得mp q b a a =+成立,故D 正确. 故选:ACD .【点评】本题主要考查了数列的应用,考查了归纳推理,考查了转化思想和运算求解能力,属于中档题.三、填空题:本题共3小题,每小题5分,共15分. 12.已知甲组样本数据(1i x i =,2,…,6),如下表所示:1x2x3x4x5x6x2 3 3 4 6 6若乙组样本数据23i i y x =−,则乙组样本数据的平均数y = 5 ,乙组样本数据的方差2s =乙. 【分析】根据题意,求出乙组数据,结合平均数和方差定义计算,即可得答案. 【解答】解:根据题意,乙组样本数据如下表所示:1y2y3y4y5y6y1 3 3 5 9 9则乙组样本数据的平均数1(133599)56y =×+++++=, 乙组样本数据的方差()()()()()()222222212815353555959563s =−+−+−+−+−+−=乙. 故答案为:5;283. 【点评】本题考查样本数据平均数、方差的计算,注意平均数和方差的计算公式,属于基础题. 13.从1,2,3,4,7,9六个数中任取不相同的两个数,分别作为对数的底数和真数,可得到 17 个不同的对数值.【分析】分所取得两个数中是否含有1分为两类,再利用排列的计算公式、对数的运算法则和性质即可得出.【解答】解:根据题意,分2种情况讨论:①当取得两个数中有一个是1时,则1只能作真数,此时log 10a =,2a =或3或4或7或9. ②所取的两个数不含有1时,即从2,3,4,7,9中任取两个, 分别作为底数与真数可有2520A =个对数,其中3924log log =,2439log log =,4923log log =,2349log log =,综上可知:共可以得到201417+−=个不同的对数值. 故答案为:17.【点评】本题考查计数原理的应用,熟练掌握对数的运算法则和性质、排列的计算公式是解题的关键.14.已知抛物线2:2(0)C y px p =>与圆22:5O x y +=交于A ,B 两点,且||4AB =,直线l 过C 的焦点F ,且与C 交于M ,N 两点,则||2||MF NF +的最小值为 3+【分析】由已知可求得抛物线方程,设直线:1l x my =+,与抛物线联立方程组可求得111||||MF NF +=,进而根据基本不等式求||2||MF NF +最小值即可. 【解答】解:由抛物线2:2(0)C y px p =>与圆22:5O x y +=交于A ,B 两点,且||4AB =, 得到第一象限交点(1,2)在抛物线2:2(0)C y px p =>上,所以222p =, 解得2p =,所以2:4C y x =,则(1,0)F ,设直线:1l x my =+,与24y x =联立得2440y my −−=, 设1(M x ,1)y ,2(N x ,2)y ,所以124y y m +=,124y y =−,所以212|||4(1)MN y y m −=+, 由抛物线的定义,21212221221212122()41111441()||||111144()316x x m y y m y y MF NF x x x x x x m m y y ++++++=+====+++++++++,所以112||||||2||(||2||)()33||||||||NF MF MF NF MF NF MF NF MF NF +=++=+++, 当且仅当||1MF =,||1NF =+故答案为:3+【点评】本题考查求抛物线的方程,考查基本不等式的应用,考查运算求解能力,属中档题. 四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15.已知函数()sin()cos()sin cos ,(0,||)222f x x x πππωϕωϕωϕ=+−+><的最小正周期为π,且()f x 图象关于直线6x π=对称.(1)求()f x 的解析式;(2)设函数2()()2sin g x f x x =+,求()g x 的单调增区间. 【分析】(1)利用诱导公式及两角和的正弦公式化简,再根据正弦函数的周期性及对称性即可得解; (2)先利用降幂公式及辅助角公式化简,再根据正弦函数的单调性即可得解. 【解答】解:(1)已知()sin()cos()sin cos cos sin sin cos sin()22f x x x x x x ππωϕωϕωϕωϕωϕ=+−+=+=+, 因为函数的最小正周期为π, 所以2ππω=,故2ω=,又因()f x 图象关于直线6x π=对称,所以262k ππϕπ×++,k Z ∈,则,6k k Z πϕπ=+∈,又||2πϕ<, 所以6πϕ=,所以()sin(2)6f x x π=+;(2)由(1)得2()sin(2)6g x x sin x π=++11cos 22cos 2222xx x −++⋅12cos 21sin(2)126x x x π−+=−+, 令222262k x k πππππ−+−+ ,得,63k x k k Z ππππ−++∈,所以函数()g x 的单调递增区间为[,],63k k k Z ππππ−++∈.【点评】本题考查了三角函数的性质,重点考查了三角恒等变换,属中档题.16.华容道是古老的中国民间益智游戏,以其变化多端、百玩不厌的特点与魔方、独立钻石一起被国外智力专家并称为“智力游戏界的三个不可思议”.据《资治通鉴》注释中说“从此道可至华容也”.通过移动各个棋子,帮助曹操从初始位置移到棋盘最下方中部,从出口逃走.不允许跨越棋子,还要设法用最少的步数把曹操移到出口.2021年12月23日,在厦门莲坂外图书城四楼佳希魔方,厦门市新翔小学六年级学生胡宇帆现场挑战“最快时间解44×数字华容道”世界纪录,并以4.877秒打破了“最快时间解44×数字华容道”世界纪录,成为了该项目新的世界纪录保持者. (1)小明一周训练成绩如表所示,现用ˆˆy bxa =+作为经验回归方程类型,求出该回归方程; 第x (天) 1 2 3 4 5 6 7 用时y (秒)105844939352315(2)小明和小华比赛破解华容道,首局比赛小明获得胜利的概率是0.6,在后面的比赛中,若小明前一局胜利,则他赢下后一局的概率是0.7,若小明前一局失利,则他赢下后一局比赛的概率为0.5,比赛实行“五局三胜”,求小明最终赢下比赛的概率是多少.参考公式:对于一组数据1(u ,1)v ,2(u ,2)v , ,(n u ,)n v ,其回归直线ˆˆˆv u αβ=+的斜率和截距的最小二乘估计公式分别为:121()()ˆ()nii i nii uu v v uu β==−−=−∑∑,ˆˆv u αβ=− 参考数据:721140ii x ==∑,71994i i i x y ==∑【分析】(1)先求出,x y ,套公式求出ˆb和ˆa ,得到回归方程; (2)记小明获胜时比赛的局数为X ,则X 的可能取值为3,4,5,分别求出其对应的概率,利用概率的加法公式即可求解.【解答】解:(1)由题意,根据表格中的数据,可得11(1234567)4,(105844939352315)5077x y =++++++==++++++=, 可得71722179941400ˆ14.5287i ii ii x yxybxx ==−−===−−∑∑,所以ˆˆ108a y bx =−=,因此y 关于x 的回归方程为:14.5108y x =−+;(2)记小明获胜时比赛的局数为X ,则X 的可能取值为3,4,5, (3)0.60.70.70.294P X ==××=,(4)0.40.50.70.70.60.30.50.70.60.70.30.50.224P X ==×××+×××+×××=,(5)0.60.70.30.50.50.60.30.50.30.50.60.30.50.50.70.40.50.50.70.70.40.50.30.50.70.40.50.70.30.50.1675P X ==××××+××××+××××+××××+××××+××××=,0.2940.2240.16750.6855P =++=小明获胜.【点评】本题考查了线性回归方程的计算以及互斥事件的概率加法计算,属于中档题. 17.如图,在多面体ABCDEF 中,四边形ABCD 为平行四边形,且112BD CD ==,BD CD ⊥.DE ⊥平面ABCD ,且12DEBF ==,//DE BF .点H ,G 分别为线段DC ,EF 上的动点,满足(02)DH EG λλ==<<.(1)证明:直线//GH 平面BCF ;(2)是否存在λ,使得直线GH 与平面AEF 所成角的正弦值为14?请说明理由.【分析】(1)法()i 过点G 作BD 的垂线,由题意可得//QH 平面BCF ,且//GQ 平面BCF ,进而可证得平面//GQH 平面BCF ,再证得线面的平行;法()ii 由题意建立空间直角坐标系,求出各点的坐标,由向量的数量积为0,可得向量垂直,再证得线面的平行;(2)由空间向量求出直线与平面的法向量的夹角的余弦值,进而可得线面所成的角的正弦值,由题意可得λ的值.【解答】(1)证明:法()i 过点G 作BD 的垂线,交BD 于点Q ,则//GQ BF , 连接QH ,则12DQ λ=,且由DH λ=,所以2DH DQ =,//QH BC ,又因为QH ⊂平面BCF ,BC ⊂平面BCF , 所以//QH 平面BCF ,且//GQ 平面BCF , 又GQ QH Q = ,所以平面//GQH 平面BCF , 又因为HG HQG ⊂, 所以//HG 平面BCF ;法()ii 因为112BDCD ==,12DE BF ==,如图,以D 为原点,分别以DC ,DB ,DE 方向为x ,y ,z 轴建立坐标系,由题意可得(2C ,0,0),(0B ,1,0),(2A −,1,0),E,F , (2,1,0)BC =−,BF =,(2,AE =−,EF = , 设平面BCF 的法向量为1111(,,)n x y z =,则1100n BC n BF ⋅= ⋅=,即111200x y −= = ,取11x =,解得1(1,2,0)n =, 因为2DC EF ==,EG DH λ==,所以,22DH DC EG EF λλ== ,2EG EF λ=,解得(H λ,0,0),(0,)2G λ+,(,,)2GH λλ=−−, 所以10n GH ⋅=,且GH ⊂/平面BCF ,所以//GH 平面BCF ;(2)设平面AEF 的法向量为2222(,,)n x y z =, 则由2200n AE n EF ⋅= ⋅=,即22222200x y y −= +=,令21z =−,解得2n =1)−,所以2n GH ⋅=++=,||GH=,||n =,所以2cos n <,GH >=,设直线GH 与平面AEF 所成的角为θ, 则2sin |cos n θ=<,||GH >= , 解得1λ=.【点评】本题考查线面平行的证法及空间向量的方法求线面所成角的正弦值,属于中档题.18.已知椭圆2222:1(0)x y C a b a b+=>>的上顶点为(0,2)D ,直线:l y kx =与椭圆C 交于A ,B 两点,且直线DA 与DB 的斜率之积为13−,(1)求椭圆C 的方程;(2)若直线//l l ′,直线l ′与椭圆C 交于M ,N 两点,且直线DM 与DN 的斜率之和为1,求l ′与l 之间距离的取值范围.【分析】(1)联立方程组,根据13DA DB k k =−,利用韦达定理可求a ,从而得解;(2)设直线:l y kx m =+,(2)m ≠±,联立方程 组,根据1DM DN k k +=,利用韦达定理可得42m k =−,由两平行直线间的距离公式,并利用导数求最值. 【解答】解:(1)设1(A x ,1)kx ,2(B x ,2)kx ,由题意,可知2b =,则椭圆222:14x y C a +=, 联立方程组22214y kxx y a=+= ,整理可得:2222(4)40a k x a +−=,显然△0>,且120x x +=,2122244a x x a k −=+, 因为13DA DB k k =−,即12122213kx kx x x −−⋅=−, 化简得21212(31)6()120k x x k x x +−++=,所以22224(31)1204a k a k −+⋅+=+, 解得212a =,所以椭圆22:1124x y C +=; (2)由直线//l l ′,设直线:l y kx m =+,(2)m ≠±,设3(M x ,3)kx m +,4(B x ,4)kx m +, 联立方程组221124y kx m x y =+ +=,整理可得:222(13)63120k x kmx m +++−=, 则△222222364(31)(4)12(124)0k m k m k m −+−=−+>,可得22124m k + ,① 且342631kmx x k −+=+,234231231m x x k −=+, 又因为1DM DN k k +=,即3434221kx m kx m x x +−+−+=, 化简得3434(21)(2)()0k x x m x x −+−+=,则2223126(21)(2)03131m kmk m k k −−−+−=++, 化简得(2)(42)0m k m −−−=,因为2m ≠±,所以42m k =−, 结合①可知04k <<,l ′与l之间距离d = 设22441()1k k g k k −+=+,则222(21)(2)()(1)k k g k k −+′=+, 当12k =时,()0g k ′=, 则当1(0,)2k ∈,()0g k ′<,则()g x 单调递减,当1(,4)2k ∈,()0g k ′>,则()g x 单调递增,所以1()()02min g x g ==,又(0)1g =,(4)g =所以49()17g x <,所以d ∈.【点评】本题考查椭圆方程的求法,直线与椭圆的综合应用,平行线间的距离公式的应用,用导函数的性质可得函数值域的求法,属于中档题. 19.已知函数2cos ()x xf x x−=,(0,)x ∈+∞. (1)证明:函数()f x 在(0,)+∞上有且只有一个零点; (2)当(0,)x π∈时,求函数()f x 的最小值; (3)设()i i g x k x b =+,1i =,2,若对任意的[2x π∈,)+∞,12()()()g x f x g x 恒成立,且不等式两端等号均能取到,求12k k +的最大值.【分析】(1)设()cos h x x x =−,求导分析单调性,可得存在唯一0(6x π∈,)π,使得0()0h x =,进而可得答案.(2)求导得3sin 2cos ()x x x xf x x −−′=,分析()f x ′的符号,进而可得()f x 的单调性,即可得出答案.(3)分析当2b π<−时,0b 时,当2b π=−时,20b π−< 时,12k k +的最大值,即可得出答案.【解答】解:(1)证明:设()cos h x x x =−, 则()sin 1h x x ′=−−, 因为1sin 1x − , 所以()0h x ′ 恒成立,所以()h x 在(0,)+∞上单调递减,又因为()066h ππ−>,()10h ππ=−−<, 所以存在唯一0(6x π∈,)π,使得0()0h x =,所以()f x 在(0,)+∞上有且只有一个零点, (2)3sin 2cos ()x x x xf x x −−′=, 设()sin 2cos m x x x x x =−−,()1sin cos 1cos (tan )m x x x x x x x ′=+−=+−, ()cos cos sin m x x x x x ′′=−+, 当(0,)x π∈上,sin 0x x >,()0m x ′′>,()m x ′单调递增, 又(0)10m ′=>,所以()m x 在(0,)π上的单调递增,因为()02m π=,所以当(0,)2x π∈时,()0m x <,()f x 单调递减,当(2x π∈,)π时,()0m x >,()f x 单调递增,所以()f x 在(0,)π上有最小值2()2f ππ=−.(3)由(1)可知,[2x π∈,)+∞时,()0f x <,由(2)可知2x π=为()f x 的极小值点,且[x π∈,)+∞时,222cos 112x x x x x πππ−−−−−>− , 所以[2x π∈,)+∞时,()f x 在2x π=取到最小值2π−,2b π<−时,10k >,存在1(x m ∈,)+∞使得1()0g x >与1()()f x g x 矛盾,0b 时,20k <,存在2(x m ∈,)+∞使得22()g x π<−与2()()f x g x 矛盾,当2b π=−时,令10k =,则12()g x π=−,满足题,此时1k 取得最大值,再过点2(0,)π−作函数()f x 的切线,设切点为(P t ,())f t ,则2()()f t b f t t +′=,解得32t π=, 所以切线方程为2829x y ππ=−, 当2b π=−时,2k 的最大值为289π−,又因为3(2x π∈,)+∞时,33sin 2cos 22cos ()x x x x x x f x x x −−−′=, 设322cos ()x xx x ϕ−=, 4442sin 3cos 233()0x x x x x x xx x x x ϕ−++−++−′=<=<,所以()x ϕ单调递减, 即3222cos 8()9x x f x x π−′,所以20π−< 时,12k k +取得最大值289π,接下来证明当[2x π∈,)+∞时,22cos 829x x x x ππ−− , 先证:32282()cos 09x x q x x x ππ=−+− ,[2x π∈,3]2π恒成立, 2284()1sin 3x xq x x ππ′=−++, 2164()cos 3x q x x ππ′′=−+,216()sin 3q x x π′′′=−, 当[2x π∈,3]2π时,()q x ′′′单调递增, 216()1023q ππ′′′=−+<,2316()1023q ππ′′′=+>,216()03q ππ′′′=>, 所以存在唯一的1(2x π∈,)π使得()0q x ′′′=,且(2x π∈,1)x 时,()0q x ′′′<,()q x ′′单调递减,1(x x ∈,3)2π时,()0q x ′′′>,()q x ′′单调递增, 因为2()023q π′=>,1()03q π′=−<,3()02q π′=, 所以存在唯一的3(2x π∈,)π使得()0q x ′=,且(2x π∈,3)x 时,()0q x ′>,()q x 单调递增, 3(x x ∈,3)2π时,()0q x ′<,()q x 单调递减, 又因为()29q ππ=,3()02q π=,所以当[2x π∈,3]2π时,32282()cos 09x x q x x x ππ=−+− , 当3[2x π∈,)+∞时,228442()1sin (1)1sin 0333x x x x q xx x πππ′=−++=−++ , 所以()0q x , 综上所述,[2x π∈,)+∞时,22cos 829x x x x ππ−− , 当3(2x π∈,)+∞,332sin 2cos 22cos 8()9x x x x x x f x x x π−−−′= , 所以当20b π−< 时,2k 的最大值为289π,即12k k +的最大值为289π.【点评】本题考查导数的综合应用,解题中需要理清思路,属于难题.。
高二数学下学期期末考试试卷含答案(共3套)
高二年级下学期期末考试数学试卷(考试时间:120分钟;满分:150分)一、选择题(本大题共12小题,每小题5分,共60分;在每小题给出的四个选项中,只有一项是符合题目要求的)1.设103iZ i=+,则Z 的共轭复数为( ) A .13i -+ B .13i -- C .13i + D .13i -2.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( ) A .144 B .120 C .72 D .243.已知(1,21,0),(2,,),a t t b t t b a =--=-则的最小值是( )A B C D4.已知正三棱锥P ABC -的外接球O 的半径为1,且满足0,OA OB OC ++=则正三棱锥的体积为( )A .4 B .34C .2D .4 5.已知函数(),1,x xf x a b e=-<<且则( ) A .()()f a f b = B .()()f a f b <C .()()f a f b >D .()()f a f b ,大小关系不能确定 6.若随机变量~(,),X B n p 且()6,()3,(1)E X D X P X ===则的值为( ) A .232-• B .42- C .1032-• D .82-7.已知10件产品有2件是次品.为保证使2件次品全部检验出的概率超过0.6,至少应抽取作检验的产品件数为( )A .6B .7C .8D .98.若2211S x dx =⎰,2211S dx x =⎰,231x S e dx =⎰,则123,,S S S 的大小关系为( )A .123S S S <<B .213S S S <<C .231S S S <<D .321S S S <<9.平面内有n 条直线,最多可将平面分成()f n 个区域,则()f n 的表达式为( )A .1n +B .2nC .222n n ++ D .21n n ++10.设m 为正整数,2()m x y +展开式的二项式系数的最大值为a ,21()m x y ++展开式的二项式系数的最大值为b .若137a b =,则m =( )A .5B .6C .7D .811.已知一系列样本点(,)i i x y (1,2,3,i =…,)n 的回归直线方程为ˆ2,yx a =+若样本点(,1)(1,)r s 与的残差相同,则有( )A .r s =B .2s r =C .23s r =-+D .21s r =+12.设点P 在曲线12x y e =上,点Q 在曲线(2)y ln x =上,则PQ 的最小值为( )A .12ln - B2)ln - C .12ln + D2)ln + 二、填空题(本大题共4小题,每小题5分,共20分)13.已知复数5()12iz i i =+是虚数单位,则z =__________;14.直线21cos ρθ=与圆2cos ρθ=相交的弦长为__________; 15.二项式822x y 的展开式中,的系数为__________; 16.已知11()123f n =+++…*15(),(4)2,(8),(16)32n N f f f n +∈>>>经计算得,7(32),2f >则有__________(填上合情推理得到的式子).三、解答题(本大题共6小题,17小题10分, 18-22题每小题12分,共70分;解答应写出文字说明、证明过程或演算步骤)17.已知曲线C 的极坐标方程是2()3cos πρθ=+,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,且取相等的单位长度,建立平面直角坐标系,直线l的参数方程是1,()2x t t y =--⎧⎪⎨=+⎪⎩是参数,设点(1,2)P -. (Ⅰ)将曲线C 的极坐标方程化为直角坐标方程,将直线l 的参数方程化为普通方程; (Ⅱ)设直线l 与曲线C 相交于,M N 两点,求PM PN •的值.18.我校为了解学生喜欢通用技术课程“机器人制作”是否与学生性别有关,采用简单随机抽列联表:已知从该班随机抽取1人为喜欢的概率是3.(Ⅰ)请完成上面的22⨯列联表;(Ⅱ)根据列联表的数据,若按90%的可靠性要求,能否认为“喜欢与否和学生性别有关”?请说明理由.22(),()()()()n ad bc K n a b c d a b c d a c b d -==+++++++(参考公式:其中)19.在进行一项掷骰子放球游戏中,规定:若掷出1点,甲盒中放一球;若掷出2点或3点,乙盒中放一球;若掷出4点或5点或6点,丙盒中放一球,前后共掷3次,设123,,a a a 分别表示甲,乙,丙3个盒中的球数. (Ⅰ)求1232,1,0a a a ===的概率;(Ⅱ)记12,a a ξ=+求随机变量ξ的概率分布列和数学期望.20.已知数列1111{},,21n n nx x x x +==+满足 其中n N *∈ . (Ⅰ)写出数列{}n x 的前6项;(Ⅱ)猜想数列2{}n x 的单调性,并证明你的结论.21.如图,四棱锥P ABCD -中,底面ABCD 是梯形,//AD BC ,,AD BC >090BAD ∠=,,,PA ABCD PA AB ⊥=底面点E PB 是的中点. (Ⅰ)证明:PC AE ⊥;(Ⅱ)若1,3,AB AD PA ==且与平面PCD 所成角的大小为045,求二面角A PD C --的正弦值.22.已知函数(),()()ln xg x f x g x ax x==-. (Ⅰ)求函数()g x 的单调区间;(Ⅱ)若函数()f x 在()1,a +∞上是减函数,求实数的最小值;(Ⅲ)若21212,[,],()()(0)x x e e f x f x a a '∃∈≤+>使成立,求实数a 的取值范围.下学期高二年级期末考试数学参考答案一、选择题二、填空题13.14. 15.70 16.*2(2)(2,)2n n f n n N +>≥∈ 三、解答题17.解:(Ⅰ) 曲线C 的极坐标方程化为直角坐标方程为:22x y x +=- ,即221()(122xy -++= ;直线l 20y ++= .(Ⅱ) 直线l 的参数方程化为标准形式为11,2()22x m m y m ⎧=--⎪⎪⎨⎪=+⎪⎩是参数,①将①式代入22x y x +=,得:23)60m m +++= ,②由题意得方程②有两个不同的根,设12,m m 是方程②的两个根,由直线参数方程的几何意义知:12PM PN m m •=•=6+. (Ⅱ)根据列联表数据,得到2260(1422618) 3.348 2.706,32282040K ⨯-⨯=≈>⨯⨯⨯ 所以有90%的可靠性认为“喜欢与否和学生性别有关”.19.解:由题意知,每次抛掷骰子,球依次放入甲,乙,丙盒中的概率分别为111,,632.(Ⅰ) 由题意知,满足条件的情况为两次掷出1点,一次掷出2点或3点,121233111(2,1,0)()()6336p p a a a C ====== .(Ⅱ) 由题意知,ξ可能的取值是0,1,2,3 .1231(0)(0,0,3),8p p a a a ξ======12121231233311113(1)(0,1,2)(1,0,2)()()()()32628p p a a a p a a a C C ξ=====+====+=123123123(2)(2,0,1)(1,1,1)(0,2,1)p p a a a p a a a p a a a ξ=====+===+===1231233311111113()()()()()()()62632328C A C =++=123123123(3)(0,3,0)(1,2,0)(2,1,0)p p a a a p a a a p a a a ξ=====+===+===+1231(3,0,0)8p a a a ====.故ξ的分布列为:期望()012388882E ξ=⨯+⨯+⨯+⨯= .20.解:(Ⅰ)由121112,213x x x ===+得; 由232213,315x x x ===+得; 由343315,518x x x ===+得; 由454518,8113x x x ===+得; 由5658113,13121x x x ===+得; (Ⅱ)由(Ⅰ)知246,x x x >>猜想:数列2{}n x 是递减数列. 下面用数学归纳法证明:①当1n =时,已证命题成立;②假设当n k =时命题成立,即222k k x x +>. 易知20k x >,当1n k =+时,2224k k x x ++- 21231111k k x x ++=-++23212123(1)(1)k k k k x x x x ++++-=++22222122230(1)(1)(1)(1)k k k k k k x x x x x x ++++-=>++++即2(1)2(1)2k k x x +++>.也就是说,当1n k =+时命题也成立.根据①②可知,猜想对任何正整数n 都成立.21. 解:解法一(向量法):建立空间直角坐标系A xyz -,如图所示.根据题设,可设(,0,0),(0,,0),(0,0,),(,,0)D a B b P b C c b , (Ⅰ)证明:0,,22b b AE ⎛⎫= ⎪⎝⎭,(,,)PC c b b =-, 所以0()022bb AE PCc b b ⋅=⨯+⋅+⋅-=, 所以AE PC ⊥,所以PC AE ⊥.(Ⅱ)解:由已知,平面PAD 的一个法向量为(0,1,0)AB =. 设平面PCD 的法向量为(,,)m x y z =, 由0,0,m PC m PD ⎧⋅=⎪⎨⋅=⎪⎩即0,00,cx y z y z +-=⎧⎪+⋅-=令1z =,得11m ⎫=⎪⎭.而(0,0,1)AP =,依题意PA 与平面PCD 所成角的大小为45︒,所以||sin 45||||m AP m AP ⋅︒==,即=,解得32BC c =(32BC c ==去),所以2133m ⎛⎫=⎪⎪⎭. 设二面角A PD C --的大小为θ,则233cos ||||12133m ABm AB θ⋅===++, 所以6sin θ,所以二面角A PD C --的正弦值为6. 解法二(几何法):(Ⅰ)证明:因为PA ⊥平面ABCD ,BC ⊂平面ABCD ,所以BC PA ⊥. 又由ABCD 是梯形,AD BC ∥,90BAD ∠=︒,知BC AB ⊥,而AB AP A =,AB ⊂平面PAB ,AP ⊂平面PAB ,所以BC ⊥平面PAB . 因为AE ⊂平面PAB ,所以AE BC ⊥.又PA AB =,点E 是PB 的中点,所以AE PB ⊥.因为PB BC B =,PB ⊂平面PBC ,BC ⊂平面PBC ,所以AE ⊥平面PBC . 因为PC ⊂平面PBC ,所以AE PC ⊥. (Ⅱ)解:如图4所示,过A 作AF CD ⊥于F ,连接PF , 因为PA ⊥平面ABCD ,CD ⊂平面ABCD ,所以CD PA ⊥,则CD ⊥平面PAF ,于是平面PAF ⊥平面PCD ,它们的交线是PF . 过A 作AG PF ⊥于G ,则AG ⊥平面PCD , 即PA 在平面PCD 上的射影是PG ,所以PA 与平面PCD 所成的角是APF ∠.由题意,45APF ∠=︒. 在直角三角形APF 中,1PA AF ==,于是2AG PG FG ===. 在直角三角形ADF 中,3AD ,所以2DF = 方法一:设二面角A PD C --的大小为θ, 则2232cos 13PDG APDS PG DF S PA AD θ⋅===⋅⨯△△,所以sin θ,所以二面角A PD C --方法二:过G 作GH PD ⊥于H ,连接AH ,由三垂线定理,得AH PD ⊥,所以AHG ∠为二面角A PD C --的平面角, 在直角三角形APD中,2PD =,PA AD AH PD ⋅===. 在直角三角形AGH中,sin AG AHG AH ∠===, 所以二面角A PD C --22.解:由已知,函数()g x ,()f x 的定义域为(0,1)(1,),+∞ 且()ln xf x ax x=-. (Ⅰ)函数221ln ln 1()(ln )(ln )x x x x g x x x -⋅-'==, 当01()0x e x g x '<<≠<且时,;当()0x e g x '>>时,.所以函数()g x 的单调减区间是(0,1),(1,),()e e +∞增区间是,. (Ⅱ)因()f x 在(1,)+∞上为减函数,故2ln 1()0(ln )x f x a x -'=-≤在(1,)+∞上恒成立. 所以当(1,)x ∈+∞时,max ()0f x '≤. 又222ln 111111()()(),(ln )ln ln ln 24x f x a a a x x x x -'=-=-+-=--+- 故当11,ln 2x =即2x e =时,max 1()4f x a '=-. 所以1110,,444a a a -≤≥于是故的最小值为.(Ⅲ)命题“若21212,[,],()()x x e e f x f x a '∃∈≤+使成立”等价于 “当2min max [,],()()x e e f x f x a '∈≤+时有” . 由(Ⅱ)知,当2max max 11[,],(),()44x e e f x a f x a ''∈=-∴+=时有.问题等价于:“2min 1[,],()4x e e f x ∈≤当时有” .① 当14a ≥时,由(Ⅱ)知,2()[,]f x e e 在上为减函数,则222min2111()(),2424e f x f e ae a e==-≤≥-故 .②当104a <<时,由于2111()()ln 24f x a x '=--+-在2[,]e e 上为增函数,故21()(),(),4f x f e f e a a '''的值域为[],即[--] .由()f x '的单调性和值域知,200,,()0x e e f x '∃∈=唯一()使,且满足:当0,,()0,()x e x f x f x '∈<()时为减函数; 当20,,()0,()x x e f x f x '∈>()时为增函数; 所以,20min 00001()(),(,)ln 4x f x f x ax x e e x ==-≤∈ . 所以,2001111111,ln 4ln 4244a x x e e ≥->->-= 与104a <<矛盾,不合题意. 综上,得21124a e ≥-.高二年级第二学期期末考试数学试题一、选择题(每小题5分,共50分)1.已知集合{}322+<=x x x M ,{}2<=x x N ,则=⋂N M ( )A .(-1,2)B .(-3,2)C .(-3,1)D .(1,2)2.欧拉公式x i x e ix sin cos +=(i 为虚数单位)是由瑞士著名数学家欧拉发现的,它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它在复变函数论里非常重要,被誉为“数学中的天骄”。
高二数学下学期期末试卷理含解析试题
因为 是实数,所以
故 D.
点睛:〔1.(2)
6.数列 满足 , ,那么 〔〕
A.-1B.0C.1D.2
【答案】A
【解析】分析:先根据推算出数列的周期,再求 的值.
详解: ,所以
因为 ,
所以
点睛:〔1〕此题主要考察数列的递推和周期,意在考察学生对这些知识的掌握程度.(2)求数列的某一项 时,假设n的取值比较大,一般与数列的周期有关,所以要推算数列的周期.
A.方程 没有实根
B.方程 至多有一个实根
C.方程 至多有两个实根
D.方程 恰好有两个实根
【答案】A
,至少的反面是一个都没有。
“假设 ,那么方程 至少有一个实根〞时,要做的假设是方程 没有实根.应选:A.
点晴:
5. ,那么 :假设复数 是实数,那么实数 〕
A. B. C. D.
【答案】D
p,q的真假,再判断选项的真假.
.
2.复数 的一共轭复数为〔〕
A. B. C. D.
【答案】B
【解析】分析:先化简复数 ,再求其一共轭复数.
详解:由题得 = ,所以它的一共轭复数为 .
故答案为:B.
点睛:〔1〕此题主要考察复数的化简和一共轭复数,意在考察学生对这些知识的掌握程度和根本的计算才能.(2)复数 的一共轭复数
3. , 是两个向量,那么“ 〞是“ 〞的〔〕
详解:设正方体 的边长为4,
A选项:在 边上取一点H使得 ,连接HF,即 所成的角为∠ , ,故A选项不正确
B选项,BD垂直平面ACC1A1,故 与 垂直,B不正确
C选项,AD⊥面ABB1A1,即AD⊥ ,取DC中点G,连接D1G, 即D1G⊥DF,即DF⊥ ,即符合题意
高二下学期期末数学试题(含答案)
第二学期教学质量监测试卷高二数学本试卷共4页,22小题,满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数212⎛⎫+ ⎪ ⎪⎝⎭所对应的点位于 A .第一象限B .第二象限C .第三象限D .第四象限2.下列命题中的假命题是 A .,lg 0x x R ∈∃>B .,sin 1x x ∃∈=RC .2,0x x ∈∀>RD .,20x x ∈∀>R 3.设()ln f x x x =,若0'()2f x =,则0x = A.2e B.e C.ln 22D.ln 24.已知A 是B 的充分不必要条件,C 是B 是必要不充分条件,A ⌝是D 的充分不必要条件,则C 是D ⌝的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.已知2~(,)Z N μσ,则()P Z μσμσ-<<+=0.6826,(22)P Z μσμσ-<<+=0.9544.若(),~51X N ,则(67)P X <<等于A .0.3413B .0.4772C .0.1359D .0.81856.在四面体OABC 中,OA a =uu r r ,OB b =uu u r r ,OC c =u u u r r,点M 在OA 上,且2OM MA =,点N 是BC 的中点,则MN =uuu rA .211322a b c -++r r rB .121232a b c -+r r rC .111222a b c +-r r rD .221332a b c +-r r r7.直线3,,022x x y ππ===及曲线cos y x =所围成图形的面积是A .2B .3C .πD .π28.从5名男生和4名女生中选出4人去参加辩论比赛,4人中既有男生又有女生的不同选法共有 A .80种 B .100种 C .120种 D .126种9.抛物线22y px =的焦点为F ,M 为抛物线上一点,若OFM ∆的外接圆与抛物线的准线相切(O 为坐标原点),且外接圆的面积为π9,则p =A .2B .4C .6D .8 10.以下命题正确的个数为(1)存在无数个∈βα,R ,使得等式βαβαβαsin cos cos sin )sin(+=-成立; (2)在ABC ∆中,“6A π>”是“1sin 2A >”的充要条件; (3)命题“在ABC ∆中,若sin sin A B =,则A B =”的逆否命题是真命题;(4)命题“若6πα=,则21sin =α”的否命题是“若6πα≠,则21sin ≠α”.A .1B .2C .3D .411.如图,已知椭圆221:110x C y +=,双曲线22222:1(0,0)x y C a b a b-=>>,若以1C 的长轴为直径的圆与2C 的一条渐近线交于,A B 两点,且1C 与该渐近线的两交点将线段AB 三等分,则2C 的离心率为A .9B .5C .5D .312.已知函数)(x f 的导函数为()f x ',且()()f x f x '>对任意的x ∈R 恒成立,则下列不等式均成立的是 A .(1)(0)f ef <,2(2)(0)f e f < B .(1)(0)f ef >,2(2)(0)f e f < C .(1)(0)f ef <,2(2)(0)f e f > D .(1)(0)f ef >,2(2)(0)f e f > 二、填空题:本大题共4小题,每小题5分,满分20分.13.若双曲线2221(0)3x y a a -=>的一个焦点恰好与抛物线28y x =的焦点重合,则双曲线的渐近线方程为 . 14.代数式⋅⋅⋅+++11111中省略号“…”代表以此方式无限重复,因原式是一个固定值,可以用如下方法求得:令原式t =,则11t t+=,则210t t --=,取正值得t =,用类似方法可得=⋅⋅⋅+++666 .15.用总长为24m 的钢条制作一个长方体容器的框架,若所制作容器底面为正方形,则这个容器体积的最大值为 .16.在()()642x x y ++的展开式中,记m n x y 项的系数为(),f m n ,则()()3,45,3f f += .(用数字作答)三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤. 17.(本小题满分10分)已知数列{}n a 中,1112,2(1,2,3...)n na a n a +==-=. (Ⅰ)求234,,a a a 的值,猜想出数列的通项公式n a ; (Ⅱ)用数学归纳法证明你的猜想.18.(本小题满分12分)已知函数()(,)bf x ax a b x=+∈R 的图象过点))1(,1(f P ,且在点P 处的切线方程为38y x =-. (Ⅰ)求b a ,的值; (Ⅱ)求函数)(x f 的极值.19.(本小题满分12分)如图四边形A B C D 为边长为2的菱形,G 为AC 与BD 交点,平面BED ⊥平面A B C D,2,BE AE ==(Ⅰ)证明:BE ⊥平面ABCD ;(Ⅱ)若120ABC ∠=,求直线EG 与平面EDC 所成角的正弦值.20.(本小题满分12分)某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50条作为样本进行统计,按海鱼重量(克)得到如下的频率分布直方图:第19题图DAGCE(Ⅰ)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);(Ⅱ)根据市场行情,该海鱼按重量可分为三个等级,如下表:若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X ,求X 的分布列和数学期望. 21.(本小题满分12分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为3()1,3--M .(Ⅰ)求椭圆C 的方程;(Ⅱ)若直线02:=--y x l 与椭圆C 交于,A B 两点,点P 为椭圆C 上一动点,当△PAB 的面积最大时,求点P 的坐标及△PAB 的最大面积. 22.(本小题满分12分)已知函数21()ln(1)2f x a x x x =++-,其中a 为实数. (Ⅰ)讨论函数()f x 的单调性;(Ⅱ)若函数()f x 有两个极值点12,x x ,且12x x <,求证:212()0f x x ->.高二(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在复平面内,复数(+i)2所对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】A5:复数代数形式的乘除运算;A4:复数的代数表示法及其几何意义.【专题】38 :对应思想;4R:转化法;5N :数系的扩充和复数.【分析】利用复数的运算法则、几何意义即可得出.【解答】解:复数(+i)2=+i=+i对应的点(,)位于第二象限.故选:B.【点评】本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.2.下列命题中的假命题是()A.∃x∈R,lgx>0 B.∃x∈R,sinx=1 C.∀x∈R,x2>0 D.∀x∈R,2x>0【考点】2I:特称命题;2H:全称命题.【专题】35 :转化思想;4R:转化法;5L :简易逻辑.【分析】根据对数函数,正弦函数及指数函数的性质,分别判断,A,B,D为真命题,由当x=0时,x2=0,故C为假命题.【解答】解:对于A:当x>1时,lgx>0,故∃x∈R,lgx>0为真命题;对于B:当x=2kπ+,k∈Z时,sinx=1,则∃x∈R,sinx=1,为真命题;对于C:当x=0时,x2=0,故∀x∈R,x2>0,为假命题,对于D,由指数函数的性质可知:∀x∈R,2x>0,故为真命题,故选:C.【点评】本题考查逻辑语言与指数数、二次函数、对数函数、正弦函数的性质,属容易题.3.(5分)(2008•海南)设f(x)=xlnx,若f′(x0)=2,则x0=()A.e2B.e C.D.ln2【考点】65:导数的乘法与除法法则.【分析】利用乘积的运算法则求出函数的导数,求出f'(x0)=2解方程即可.【解答】解:∵f(x)=xlnx∴∵f′(x0)=2∴lnx0+1=2∴x0=e,故选B.【点评】本题考查两个函数积的导数及简单应用.导数及应用是高考中的常考内容,要认真掌握,并确保得分.4.已知A是B的充分不必要条件,C是B是必要不充分条件,¬A是D的充分不必要条件,则C是¬D的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】2L:必要条件、充分条件与充要条件的判断.【专题】38 :对应思想;4O:定义法;5L :简易逻辑.【分析】根据充分条件和必要条件的递推关系进行递推即可.【解答】解:∵¬A是D的充分不必要条件,∴¬D是A的充分不必要条件,则¬D⇒A∵C是B是必要不充分条件,∴B是C是充分不必要条件,B⇒C∵A是B的充分不必要条件,∴A⇒B,则¬D⇒A⇒B⇒C,反之不成立,即C是¬D的必要不充分条件,故选:B【点评】本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义进行递推是解决本题的关键.5.已知Z~N(μ,σ2),则P(μ﹣σ<Z<μ+σ)=0.6826,P(μ﹣2σ<Z<μ+2σ)=0.9544.若X~N(5,1),则P(6<X<7)等于()A.0.3413 B.0.4772 C.0.1359 D.0.8185【考点】CP:正态分布曲线的特点及曲线所表示的意义.【专题】38 :对应思想;49 :综合法;5I :概率与统计.【分析】计算P(4<X<6),P(3<X<7),于是P(6<X<7)=(P(3<X<7)﹣P(4<X<6)).【解答】解:P(4<X<6)=0.6826,P(3<X<7)=0.9544,∴P(6<X<7)=(0.9544﹣0.6826)=0.1359.故选C.【点评】本题考查了正态分布的对称性特点,属于基础题.6.如图,空间四边形OABC中,=,=,=,点M在线段OA上,且OM=2MA,点N为BC的中点,则=()A.﹣++B.﹣+C.+﹣D.+﹣【考点】M3:空间向量的加减法.【专题】5H :空间向量及应用.【分析】由题意,把,,三个向量看作是基向量,由图形根据向量的线性运算,将用三个基向量表示出来,即可得到答案,选出正确选项.【解答】解:=,=+﹣+,=++﹣,=﹣++,∵=,=,=,∴=﹣++,故选:A.【点评】本题考点是空间向量基本定理,考查了用向量表示几何的量,向量的线性运算,解题的关键是根据图形把所研究的向量用三个基向量表示出来,本题是向量的基础题.7.直线x=,x=,y=0及曲线y=cosx所围成图形的面积是()A.2 B.3 C.πD.2π【考点】6G:定积分在求面积中的应用.【专题】11 :计算题;35 :转化思想;4O:定义法;52 :导数的概念及应用.【分析】直接利用定积分公式求解即可.【解答】解:直线x=,x=,y=0及曲线y=cosx所围成图形的面积S=(﹣cosx)dx=﹣sinx|=2,故选:A.【点评】本题考查定积分的应用,考查计算能力.8.从5名男生和4名女生中选出4人去参加辩论比赛,4人中既有男生又有女生的不同选法共有()A.80种B.100种C.120种D.126种【考点】D8:排列、组合的实际应用.【专题】11 :计算题;35 :转化思想;5O :排列组合.【分析】根据题意,先计算从9人中选出4人的选法数目,再排除其中“只有男生没有女生的选法”和“只有女生没有男生的选法”,即可得答案.【解答】解:根据题意,从5名男生和4名女生共9人中选出4人去参加辩论比赛,有C94=126种选法,其中只有男生没有女生的选法有C54=5种,只有女生没有男生的选法有C44=1种,则4人中既有男生又有女生的不同选法共有126﹣5﹣1=120种;故选:C.【点评】本题考查排列、组合的实际应用,可以使用间接法分析,避免分类讨论.9.抛物线y2=2px的焦点为F,M为抛物线上一点,若△OFM的外接圆与抛物线的准线相切(O为坐标原点),且外接圆的面积为9π,则p=()A.2 B.4 C.6 D.8【考点】K8:抛物线的简单性质.【专题】35 :转化思想;4R:转化法;5D :圆锥曲线的定义、性质与方程.【分析】根据△OFM的外接圆与抛物线C的准线相切,可得△OFM的外接圆的圆心到准线的距离等于圆的半径,由此可求p的值.【解答】解:∵△OFM的外接圆与抛物线C的准线相切,∴△OFM的外接圆的圆心到准线的距离等于圆的半径.∵圆面积为9π,∴圆的半径为3,又∵圆心在OF的垂直平分线上,|OF|=,∴+=3,∴p=4.故选B.【点评】本题考查圆与圆锥曲线的综合,考查学生的计算能力,属于基础题.10.以下命题正确的个数为()(1)存在无数个α,β∈R,使得等式sin(α﹣β)=sinαcosβ+cosαsinβ成立;(2)在△ABC中,“A>”是“sinA>”的充要条件;(3)命题“在△ABC中,若sinA=sinB,则A=B”的逆否命题是真命题;(4)命题“若α=,则sinα=”的否命题是“若α≠,则sinα≠”.A.1 B.2 C.3 D.4【考点】2K:命题的真假判断与应用.【专题】38 :对应思想;48 :分析法;5L :简易逻辑.【分析】(1),利用正弦的和差公式验证即可.(2),A>30°得不出sinA>,比如A=160°,若sinA>,根据正弦函数在(0,π)上的图象可得:30°<A<150°,能得到A>30°;(3),命题“在△ABC中,若sinA=sinB,则A=B”是真命题,其逆否命题是真命题;(4),利用原命题与其否命题的关系判定.【解答】解:对于(1),sin(α﹣β)=sinαcosβ﹣sinβcosα=sinαcosβ+cosαsinβ.可得sinβcosα=0,所以只要β=kπ,α任意,或者α=2kπ+,β任意.故正确.对于(2),A>30°得不出sinA>,比如A=160°,若sinA>,∵sin30°=sin150°=,∴根据正弦函数在(0,π)上的图象可得:30°<A<150°,∴能得到A>30°;得A>30°是sinA>的必要不充分条件,故错;对于(3),命题“在△ABC中,若sinA=sinB,则A=B”是真命题,其逆否命题是真命题,故正确对于(4),命题“若α=,则sinα=”的否命题是“若α≠,则sinα≠”,正确.故选:C【点评】本题考查了命题真假的判定,涉及到了三角、命题的否命题等基础知识,属于中档题.11.如图,已知椭圆C1:+y2=1,双曲线C2:﹣=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线交于A,B两点,且C1与该渐近线的两交点将线段AB三等分,则C2的离心率为()A.9 B.5 C.D.3【考点】KL:直线与椭圆的位置关系.【专题】11 :计算题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】由已知,|OA|=a=,设OA所在渐近线的方程为y=kx(k>0),则A(,),AB的一个三分点坐标为(,),由该点在椭圆C1上,求出=2,从而c==3a,由此能求出离心率.【解答】解:由已知,|OA|=a=,设OA所在渐近线的方程为y=kx(k>0),∴A点坐标可表示为A(x0,kx0)(x0>0)∴=,即A(,),∴AB的一个三分点坐标为(,),该点在椭圆C1上,∴,即=1,得k=2,即=2,∴c==3a,∴离心率e=.故选:D.【点评】本题考查双曲线的离心率的求法,考查椭圆性质、双曲线等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.12.已知函数F的导函数为f′(x),且f′(x)>f(x)对任意的x∈R恒成立,则下列不等式均成立的是()A.f(1)<ef(0),f(2)<e2f(0)B.f(1)>ef(0),f(2)<e2f(0)C.f(1)<ef(0),f(2)>e2f(0)D.f(1)>ef(0),f(2)>e2f(0)【考点】6A:函数的单调性与导数的关系.【专题】33 :函数思想;4R:转化法;52 :导数的概念及应用.【分析】令g(x)=,求出函数g(x)的导数,判断函数的单调性,从而求出答案.【解答】解:令g(x)=,则g′(x)=>0,故g(x)在R递增,故g(1)>g(0),g(2)>g(0),即f(1)>ef(0),f(2)>e2f(0),故选:D.【点评】本题考查了函数的单调性、导数的应用,构造函数g(x)=是解题的关键,本题是一道中档题.二、填空题:本大题共4小题,每小题5分,满分20分.13.若双曲线﹣=1(a>0)的一个焦点恰好与抛物线y2=8x的焦点重合,则双曲线的渐近线方程为y=±x .【考点】KC:双曲线的简单性质.【专题】11 :计算题;34 :方程思想;5D :圆锥曲线的定义、性质与方程.【分析】根据题意,由抛物线的标准方程求出其焦点坐标,即可得双曲线的焦点坐标,由双曲线的几何性质可得a2+3=4,解可得a=1,即可得双曲线的标准方程,由双曲线的渐近线方程即可得答案.【解答】解:根据题意,抛物线y2=8x的焦点坐标为(2,0),其双曲线﹣=1(a>0)的一个焦点也为(2,0),则有a2+3=4,解可得a=1,故双曲线的方程为:x2﹣=1,则双曲线的渐近线方程为:y=±x;故答案为:y=±x.【点评】本题考查双曲线、抛物线的标准方程,注意分析双曲线的焦点坐标.14.代数式中省略号“…”代表以此方式无限重复,因原式是一个固定值,可以用如下方法求得:令原式=t,则1+=t,则t2﹣t﹣1=0,取正值得t=,用类似方法可得= 3 .【考点】F3:类比推理.【专题】15 :综合题;35 :转化思想;4G :演绎法;5M :推理和证明.【分析】通过已知得到求值方法:先换元,再列方程,解方程,求解(舍去负根),再运用该方法,注意两边平方,得到方程,解出方程舍去负的即可.【解答】解:由已知代数式的求值方法:先换元,再列方程,解方程,求解(舍去负根),可得要求的式子.令=m(m>0),则两边平方得,6+═m2,即6+m=m2,解得,m=3(﹣2舍去).故答案为:3.【点评】本题考查类比推理的思想方法,考查从方法上类比,是一道基础题.15.用总长为24m的钢条制作一个长方体容器的框架,若所制作容器底面为正方形,则这个容器体积的最大值为8m3.【考点】7F:基本不等式.【专题】11 :计算题;34 :方程思想;5T :不等式.【分析】根据题意,设长方体容器的底面边长为xm,高为ym,由题意可得8x+4y=24,即2x+y=6,用x、y 表示长方体的体积可得V=x2y=x2×(6﹣2x)=x×x×(6﹣2x),由基本不等式分析可得答案.【解答】解:根据题意,设长方体容器的底面边长为xm,高为ym,则有8x+4y=24,即2x+y=6,其体积V=x2y=x2×(6﹣2x)=x×x×(6﹣2x)≤[]3=8m3,当且仅当x=2时,等号成立;即这个容器体积的最大值8m3;故答案为:8m3.【点评】本题考查基本不等式的性质以及应用,关键是用x、y表示容器的体积.16.在(2+x)6(x+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,4)+f(5,3)= 400 .(用数字作答)【考点】DB:二项式系数的性质.【专题】11 :计算题;35 :转化思想;4O:定义法;5P :二项式定理.【分析】(2+x)6(x+y)4的展开式的通项为C6r26﹣r C4k x4+r﹣k y k,分别代入计算即可得到.【解答】解:(2+x)6(x+y)4的展开式的通项为C6r26﹣r x r C4k x4﹣k y k=C6r26﹣r C4k x4+r﹣k y k,∵x m y n项的系数为f(m,n),当k=4时,4+r﹣4=3,即r=3.∴f(3,4)=C6326﹣3C44=160,当k=3时,4+r﹣3=5,即r=4.∴f(5,3)=C6426﹣4C43=240,∴f(3,4)+f(5,3)=160+240=400,故答案为:400【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.三、解答题:本大题共6小题,满分70分.解答须写出文字说明、证明过程和演算步骤.17.(10分)(2017春•荔湾区期末)已知数列{a n}中,a1=2,a n+1=2﹣(n=1,2,3,…).(Ⅰ)求a2,a3,a4的值,猜想出数列的通项公式a n;(Ⅱ)用数学归纳法证明你的猜想.【考点】RG:数学归纳法;F1:归纳推理.【专题】38 :对应思想;4F :归纳法;55 :点列、递归数列与数学归纳法.【分析】(I)根据递推公式计算并猜想通项公式;(II)先验证n=1时猜想成立,再假设n=k猜想成立,推导n=k+1的情况,得出结论.【解答】解:(I)a2=2﹣=;a3=2﹣=;a4=2﹣=;猜想:a n=.(II)当n=1时,猜想显然成立;假设n=k(k≥1)时猜想成立,即a k=,则a k+1=2﹣=2﹣==,∴当n=k+1时,猜想成立.∴a n=对任意正整数恒成立.【点评】本题考查了数学归纳法证明,属于基础题.18.(12分)(2017春•荔湾区期末)已知函数f(x)=ax+(a,b∈R)的图象过点P(1,f(1)),且在点P处的切线方程为y=3x﹣8.(Ⅰ)求a,b的值;(Ⅱ)求函数f(x)的极值.【考点】6D:利用导数研究函数的极值;6H:利用导数研究曲线上某点切线方程.【专题】34 :方程思想;4R:转化法;52 :导数的概念及应用.【分析】(Ⅰ),依题意列式计算得;(Ⅱ)由(Ⅰ)得,=得函数f(x)在(﹣∞,﹣2),(2,+∞)递减,在(﹣2,0),(0,2)递增,f(x)极小值=f(﹣2),f(x)极大值=f(2)【解答】解:(Ⅰ)∵函数f(x)=ax+(a,b∈R)的图象过点P(1,f(1)),且在点P处的切线方程为y=3x﹣8.∴,解得;(Ⅱ)由(Ⅰ)得,=当x∈(﹣∞,﹣2),(2,+∞)时,f′(x)<0,当x∈(﹣2,0),(0,2)时,f′(x)>0.即函数f(x)在(﹣∞,﹣2),(2,+∞)递减,在(﹣2,0),(0,2)递增,∴f(x)极小值=f(﹣2)=4;f(x)极大值=f(2)=﹣4.【点评】本题考查了导数的几何意义,函数的单调性与极值,属于中档题,19.(12分)(2017春•荔湾区期末)如图四边形ABCD为边长为2的菱形,G为AC与BD交点,平面BED⊥平面ABCD,BE=2,AE=2.(Ⅰ)证明:BE⊥平面ABCD;(Ⅱ)若∠ABC=120°,求直线EG与平面EDC所成角的正弦值.【考点】MI:直线与平面所成的角;LW:直线与平面垂直的判定.【专题】35 :转化思想;49 :综合法;5H :空间向量及应用.【分析】(Ⅰ)由AC⊥DB,平面BED⊥平面ABCD,得AC⊥平面BED,即AC⊥BE.又 AE2=AB2+BE2,得BE⊥AB,即可得BE⊥平面ABCD.(Ⅱ)由(Ⅰ)得BE⊥平面ABCD,故以B为原点,建立空间直角坐标系,则E(0,0,2),D(1,,0),G(,,0),C(2,0,0),利用向量法求解.【解答】解:(Ⅰ)证明:∵四边形ABCD为菱形,∴AC⊥DB又因为平面BED⊥平面ABCD,平面BED∩平面ABCD=DB,AC⊂平面ABCD.∴AC⊥平面BED,即AC⊥BE.又BE=2,AE=2,AB=2,∴AE2=AB2+BE2,∴BE⊥AB,且AB∩BD=B,∴BE⊥平面ABCD.(Ⅱ)取AD中点H,连接BH.∵四边形ABCD为边长为2的菱形,∠ABC=120°,∴BH⊥AD,且BH=.由(Ⅰ)得BE⊥平面ABCD,故以B为原点,建立空间直角坐标系(如图)则E(0,0,2),D(1,,0),G(,,0),C(2,0,0)设面EDC的法向量为,,由,可取cos==﹣直线EG与平面EDC所成角的正弦值为.【点评】本题考查了线面垂直的判定,向量法求线面角,属于中档题.20.(12分)(2017春•荔湾区期末)某经销商从沿海城市水产养殖厂购进一批某海鱼,随机抽取50条作为样本进行统计,按海鱼重量(克)得到如图的频率分布直方图:(Ⅰ)若经销商购进这批海鱼100千克,试估计这批海鱼有多少条(同一组中的数据用该区间的中点值作代表);(Ⅱ)根据市场行情,该海鱼按重量可分为三个等级,如下表:若经销商以这50条海鱼的样本数据来估计这批海鱼的总体数据,视频率为概率.现从这批海鱼中随机抽取3条,记抽到二等品的条数为X,求x的分布列和数学期望.【考点】CH:离散型随机变量的期望与方差;B8:频率分布直方图;CG:离散型随机变量及其分布列.【专题】11 :计算题;35 :转化思想;49 :综合法;5I :概率与统计.【分析】(Ⅰ)由频率分布直方图先求出每条海鱼平均重量,由此能估计这批海鱼有多少条.(Ⅱ)从这批海鱼中随机抽取3条,[155,165)的频率为0.04×10=0.4,则X~B(3,0.4),由此能求出X的分布列和数学期望.【解答】解:(Ⅰ)由频率分布直方图得每条海鱼平均重量为:=150×0.016×10+160×0.040×10+170×0.032×10+180×0.012×10=164(g),∵经销商购进这批海鱼100千克,∴估计这批海鱼有:(100×1000)÷164≈610(条).(Ⅱ)从这批海鱼中随机抽取3条,[155,165)的频率为0.04×10=0.4,则X~B(3,0.4),P(X=0)==0.216,P(X=1)==0.432,P(X=2)==0.288,P(X=3)==0.064,∴X的分布列为:∴E(X)=3×0.4=1.2.【点评】本题考查概率的求法,考查离散型随机变量的分布列和数学期望的求法,考查推理论证能力、运算求解能力,考查化归与转化思想,是中档题.21.(12分)(2017春•荔湾区期末)已知椭圆C:+=1(a>b>0)的离心率为,且经过点M(﹣3,﹣1).(Ⅰ)求椭圆C的方程;(Ⅱ)若直线l:x﹣y﹣2=0与椭圆C交于A,B两点,点P为椭圆C上一动点,当△PAB的面积最大时,求点P的坐标及△PAB的最大面积.【考点】KL:直线与椭圆的位置关系.【专题】11 :计算题;35 :转化思想;49 :综合法;5E :圆锥曲线中的最值与范围问题.【分析】(Ⅰ)利用椭圆的离心率为,且经过点M(﹣3,﹣1),列出方程组,求出a,b,由此能求出椭圆C的方程.(Ⅱ)将直线x﹣y﹣2=0代入中,得,x2﹣3x=0.求出点A(0,﹣2),B(3,1),从而|AB|=3,在椭圆C上求一点P,使△PAB的面积最大,则点P到直线l的距离最大.设过点P且与直线l平行的直线方程为y=x+b.将y=x+b代入,得4x2+6bx+3(b2﹣4)=0,由根的判别式求出点P(﹣3,1)时,△PAB的面积最大,由此能求出△PAB的最大面积.【解答】解:(Ⅰ)∵椭圆C:+=1(a>b>0)的离心率为,且经过点M(﹣3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.…(4分)(Ⅱ)将直线x﹣y﹣2=0代入中,消去y得,x2﹣3x=0.解得x=0或x=3.…(5分)∴点A(0,﹣2),B(3,1),∴|AB|==3.…(6分)在椭圆C上求一点P,使△PAB的面积最大,则点P到直线l的距离最大.设过点P且与直线l平行的直线方程为y=x+b.…(7分)将y=x+b代入,整理得4x2+6bx+3(b2﹣4)=0.…(8分)令△=(6b)2﹣4×4×3(b2﹣4)=0,解得b=±4.…(9分)将b=±4代入方程4x2+6bx+3(b2﹣4)=0,解得x=±3.由题意知当点P的坐标为(﹣3,1)时,△PAB的面积最大.…(10分)且点P(﹣3,1)到直线l的距离为d==3.…(11分)△PAB的最大面积为S==9.…(12分)【点评】本题考查椭圆方程的求法,考查三角形最大面积的求法,考查椭圆、直线方程、两点间距离公式、点到直线距离公式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.22.(12分)(2017春•荔湾区期末)已知函数f(x)=aln(x+1)+x2﹣x,其中a为实数.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)若函数f(x)有两个极值点x1,x2,且x1<x2,求证:2f(x2)﹣x1>0.【考点】6D:利用导数研究函数的极值;6B:利用导数研究函数的单调性.【专题】35 :转化思想;49 :综合法;53 :导数的综合应用.【分析】(Ⅰ)求导数,分类讨论,利用导数的正负研究函数f(x)的单调性;(Ⅱ)所证问题转化为(1+x2)ln(x2+1)﹣x2>0,令g(x)=(1+x)ln(x+1)﹣x,x∈(0,1),根据函数的单调性证明即可.【解答】解:(Ⅰ)函数f(x)的定义域为(﹣1,+∞),=.①当a﹣1≥0时,即a≥1时,f'(x)≥0,f(x)在(﹣1,+∞)上单调递增;②当0<a<1时,由f'(x)=0得,,故f(x)在(﹣1,﹣)上单调递增,在(﹣,)上单调递减,在(,+∞)上单调递增;③当a<0时,由f'(x)=0得x1=,x2=﹣(舍)f(x)在(﹣1,)上单调递减,在(,+∞)上单调递增.(Ⅱ)证明:由(Ⅰ)得若函数f(x)有两个极值点x1,x2,且x1<x2,则0<a<1,,,∴x1+x2=0,x1x2=a﹣1且x2∈(0,1),要证2f(x2)﹣x1>0⇔f(x2)+x2>0⇔aln(x2+1)+﹣x2>0⇔(1+x2)ln(x2+1)﹣x2>0,令g(x)=(1+x)ln(x+1)﹣x,x∈(0,1),∵g′(x)=ln(x+1)+>0,∴g(x)在(0,1)递增,∴g(x)>g(0)=0,∴命题得证.【点评】本题考查导数知识的运用,考查函数的单调性,考查函数的构造与运用,转化思想.属于中档题。
湖北省武汉市江岸区2024年高二下学期7月期末质检数学试题(解析版)
2023~2024学年度第二学期期末质量检测高二数学试卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合03xA xx =< − ,集合(){}3log11B x x =−<,则A B ∪=( )A. {}03x x << B. {}13x x <<C. {}04x x <<D. {}14x x <<【答案】C 【解析】【分析】由分式不等式的求解方法求集合A ,再由对数函数的性质解不等式求得集合B ,结合并集的概念即可得答案.【详解】因为(){}{}3003A x x x x x =−<=<<,(){}{}{}3log1101314B x x x x x x =−<=<−<=<<, 因此,{}04A Bx x ∪=<<.故选:C.2. 设0,0a b >>,则“()lg 0a b +>”是“()lg 0ab >”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】B 【解析】【分析】将对数不等式进行等价变换,结合0a >,0b >,可判断a b +,ab 的取值范围,从而判断()lg a b +与()lg ab 的关系.【详解】因为lg (aa +bb )>0⇔lg (aa +bb )>lg1⇔aa +bb >1,又0,0a b >>, 所以aa +bb ≥2√aabb >1,当且仅当a b =时取等号,即14ab >, 又lg (aabb )>0⇔lg (aabb )>lg1⇔aabb >1, 所以14ab >不能推出1ab >,所以()lg 0a b +>是()lg 0ab >的不充分条件;又aabb >1⇒aabb >14,所以()lg 0a b +>是()lg 0ab >的必要条件, 所以()lg 0a b +>是()lg 0ab >的必要不充分条件. 故选:B.3. 若随机变量(),0.4X B n ,且() 1.2D X =,则()4P X =的值为( )A. 420.4×B. 430.4×C. 420.6×D. 430.6×【答案】B 【解析】【分析】根据二项分布求方差公式得到方程,求出5n =,从而得到()4P X =.【详解】由题意得()0.410.4 1.2n ×−=,解得5n =, ()()44454C 0.410.430.4P X ==⨯-=⨯.故选:B4. 某人研究中学生的性别与成绩、视力、智商、阅读量这4个变量的关系,随机抽查了52名中学生,得到统计数据如表1至表4,则与性别有关联的可能性最大的变量是( ) 表1表2视力 性别 好 差 总计男 4 16 20 女 12 20 32 总计163652表3智商 性别 偏高 正常 总计男 8 12 20 女 8 24 32 总计 163652表4阅读量 性别 丰富 不丰富 总计男 14 6 20 女 2 30 32 总计 163652A. 成绩B. 视力C. 智商D. 阅读量【答案】D 【解析】【分析】根据公式()()()()()22n ad bc K a b c d a c b d −=++++分别计算得观察值,比较大小即可得结果.【详解】根据公式()()()()()22n ad bc K a b c d a c b d −=++++分别计算得: A.2252(6221014):0.00916363220A K×−×≈×××;2252(4201216): 1.76916363220B K×−×≈×××;2252(824812): 1.316363220C K×−×≈×××;2252(143062):23.4816363220D K×−×≈×××选项D 的值最大,所以与性别有关联的可能性最大,故选D.【点睛】本题主要考查独立性检验的应用,意在考查灵活应用所学知识解决实际问题的能力,属于中档题. 5. 已知0,0x y >>,且满足341x y+=,则( ) A. xy 的最小值为48 B. xy 的最小值为148 C. xy 最大值为48 D. xy 的最大值为148【答案】A 【解析】【分析】对给定式子合理变形,再利用基本不等式求解即可.【详解】由题意得234()xy xy x y =+,所以2291624()xy xy x y xy=++,所以9162424y x xy x y =++≥=48, 当且仅当916yxx y=时取等,此时6,8x y ==,故A 正确. 故选:A6. 定义“等方差数列”:如果一个数列从第二项起,每一项的平方与它的前一项的平方的差都等于同一个常数,那么这个数列就叫做等方差数列,这个常数叫做该数列的方公差.设数列{}n a 是由正数组成的等方差数列,且方公差为2,135a =,则数列11nn a a ++ 的前n 项和n S =( )A.B.C.1D.1−【答案】A 【解析】【分析】借助所给新定义与等差数列定义可得数列{}n a 通项公式,再利用裂项相消法计算即可得解.【详解】由题意可得2212n n a a +−=,则数列{}2n a 是以21a 为首项,2为公差的等差数列, 则()22121n a a n =+−,由135a =,故()22131213125a a =+−=,即11a =(负值舍去), 故()212121n a n n =+−=−,故na =的的则11n n a a +=+12,故12nS =+++ 故选:A.7. 某医院要派2名男医生和4名女医生去A ,B ,C 三个地方义诊,每位医生都必须选择1个地方义诊.要求A ,B ,C 每个地方至少有一名医生,且都要有女医生,同时男医生甲不去A 地,则不同的安排方案为( ) A. 120种 B. 144种 C. 168种 D. 216种【答案】D 【解析】【分析】先求出2名男医生到3地的可能结果,再安排4名女医生,结合分步乘法计数原理计算即可求解. 【详解】设2名男医生分别为甲、乙, 若乙去A ,则甲可能去B 或C ,有2种结果; 若乙去B ,则甲可能去B 或C ,有2种结果; 若乙去C ,则甲可能去B 或C ,有2种结果, 共有6种结果;将4名女医生分配到A ,B ,C 三个地方,分为211三组,可能的结果有21342322C C A 36A =种, 所以满足题意的有636216×=种结果. 故选:D8. 已知定义在R 上的函数()()2e x axf x x a −+=∈R ,设()f x 的极大值和极小值分别为,m n ,则mn 的取值范围是( ) A. e ,2−∞−B.1,2e −∞−C. e ,02−D. 1,02e−【答案】B 【解析】【分析】求出函数的导数,利用导数求出,m n ,结合韦达定理用a 表示mn ,再求出指数函数的值域得解. 【详解】()()()22222e e 21e −+−+−+′′=+−++=−+xaxx ax x ax f x x ax x x ax ,令()221g x x ax =−++,显然函数()g x 的图象开口向下,且()01g =, 则函数()g x 有两个异号零点12,x x ,不妨设120x x <<,有12121,22+==−ax x x x , 而2e 0xax−+>恒成立,则当1x x <或2x x >时,()0f x ′<,当12x x x <<时,()0f x '>,因此函数()f x 在()1,x −∞,()2,x +∞上单调递减,在()12,x x 上单调递增, 又当0x <时,()0f x <恒成立,当0x >时,()0f x >恒成立,且()00f =, 于是()f x 的最大值()22222e −+==x ax m f x x ,最小值()21111e −+=x ax nf x x ,于是()()()222221212121121241212e12e e −−+++−++++===−a x x ax ax x x a x x x x mn x x x x ,由a ∈R ,得[)211,4a−∈−+∞,2141e ,e −∈+∞a ,则2141e,212e −∈−∞−− a ,所以mn 的取值范围是1,2e−∞−. 故选:B.【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 已知变量x 和变量y 的一组成对样本数据(),i i x y (1,2,,i n =⋅⋅⋅)的散点落在一条直线附近,11ni i x x n ==∑,11ni i y y n ==∑,相关系数为r ,线性回归方程为ˆˆˆybx a =+,则( )参考公式:r =()()()121ˆniii nii x x y y bx x ==−−=−∑∑.A. 当r 越大时,成对样本数据的线性相关程度越强B. 当0r >时,ˆ0b> C. 当1n x x +=,1n y y +=时,成对样本数据(),i i x y (1,2,,,1i n n =⋅⋅⋅+)的相关系数r ′满足r r ′= D. 当1n x x +=,1n y y +=时,成对样本数据(),i i x y (1,2,,,1i n n =⋅⋅⋅+)的线性回归方程ˆˆˆydx c =+满足ˆˆdb = 【答案】BCD 【解析】【分析】根据线性相关、相关系数、线性回归方程等知识,对选项逐一分析,即可得到答案. 【详解】对于A ,当r 越接近1时,成对样本数据的线性相关程度越强,故A 错误;对于B ,当0r >时,成对样本数据正相关,相关系数r 与符号ˆb相同,则ˆ0b >,故B 正确; 对于C ,当1n x x +=,1n y y +=时,将这组数据添加后,,x y 不变,故相关系数r 的表达式中的分子和分母均不变,故C 正确;对于D ,当1n x x +=,1n y y +=时,将这组数据添加后,,x y 不变,故线性回归方程中的斜率的表达式中的分子和分母均不变,所以ˆˆdb =,故D 正确; 综上所述,正确的有B 、C 、D. 故选:BCD.10. 已知(),,a b c a b c <<∈R ,且230a b c ++=,则( ) A. 0<<a c B. ,a c ∃使得22250a c −= C. a c +可能大于0 D.212b c a c +<−+ 【答案】AD 【解析】【分析】对于A ,据已知条件变形即可证明;对于B ,根据已知得50a c +>,得05ac >−>,即可证明;对于C ,据已知条件变形即可证明;对于D ,将条件变形为()2a c b c +=−+,再利用0ca c<+即可证明结论.【详解】对于A ,由a b c <<及230a b c ++=, 得623230a a a a a b c =++<++=,所以a<0, 又023236a b c c c c c =++<++=,所以0c >,A 正确;对于B ,由a b c <<及230a b c ++=,得230a c c ++>,所以50a c +>,得05ac >−>, 所以2225a c >,得22250a c −<,B 错误; 对于C ,由abc <<及230a b c ++=,得33230a c a b c +<++=,所以0a c +<, C 错误.对于D ,由230a b c ++=,得()2a c b c +=−+,所以212b c b c c b c c ca c a c a c a c a c++++==+=−++++++. 因0a c +<,0c >,所以0ca c <+,所以212b c a c +<−+,D 正确. 故选:AD.11. 冒泡排序是一种计算机科学领域的较简单的排序算法,其基本思想是:通过对待排序序列{}12,,,n x x x …从左往右,依次对相邻两个元素{}()1,1,2,,1k k x x k n +=…−比较大小,若1k k x x +>,则交换两个数的位置,使值较大的元素逐渐从左移向右,就如水底下的气泡一样逐渐向上冒,重复以上过程直到序列中所有数都是按照从小到大排列为止.例如:对于序列{}2,1,4,3进行冒泡排序,首先比较{}2,1,需要交换1次位置,得到新序列{}1,2,4,3,然后比较{}2,4,无需交换位置,最后比较{}4,3,又需要交换1次位置,得到新序列{}1,2,3,4最终完成了冒泡排序,同样地,序列{}1,4,2,3需要依次交换{}{}4,2,4,3完成冒泡排序.因此,{}2,1,4,3和{}1,4,2,3均是交换2次的序列.现在对任一个包含n 个不等实数的序列进行冒泡排序()3n ≥,设在冒泡排序中序列需要交换的最大次数为n a ,只需要交换1次的序列个数为n b ,只需要交换2次的序列个数为n c ,则( ) A. 序列{}2,7,1,8是需要交换3次的序列B. ()12n n n a −=为C. 1n b n =−D. 59c =【答案】BCD 【解析】【分析】根据题意,不妨设序列的n 个元素为1,2,3,n ,由题意可判断A 中序列交换次数;再根据等差数列前项和公式即可判断B ;得出只要交换1次的序列的特征即可判断C ;利用累加法求出通项公式即可判断D.【详解】对A ,序列{}2,7,1,8,比较{}2,7,无需交换位置,比较{}7,1,需要交换1次位置,得到新序列{}2,1,7,8,比较{}7,8,无需交换位置,最后比较{}2,1,需要交换1次位置,得到新序列{}1,2,7,8,完成冒泡排序,共需要交换2次,故A 错误;对B ,不妨设序列的n 个元素为1,2,3,n ,交换次数最多的序列为{},1,2,1n n − , 将元素n 冒泡到最右侧,需交换次1n −次, 将元素n -1冒泡到最右侧,需交换次2n −次,,故共需要()()()()()1111122122n n n n n n −+−−−+−+++==,即最大交换次数()12n n n a −=,故正确;对C ,只要交换1次的序列是将{}1,2,3,n 中的任意相邻两个数字调换位置的序列,故有1n −个这样的序列,即1n b n =−,故C 正确;对D ,当n 个元素的序列顺序确定后,将元素n +1添加进原序列, 使得新序列(共n +1个元素)交换次数也是2, 则元素n +1在新序列的位置只能是最后三个位置, 若元素n +1在新序列的最后一个位置,则不会增加交换次数,故原序列交换次数为2(这样的序列有n c 个), 若元素n +1在新序列的倒数第二个位置,则会增加1次交换, 故原序列交换次数为1(这样的序列有个1n b n =−), 若元素n +1在新序列的倒数第三个位置,则会增加2次交换,故原序列交换次数为0(这样的序列有1个),因此,111n n n c c n c n ++−++,所以5432479c c c c =+=+=+,显然20c =, 所以59c =,故D 正确. 故选:BCD.【点睛】关键点点睛:在解与数列新定义相关的题目时,理解新定义是解决本题的关键.三、填空题:本题共3小题,每小题5分,共15分.12. 若函数()()ln ,ex xf x f x =′为()f x 的导函数,则()1f ′的值为______. 【答案】1e##1e − 【解析】【分析】首先求导函数,然后结合导函数的运算法则整理计算即可求得最终结果.【详解】因为()211e ln ln e e x x x x x x x f x −−==′, 所以()11ln1111e ef− ′ ==.故答案为:1e. 13. ()62x x y −+的展开式中53x y 的系数为______.(用数字作答) 【答案】60− 【解析】【分析】根据二项式展开式有关知识求得正确答案.【详解】因为()25323··x y x x y =,而()62x x y −+表示6个因式相乘, 在6个因式中,有2个选2x ,1个x −,3个选y所以()62x x y −+的展开式中含有53x y 项为()()222133643C ?C ?C x x y −, 所以()62x x y −+中含有53x y 项的系数为()213643C ?C ?1?C 60−=−. 故答案为:60−.14. 设,A B 是一个随机试验中的两个事件,且117(),(),()3412P A P B P AB AB ==+=,则()P A B =∣______. 【答案】13【解析】【分析】根据对立事件的概率与互斥事件的概率计算公式求解即可.【详解】因为11(),()34P A P B ==,故()()23,34P A P B ==,因为,AB AB 互斥,所以()0P ABAB =, 所以()()()B P P A AB AB B P A ++=()()()()P B P AB P A P AB =−+−()21234P AB =+− ()11721212P AB =−=, 解得()16P AB =,所以()()()()()()11146|134P AB P B P AB P AB P B P B −−====. 故答案为:13.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤. 15. 已知集合402x M x x−=≥ −,非空集合{123}N x m x m =−<<−∣,(1)若3m =时,求M N ∩;(2)是否存在实数m ,使得R x M ∈ 是R x N ∈ 必要不充分条件?若存在,求实数m 的取值范围;若不恶在,请说朋理由.【答案】(1){23}∣∩=<<M N xx (2)存在,72m >的【解析】【分析】(1)由分式不等式化简{24}M xx =<≤∣,即可由交集的定义求解, (2)将问题转化为M ⫋N ,即可列不等式求解. 【小问1详解】 集合40{24}2x M xx x x−=≥=<≤ −∣当3m =时,非空集合{23}N x x −<<∣ {23}M N x x ∴∩=<<∣【小问2详解】假设存在实数m ,使得R x M ∈ 是R x N ∈ 的必要不充分条件,则R N ⫋R M ,即M ⫋N ,则�2mm −3>41−mm ≤2,解得72m >.故存在实数72m >,使得R x M ∈ 是R x N ∈ 的必要不充分条件. 16. 树人中学对某次高三学生的期末考试成绩进行统计,从全体考生中随机抽取48名学生的数学成绩()x 和物理成绩()y ,得到一些统计数据:484811115280,,6i i i i x y ===∑∑,其中,i i x y 分别表示这48名同学的数学成绩和物理成绩,1,2,,48,i y = 与x 的相关系数0.77r =. (1)求y 关于x 的线性回归方程;(2)从概率统计规律看,本次考试该校高三学生的物理成绩ξ服从正态分布()2,N µσ,用样本平均数y作为µ的估计值,用样本方差2s 作为2σ的估计值.试求该校高三共1000名考生中,物理成绩位于区间()63.05,95.9的人数Z 的数学期望.附:①回归方程ˆˆˆy abx =+中:()()()121ˆˆˆ,niii ni i x x y y b ay bx x x ==−−==−−∑∑②相关系数r =③若()2,N ηµσ,则()()0.68,220.95P P µσηµσµσηµσ−≤≤+≈−≤≤+≈④48221110.9548i i y y =−=≈∑ 【答案】(1)0.4227.8ˆyx +(2)815 【解析】【分析】(1)根据题意,利用公式,求得ˆ0.42b=,得到ˆ27.8a =,即可得到回归方程; (2)根据题意,得到()74,120N η∼,求得(63.0595.9)0.815P η<<=,结合正态分布()74,120Z N ∼,得到()815E Z =,即可求解.【小问1详解】解:由题中数据可得,48481111110,744848i i i i x x y y =====∑∑,由480.77x x y y r−−,可得60.770.411ˆ2b =×=, 可得8ˆ741100.4227.a=−×=,所以回归方程为0.4227.8ˆy x +.【小问2详解】解:由()48482222111174,1204848i i i i y s y y y y ====−=−=∑∑,所以()74,120N η∼, 10.95≈,所以(63.0584.95)0.68,(52.195.9)0.95P P ηη<<=<<=, 所以0.680.95(63.0595.9)0.8152P η+<<==, 因为()1000,0.815ZB ∼,所以()10000.815815E Z =×=, 所以物理成绩位于区间()63.05,95.95的人数Z 的数学期望为815.17. 已知等差数列{}n a 的前n 项利为25,6,45n S a S ==,数列{}n b 的前n 项和为()1312nnT =−. (1)求数列{}n a 和{}n b 的通项公式;(2)设数列{}n c 满足20,21,N ,2,N n n n k k c b n k k ∗∗ =−∈ = =∈ ,求()*1222121n n n a c a c a c n −+++∈N . 【答案】(1)3n a n =,13n n b −=(2)1333n n +−− 【解析】【分析】(1)设出公差,由等差数列通项公式和求和公式基本量计算得到方程,求出首项和公差,得到通项公式,再利用11,1,2n nn S n b S S n −= = −≥ 求出{}n b 的通项公式;(2)变形得到()11222121333213nn n n n a c a c a c n −−+++=+⋅++− ,错位相减法求和,【小问1详解】设{}n a 的公差为d ,由题设得11651045a d a d +=+= ,解得13,3a d ==,所以3n a n =, 当2n ≥时,11113,1n n n n b T T b T −−=−===,也符合上式,所以13n n b −=;【小问2详解】20,21,N ,2,N n n n k k c b n k k ∗∗ =−∈= =∈ , ()1222121113090321n n n n n a c a c a c b b n b −−+++=+++++−()()113321n n b b n b −=+++− ()1333213n n n −+⋅++− ,记()1333213nn W n −+⋅++− ①,则()()121333233213n n W n n −−=+⋅++−+− ②,②-①得,()()()11613232323213212322313n n n n n W n n n −−−=+⋅++⋅−−=+−−=⋅−−− ,故1333n W n +−−,所以11222121333n n n n a c a c a c n +−+++=−−18. (1)如图,在一条无限长的轨道上,一个质点在随机外力的作用下,从位置0出发,每次向左或向右移动一个单位的概率都为12,设移动n 次后质点位于位置n X .(i )求随机变量4X 的概率分布列及()4E X ; (ii )求()n E X ;(2)若轨道上只有0,1,2,n …这1n +个位置,质点向左或右移动一个单位的概率都为12,若在0处,则只能向右移动;现有一个质点从0出发,求它首次移动到n 的次数的期望.【答案】(1)(i )分布列见解析,0;(ii )0;(2)2n . 【解析】【分析】(1)由题意分析出随机变量4X 可能取值,根据独立重复试验概率公式计算相应的概率,从而得出分布列;质点向右移动的次数设为随机变量Y ,则Y 服从二项分布,则随机变量n X 可以用Y 表示,从而求得()n E X ;(2)根据题意先设首次从k 到n 的步数期望为k a ,从而得出101221+−=+=+−k k a a a k k a ,再由1(21)−=+∑n k k 求和,由0na=可得20a n =.【详解】(1)(i )4X 可能取值为4,2,0,2,4−−,()44114216P X =−==, ()131441112C 224P X =−==,.()222441130C 228P X ===, ()313441112C 224P X ===,()44114216P X ===, 所以随机变量4X 的分布列为:()()()4113114202401648416E X ∴=×−+×−+×+×+×=; (ii )设质点n 次移动中向右移动的次数为Y ,显然每移动一次的概率为12,则1,2Y B n∼, ()2n X Y n Y Y n =−−=−,所以()()12202n E X E Y n n n =−=××−=.(2)设首次从k 到n 的步数期望为k a ,则有()()11111122k k k a a a +−=+++,所以112k k k k a a a a +−−=−+,可得1012k k a a k a a +−=+−.又小球在0处,只能向前移动到1,则有011a a −=, 所以1200(21)n n k a a k n −=−=+=∑,又有0n a =,则20a n =.【点睛】关键点点睛:(1)关键是分析出该问题属于独立重复试验,分析求解即可;(2)关键是设首次从k 到n 的步数期望为k a ,从而构造出1012k k a a k a a +−=+−,分析出011a a −=且0n a =,即可求解. 19. 已知函数()1ex x f x +=. (1)求函数()f x 的单调区间;(2)证明()0,x ∈+∞时,12e e ln x x x x f x x −− −≥⋅;(3)若对于任意的()0,x ∈+∞,关于x 的不等式22e 2ln x mx x x x −≥−−恒成立,求实数m 的取值范围. 【答案】(1)增区间为(),0∞−,减区间为[)0,∞+ (2)证明见解析 (3)1,2−∞【解析】【分析】(1)求出导函数,再根据导函数正负求出单调区间即可;(2)证明不等式转化为等价条件,同构为一个函数再根据函数单调性证明.; (3)分类情况讨论转化恒成立问题求参. 【小问1详解】()()()2e 1e e ex x x x x x f x −+−==′, 当0x <时,()0f x ′>;当0x >时,()0f x ′<,()f x ∴的增区间为(),0∞−,减区间为[)0,∞+.【小问2详解】令1ln (0)t x x x =−−>,111x t x x−′=−=, 当01x <<时,0t ′<;当1x >0t ′>,∴当1x =时,min 00t t =∴≥即1ln 0x x −−≥,原不等式等价于2e 1e x tt f x − +≥⋅ ()2e x f t f x −⇔≥,()f x 为()0,∞+上的减函数,2e 0,0x t x−≥>,∴只需证明2e x t x−≤即2ln 2e 1ln e x x x x x x −−−−−≤=1e t t −⇐≤, 令()()()11e 01e t t g t t t g t −−=−≥=−′, 当01t ≤≤时,()0g t ′>,当1t >时,()0g t ′<,()()1min ()100e t g t g g t t −∴==∴≤∴≤∴原不等式成立.【小问3详解】当12m ≤时,由(2)知2e 1ln x x x x −≥−−又0x >,22e ln x x x x x −∴≥−−22ln mx x x x ≥−−,∴原不等式在()0,∞+上恒成立.当12m >时,令()()2ln 110x x x ϕϕ=−−=−< . ()422ln20ϕ=−>,()x ϕ∴在()1,4内必有零点,设为0x ,则002ln x x −=,020e x x −∴=, ()020*******e 12ln 122120x x ax x ax x a x x x −∴+−+=+−+−=−<,0220000e 2ln 0x ax x x x −∴−++<,而0220000e 2ln x ax x x x −<−−,综上所述实数m 的取值范围是1,2−∞.【点睛】方法点睛:证明不等式转化为等价条件,同构为一个函数再根据函数单调性证明.。
高二数学下学期期末考试试卷 文含解析 试题
2021—2021学年第二学期高二期末考试文科数学试题一、选择题:本大题一一共12小题,每一小题5分,一共60分。
在每一小题给出的四个选项里面,选出符合题目要求的一项。
,,那么A. B. C. D.【答案】C【解析】【分析】先化简集合A,再判断选项的正误得解.【详解】由题得集合A=,所以,A∩B={0},故答案为:C【点睛】此题主要考察集合的化简和运算,意在考察学生对这些知识的掌握程度和分析推理才能.2.(为虚数单位) ,那么A. B. C. D.【答案】B【解析】【分析】由题得,再利用复数的除法计算得解.【详解】由题得,故答案为:B【点睛】此题主要考察复数的运算,意在考察学生对该知识的掌握程度和分析推理计算才能.是定义在上的奇函数,当时,,那么A. B. C. D.【答案】D【解析】【分析】利用奇函数的性质求出的值.【详解】由题得,故答案为:D【点睛】(1)此题主要考察奇函数的性质,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)奇函数f(-x)=-f(x).4.以下命题中,真命题是A. 假设,且,那么中至少有一个大于1B.C. 的充要条件是D.【答案】A【解析】【分析】逐一判断每一个选项的真假得解.【详解】对于选项A,假设x≤1,y≤1,所以x+y≤2,与矛盾,所以原命题正确.当x=2时,2x=x2,故B错误.当a=b=0时,满足a+b=0,但=﹣1不成立,故a+b=0的充要条件是=﹣1错误,∀x∈R,e x>0,故∃x0∈R,错误,故正确的命题是A,故答案为:A【点睛】〔1〕此题主要考察命题的真假的判断,考察全称命题和特称命题的真假,考察充要条件和反证法,意在考察学生对这些知识的掌握程度和分析推理才能.〔2〕对于含有“至少〞“至多〞的命题的证明,一般利用反证法.,那么该抛物线的焦点坐标为( )A. B. C. D.【答案】C【解析】【分析】先求出p的值,再写出抛物线的焦点坐标.【详解】由题得2p=4,所以p=2,所以抛物线的焦点坐标为〔1,0〕.故答案为:C【点睛】〔1〕此题主要考察抛物线的简单几何性质,意在考察学生对该知识的掌握程度和分析推理才能.(2)抛物线的焦点坐标为.是增函数,而是对数函数,所以是增函数,上面的推理错误的选项是A. 大前提B. 小前提C. 推理形式D. 以上都是【答案】A【解析】【分析】由于三段论的大前提“对数函数是增函数〞是错误的,所以选A. 【详解】由于三段论的大前提“对数函数是增函数〞是错误的,只有当a>1时,对数函数才是增函数,故答案为:A【点睛】(1)此题主要考察三段论,意在考察学生对该知识的掌握程度和分析推理才能.(2)一个三段论,只有大前提正确,小前提正确和推理形式正确,结论才是正确的.,,,那么A. B. C. D.【答案】C【解析】【分析】先证明c<0,a>0,b>0,再证明b>1,a<1,即得解.【详解】由题得,a>0,b>0.所以.故答案为:C【点睛】(1)此题主要考察指数函数对数函数的单调性,考察实数大小的比拟,意在考察学生对这些知识的掌握程度和分析推理才能.〔2〕实数比拟大小,一般先和“0〞比,再和“±1〞比.,,假设∥,那么A. B. C. D.【答案】D【解析】【分析】根据∥得到,解方程即得x的值.【详解】根据∥得到.故答案为:D【点睛】(1)此题主要考察向量平行的坐标表示,意在考察学生对该知识的掌握程度和分析推理计算才能.(2) 假如=,=,那么||的充要条件是.那么的值是.A. B. C. D.【答案】C【解析】【分析】先计算出f(2)的值,再计算的值.【详解】由题得f(2)=,故答案为:C【点睛】(1)此题主要考察分段函数求值,意在考察学生对该知识的掌握程度和分析推理计算才能.(2)分段函数求值关键是看自变量在哪一段.10.为等比数列,,,那么〔〕A. B. C. D.【答案】D【解析】试题分析:,由等比数列性质可知考点:等比数列性质视频11.某几何体的三视图(单位:cm)如下图,那么该几何体的体积是( )A. 72 cm3B. 90 cm3C. 108 cm3D. 138 cm3【答案】B【解析】由三视图可知:原几何体是由长方体与一个三棱柱组成,长方体的长宽高分别是:6,4,3;三棱柱的底面直角三角形的直角边长是4,3;高是3;其几何体的体积为:V=3×4×6+×3×4×3=90〔cm3〕.故答案选:B.上的奇函数满足,且在区间上是增函数.,假设方程在区间上有四个不同的根,那么A. -8B. -4C. 8D. -16【答案】A【解析】【分析】由条件“f〔x﹣4〕=﹣f〔x〕〞得f〔x+8〕=f〔x〕,说明此函数是周期函数,又是奇函数,且在[0,2]上为增函数,由这些画出示意图,由图可解决问题.【详解】f(x-8)=f[(x-4)-4]=-f(x-4)=-·-f(x)=f(x),所以函数是以8为周期的函数,函数是奇函数,且在[0,2]上为增函数,综合条件得函数的示意图,由图看出,四个交点中两个交点的横坐标之和为2×〔﹣6〕=-12,另两个交点的横坐标之和为2×2=4,所以x1+x2+x3+x4=﹣8.故答案为:A【点睛】(1)此题主要考察函数的图像和性质〔周期性、奇偶性和单调性〕,考察函数的零点问题,意在考察学生对这些知识的掌握程度和数形结合分析推理才能.(2)解答此题的关键是求出函数的周期,画出函数的草图,利用数形结合分析解答.二、填空题:本大题一一共4小题,每一小题5分,一共20分。
高二学年下学期期末数学试题卷及答案
XXX 年下学期期末高二年级数学试题卷考试时间:100分钟 总分:100分命题人:XXX一、选择题(每小题3分,共30分。
每小题中只有一个选项是正确的,请将正确选项涂在答题卡上)1.若sin α与cos α同号,则α属于( )A .第一象限角B .第三象限角C .第一、二象限角D .第一、三象限角2.椭圆221916x y +=的焦点坐标是( ) A.( B .(7,0)±C.(0, D .(0,7)±3.4(1)x -的展开式中,2x 的系数是( )A .6B .6-C .4D .4-4. 函数y=2sinxcosx 的最小正周期是( )A 4πB 2πC 2πD π5. 椭圆2211625x y +=的焦点坐标是( ) A (3,0±) B(±) C (0,3±) D(0,±) 6. 222()n a b +展开式的项数是( )A 2nB 2n+1C 2(n+1)D 4n 7. 在三角形ABC 中,“sin2A=sin2B ”是“A=B ”的( )A 充分不必要条件B 必要不充分条件C 充分必要条件D 既不充分也不必要条件 8. 抛物线22y x =的准线方程为 ( )A 18y =-B 14y =-C 12y =- D 1y =-9. 在正方体1111ABCD A B C D -中,二面角1D AB D --的大小是( )A 30B 60C 45D 90 10. 若事件B 与事件B 互为对立事件,则P(B)+P ()B 等于( )A1 B12 C 13 D 14二、填空题(每小题3分,共24分)11.sin45cos15cos45sin15︒︒︒︒+=12.若长方体的长、宽、高分别为1,2,3,则其对角线长为 13.若事件A 与事件A 互为对立事件,且()0.2P A =,则()P A =14. 已知3sin 5a =且a 是第二象限,则tan a =15. 双曲线221169x y -=的离心率e = 16 若事件A,B 相互独立,且()13P A =,()12P B =,则()P AB = 17 双曲线22149x y -=的渐近线方程是 18 ()62x +的展开式中3x 的系数为 三、计算题(每小题8分,共24分)19.某中学宏志班有学生50名,其中女生30人,男生20人,从中任选两名参加火炬接力活动,求(1) 选出的两名均为女生的概率 (2) 选出的两名是一男一女的概率专业 班级 姓名 考场20.已知双曲线的焦点为()10,6F -,()20,6F ,且过点()2,5P -,求该双曲线的标准方程。
高中数学高二年级下学期期末考试试卷附参考答案
2 5. 5
18. (本小题满分 10 分)已知圆方程为 y2 6 ysin x 2 8 xcos 7cos2 ( 1)求圆心轨迹的参数方程 C; ( 2)点 P (x , y) 是( 1)中曲线 C 上的动点,求 2 x y 的取值范围。
d n 为(
)
A.
1
B.
n (n 1)
n n (n 1)
C.
1
n1
D.
n
n1
x 轴上截得的弦长依次
8. f(x)=sin(x+
),g(x)=cos(x-
), 则下列命题中正确者是(
)
2
2
A. f(x)g(x) 的最小正周期为 2π
B. 函数 y=f(x)g(x) 是偶函数
C.将 f(x) 的图象向左平移 个单位可以得到 g(x) 的图象 2
安庆一中高二年级下学期期末考试试卷
一、选择题: (本大题共 12 小题,每小题 5 分,满分 60 分 . 在每小题给出的四个选项中,只有一项是符合
题目要求的) .
1
1. 设全集 I=R, 集合 A y | y 2 x , x R , B { y | y x 2 , x 1} ,则 A (CRB) ( )
A. 0,1
B.
0,1
C.
1,+
D.
1,+ b5E2RGbCAP
7i
2. 计算
=( )
(2 i)(3 i)
A. 1
7 i B.
24
7 i
C.
25
25 25
24 7 i D.
25 25
{高中试卷}高二数学下期期末考试试题[仅供参考]
20XX年高中测试高中试题试卷科目:年级:考点:监考老师:日期:高二数学下期期末考试试题 高20XX 级数学试题(理科)考试时间120分钟 满分150分一、选择题:本大题共12小题,每题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的答案填在后面的括号内1.某研究所有编号为1,2,3,4的四个饲养房,分别饲养有18、54、24、48只白鼠供试验用,某项试验需抽取24只白鼠,你认为最合适的抽样方法为( ) (A )在每个饲养房各抽取6只(B )为所有白鼠都加上编有不同号码的项圈,用随机抽样法确定24只 (C )在四个饲养房分别抽取3、9、4、8只(D )先确定这四个饲养房应分别抽出3、9、4、8只样品,再由各饲养房自己加号码项圈,用简单随机抽样确定各自抽出的对象2.要从四个学校中选出6人作“市优干”,每校至少一名,这6个名额有( )种分配方法.(A )15 (B )20 (C )10 (D )63.3名男生2名女生排成一排,女生甲始终排在女生乙的左边的排法种数是( ) (A )120 (B )60 (C )48 (D )24 4.nxx )1(2-的展开式中,常数项为15,则n 等于( ) (A )3 (B )4 (C )5 (D )65.将编号为1,2,3,4,5,6的六个小球排成一列,要求1号球与2号球必须相邻,5号球与6号球不相邻,则不同的排法种数有( ) (A )36 (B )142 (C )48 (D )1446.1121021lim +-∞→+++++n n nn n n n C C C C 的值为( ) (A )1(B )1-(C )0(D )21 7.在大小等于32π的二面角βα--l 内,放一半径为3的球O ,球O 与半平面βα、分别切于A 、B 两点,则过A 、B 两点的球面距离等于( ) (A )π (B )π2 (C )π3 (D )π4D 1C 1A 1B 18.在正方体1111D C B A ABCD -中,P 是侧面C C BB 11内 一动点,若P 到直线BC 与到直线11D C 的距离相等,则动 点P 的轨迹所在曲线是( ) (A )直线 (B )圆 (C )双曲线(D )抛物线9.一个四面体共一个顶点的三条棱两两互相垂直,其长分别为361、、,且四面体的四个顶点在同一个球面上,则这个球的表面积为( )(A )π16 (B )π32 (C )π36 (D )π6410.从正方体的六个面中选取3个面,其中2个面不相邻的概率是( ) (A )4.0 (B )6.0(C )8.0(D )9.0 11.已知e n n n =+∞→)11(lim ,则=-+∞→nn n 2)211(lim ( )(A )e (B )e 2 (C )2e (D )4e 12.在棱长为4的正方体1111D C B A ABCD -中, 点E 、F 分别在棱1AA 和AB 上,且EF E C ⊥1, 则||AF 的最大值为( ) (A )21 (B )1(C )23(D )2高二数学下期期末考试试题高20XX 级数学答卷FE D 1C 1DBCA 1B 1A二、填空题:本大题共4小题,每题4分,共16分,把答案填在题中的横线上 13.设随机变量ξ的分布列为:则ξ的数学期望ξE 的最大值为.14.在9)1(x -的展开式中,系数最小的项是.15.如图,A 、B 、C 是球O 的球面上三点,且OA 、OB 、OC 两两垂直,P 是球O 的大圆上BC 弧上的中点,则直线AP 与OB 所成角的弧度数是.16.已知)4,2(),1,(==AC k AB ,若k 为满足4||≤AB 的一随机整数,则ABC ∆是∆Rt 的概率是_____________.三、解答题:本大题共6小题,共74分17.(12分)在长方体1111D C B A ABCD -中,3,2,41===CC BC AB ,E 分1CC 所成比为2,(1)求点1D 到平面BDE 的距离;(2)求直线B A 1与平面BDE 所成角的大小.18.(12分)甲、乙两人参加一次英语口语考试,已知在编号为1~10的10道试题中,甲能答对编号为1~6的6道题,乙能答对编号为3~10的8道题,规定每位考生都从备选题中抽出3道试题进行测试,至少答对2道才算合格, (1)求甲答对试题数ξ的概率分布及数学期望; (2)求甲、乙两人至少有一人考试合格的概率.D 1C 1DBCA 1B 1AE19.(12分)如图所示的正方体1111D C B A ABCD -中,E 是BC 的中点,在1CC 上求一点P ,使面⊥P B A 11面DE C 1.20.(12分)如图,直四棱柱1111D C B A ABCD -的高为3,底面是边长为4的菱形 ,且60=∠DAB ,11111,O D B C A O BD AC == ,(1)求证:平面⊥AC O 1平面BD O 1; (2)求二面角D BC O --1的大小.D 1C 1DBCA 1B 1AO 1OD 1C 1D B CA 1B 1APE21.(12分)一种信号灯,只有符号“√”和“×”随机地反复出现,每秒钟变化一次,每次变化只出现“√”和“×”两者之一,其中出现“√”的概率为31,出现“×”的概率为32,若第m 次出现“√”,记为1=m a ,若第m 次出现“×”,则记为1-=m a ,令n n a a a S +++= 21,(1)求24=S 的概率;(2)求0,0,0321≥≥≥S S S ,且37=S 的概率.22.(14分)设nn x n g x n f x N n ])1(1[)(,)1(1)(,10,22*--=--=<<∈,试比较)(n f 与)(n g 的大小,并证明你的结论.高二期末测试题(理科)参考答案一、选择题(每题5分,共60分)二、填空题(每题4分,共16分) 13、23; 14、5126x -; 15、3π; 16、73 三、解答题(共74分)17、解:(1)如图建立空间直角坐标系:)2,4,0(),0,4,2(==∴。
高中高二数学下学期期末考试卷
高中高二数学下学期期末考试卷2021年高中高二数学下学期期末考试卷【】有关于2021年高中高二数学下学期期末考试卷是查字典数学网特别为您集合的,查字典数学网编辑将第一时间为您整理全国学习信息,供大家参考!一、填空题(本大题共14小题,每题5分,共70分.只需求写出结果,不用写出计算和推理进程)1. 与向量 =(12,5)平行的单位向量为____________.2. 假定,,那么 .3. 是的条件;(填充沛不用要、必要不充沛、充要、非充沛非必要)4.假定 ,那么 .5.集合,假定,那么 .6.假定为所在平面内一点,且满足,那么的外形为。
7. 函数为偶函数,且满足不等式,那么的值为__ _____.8. 函数在上是关于x的减函数,那么实数a的取值范围为 .9. ,为锐角,,,那么 =_______________.10.f(x)= 是偶函数,且y=f(x)在上是减函数,那么n=__________.11.设函数假定方程有三个不同的实数解,那么的取值范围是 .12. 设是正实数,假设函数f(x)=2sinx在[-3]上是增函数,那么的取值范围是 .13.设方程的解为 ,那么关于的不等式的最大整数解为__ .14.给出以下四个命题:①存在实数,使sin cos =1;② 是奇函数;③ 是函数的图象的一条对称轴;④函数的值域为 .本文导航 1、首页2、高二数学下学期期末考试卷-2其中正确命题的序号是______________.二.解答题(本大题共6小题,共90分.解容许写出文字说明、证明进程或演算步骤)15.(总分值14分)设选集是实数集 , ,(1) 当时,求和 ;(2 假定 ,求正数的取值范围.16.(总分值14分)命题:函数在上单调递减,命题:,,假定命题且为真命题,务实数的取值范围. .17.(总分值15分)在中,角所对的边区分为,且满足, .(I)求的面积; (II)假定,求的值.18.(总分值15分). .(1)假定且 =l时,求的最大值和最小值,以及取得最大值和最小值时x的值;(2)假定且时,方程有两个不相等的实数根,求b的取值范围及的值.19.(总分值16分)某矩形花园, , ,是的中点,在该花园中有一花圃其外形是以为直角顶点的内接Rt△ ,其中E、F区分落在线段和线段上如图.区分记为,的周长为,的面积为(1)试求的取值范围;(2) 为何值时的值为最小;并求的最小值.20.(总分值16分)函数 .(1) ;(2)否存在实数 ,同时满足以下条件:① ;② 当的定义域为时值域为 ;假定存在,求出的值;假定不存在,说明理由. 考生只需在片面温习的基础上,抓住重点、难点、易错点,各个击破,夯实基础,规范答题,一定会稳中求进,取得优秀的效果。
高二数学下期期末考试试题 理含解析 试题
卜人入州八九几市潮王学校靖远县二零二零—二零二壹高二数学下学期期末考试试题理〔含解析〕一、选择题:此题一共12小题,每一小题5分,一共60分.在每个小题给出的四个选项里面,只有一项为哪一项哪一项符01合题目要求的. 1.集合{|91}A x x =-<≤,{|73}B x x =-<<,那么A B =A.{|73}x x -<<B.{|93}x x -<<C.{|91}x x -<≤D.{|71}x x -<≤【答案】D 【解析】 【分析】利用集合交集的概念,直接求得两个集合的交集.【详解】两个集合的交集是由两个集合公一共的元素构成,故(]7,1A B ⋂=-,应选D.【点睛】本小题考察集合交集的概念,求解时要注意区间端点值是否可以获得,属于根底题.2.设21i i 55z⎛⎫=- ⎪⎝⎭,那么z =〔〕C.15D.125【答案】A 【解析】 【分析】根据复数乘法运算化简z ,再由复数几何意义即可求得z .【详解】2155zi i ⎛⎫=- ⎪⎝⎭1255i =+,由复数模的求法可得z == 应选:A.【点睛】此题考察了复数的乘法运算,复数模的求法,属于根底题. 3.以圆M :22460x y x y ++-=的圆心为圆心,3为半径的圆的方程为〔〕A.()()22239x y ++-= B.()()22239x y -++= C.()()22233x y ++-=D.()()22233x y -++=【答案】A 【解析】 【分析】先求得圆M 的圆心坐标,再根据半径为3即可得圆的HY 方程. 【详解】由题意可得圆M 的圆心坐标为()23-,, 以()23-,为圆心,以3为半径的圆的方程为()()22239x y ++-=. 应选:A.【点睛】此题考察了圆的一般方程与HY 方程转化,圆的方程求法,属于根底题.4.某超抽取13袋袋装食用盐,对其质量〔单位:g 〕进展统计,得到如以下图的茎叶图,假设从这13袋食用盐中随机选取1袋,那么该袋食用盐的质量在[]499501,内的概率为〔〕 A.513B.613 C.713D.813【答案】B 【解析】 【分析】由题,分析茎叶图,找出质量在[499,501]的个数,再求其概率即可.【详解】这13个数据中位于[]499,501的个数为6,故所求概率为6.13应选B【点睛】此题考察了茎叶图得考察,熟悉茎叶图是解题的关键,属于根底题.5.假设函数*12*log (1),()3,x x x N f x x N⎧+∈⎪=⎨⎪∉⎩,那么((0))f f =()A.0B.-1C.13D.1【答案】B 【解析】 【分析】根据分段函数的解析式代入自变量即可求出函数值. 【详解】因为0N *∉,所以0(0)3=1f =,((0))(1)f f f =,因为1N *∈,所以(1)=1f -,故((0))1f f =-,应选B.【点睛】此题主要考察了分段函数,属于中档题.6.将A ,B ,C ,D ,E ,F 这6个字母随机排成一排组成一个信息码,那么所得信息码恰好满足A ,B ,C 三个字母连在一起,且B 在A 与C 之间的概率为〔〕A.112B.15C.115D.215【答案】C 【解析】 【分析】将A ,B ,C 三个字捆在一起,利用捆绑法得到答案.【详解】由捆绑法可得所求概率为242466A A 1A 15P ==.故答案为C【点睛】此题考察了概率的计算,利用捆绑法可以简化运算. 7.假设()2,XN μσ,那么()0.6827P X μσμσ-<<+=,()220.9545P X μσμσ-<<+=.设一批白炽灯的寿命〔单位:小时〕服从均值为1000,方差为400的正态分布,随机从这批白炽灯中选取一只,那么〔〕 A.这只白炽灯的寿命在980小时到1040小时之间的概率为 B.这只白炽灯的寿命在600小时到1800小时之间的概率为 C.这只白炽灯的寿命在980小时到1040小时之间的概率为 D.这只白炽灯的寿命在600小时到1800小时之间的概率为 【答案】A 【解析】 【分析】 先求出1000μ=,20σ=,再求出(9801020)P X <<和(10201040)P X <<,即得这只白炽灯的寿命在980小时到1040小时之间的概率. 【详解】∵1000μ=,2400σ=,∴1000μ=,20σ=,所以()(9801020)==0.6827P X P X μσμσ<<-<<+,0.95450.6827(10201040)=2P X -<<,∴()9801040P X <<0.95450.68270.68270.81862-=+=.应选A【点睛】此题主要考察正态分布的图像和性质,考察指定区间的概率的计算,意在考察学生对这些知识的理解掌握程度和分析推理才能.8.数列{}n a 是等比数列,其前n 项和为n S ,22S 3a =,那么3412a a a a ++〔〕A.14B.12C.2D.4【答案】A 【解析】 【分析】由题意,根据等比数列的通项公式和求和公式,求的公比12q=,进而可求解,得到答案. 【详解】由题意得,22123S a a a =+=,2112a a =,公比12q =,那么2341214a a q a a +==+,应选A . 【点睛】此题主要考察了等比数列的通项公式和求和公式的应用,其中解答中熟记等比数列的通项公式和求和公式,准确运算是解答的关键,着重考察了推理与运算才能,属于根底题. 9.将偶函数()()()sin 30πf x x ϕϕ=+<<的图象向右平移π12个单位长度后,得到的曲线的对称中心为〔〕A.()π7π,0336k k ⎛⎫+∈⎪⎝⎭Z B.()ππ,0312k k ⎛⎫+∈⎪⎝⎭Z C.()ππ,0336k k ⎛⎫+∈⎪⎝⎭Z D.()ππ,034k k ⎛⎫+∈⎪⎝⎭Z 【答案】D 【解析】 【分析】根据函数为偶函数求出函数解析式,根据余弦函数的图象和性质求对称轴即可. 【详解】∵()()()sin 30πf x x ϕϕ=+<<为偶函数,∴()cos3f x x =±,∴ππcos 3124f x x ⎛⎫⎛⎫-=±- ⎪ ⎪⎝⎭⎝⎭.令()ππ3π42x k k -=+∈Z ,得()ππ34k x k =+∈Z .应选:D【点睛】此题主要考察了诱导公式和余弦函数的图象与性质,属于中档题.10.假设正整数N 除以正整数m 后的余数为n ,那么记为(mod )N n m ≡,例如102(mod 4)≡.如图程序框图的算法源于我国古代知名中外的中国剩余定理.执行该程序框图,那么输出的i 等于() A.4 B.8C.16D.32【答案】C 【解析】 初如值n=11,i=1, i=2,n=13,不满足模3余2.i=4,n=17,满足模3余2,不满足模5余1. i=8,n=25,不满足模3余2,i=16,n=41,满足模3余2,满足模5余1. 输出i=16.选C .11.三棱锥A BCD -的每个顶点都在球O 的球面上,AB ⊥平面BCD ,4AB =,AD =,BC CD ==O 的体积为〔〕A.C.【答案】B 【解析】 【分析】根据所给关系可证明BC CD ⊥,即可将三棱锥A BCD -可补形成长方体,即可求得长方体的外接球半径,即为三棱锥A BCD -的外接球半径,即可得球O 的体积.【详解】因为AB ⊥平面BCD ,所以AB BD ⊥,又AB =4,AD =,所以2BD =,又BC CD ==所以222BC CD BD +=,那么BC CD ⊥.由此可得三棱锥A BCD -可补形成长方体如以下图所示:设长方体的外接球半径为R ,那么2R==,所以球O 的体积为3344πππ33VR ===,应选:B.【点睛】此题考察了三棱锥外接球体积的求法,将三棱锥补全为棱柱是常用方法,属于中档题.12.假设函数()322,020x x a x f x x x a x ⎧-->=⎨+-≤⎩,恰有2个零点,那么a 的取值范围为〔〕A.4027⎛⎫-⎪⎝⎭,B.(()41,]0+27--⋃∞, C.4127⎛⎫-- ⎪⎝⎭, D.()410+27⎛⎫--⋃∞ ⎪⎝⎭,,【答案】D 【解析】 【分析】将问题转化为()322,02,0x x x g x x x x ⎧->=⎨+≤⎩与y a =恰有2个交点;利用导数和二次函数性质可得到()g x 的图象,通过数形结合可确定0a>或者()213ga g ⎛⎫-<<⎪⎝⎭时满足题意,进而求得结果. 【详解】令()322,02,0x x x g x x x x ⎧->=⎨+≤⎩,那么()f x 恰有2个零点等价于()y g x =与y a =恰有2个交点 当0x>时,()32g x x x =-,那么()232g x x x '=-∴当20,3x ⎛⎫∈ ⎪⎝⎭时,()0g x '<;当2,3x ⎛⎫∈+∞ ⎪⎝⎭时,()0g x '>()g x ∴在20,3⎛⎫ ⎪⎝⎭上单调递减,在2,3⎛⎫+∞ ⎪⎝⎭上单调递增当0x ≤时,()()22211gx x x x =+=+-()g x ∴在(),1-∞-上单调递减,在(]1,0-上单调递增可得()gx 图象如以下图所示:假设()y g x =与y a =有两个交点,那么0a >或者()213g a g ⎛⎫-<< ⎪⎝⎭又()11g-=-,2844327927g ⎛⎫=-=- ⎪⎝⎭ 即当()41,0,27a ⎛⎫∈--+∞ ⎪⎝⎭时,()f x 恰有2个零点此题正确选项:D【点睛】此题考察根据函数零点个数求解参数范围的问题,关键是可以将问题转化为平行于x 轴的直线与曲线的交点个数的问题,利用数形结合的方式找到临界状态,从而得到满足题意的范围.二、填空题:本大题一一共4小题,每一小题5分,一共20分.把答案填在答题卡的相应位置. 13.设向量a 与b ,一共线,且()3,a k =,()11b =-,,那么k =________.【答案】-3 【解析】 【分析】根据向量一共线的坐标表示即可求解. 【详解】()3,a k =,()11b =-,,且a ,b 一共线,即3k=-.故答案为:3-【点睛】此题主要考察了向量一共线的坐标运算,属于容易题. 14.数列{}n a 的前n 项和公式为22n S n n =-,那么数列{}n a 的通项公式为_________.【答案】43n a n =-【解析】 【分析】 由1nn n a S S -=-,可得当2n ≥时的数列{}n a 的通项公式,验证1n =时是否符合即可.【详解】当1n =时,2112111a S ==⨯-=,当2n ≥时,1nn n a S S -=-43n =-,经历证当1n =时,上式也适宜, 故此数列的通项公式为43na n =-,故答案为43n a n =-.【点睛】此题主要考察数列的通项公式与前n 项和公式之间的关系,属于中档题.数列前n 项和,求数列通项公式,常用公式11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,将所给条件化为关于前n 项和的递推关系或者是关于第n 项的递推关系,假设满足等比数列或者等差数列定义,用等比数列或者等差数列通项公式求出数列的通项公式,否那么适当变形构造等比或者等数列求通项公式.在利用n S 与通项n a 的关系求n a 的过程中,一定要注意1n =的情况.15.某公司从甲、乙、丙、丁四名员工中安排了一名员工出国研学.有人询问了四名员工,甲说:好似是乙或者丙去了.〞乙说:“甲、丙都没去〞丙说:“是丁去了〞丁说:“丙说的不对.〞假设四名员工中只有一个人说的对,那么出国研学的员工是___________. 【答案】甲 【解析】 【分析】分别假设是甲、乙、丙、丁去时,四个人所说的话的正误,进而确定结果. 【详解】假设乙去,那么甲、乙、丁都说的对,不符合题意; 假设丙去,那么甲、丁都说的对,不符合题意; 假设丁去,那么乙、丙都说的对,不符合题意;假设甲去,那么甲、乙、丙都说的不对,丁说的对,符合题意. 故答案为:甲.【点睛】此题考察逻辑推理的相关知识,属于根底题.16.球的半径为4,球面被互相垂直的两个平面所截,得到的两个圆的公一共弦长为个平面的间隔相等,那么这两个圆的半径之和为__________. 【答案】6 【解析】 【分析】先设两圆的圆心为12O O ,球心为O ,公一共弦为AB ,中点为E ,由球心到这两个平面的间隔相等,可得两圆半径相等,然后设两圆半径为r,由勾股定理表示出1OO =,OE=222OE AE OA+=,即可求出r ,从而可得结果.【详解】设两圆的圆心为12O O ,球心为O ,公一共弦为AB ,中点为E ,因为球心到这两个平面的间隔相等,那么12OO EO 为正方形,两圆半径相等,设两圆半径为r ,1OO =,OE=又222OE AE OA+=,2322216r -+=,29r =,3r =.这两个圆的半径之和为6.【点睛】此题主要考察球的构造特征,由球的特征和题中条件,找出等量关系,即可求解.三、解答题:本大题一一共6小题,一共70分,解容许写出文字说明、证明过程或者演算步骤,第17~21题为必考题,每道试题考生都必须答题,第22、23题为选考题,考生根据要求答题. 〔一〕必考题:一共60分.17.ABC ∆的内角,,A B C 所对的边分别为,,a b c ,且2a =.〔1〕假设b =30A =︒,求角B 的值;〔2〕假设ABC ∆的面积3ABCS ∆=,cos 45B =,求,b c 的值.【答案】〔1〕60B =︒或者120︒.(2)b =【解析】 【分析】〔1〕根据正弦定理,求得sin B =,进而可求解角B 的大小;〔2〕根据三角函数的根本关系式,求得3sin 5B =,利用三角形的面积公式和余弦定理,即可求解.【详解】〔1〕根据正弦定理得,sin sin30sin 22b A B a ︒===. b a >,30B A ∴>=︒,60B ∴=︒或者120︒.〔2〕4cos 05B =>,且0B π<<,3sin 5B ∴=. 1sin 32ABCS ac B ∆==,132325c ∴⨯⨯⨯=,5c ∴=. ∴由正弦定理2222cos b a c ac B =+-,得b =【点睛】此题主要考察了正弦定理、余弦定理的应用,其中利用正弦、余弦定理可以很好地解决三角形的边角关系,纯熟掌握定理、合理运用是解此题的关键.其中在ABC ∆中,通常涉及三边三角,知三〔除三角外〕求三,可解出三角形,当涉及两边及其中一边的对角或者两角及其中一角对边时,运用正弦定理求解;当涉及三边或者两边及其夹角时,运用余弦定理求解. 18.如图,在底面为正方形的四棱锥E ABCD -中,BE ⊥平面ABCD ,点F ,G 分别在棱AB ,EC上,且满足2AF FB =,3CE CG =.〔1〕证明://FG 平面ADE ;〔2〕假设BE AB =,求二面角F EG B --的余弦值.【答案】〔1〕见解析;〔2〕31111. 【解析】 【分析】〔1〕在棱DE 上取一点H ,使得3DE DH =,连接AH ,HG ,可证明AFGH 是平行四边形,可得//FG AH ,由线面平行的断定定理可得结果;〔2〕以B 为坐标原点以,,BA BE BC 为,y,z x 轴建立空间直角坐标系,设3AB =,利用向量垂直数量积为零列方程求出平面EFG 的法向量,结合平面EGB的一个法向量为BA ,利用空间向量夹角余弦公式求解即可.【详解】〔1〕在棱DE 上取一点H ,使得3DE DH =,连接AH ,HG ,因为3CE CG =,3DE DH =,所以//GH DC ,所以23HG DC =.又因为2AF FB =,AB CD =,所以//AF HG ,AF HG =, 所以AFGH 是平行四边形,所以 //FG AH ,因为FG ⊄平面ADE ,AH ⊂平面ADE ,所以//FG 平面ADE .〔2〕依题意,以B 为坐标原点,以,,BA BE BC 为,y,z x 轴建立空间直角坐标系B xyz -, 设3AB =,那么()1,0,0F ,()0,3,0E ,()0,1,2G ,所以()1,3,0FE=-,()1,1,2FG =-.设平面EFG 的法向量为(),,n x y z =,那么00FE n FG n ⎧⋅=⎨⋅=⎩,即3020x y x y z -+=⎧⎨-++=⎩,取3x =,那么()3,1,1n=.又BA ⊥平面EGB ,所以平面EGB 的一个法向量为()3,0,0BA =,所以311cos ,11BA n BA n BA n⋅==,又二面角F EG B --为锐角,所以二面角F EG B -- 【点睛】此题主要考察线面平行的断定定理以及利用空间向量求二面角,属于中档题.空间向量解答立体几何问题的一般步骤是:〔1〕观察图形,建立恰当的空间直角坐标系;〔2〕写出相应点的坐标,求出相应直线的方向向量;〔3〕设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;〔4〕将空间位置关系转化为向量关系;〔5〕根据定理结论求出相应的角和间隔.19.某大型工厂有5台大型机器,在1个月中,1台机器至多出现1次故障,且每台机器是否出现故障是互相HY 的,出现故障时需1名工人进展维修.每台机器出现故障的概率为12.1名工人每月只有维修1台机器的才能,每台机器不出现故障或者出现故障时有工人维修,就能使该厂获得10万元的利润,否那么将亏损3万元.该工厂每月需支付给每名维修工人1.5万元的工资.〔1〕假设每台机器在当月不出现故障或者出现故障时有工人进展维修,那么称工厂能正常运行.假设该厂只有2名维修工人,求工厂每月能正常运行的概率; 〔2〕该厂现有4名维修工人. 〔ⅰ〕记该厂每月获利为X万元,求X的分布列与数学期望;〔ⅱ〕以工厂每月获利的数学期望为决策根据,试问该厂是否应再招聘1名维修工人? 【答案】〔1〕12;〔2〕〔ⅰ〕139532;〔ⅱ〕不应该.【解析】 【分析】〔1〕根据互相HY 事件的概率公式计算出事故机器不超过2台的概率即可; 〔2〕〔i 〕求出X的可能取值及其对应的概率,得出X的分布列和数学期望;〔ⅱ〕求出有5名维修工人时的工厂利润,得出结论.【详解】解:〔1〕因为该工厂只有2名维修工人,故要使工厂正常运行,最多只有2台大型机器出现故障. ∴该工厂正常运行的概率为:51422355111111()C ()C ()()222222+⋅+⋅=⋅⋅. 〔2〕〔i 〕X 的可能取值有31,44,511(31)()232P X ===,131(44)13232P X ==-=. ∴X的分布列为:∴13113953144323232EX =⨯+⨯=. 〔ⅱ〕假设工厂再招聘一名维修工人,那么工厂一定能正常运行, 工厂所获利润为510 1.5542.5⨯-⨯=万元, 因为139542.532>, ∴该厂不应该再招聘1名维修工人.【点睛】此题考察了互相HY 事件的概率计算,离散型随机变量的分布列与数学期望计算,属于中档题.20.点)F是椭圆()2222:10x y C a b a b+=>>的一个焦点,点12M ⎫⎪⎭在椭圆 C 上.〔Ⅰ〕求椭圆 C 的方程;〔Ⅱ〕假设直线l 与椭圆 C 交于不同的,A B 两点,且12OA OB k k +=-( O 为坐标原点),求直线l 斜率的取值范围.【答案】〔1〕2214x y +=〔2〕()1,01,4k ⎡⎫∈-+∞⎪⎢⎣⎭【解析】【分析】〔1〕由题可知,椭圆的另一个焦点为(),利用椭圆的定义,求得2a =,再理由椭圆中222ca b =-,求得b 的值,即可得到椭圆的方程;〔2〕设l 直线的方程为y kx m =+,联立方程组,利用根与系数的关系,求得1212,x x x x +,在由12OA OB k k +=-,进而可求解斜率的取值范围,得到答案. 【详解】〔1〕由题可知,椭圆的另一个焦点为(),所以点M142=. 所以2a =.又因为c =,所以1b =,那么椭圆C 的方程为2214x y +=.〔2〕当直线l 的斜率不存在时,结合椭圆的对称性可知,0OA OB k k +=,不符合题意.故设l 直线的方程为y kx m =+,()11,A x y ,()22,B x y ,联立2214y kx m x y =+⎧⎪⎨+=⎪⎩,可得()()222418410k x kmx m +++-=. 所以()12221228,4141,41km x x k m x x k -⎧+=⎪+⎪⎨-⎪=⎪+⎩而()()()()212211212221212128222141OA OBkx m x kx m x m x x y y km k k k k k x x x x x x m m ++++--+=+==+=+=--, 由12OAOB k k +=-,可得241m k =+.所以14k ≥-,又因为()2216410k m -+>,所以2440k k ->. 综上,()1,01,4k ⎡⎫∈-⋃+∞⎪⎢⎣⎭. 【点睛】此题主要考察椭圆的定义及HY 方程、直线与圆锥曲线的位置关系的应用问题,解答此类题目,通常联立直线方程与椭圆〔圆锥曲线〕方程的方程组,应用一元二次方程根与系数的关系进展求解,此类问题易错点是复杂式子的变形才能缺乏,导致错漏百出,此题能较好的考察考生的逻辑思维才能、运算求解才能、分析问题解决问题的才能等. 21.函数()e ln x f x a b x =+,且曲线()y f x =在点()()1,1f 处的切线方程为()e 11y x =-+.〔1〕证明:()f x '在()0,∞+上为增函数.〔2〕证明:()136f x >. 【答案】〔1〕见解析;〔2〕见解析 【解析】 【分析】〔1〕求导函数,利用曲线()y f x =在(1,f 〔1〕)处的切线方程,可得f〔1〕,f '〔1〕,由此可求a ,b 的值,再由单调性的性质即可得证;〔2〕运用函数的零点存在定理可得存在01(2x ∈,2)3,可得0()0f x '=,可得001x e x =,即00ln x x =-,再由单调性可得0()()min f x f x =,再由对勾函数的单调性可得所求结论.【详解】〔1〕由()e ln x f x a b x =+,得()e x bf x a x'=+, 所以()1e e f a ==,()1e e 1f a b '=+=-,解得1a =,1b =-.因此()()1e 0xf x x x'=->,设()()1e 0x p x x x =->,()21e 0x p x x'=+>, 所以()f x '为增函数.〔2〕1202f ⎛⎫'=< ⎪⎝⎭,23223235327e 0e 32228f ⎛⎫⎛⎫⎛⎫⎛⎫'=->>>= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 故存在012,23x ⎛⎫∈ ⎪⎝⎭,使得()00f x '=, 即01ex x =,即00ln x x =-.进而当()00,x x ∈时,()0f x '<;当()0,x x ∈+∞时,()0f x '>,即()f x 在()00,x 上单调递减,在()0,x +∞上单调递增,那么()()0000min 01e ln x f x f x x x x ==-=+.令()1Gx x x =+,12,23x ⎛⎫∈ ⎪⎝⎭, 那么()2221110x G x x x-'=-=<, 所以()Gx 在12,23⎛⎫ ⎪⎝⎭上单调递减, 所以()21336Gx G ⎛⎫>=⎪⎝⎭, 故()136f x >. 【点睛】此题考察导数知识的运用,考察导数的几何意义,考察不等式的证明,解题的关键是构造函数,确定函数的单调区间,求出函数的最值,属于中档题.〔二〕选考题:一共10分,请考生在第22、23题中任选一题答题,假设多做,那么按所做的第一题计分.22.在直角坐标系xOy 中,曲线M 的参数方程为13cos ,13sin x y αα=+⎧⎨=+⎩〔α为参数〕,在以坐标为极点,x 轴正半轴为极轴的极坐标系中,直线l cos 4m πθ⎛⎫+= ⎪⎝⎭.〔1〕求曲线M 的普通方程,并指出曲线M 是什么曲线; 〔2〕假设直线l 与曲线M 相交于,A B 两点,AB 4=,求m 的值.【答案】(1)曲线M 的轨迹是以()1,1为圆心,3为半径的圆.(2)m =【解析】 【分析】〔1〕由曲线的参数方程,消去参数,即可得到曲线的普通方程,得出结论;〔2〕把直线的极坐标方程化为直角坐标方程,再由点到直线的间隔公式,列出方程,即可求解.【详解】〔1〕由13,13x cos y sin αα=+⎧⎨=+⎩〔α为参数〕,消去参数得()()22119x y -+-=,故曲线M 的普通方程为()()22119x y -+-=.曲线M 的轨迹是以()1,1为圆心,3为半径的圆.〔2〕由cos 4m πθ⎛⎫+= ⎪⎝⎭,展开得cos sin 0m ρθρθ--=,l ∴的直角坐标方程为0x y m --=.那么圆心到直线l ,那么22232=-,解得m =【点睛】此题主要考察了参数方程与普通方程,极坐标方程与直角坐标方程的互化及应用,重点考察了转化与化归才能.通常遇到求曲线交点、间隔、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程. 23.设函数()1f x x x a =++-.〔1〕当1a =时,求关于x 的不等式()3f x ≥的解集;〔2〕假设()4f x ≤在[]0,2上恒成立,求a 的取值范围.【答案】(1)33,,22⎛⎤⎡⎫-∞-+∞ ⎪⎥⎢⎝⎦⎣⎭(2)13a ≤≤ 【解析】 【分析】〔1〕根据绝对值的意义,取到绝对值号,得到分段函数,进而可求解不等式的解集; 〔2〕因为[]0,2x ∈,得14x x a ++-≤,再利用绝对值的定义,去掉绝对值号,即可求解.【详解】〔1〕因为()2,1112,112,1x x f x x x x x x -<-⎧⎪=++-=-≤<⎨⎪≥⎩,所以()3f x ≥的解集为33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭.〔2〕因为[]0,2x ∈,所以14x x a ++-≤,即3x a x -≤-,那么332a x -≤-≤-,所以13a ≤≤. 【点睛】。
高中高二数学下期末考试试卷练习
高中高二数学下期末考试试卷练习高中高二数学下期末考试试卷练习本文导航1、首页2、高二数学下册期末考试试卷-23、高二数学下册期末考试试卷-3 高中高二数学下册期末考试试卷练习[编辑推荐]高中高二数学下册期末考试试卷练习是xx为您整理的最新学习资料,请您详细阅读!一、选择题(本大题共10小题,每小题5分,共50分)1.平面内有两定点A、B及动点P,设命题甲是: |PA|+|PB|是定值,命题乙是:点P的轨迹是以A.B为焦点的椭圆,那么()A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件2.下面说法正确的是()A.实数是成立的充要条件B.设p、q为简单命题,若为假命题,则也为假命题。
C.命题若则的逆否命题为真命题.D.给定命题p、q,若是假命题,则 p或q 为真命题.3.双曲线的焦距是()A.4B.C.8D.与有关4.命题两条对角线不垂直的四边形不是菱形的逆否命题是( )A.若四边形不是菱形,则它的两条对角线不垂直B.若四边形的两条对角线垂直,则它是菱形C.若四边形的两条对角线垂直,则它不是菱形D.若四边形是菱形,则它的两条对角线垂直5.在同一坐标系中,方程的曲线大致是()6.抛物线的焦点坐标为()A.(1,0)B.(-1,0)C.(0,1)D.(0,-1)7.已知F1、F2是双曲线的两个焦点,PQ是过点F1的弦,且PQ的倾斜角为,那么|PF2|+|QF2|-|PQ|的值为()A.16B.12C.8D.随大小变化本文导航1、首页2、高二数学下册期末考试试卷-23、高二数学下册期末考试试卷-3 8.与直线平行的抛物线的切线方程是()A.B.C.D.9.已知两点M,N,给出下列曲线方程:①;②;③;④。
在曲线上存在点P满足的所有曲线方程是()A.①②③④B.①③C.②④D.②③④10.双曲线的两焦点为,在双曲线上且满足,则的面积为().A.B.C.D.第Ⅱ卷(非选择题共100分)二、填空题(本大题共5小题,每小题5分,满分25分)11.命题使得的否定是.12.已知函数,则.13.已知双曲线的一条渐近线方程为,则双曲线的离心率为.14.如图是的导数的图像,则正确的判断是(1)在上是增函数(2)是的极小值点(3)在上是减函数,在上是增函数(4)是的极小值点以上正确的序号为.15.在曲线的切线中斜率最小的切线方程是____________________.三、解答题(本大题6小题,满分75分)16.(12分)抛物线的顶点在原点,它的准线过双曲线的一个焦点,并于双曲线的实轴垂直,已知抛物线与双曲线的交点为,求抛物线的方程和双曲线的方程。
高二下学期数学期末考试试卷
高二下学期数学期末考试试卷以下就是查字典数学网为同窗们搜集的高二下学期数学期末考试试卷2021年资料。
希望同窗们学习提高。
一、选择题:在每题给出的四个选项中,只要一项为哪一项契合标题要求的。
(每题5分,共60分).1.集合,集合,那么集合有几个元素( )A.3B.6C.7D. 8[来2.在对分类变量X, Y停止独立性检验时,算得 =7有以下四种判别(p(K26.635)=0.010 )(1) 有99﹪的掌握以为X与Y有关;(2)有99﹪的掌握以为X 与Y有关;(3)在假定H0:X与Y 有关的前提下有99﹪的掌握以为X与Y有关;(4)在假定H1: X与Y有关的前提下有99﹪的掌握以为X与Y有关.以上4个判别正确的选项是 ( )A. (1)、(2)B. (1)、(3)C. (2)、(4)D. (3)、(4)3.假定那么的最大值是 ( )A.2B.C.-1D.4.下面几种推理是类比推理的是( )A.两条直线平行,同旁内角互补,假设和是两条平行直线的同旁内角,那么B.由平面向量的运算性质,推测空间向量的运算性质C.某校高二级有20个班,1班有51位团员,2班有53位团员,3班有52位团员,由此可以推测各班都超越50位团员D.一切偶数都能被2整除,是偶数,所以能被2整除5.函数的零点所在的区间是( )A. B. C. D.6.回归剖析中,代表了数据点和它在回归直线上相应位置的差异的是( )A.总偏向平方和B.残差平方和C.回归平方和D.相关指数R27.定义两种运算: =ab, =a2+b2,那么函数为( )A.奇函数B.偶函数C.奇函数且为偶函数D.非奇非偶函数8.如图,第n个图形是由正n+2边形扩展而来,(n=1、2、3、) 那么在第n个图形中共有( )个顶点.A.(n+1)(n+2)B. (n+2)(n+3)C.D.n9. ( )A. B. C. D.a+b10.f(x) =ax-2, (a0且a1),假定f(4)g(-4)0,那么y=f(x),y=g(x)在同一坐标系内的大致图象是 ( ) 11.f(x)=log2(x2-ax+3a)在[2,+)上是增函数,那么实数a 的取值范围是( )A.(-,4)B.C.(-,-4)[2,+)D.[-4,4)12.设为正整数n(十进制)的各数位上的数字的平方之和,比如 .记,,,那么 ( )A.20B.4C.42D.145第II卷(非选择题共90分)二、填空题:请把答案填在题中横线上(每题4分,共16分).13.x、yR,,那么xy=___ ___.14假定那么15.幂函数在上为减函数,那么实数,16.假定三角形内切圆的半径为r,三边长为a、b、c,那么三角形的面积,依据类比思想,假定四面体内切球半径为R,四个面的面积为S1、S2、S3、S4,那么四面体的体积V= 三、解答题:解容许写出文字说明、证明进程或演算步骤(共6题,共74分).17.(12分)假定且,求证:或中至少有一个成立.18.(12分)集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0},假定AB=B,务实数a的值.19. (12分)在复平面内,点P、Q所对应的双数区分为z1、z2,且,,求点Q的集合表示的图形.20.(12分)北京期货商会组织结构设置如下:(1)会员代表大会下设监事会、会长办公会,而会员代表大会于会长办公会共辖理事会;(2)会长办公会设会长,会长管理秘书长;(3)秘书长详细分管:秘书处、规范自律委员会、效劳推行委员会、开展创新委员会。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学下册期末测试试题73
5 c 试卷类型A 河北冀州中学
2018—2018学年下学期期末考试
高二年级理科数学试题
考试时间120分钟试题分数150分
第Ⅰ卷(选择题共60分)
一、选择题本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、已知全集U ,,,则
A、 B、 c、 D、
2、函数的反函数为
A、 B、
c、 D、
3、已知函数连续,则常数的值是
A、2
B、3 c、4 D、5
4、已知点为坐标原点,点P满足,则点P到直线的最短距离为A、5B、3c、1 D、
5、某校在高二年级开设选修,其中数学选修开三个班,选结束后,有四位同学要求改修数学,但每班至多可再接收2位同学,那么不同的分配方案有
A、72种
B、54种 c、36种 D、18种
6、对于下列结论,正确的是①如果两条直线、分别与直线平行,那么;
②如果直线与平面内的一条直线平行,那么;③如果直线与平面内的两条直线、都垂直,那么⊥ ;④如果平面内的一条直线垂直平面,那么⊥ 。
A、①④
B、①② c、①③④ D、①②④
7、已知满足条,则的最小值为。