成都七中育才初二上2013~2014半期数学试题
成都七中初二上数学半期考试试题及答案
成都七中育才学校初2015级八年级上册数学半期考试命题人:刘爽陆恒审题人:陈英考试时间120分钟满分150分A 卷(100分)(温馨提示:请将答案填写在答题卷的答题框内)一、 选择题(每小题3分,共30分)1、下列各组数中,相等的是()A.5-与5-B.2-与38-C.3-与13- D.4-2、以下列各组数据为边长能组成直角三角形的是()A .2、3、5B .4、5、6C .6、8、10D .1、1、13的整数部分是()A .5B.6 C.7D.84、立方根等于它本身的数是()A .0和1 B.0和±1 C.1 D.05、已知0<a ,那么点(1,)a a -在()A.第一象限 B .第二象限 C.第三象限 D.第四象限6、下列说法正确的有()①无限小数都是无理数;②正比例函数是特殊的一次函数;a =;④实数与数轴上的点是一一对应的;A.3个B.2个C.1个D.0个7、函数4y x =-有意义,则x 的取值范围是( )A .x≥0B .x≠4C .x>4D .x≥0且x≠48、下列图象中,不是..函数图象的是( )9、一次函数y=-x+1的图象是( )10、△ABC 中的三边分别是m 2-1,2m ,m 2+1(m>1),那么()A .△ABC 是直角三角形,且斜边长为m 2+1.B .△ABC 是直角三角形,且斜边长为2m .C .△ABC 是直角三角形,且斜边长为m 2-1.D .△ABC 不是直角三角形。
二.填空题(每小题3分,共12分)11、4的平方根...是,8的立方根...是; 12、点A (3,4)到x 轴的距离为,到y 轴的距离为;13、若5y x b =+-是正比例函数,则b=;14、已知Rt △ABC 一直角边为8,斜边为10,则S △ABC =;三.计算题(每小题4分,共16分)15、计算:(1)2)- 解方程:(3)22(1)8x +=(4)33(21)81x -=- 四.解答题(共42分)16、(8分)若,(1)求x y +的值;(2)求22x xy y -+的值. 17、(8分)△ABC 在方格中的位置如图所示。
精品解析:四川省成都市七中育才学校八年级上册期末数学试卷(解析版)
答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!七中育才学校2022—2023学年度(上)学业诊断八年级数学A卷(100分)第Ⅰ卷(选择题)一.选择题(本大题共8小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1. )A.B.C. -5D. 5【答案】A【解析】【分析】根据相反数的定义:只有符号不同的两个数互为相反数,解答即可.相反数是故选:A.【点睛】本题考查了相反数的定义,熟知定义是解题的关键.2.)A. 3和4之间B. 4和5之间C. 5和6之间D. 6和7之间【答案】C【解析】【分析】根据25<32<36,则即可得解.【详解】解:∵25<32<36,∴.故选:C.【点睛】本题考查估算无理数,通常采用夹逼法求解.3. 满足下列条件时,△ABC不是直角三角形的是()A. ::3:4:5A B CÐÐÐ= B. ::3:4:5AB BC AC=C. AB=,BC=4,AC=5D. ∠A=40°,∠B=50°【答案】A【解析】【分析】根据直角三角形的判定方法进行判断.【详解】解:A、由题意可设∠A=3k,∠B=4k,∠C=5k,因为3k+4k=5k在k不为0时不会成立,所以∠A+∠B=∠C=90°也不会成立,△ABC不是直角三角形,符合题意;的B 、由题意可设AB =3t ,BC =4t ,CA =5t ,因为222AB BC CA +=,所以△ABC 是直角三角形,不符合题意;C 、经过计算22241BC AC AB +==,所以△ABC 是直角三角形,不符合题意;D 、因为∠A +∠B =90°,所以△ABC 是直角三角形,不符合题意;故选A .【点睛】本题考查直角三角形的应用,熟练掌握直角三角形的判定方法及勾股定理的逆用是解题关键.4. 如图,直线1:2l y x =+与直线2l y kx b =+:相交于点P ,则方程组2y x y kx b =+ìí=+î的解是( )A. 20x y =ìí=î B. 14x y =ìí=î C. 42x y =ìí=î D.24x y =ìí=î【答案】D【解析】【分析】由直线1:2l y x =+求得的交点坐标,即可求出方程组的解即可.【详解】解:∵2y x =+经过()4P m ,,∴42m =+,∴2m =,∴直线1:2l y x =+与直线2l y kx b =+:相交于点()24P ,,\方程组2y x y kx b =+ìí=+î的解是24x y =ìí=î,故选:D .【点睛】本题考查一次函数与二元一次方程组,解题关键是掌握一次函数与方程的关系,掌握图象交点与方程组的解的关系.5. 下列四个命题中,是真命题的是( )A. 有理数与数轴上的点是一一对应的B. 三角形的一个外角大于任何一个内角C. 两条直线被第三条直线所截,同旁内角互补D. 平面内点()1,2A -与点()1,2B --关于x 轴对称【答案】D【解析】【分析】直接根据数学常识分别判断即可.【详解】A .实数与数轴上的点是一一对应的,故原命题为假命题;B .三角形的一个外角大于任何与它不相邻的内角,故原命题为假命题;C .两条平行直线被第三条直线所截,同旁内角互补,故原命题为假命题;D .平面内点()1,2A -与点()1,2B --关于x 轴对称,故原命题为真命题;故选D .【点睛】此题考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理.6. 如图是在44´的小正方形组成的网格中,画的一张脸的示意图,如果用()0,4和()2,4表示眼睛,那么嘴的位置可以表示为( )A. ()1,1 B. ()1,1- C. ()2,1 D. ()1,2【答案】D【解析】【分析】根据左右眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【详解】解:如图,建立平面直角坐标系:可知嘴的位置对应的点的坐标为()1,2.故选D .【点睛】本题考查用坐标确定位置,解题的关键是根据已知点的坐标建立平面直角坐标系.7. 甲、乙、丙、丁四人进行射箭测试,每人测试10次,射箭成绩的平均数都是8.8环,方差分别为20.65s =甲,20.45s =乙,20.55s =丙,20.50s =丁,则射箭成绩最稳定的是( )A. 甲B. 乙C. 丙D. 丁【答案】B【解析】【分析】根据方差的意义先比较出甲、乙、丙、丁四人谁的方差最小,则谁的成绩最稳定.【详解】解:20.65s =Q 甲,20.45s =乙,20.55s =丙,20.50s =丁,乙的方差最小,\射箭成绩最稳定的是:乙.故选:B .【点睛】此题考查了方差的意义,方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.在解题时要能根据方差的意义和本题的实际,得出正确结论是本题的关键.8. 下列图象中,是一次函数(y kx b =+其中0k >,0)b <的图象的是( )A. B.C. D.【答案】D【解析】【分析】根据一次函数y kx b =+中0k >,0b <可得出函数图象经过的象限,进而可得出结论.【详解】解:Q 一次函数y kx b =+中0k >,0b <,\函数图象经过一三四象限,故D 正确.故选:D .【点睛】本题考查的是一次函数的图象,熟知一次函数的图象与系数的关系是解题的关键.第Ⅱ卷(非选择题)5小题,每小题4分,共20分)9. |3|0b -=,则32=+a b ________.【答案】12【解析】【分析】根据二次根式和绝对值的非负性,两个非负数相加等于0,则它们分别为0可得2030a b -=ìí-=î 解得23a b =ìí=î即可求得32a b + 的值.详解】由题意得2030a b -=ìí-=î解得23a b =ìí=î∴3212a b +=故答案为:12【点睛】本题主要考查二次根式和绝对值得非负性,两个非负数相加等于0,则它们分别为0,初中阶段常用三个非负式,二次根式、绝对值和偶次幂.10. 在平面直角坐标系xOy 中,点P 在第四象限内,且点P 到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标是______.【答案】()3,2-【解析】【分析】根据题意点P 到x 轴距离是纵坐标,到y 轴的距离是横坐标,再根据第四象限点的特征,横坐标为正,纵坐标为负,即可求解.【详解】解:Q 点P 在第四象限,且点P 到x 轴的距离为2,则纵坐标2-为,到y 轴的距离是3,则横坐标为3,(3,2)P \-【的故答案为:()3,2-.【点睛】本题考查了求平面直角坐标系点的坐标,象限的分类,理解平面直角坐标系的概念是解题的关键.11. 如图,在ABC V 中,DE BC ∥,75AED Ð=°,60A Ð=°,则B Ð的度数为____________.【答案】45°##45度【解析】【分析】利用三角形的内角和定理先求解45,ADE Ð=° 再利用平行四边形的性质证明45B ADE Ð=Ð=°即可.【详解】解:Q 75AED Ð=°,60A Ð=°,180756045,ADE \Ð=°-°-°=°∵DE BC ∥,45.B ADE \Ð=Ð=°故答案为:45°【点睛】本题考查的是三角形的内角和定理的应用,平行线的性质,证明B ADE Ð=Ð是解本题的关键.12. 《九章算术》中有一个“折竹抵地”问题:“今有竹高九尺,末折抵地,去本三尺,问折者高几何?”意思是:现有竹子高9尺,折后竹尖抵地与竹子底部的距离为3尺,问折处高几尺?即:如图,AB +AC =9尺,BC =3尺,则AC =_____尺.【答案】4【解析】【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 尺,则斜边为(9﹣x )尺,利用勾股定理构造方程解方程即可.【详解】解:设竹子折断处离地面x 尺,则斜边为(9﹣x )尺,根据勾股定理得:x 2+32=(9﹣x )2解得:x =4,答:折断处离地面的高度为4尺.故答案为:4.【点睛】本题考查了勾股定理的应用,将实际问题转化为数学问题,依据勾股定理构造方程是解题关键.13. 如图,在ABC V 中,5AB AC ==,观察尺规作图的痕迹,若2BE =,则BC 的长是______.【答案】【解析】【分析】由已知条件可得3AE AB BE =-=,由作图知CEAB ^于点E ,再根据勾股定理求解即可.【详解】解:∵52AB AC BE ===,,∴3AE AB BE =-=,由作图知CEAB ^于点E ,∴4CE ==,∴.BC ===故答案为:【点睛】本题主要考查作图—基本作图,解题的关键是掌握过直线外一点作已知直线的垂线的尺规作图及等腰三角形的性质、勾股定理.三.解答题(本大题共5小题,共48分,解答过程写在答题卡上)14. 计算:(1)201()(2022)23p -+-+(2.【答案】(1)5+(2)2+【解析】【分析】()1先计算负整数指数幂、零指数幂、算术平方根和绝对值,再计算加减法即可得到结果.()2先算乘除法,再将二次根式化为最简二次根式,最后算加减法即可得到结果.【小问1详解】解:原式)9132=+-+-5=+.【小问2详解】解:原式=42=-+2=+.【点睛】本题主要考查二次根式的混合运算、负整数指数幂、零指数幂,熟练掌握各运算法则是解题关键.15. 用适当的方法解下列方程组.(1)21437x y x y =-ìí+=î;(2)3222328x y x y +=ìí+=î.【答案】(1)11x y =ìí=î(2)1016x y =-ìí=î【解析】【分析】(1)①式代入②求出1y =,再把1y =代入①得1x =,从而可得出方程组的解;(2)32´-´②③求出16y =,再把16y =代入①得10x =-,从而可得出方程组的解【小问1详解】21,437,x y x y =-ìí+=î①②将①代入②,()42137y y -+=,解得,1y =,把1y =代入①得,1x =,∴原方程组的解为11x y =ìí=î.【小问2详解】322,2328,x y x y +=ìí+=î①②,32´-´②①,得,580y =,解得,16y =.将16y =代入①:3322x +=解得,10x =-,∴原方程组的解为1016x y =-ìí=î.【点睛】本题主要考查了解二元一次方程组,基本思想是“消元”,基本方法是“代入消元法”和“加减消元法”16. 如图所示,在平面直角坐标系中,已知A (0,1),B (2,0),C (4,3).(1)在平面直角坐标系中画出△ABC ,则△ABC 的面积是 ;(2)若点D 与点C 关于原点对称,则点D 的坐标为 ;(3)已知P 为x 轴上一点,若△ABP 的面积为4,求点P 的坐标.【答案】(1)画出的△ABC 见解析,4;(2)(﹣4,﹣3);(3)P 点坐标为:(10,0)或(﹣6,0)【解析】【分析】(1)描出A 、B 、C 三点后再顺次连接即可画出△ABC ,直接利用△ABC 所在长方形面积减去周围三角形面积即可求出△ABC 的面积;(2)根据关于原点对称的点的坐标特点:横纵坐标都互为相反数解答即可;(3)利用三角形面积公式即可求出BP ,进一步即可求出结果.【详解】解:(1)△ABC 如图所示,△ABC 的面积=3×4﹣1111224234222´´-´´-´´=;故答案为:4;(2)点D 与点C 关于原点对称,则点D 的坐标为:(﹣4,﹣3);故答案为:(﹣4,﹣3);(3)∵P 为x 轴上一点,△ABP 的面积为4,∴1142BP ´=,∴BP =8,∴点P 的横坐标为:2+8=10或2﹣8=﹣6,故P 点坐标为:(10,0)或(﹣6,0).【点睛】本题考查了坐标与图形、关于原点对称的点的坐标特征等知识,属于常考题型,正确理解题意、熟练掌握平面坐标系的基本知识是解题关键.17. 习近平总书记指出,“红色是中国共产党、中华人民共和国最鲜亮的底色”,要用好红色资源,赓续红色血脉,为引导广大青少年相立正确的世界观、人生观、价值观,但承红色基因,某校组织了一次以“赓续红色血脉·强国复兴有我”为主题的演讲比赛,比赛成绩分为以下5个等级:A .100分、B .90分、C .80分、D .70分、E .60分,比赛结束后随机抽取部分参赛选手的成绩,整理并绘制成如下统计图,请你根据统计图解答下列问题:(1)所抽取学生比赛成绩的众数是______分,中位数是______分;(2)求所抽取学生比赛成绩的平均数;(3)若参加此次比赛的学生共100名,且学校计划为比赛成绩进入A 、B 两个等级的学生购买奖品,请估计学校共需要准备多少份奖品?【答案】(1)80;80(2)78(3)25【解析】【分析】(1)数据出现次数最多的是众数;数据按照大小排好顺序后,最中间的数据就是中位数;(2)利用平均数公式求解即可;(3)用样本估算总体即可.【小问1详解】解:分析统计图中的数据可知,此次参加比赛成绩的众数是80分;中位数是80分;故答案为:80;80.【小问2详解】解:()11009048087046037820x =+´+´+´+´=(分),答:所抽取学生比赛成绩的平均数为78分.【小问3详解】解:141002514843+´=++++(份),答:估计学校共需要准备25份奖品.【点睛】本题考查了数据分析中的条形统计图、众数、中位数、加权平均数、利用样本估算总体等知识,准确的分析条形统计图和正确的计算是解决本题的关键,用样本估算总体是较为常见的考点.18. 如图,直线y kx b =+与x 轴、y 轴分别交于点A 和点B ,点C 在线段AO 上,将ABC V 沿BC 所在直线折叠后,点A 恰好落在y 轴上点D 处,若4OA =,2OD =.(1)求直线AB 的解析式.(2)求:ABC OCD S S △△的值.(3)直线CD 上是否存在点P 使得45PBC Ð=°,若存在,请直接写出P 的坐标.【答案】(1)3:34AB y x =-- (2):5:2ABC OCD S S =△△(3)()13,2P --,()23,6P【解析】【分析】(1)根据勾股定理可得222OA OB AB +=,设OB m =,解方程求出点B 的坐标,进而求出直线AB 的解析式;(2)设OC a =,根据勾股定理222OC OD CD +=可以求出OC 长,进而求出三角形的面积比;(3)分点P 在第三象限内和第一象限内两种情况解题即可.【小问1详解】由题知BD BA =,设OB m =,则2BD m =+.在Rt OAB V 中,222OA OB AB +=,即:()22242m m +=+,3m =,∴()0,3B -,又()4,0A -,∴334y x =--.【小问2详解】设OC a =,则4AC a =-,由折叠性质知:4CD CA a ==-.在Rt OCD △中:222OC OD CD +=,∴()22224a a +=-,∴32a =.∴52AC OA OC =-=,∴1151532224ABC S AC OB =×=´´=△,113322222OCD S OC OD =×=´´=△,∴153::5:242ABC OCD S S ==△△.【小问3详解】()13,2P --,()23,6P,理由如下:如图,当点P 在第三象限内时,过C 作CM PB ^于M ,过M 作ME x ^轴,MF y ^轴于E ,F ,则CM MB =,90MEC MFB ÐÐ==°,又∵90EMF CMB ÐÐ==°∴EMC FMBÐÐ=MCE MBFV V ≌∴ME MF =,CE BF=∵ME x ^轴,MF y ^轴∴EMFO 为正方形∴3392224OC OB OE OF ++====,∴99(44M --,)∴直线BM 解析式为:133y x =--,∵C D 、两点坐标为:()30022C D æö-ç÷èø,,,∴直线CD 解析式为:423y x =+,联立解得:32x y =-ìí=-î,∴()32P --,如图,当点P 在第一象限内时,过C 作CM PB ^于M ,过M 作ME x ^轴,MF y ^轴于E ,F ,则CM MB =,90MEC MFB ÐÐ==°,又∵90EMF CMB ÐÐ==°∴EMC FMBÐÐ=MCE MBFV V ≌∴ME MF =,CE BF=∵ME x ^轴,MF y ^轴∴EMFO 为正方形∴3332224OB OC OE OF --====,∴33M(44-,)∴直线BM 解析式为:33y x =-,∵C D 、两点坐标为:()30022C D æö-ç÷èø,,,∴直线CD 解析式为:423y x =+,联立解得:36x y =ìí=î,∴()36P ,综上所述,()32P --,或()36P ,【点睛】本题考查一次函数的解析式,勾股定理,全等三角形的判定和性质,解题的关键是分清点所在象限,正确写出点的坐标.B 卷4分,共20分)19. 如果2y =++,那么y x 的值是______.【答案】100【解析】【分析】先根据二次根式的非负性求出x 的值,进而求出y 的值,再代入y x 计算.0³0³,∴10x =,∴22y =++=,∴210100y x ==,故答案为100.【点睛】本题考查了二次根式的非负性和代入求值,熟练掌握二次根式的非负性是解题的关键.20. 如图,在平面直角坐标系中,()8,0A ,()0,16B ,P 是线段AB 上的一个动点,则OP 取得最小值时,点A 关于OP 的对称点坐标是______.【答案】2432,55æöç÷èø【解析】【分析】利用勾股定理求出AB ,然后根据等面积法求得OP 的最小值,求出直线AB 的解析式,然后求出点P 的坐标,根据中点坐标公式即可求出结果.【详解】解:∵(8,0)A ,(0,16)B ,∴8OA =,16OB =,∴AB ==当OP AB ^时,OP 的值最小,∴1212OA OB AB OP ×=×,∴OA OB OP AB ×===,设直线AB 的解析式为:16y kx =+,把()8,0A 代入得:8160k +=,解得:2k =-,∴直线AB 的解析式为:216y x =-+,设点P 的坐标为:(),216m m -+,∴()22216m m +-+=,解得:12325m m ==,∴点P 的坐标为:3216,55æöç÷èø,设点点A 关于OP 的对称点为A ¢,∵OP AB ^,∴点A 关于OP 的对称点在直线AB 上,且点P 为AA ¢的中点,∴根据中点坐标公式可得,点A ¢的坐标为2432,55æöç÷èø.故答案为:2432,55æöç÷èø.【点睛】本题考查了坐标与图形性质,垂线段最短,勾股定理,根据题意得到“当OP AB ^时,OP 的值最小”是解题的关键.21. 若方程组2563x y t x y t+=ìí-=î,则x y =______.【答案】1116##0.6875【解析】【分析】把t 当成已知数,求出方程组的解,再代入求出即可.【详解】解:2563x y t x y t +=ìí-=î①②①+②×5,得:1711x t =,解得:1117t x =,把1117t x =代入②得:3317t y t -=,解得:1617t y =,∴1116x y =,故答案为:1116.【点睛】本题考查了解二元一次方程组,能求出二元一次方程组的解是解此题的关键.22. 如图,在平面直角坐标系xOy 中,已知90AOB Ð=°,60A Ð=°,点A的坐标为()2-,若直线22y x =-+沿x 轴平移m 个单位后与AOB V 仍有公共点,则m 的取值范围是______.【答案】2m -££+2m -££+【解析】【分析】根据题意画出图形,求出点B 的坐标,再求出过点A 和点B 且与直线22y x =-+平行的直线解析式,分别求出与x 轴的交点坐标即可解决问题.【详解】解:过点A 作AE x ^轴于点E ,过点B 作BF x ^于点F,如图,(2)A -Q ,2,AE OE \==根据勾股定理得,4AO ==,30,AOE \Ð=°90,60AOB CAO Ð=°Ð=°Q 30ABO \Ð=°28AB AO \==BO \==又18060BOF AOE AOB Ð=°-Ð-Ð=°30OBF \Ð=°12OF BO \==6BF \==B \对于22y x =-+,当0y =时,220x -+=,1x \=,∴直线22y x =-+与x 轴的交点坐标为(1)0,;设过点A 且与直线22y x =-+平行的直线解析式为2y x p =-+,把(A -代入2y x p =-+,得:22(P =-´-+,2p \=-22y x \=-+-,当0y =时,220x -+-=,1x \=-∴直线22y x =-+-与x 轴的交点坐标为(1-设过点B 且与直线22y x =-+平行的直线解析式为2,y x q =-+把B 代入2,y x q =-+得:62q =-´,6q \=+26y x \=-++当0y =时,260x -++=,3x \=+26y x \=-++与x 轴的交点坐标为(3+∴直线22y x =-+沿x 轴平移m 个单位后与AOB V 仍有公共点,则m 的取值范围是1131m -££+-,即2m -££+故答案为:2m -££+【点睛】本题主要考查了求一次函数解析式,一次函数图像的平移,求出直线与x 轴的交点坐标是解答本题的关键23. 已知ABC V 中,8AC =,AB =,BC 边上的高5AG =,D 为线段AC 上的动点,在BC 上截取CE AD =,连接AE ,BD ,则AE BD +的最小值为______.【答案】13【解析】【分析】通过过点A 作GC 的平行线AN ,并在AN 上截取AH AC =,构造全等三角形,得到当B ,D ,H 三点共线时,可求得AE BD +的最小值;再作垂线构造矩形,利用勾股定理求解即可.【详解】如图,过点A 作GC 的平行线AF ,并在AF 上截取AH AC =,连接DH ,BH .则HAD C Ð=Ð.在ADH V 和CEA V 中,AD CE HAD C AH CA =ìïÐ=Ðíï=î,,,∴(SAS)ADH CEA V V ≌,∴DH AE =,∴AE BD DH BD +=+,∴当B ,D ,H 三点共线时,DH BD +的值最小,即AE BD +的值最小,为BH 的长.∵AG BG ^,AB =,5AG =,∴在Rt ABG △中,由勾股定理,得4BG ===.如图,过点H 作HM GC ^,交GC 的延长线于点M ,则四边形AGMH 为长方形,∴5HM AG ==,8GM AH AC ===,∴在RtBMH V中,由勾股定理,得13BH ===.∴AE BD +的最小值为13.故答案为:13.【点睛】本题属于没有共同端点的两条线段求最值问题这一类型,考查了全等三角形的判定与性质、平行线的性质、勾股定理等知识.解题的关键是正确作出辅助线构造全等三角形.二、解答题(本大题共3小题,满分30分.解答过程写在答题卡上)24. 某公司组织员工去三星堆参观,现有A ,B 两种客车可以租用.已知3辆A 客车和1辆B 客车可以坐220人,2辆A 客车和3辆B 客车坐的人数一样多.(1)请问A ,B 两种客车分别可坐多少人?(2)已知该公司共有300名员工.①请问如何安排租车方案,可以使得所有人恰好坐下?②已知A 客车160元一天,B 客车120元一天,请问该公司租车最少花费多少钱?【答案】(1)A 、B 两种客车分别坐60,40人(2)①见解析;②租车最少花费800元【解析】分析】(1)设A 、B 分别坐a 、b 人,可得322023a b a b +=ìí=î,即可解得A 、B 两种客车分别【坐60,40人;(2)①设租用A 客车x 辆,则B 需:30060153402x x --=辆,花费:20900W x =-+.求出x 的值可;②根据一次函数的性质可得结论【小问1详解】设A 、B 分别坐a 、b 人.322023a b a b +=ìí=î,解得6040a b =ìí=î,∴A 、B 两种客车分别坐60,40人.【小问2详解】①设租用A 客车x 辆,则B 需:30060153402x x --=辆花费:153160*********x W x x -=+´=-+.∵x 为正整数且1532x -为正整数,∴1x =,3,5.②当5x =时,min 205900800W =-´+=元.答:租车最少花费800元.【点睛】本题考查二元一次方程和二元一次方程组的应用,解题的关键是读懂题意,列出方程和方程组解决问题.25. 已知ABC V 是边长为6的等边三角形,D 为AB 中点.(1)如图1,连接CD ,E 为线段CD 上的一个动点,以BE 为边长向下作等边三角形BEF ,连接AF ,证明:AF CE =.(2)在(1)的条件下,求12BF AF +的最小值.(3)如图2,G ,H 分别为,BC AC 上的动点,连接,BH AG 交于点I ,60AIH Ð=°,连接HD 交AG 于点J ,连接BJ 并延长交AC 于点K ,KH KJ =,试探究,,BD BJ BG 的数量关系.【答案】(1)见解析 (2)(3)2BD BJ BG =+,理由见解析【解析】【分析】(1)根据等边三角形的性质证明CBE ABF ≌△△,即可证明CE AF =;(2)将BA 沿FA 所在直线折叠得B A ¢,作FH AB ¢^于H ,先根据全等三角形的性质求出1302FAB FAB BCE BCA ¢Ð=Ð=Ð=Ð=°,进而求出12FH FA =,最后根据勾股定理求出BH BA ¢==即可;(3)延长HD 至M ,使得DM DH =,连接BM ,先根据AD BD =证明AHD BMD ≌△△,进而证明123M Ð=Ð=Ð=Ð,然后求出BJ BM AH ==,再根据60AIH Ð=°求出45Ð=Ð,证明ABG BCH ≌△△,求出BG CH =,最后根据AC AH CH =+等量代换得到2BD BJ BG =+即可.【小问1详解】证明:∵ABC V ,BEF △均为等边三角形,∴BC BA =,BE BF =,60CBA EBF Ð=Ð=°,∴CBE ABF Ð=Ð,∴()SAS CBE ABF ≌△△,∴CE AF =.【小问2详解】解:将BA 沿FA 所在直线折叠得B A ¢,作FH AB ¢^于H ,由(1)知CBE ABF ≌△△,∴1302FAB BCE BCA Ð=Ð=Ð=°,∴30FAB FAB ¢Ð=Ð=°, ∴12FH FA =.可知,当B ,F ,H 共线时,12BF AF +最小,此时最小值为BH ¢,∴BH ¢==.【小问3详解】解:2BD BJ BG =+,理由如下:延长HD 至M ,使得DM DH =,连接BM .∵AD BD =,∴()SAS AHD BMD ≌△△,∴AH BM =,1M Ð=Ð.又KH KJ =,∴123Ð=Ð=Ð,∴3M Ð=Ð,∴BJ BM AH ==,∵60AIH Ð=°,∴4605ABI Ð=°-Ð=Ð,又60ABG C °Ð=Ð=,∴()ASA ABG BCH ≌△△,∴BG CH =,∵AC AH CH =+,∴2BD BJ BG =+.【点睛】本题考查了等边三角形的性质,等腰三角形的性质,全等三角形的判定和性质,勾股定理,熟练掌握各知识点是解题的关键.26. 在平面直角坐标系中,直线MN 交x 轴正半轴于点M ,交y 轴负半轴于点()0,3N -,30Ð=°ONM ,作线段MN 的垂直平分线交x 轴于点A ,交y 轴于点B .(1)如图1,求直线MN 的解析式和A 点坐标;(2)如图2,过点M 作y 轴的平行线l ,P 是l 上一点,若ANP S =△P 坐标;(3)如图3,点Q 是y 轴的一个动点,连接QM 、AQ ,将MAQ V 沿AQ 翻折得到1M AQ △,当1M MN △是等腰三角形时,求点Q 的坐标.【答案】(1)3y -;()A(2))1P ,)218P -.(3)()0,1Q ,()0,3-,(0,3±.【解析】【分析】(1)证明2MN OM =,60NMO Ð=°OM =定系数法求解MN 的解析式,求解MN 的中点T 的坐标为:32ö-÷÷,30MAB Ð=°,过T 作TS AM ^于S ,则23AT ST ==,可得AS ==,从而可得A 的坐标;(2)在y 轴上取一点()0,Q y ,使得ANQ S =△.可得()10,9Q ,()20,15Q -.求解AN 的解析式为:3y =-,作QP AN ∥交l 于P ,则1:9Q P y =+,同理215Q P y =-:,从而可得答案;(3)分三种情况讨论:①如图,当1MN MM ===时,②当1NM NM =时,③当11M M M N =时,1M 在直线AB 上,再结合图形解得即可.小问1详解】解: ∵()0,3N -,30Ð=°ONM ,∴2MN OM =,60NMO Ð=°,∴()22223OM OM =+,解得:OM =,设MN 为y kx b =+,∴30b -+=,解得:3k b ì=ïí=-ïî,∴:3MN y =-,∵AB 垂直平分MN ,∴MN 的中点T的坐标为:32ö-÷÷ø,30MAB Ð=°,过T 作,则23ST ==,∴AS==∴AO ==,【∴()A .【小问2详解】在y 轴上取一点()0,Q y ,使得ANQ S =△∵12ANQ S NQ OA D =×,∴12y ´=解得19y =,215y =-,∴()10,9Q ,()20,15Q -.∵)A ,()0,3N -,同理可得:AN 的解析式为:3y =-,作QP AN ∥交l 于P ,∴1:9Q P y =+,∴96y =+= ,即)P同理215Q P y =-:,∴)18P -.综上:)P ,)18P -.【小问3详解】①如图,当1MN MM ===时,由轴对称的性质可得:1AM AM ==,∵AN ==∴11AN AM MM MN ===,∴由垂直平分线的判定定理可得:AM ,1M N 互相垂直平分,∴1M 在y 轴上,且()10,3M ,设1AQ M Q m ==,∴()2223m m =-+,解得:2m =,∴1QO =,∴()0,1Q .②当1NM NM =时,如图,由AN NM AM ===,∴ANM V 为等边三角形,此时Q ,N 重合,∴()0,3Q -;③当11M M M N =时,1M 在直线AB 上,如图,∵30OAB Ð=°,∴1150M AO Ð=°,1150752QAM Ð=´°=°,15AQO Ð=°,作60RAO Ð=°,R 在y 轴上,∴15QAR AQR Ð=°=Ð,30ARO Ð=°,∴AR QR ==3OR ==∴(0,3Q +;同理:如图,当Q 在K 的位置,1M 在H 的位置,此时(0,3Q -.综上:()0,1Q 或()0,3-或(0,3±.【点睛】本题考查的是利用待定系数法求解一次函数的解析式,线段的垂直平分线的判定与性质,轴对称的性质,勾股定理的应用,等边三角形的判定与性质,含30°的直角三角形的性质,二次根式的运算,等腰三角形的定义,坐标与图形面积,本题难度大,清晰的分类讨论,利用数形结合的方法解题是关键.。
2014-2015学年四川省成都七中八年级(上)期中数学试卷
一、选择题(每小题3分,共30分)1.(3分)(2014秋•武侯区校级期中)在实数﹣、0、﹣、506、π、﹣、0.1中,无理数的个数是()A.1个B.2个C.3个D.4个2.(3分)(2014秋•武侯区校级期中)下列说法正确的是()A.﹣4没有平方根也没有立方根B.1的立方根是±1C.(﹣2)2有立方根没有平方根D.﹣3是9的平方根3.(3分)(2014秋•武侯区校级期中)下列各式中正确的是()A.=4 B.(﹣)2=4 C.=±5 D.﹣=﹣4.(3分)(2013春•冠县期末)已知二次根式与是同类二次根式,则a的值可以是()A.6 B.7 C.8 D.95.(3分)(2009•达州)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的边长分别是3,5,2,3,则最大正方形E的面积是()A.13 B.26 C.47 D.946.(3分)(2014秋•武侯区校级期中)已知点P(1,﹣2)与P′关于y轴对称,则P′的坐标为()A.(﹣1,2)B.(1,2)C.(2,﹣1)D.(﹣1,﹣2)7.(3分)(2014秋•武侯区校级期中)函数y=+的自变量x的取值范围是()A.x>﹣1且x≠1 B.x≠1且x≠2 C.x≥﹣1且x≠1 D.x≥﹣18.(3分)(2014秋•武侯区校级期中)已知一次函数y=(m﹣2)x+m2﹣2的图象经过点(0,2),则m的值是()A.﹣2 B.±2 C.2 D.±9.(3分)(2004•四川)汽车由重庆驶往相距400千米的成都,如果汽车的平均速度是100千米/时,那么汽车距成都的路程s(千米)与行驶时间t(小时)的函数关系用图象表示为()A.B.C.D.10.(3分)(2001•常州)下列图形中,表示一次函数y=mx+n与正比例函数y=mnx(m,n为常数,且mn≠0)的图象的是()A.B.C.D.二、填空题(每小题4分,共20分)11.(4分)(2014秋•武侯区校级期中)64的平方根是,0的算术平方根是.12.(4分)(2014秋•武侯区校级期中)(1)若点P(2,k﹣1)在第一象限,则k的取值范围是;(2)若点Q(2x﹣1,﹣3)到两坐标轴的距离相等,则Q的坐标为.13.(4分)(2014秋•武侯区校级期中)直线y=﹣2x+3与x轴的交点坐标为;它经过象限.14.(4分)(2014秋•武侯区校级期中)在平面直角坐标系内的△ABC中,点A的坐标为(0,2),点B的坐标为(3,2),点C的坐标为(5,5),如果要使△ABD与△ABC全等,且点D在第四象限,那么点D的坐标是.15.(4分)(2010秋•平顶山期末)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是.三、解答题(共50分)16.(8分)(2014秋•武侯区校级期中)计算:(1)()(2)3+(π﹣2014)0﹣+(﹣)﹣3.17.(8分)(2014秋•武侯区校级期中)解方程:(1)(1﹣x)2=8 (2)5(x﹣1)3=﹣64.18.(8分)(2014秋•武侯区校级期中)如图,在平面直角坐标系中,A(﹣1,5),B(﹣1,0),C(﹣4,3).(1)求出△ABC的面积;(2)画出△ABC向下平移1个单位,再向右平移5个单位后的图形△A1B1C1并写出各顶点的坐标.19.(8分)(2008•黔东南州)为解决楼房之间的挡光问题,某地区规定:两幢楼房间的距离至少为40米,中午12时不能挡光.如图,某旧楼的一楼窗台高1米,要在此楼正南方40米处再建一幢新楼.已知该地区冬天中午12时阳光从正南方照射,并且光线与水平线的夹角最小为30°,在不违反规定的情况下,请问新建楼房最高多少米?20.(8分)(2014秋•武侯区校级期中)A、B两船同时从相距450海里的甲、乙两港相向而行,s(海里)表示轮船与甲港的距离,t(分钟)表示轮船行驶的时间,如图所示,l1、l2分别表示两船s与t的关系.(1)A、B两船的速度各是多少?(2)分别写出两船到甲港距离s与行驶时间t的函数关系式;(3)航行多长时间后,A、B两船相遇?21.(10分)(2014秋•武侯区校级期中)如图,在平面直角坐标系中,四边形ABCO是长方形,B点的坐标是(2,3),C点的坐标是(2,0).若E是线段BC上的一点,长方形ABCO沿AE折叠后,B点恰好落在x轴上的P点处,求出此时P点和E点的坐标.一、B卷填空题:(每小题4分,本题共20分)22.(4分)(2014秋•武侯区校级期中)化简:(﹣1)2013×(1)2014=.23.(4分)(2014秋•武侯区校级期中)已知一次函数y=kx+5与坐标轴围成的三角形面积为10,则k 的值为.24.(4分)(2014秋•武侯区校级期中)如果x、y满足y=+﹣2,那么x y=.25.(4分)(2014秋•武侯区校级期中)如图,直线y=﹣x+与x轴、y轴分别交于A、B两点,O为原点,若把△AOB沿着直线AB翻折,点O落在点C处,则点C的坐标是.26.(4分)(2009•河南模拟)如图,如果以正方形ABCD的对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,如此下去,…,已知正方形ABCD的面积S1为1,按上述方法所作的正方形的面积依次为S2,S3,…S n(n为正整数),那么第n个正方形S n的面积=.二、解答题(共30分)27.(8分)(2014秋•武侯区校级期中)甲、乙两家体育用品商店出售同样的乒乓球拍和乒乓球,乒乓球拍每副定价30元,乒乓球每盒定价5元.现两家商店搞促销活动,甲店:每买一副球拍赠一盒乒乓球;乙店:按定价的9折优惠.某班级需购球拍4付,乒乓球若干盒(不少于4盒).(1)设购买乒乓球盒数为x(盒),在甲店购买的付款数为y甲(元),在乙店购买的付款数为y乙(元),分别写出在两家商店购买的付款数与乒乓球盒数x之间的函数关系式;(2)就乒乓球盒数讨论去哪家商店买合算?28.(10分)(2005•绵阳)如图①,分别以直角三角形ABC三边为直径向外作三个半圆,其面积分别用S1,S2,S3表示,则不难证明S1=S2+S3.(1)如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1,S2,S3表示,那么S1,S2,S3之间有什么关系;(不必证明)(2)如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1,S2,S3之间的关系并加以证明;(3)若分别以直角三角形ABC三边为边向外作三个一般三角形,其面积分别用S1,S2,S3表示,为使S1,S2,S3之间仍具有与(2)相同的关系,所作三角形应满足什么条件证明你的结论;(4)类比(1),(2),(3)的结论,请你总结出一个更具一般意义的结论.29.(12分)(2013秋•武侯区校级期末)正方形ABCD的边长为4,将此正方形置于平面直角坐标系中,使AB边落在X轴的正半轴上,且A点的坐标是(1,0).(1)直线y=x经过点C,且与c轴交与点E,求四边形AECD的面积;(2)若直线l经过点E,且将正方形ABCD分成面积相等的两部分,求直线l的解析式;(3)若直线l1经过点F(﹣,0),且与直线y=3x平行,将(2)中直线l沿着y轴向上平移个单位交轴x于点M,交直线l1于点N,求△NMF的面积.。
2013-2014学年四川省成都七中、育才学校联考八年级(下)期末数学模拟试卷(一)
2013-2014学年四川省成都七中、育才学校联考八年级(下)期末数学模拟试卷(一)一、选择题(共10小题,每小题3分,满分30分)>﹣3.(3分)若分式的值为0,则有()4.(3分)(2009•常德)要使分式有意义,则x应满足的条件是()5.(3分)(2009•荆门)计算的结果是()6.(3分)如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x的取值范围是()7.(3分)如图,在△ABC中,D、E分别是BC、AC边的中点.若DE=3,则AB的长度是()9.(3分)解关于x的方程产生增根,则常数m的值等于()10.(3分)(2013•攀枝花)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()二、填空题:(每小题4分,共20分)11.(4分)已知关于x的方程2x+a=x﹣7的解为正数,则实数a的取值范围是_________.12.(4分)若x﹣2y=3,则2x﹣4y﹣7=_________.13.(4分)在函数y=中,自变量x的取值范围是_________.14.(4分)已知x2﹣(m﹣2)x+49是完全平方式,则m=_________.16.(4分)已知关于x的方程的解是正数,则m的取值范围为_________.17.(4分)已知a2﹣3a+1=0,则(a2﹣)(a﹣)=_________.18.(4分)已知a1=x,a n+1=1﹣(n为正整数),则a2013=_________.19.(4分)如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=6,AB=8,BC=9,点P是AB上一个动点,当PC+PD的和最小时,PB的长为_________.20.(4分)已知a是x2﹣2005x+1=0的一个不为0的根,则a2﹣2004a+=_________.三、计算题:21.(5分)解不等式3(x﹣1)<5x+2,并在数轴上表示解集.22.(5分)解不等式组,并在数轴上表示解集.23.(5分)解方程:.24.(5分)解方程:3x2﹣6x﹣2=0.25.(6分)已知a是一元二次方程x2+3x﹣2=0的实数根,求代数式的值.26.(6分)如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M,求证:BN=CM.27.(8分)在2013年春运期间,我国南方发生大范围冻雨灾害,导致某地电路出现故障,该地供电局组织电工进行抢修.供电局距离抢修工地15千米,抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车每小时分别行驶多少千米.28.(10分)(2012•泰安)如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;(2)求证:BG2﹣GE2=EA2.二、解答题:(共30分)29.(8分)如图所示,已知E是边长为1的正方形ABCD对角线BD上一动点,点E从B点向D点运动(与B、D不重合),过点E作直线GH平行于BC,交AB于点G,交CD于点H,EF⊥AE于点E,交CD(或CD的延长线)于点F.(1)如图(1),求证:△AGE≌△EHF;(2)点E在运动的过程中(图(1)、图(2)),四边形AFHG的面积是否发生变化?请说明理由.30.(10分)(2012•鄂州)某私营服装厂根据2011年市场分析,决定2012年调整服装制作方案,准备每周(按120件,且衬衣至少60件.已知每件服装的收入和所需工时如下表:件.(1)请你分别从件数和工时数两个方面用含有x,y的代数式表示衬衣的件数z.(2)求y与x之间的函数关系式.(3)问每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总收入是多少?31.(12分)(2009•邵阳)如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?五、解答题(共1小题,满分12分)32.(12分)(2010•小店区)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.2013-2014学年四川省成都七中、育才学校联考八年级(下)期末数学模拟试卷(一)参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)>﹣,3.(3分)若分式的值为0,则有()4.(3分)(2009•常德)要使分式有意义,则x应满足的条件是()5.(3分)(2009•荆门)计算的结果是()=6.(3分)如图,已知直线y1=ax+b与y2=mx+n相交于点A(2,﹣1),若y1>y2,则x的取值范围是()7.(3分)如图,在△ABC中,D、E分别是BC、AC边的中点.若DE=3,则AB的长度是()9.(3分)解关于x的方程产生增根,则常数m的值等于()10.(3分)(2013•攀枝花)如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=()二、填空题:(每小题4分,共20分)11.(4分)已知关于x的方程2x+a=x﹣7的解为正数,则实数a的取值范围是a<﹣7.12.(4分)若x﹣2y=3,则2x﹣4y﹣7=﹣1.13.(4分)在函数y=中,自变量x的取值范围是x>2.14.(4分)已知x2﹣(m﹣2)x+49是完全平方式,则m=16或﹣12.15.(4分)关于x的不等式组无解,那么m的取值范围是m<﹣4.,<16.(4分)已知关于x的方程的解是正数,则m的取值范围为m>﹣3且m≠﹣2.17.(4分)已知a2﹣3a+1=0,则(a2﹣)(a﹣)=15.=3a+)+2=9=7)+18.(4分)已知a1=x,a n+1=1﹣(n为正整数),则a2013=﹣.=,=,..19.(4分)如图,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=6,AB=8,BC=9,点P是AB上一个动点,当PC+PD的和最小时,PB的长为3.利用△ADP∽△BEP,求出PB即可.AP=20.(4分)已知a是x2﹣2005x+1=0的一个不为0的根,则a2﹣2004a+=2004.2004a+1+1+==2004三、计算题:21.(5分)解不等式3(x﹣1)<5x+2,并在数轴上表示解集.,22.(5分)解不等式组,并在数轴上表示解集.解不等式23.(5分)解方程:.24.(5分)解方程:3x2﹣6x﹣2=0.x=25.(6分)已知a是一元二次方程x2+3x﹣2=0的实数根,求代数式的值.=,约分得÷•=.26.(6分)如图,在△ABC中,∠BAC的平分线与BC的垂直平分线PQ相交于点P,过点P分别作PN⊥AB于N,PM⊥AC于点M,求证:BN=CM.27.(8分)在2013年春运期间,我国南方发生大范围冻雨灾害,导致某地电路出现故障,该地供电局组织电工进行抢修.供电局距离抢修工地15千米,抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉普车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车每小时分别行驶多少千米.28.(10分)(2012•泰安)如图,在△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分别为D,E,F为BC中点,BE与DF,DC分别交于点G,H,∠ABE=∠CBE.(1)线段BH与AC相等吗?若相等给予证明,若不相等请说明理由;(2)求证:BG2﹣GE2=EA2.二、解答题:(共30分)29.(8分)如图所示,已知E是边长为1的正方形ABCD对角线BD上一动点,点E从B点向D点运动(与B、D不重合),过点E作直线GH平行于BC,交AB于点G,交CD于点H,EF⊥AE于点E,交CD(或CD的延长线)于点F.(1)如图(1),求证:△AGE≌△EHF;(2)点E在运动的过程中(图(1)、图(2)),四边形AFHG的面积是否发生变化?请说明理由.GH=(GH=的面积没有发生改变,都是.30.(10分)(2012•鄂州)某私营服装厂根据2011年市场分析,决定2012年调整服装制作方案,准备每周(按120件,且衬衣至少60件.已知每件服装的收入和所需工时如下表:设每周制作西服x件,休闲服y件,衬衣z件.(1)请你分别从件数和工时数两个方面用含有x,y的代数式表示衬衣的件数z.(2)求y与x之间的函数关系式.(3)问每周制作西服、休闲服、衬衣各多少件时,才能使总收入最高?最高总收入是多少?件,即可列出第一个式子,根据制作西服每件工时,衬衣每件需和x+y+﹣÷,即yx﹣÷,由题意得:31.(12分)(2009•邵阳)如图,直线l的解析式为y=﹣x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)(1)求A、B两点的坐标;(2)用含t的代数式表示△MON的面积S1;(3)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S2;①当2<t≤4时,试探究S2与之间的函数关系;②在直线m的运动过程中,当t为何值时,S2为△OAB的面积的?OM ON=OP=MN=,则×h=4×,点的坐标满足,即PE t﹣﹣t,,<t,,t=的面积的.五、解答题(共1小题,满分12分)32.(12分)(2010•小店区)在直角梯形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.(1)求点B的坐标;(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F,求直线DE的解析式;(3)点M是(2)中直线DE上的一个动点,在x轴上方的平面内是否存在另一个点N,使以O、D、M、N为顶点的四边形是菱形?若存在,请求出点N的坐标;若不存在,请说明理由.BH=∴∴∴﹣x+5∴x+5=0==5∴MP=2,PD=25+,x+5,﹣a+5=OP=﹣,,,,参与本试卷答题和审题的老师有:zhjh;137-hui;zjx111;sks;fxx;gsls;星期八;zhehe;caicl;hdq123;王开东;zhqd;nhx600;73zzx;HJJ;gbl210;HLing;Linaliu;MMCH(排名不分先后)菁优网2014年7月6日。
成都市七中育才学校八年级数学上册第二单元《全等三角形》检测题(含答案解析)
一、选择题1.如图,已知16AB AC +=,点O 为ABC ∠与ACB ∠的平分线的交点,且OD BC 于D .若4OD =,则四边形ABOC 的面积是( )A .36B .32C .30D .642.如图,点O 是△ABC 中∠BCA ,∠ABC 的平分线的交点,已知△ABC 的面积是12,周长是8,则点O 到边BC 的距离是( )A .1B .2C .3D .43.如图所示,已知AB ∥CD ,BAC ∠与ACD ∠的平分线交于点O ,OE AC ⊥于点E ,且3OE cm =,则点O 到AB ,CD 的距离之和是( )A .3cmB .6cmC .9cmD .12cm 4.如图,AB ⊥CD ,且AB =CD .E 、F 是AD 上两点,CE ⊥AD ,BF ⊥AD .若CE =a ,BF =b ,EF =c ,则AD 的长为( )A .a +cB .b +cC .a +b -cD .a -b +c5.如图,BD 是四边形ABCD 的对角线, AD//BC ,AB AD <,分别过点A ,C 作AE BD ⊥,CF BD ⊥,垂足分别为点E ,F ,若BE DF =,则图中全等的三角形有( )A .1对B .2对C .3对D .4对6.如图所示,下面甲、乙、丙三个三角形和ABC 全等的图形是( )A .甲和乙B .乙和丙C .只有丙D .只有乙 7.如图,AP 平分∠BAF ,PD ⊥AB 于点D ,PE ⊥AF 于点E ,则△APD 与△APE 全等的理由是( )A .SSSB .SASC .SSAD .AAS8.如图,在Rt △ABC 中,∠ACB =90°,BC =5cm ,在AC 上取一点E ,使EC =BC ,过点E 作EF ⊥AC ,连接CF ,使CF =AB ,若EF =12cm ,则下列结论不正确的是( )A .∠F =∠BCFB .AE =7cmC .EF 平分ABD .AB ⊥CF 9.如图,AB 与CD 相交于点E ,AD=CB ,要使△ADE ≌△CBE ,需添加一个条件,则添加的条件以及相应的判定定理正确的是( )A .AE=CE ;SASB .DE=BE ;SASC .∠D=∠B ;AASD .∠A=∠C ;ASA10.如图,在ABC 和△FED 中,AD FC =,AB FE =,下列条件中不能证明F ABC ED ≌△△的是( )A .BC ED =B .A F ∠=∠C .B E ∠=∠D .//AB EF 11.根据下列条件,能画出唯一ABC 的是( )A .3AB =,4BC =,7CA =B .4AC =,6BC =,60A ∠=︒ C .45A ∠=︒,60B ∠=︒,75C ∠=︒D .5AB =,4BC =,90C ∠=︒ 12.如图,要判定△ABD ≌△ACD ,已知AB =AC ,若再增加下列条件中的一个,仍不能说明全等,则这个条件是( )A .CD ⊥AD ,BD ⊥ADB .CD =BDC .∠1=∠2D .∠CAD =∠B AD二、填空题13.如图,已知四边形,90,3,4,5,ABCD B AB BC AC ︒∠====180BAD CAD ︒∠+∠=,180BCD ACD ︒∠+∠=,则四边形ABCD 的面积是_________.14.如图,在△ABC 中,∠ACB =120°,BC =4,D 为AB 的中点,DC ⊥BC ,则点A 到直线CD 的距离是_____.15.如图所示,在ABC 中,AB AC =,AD 是ABC 的角平分线,DE AB ⊥,DF AC ⊥,垂足分别是E ,F .则下面结论中(1)DA 平分EDF ∠;(2)AE AF =,DE DF =;(3)AD 上的点到B ,C 两点的距离相等;(4)图中共有3对全等三角形.正确的有________ .16.如图,90,,,ACB AC BC AD CE BE CE ∠=︒=⊥⊥,垂足分别为,D E ,若9,6AD DE ==,则BE 的长为________________________.17.如图,OM 平分∠POQ ,MA ⊥OP ,MB ⊥OQ ,垂足为A ,B ,S △AOM =8cm 2,OA=4cm ,则MB=___.18.如图,ABC 中,90ACB ∠=︒,8cm,6cm AC BC ==,直线l 经过点C 且与边AB 相交,动点P 从点A 出发沿A C B →→路径向终点B 运动,动点Q 从点B 出发沿B C A →→路径向终点A 运动,点P 和点Q 的速度分别为3cm/s 和2cm/s ,两点同时出发并开始计时,当点P 到达终点B 时计时结束.在某时刻分别过点P 和点Q 作PM l ⊥于点M ,QN l ⊥点N ,设运动时间为t 秒,则当t =__________秒时,PMC △与QNC 全等.19.ABC 中,4AB =,6AC =, 则第三边BC 边上的中线m 的取值范围是______.20.如图,已知点(44)A -,,一个以A 为顶点的45︒角绕点A 旋转,角的两边分别交x 轴正半轴,y 轴负半轴于E 、F ,连接EF .当△AEF 直角三角形时,点E 的坐标是________.三、解答题21.如图,点E ,F 在线段BD 上,已知AF BD ⊥,CE BD ⊥,//AD CB ,DE BF =,求证:AF CE =.22.(1)如图,∠MAB =30°,AB =2cm ,点C 在射线AM 上,画图说明命题“有两边和其中一边的对角分别相等的两个三角形全等”是假命题,请画出图形,并写出你所选取的BC 的长约为 cm (精确到0.lcm ).(2)∠MAB 为锐角,AB =a ,点C 在射线AM 上,点B 到射线AM 的距离为d ,BC =x ,若△ABC 的形状、大小是唯一确定的,则x 的取值范围是 .23.如图,点B ,F ,C ,E 在一条直线上,FB=CE ,AB ∥ED ,AC ∥FD .求证:AB=DE .24.小敏在学习了几何知识后,对角的知识产生了兴趣,进行了如下探究:(1)如图1,∠AOB =90°,在图中动手画图(不用写画法).在∠AOB 内部任意画一条射线OC ;画∠AOC 的平分线OM ,画∠BOC 的平分线ON ;用量角器量得∠MON =______. (2)如图2,∠AOB =90°,将OC 向下旋转,使∠BOC =30°,仍然分别作∠AOC ,∠BOC 的平分线OM ,ON ,能否求出∠MON 的度数,若能,求出其值,若不能,试说明理由.25.如图,E 、A 、C 三点共线,//AB CD ,B E ∠=∠,AC CD =.求证:BC ED =.26.已知:如图,AB = AD .请添加一个条件使得△ABC ≌△ADC ,然后再加以证明.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,根据角平分线的性质求出OE =OD =OF =4,根据三角形的面积公式求出即可.【详解】解:过O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵点O 为∠ABC 与∠ACB 的平分线的交点,OD ⊥BC 于D ,OD =4,∴OE =OD =4,OF =OD =4,∵AB +AC =16,∴四边形ABOC 的面积S =S △ABO +S △ACO =1122AB OE AC OF ⨯+⨯ =114422AB AC ⨯+⨯ =42×(AB +AC ) =42×16 =32,故选:B .【点睛】本题考查了角平分线的性质和三角形的面积,能根据角平分线的性质得出OD=OE=OF=3是解此题的关键.2.C解析:C【分析】过点O作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质得:OE=OF=OD然后根据△ABC的面积是12,周长是8,即可得出点O到边BC的距离.【详解】如图,过点O作OE⊥AB于E,OF⊥AC于F,连接OA.∵点O是∠ABC,∠ACB平分线的交点,∴OE=OD,OF=OD,即OE=OF=OD∴S△ABC=S△ABO+S△BCO+S△ACO=12AB·OE+12BC·OD+12AC·OF=12×OD×(AB+BC+AC)=12×OD×8=12OD=3故选:C【点睛】此题主要考查了角平分线的性质以及三角形面积求法,角的平分线上的点到角的两边的距离相等,正确表示出三角形面积是解题关键.3.B解析:B【分析】过点O作MN,MN⊥AB于M,证明MN⊥CD,则MN的长度是AB和CD之间的距离;然后根据角平分线的性质,分别求出OM、ON的长度,再把它们求和即可.【详解】如图,过点O作MN,MN⊥AB于M,交CD于N,∵AB∥CD,∴MN⊥CD,∵AO是∠BAC的平分线,OM⊥AB,OE⊥AC,OE=3cm,∴OM=OE=3cm,∵CO是∠ACD的平分线,OE⊥AC,ON⊥CD,∴ON=OE=3cm,∴MN=OM+ON=6cm,即AB与CD之间的距离是6cm,故选B【点睛】此题主要考查角平分线的性质和平行线之间的距离,解答此题的关键是要明确:①角的平分线上的点到角的两边的距离相等,②从一条平行线上的任意一点到另一条直线作垂线,垂线段的长度叫两条平行线之间的距离,③平行线间的距离处处相等.4.C解析:C【分析】由“AAS”可证△ABF≌△CDE,根据全等三角形的性质可得AF=CE=a,BF=DE=b,则可推出AD=AF+DF=a+(b−c)=a+b−c.【详解】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE(AAS),∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b−c)=a+b−c.故选:C.【点睛】本题考查了全等三角形的判定和性质,解题的关键是掌握全等三角形的判定方法并准确寻找全等三角形解决问题.5.C解析:C【分析】根据AD //BC 证得ADB CBD ∠=∠,由BE DF =得到BF=DE ,由此证明△ADE ≌△CBF ,得到AE=CF ,AD=CB ,由此证得△ABE ≌△CDF ,得到AB=CD ,由此利用SSS 证明△ABD ≌△CDB.【详解】解:∵AD //BC ,∴ADB CBD ∠=∠,BE DF =,BF DE ∴=,AE BD ⊥,CF BD ⊥,AED CFB ∠∠∴=90=,()ADE CBF ASA ∴≅,AE CF ∴=,AD CB =,∵∠AEB=∠CFD 90=,BE=DF ,()ABE CDF SAS ∴≅,AB CD ∴=,BD DB =,AB=CD ,AD CB =,()ABD CDB SSS ∴≅,则图中全等的三角形有:3对,故选:C .【点睛】此题考查三角形全等的判定定理:SSS 、SAS 、ASA 、AAS 、HL ,根据已知条件找到对应的边或角是解题的关键.6.B解析:B【分析】甲只有2个已知条件,缺少判定依据;乙可根据SAS 判定与△ABC 全等;丙可根据AAS 判定与△ABC 全等,可得答案.【详解】解:甲三角形只知道两条边长无法判断是否与△ABC 全等;乙三角形夹50°内角的两边分别与已知三角形对应相等,故乙与△ABC 全等;丙三角形72°内角及所对边与△ABC 对应相等且均有50°内角,可根据AAS 判定乙与△ABC 全等;则与△ABC 全等的有乙和丙,故选:B .【点睛】本题主要考查全等三角形的判定定理,熟练掌握并充分理解三角形全等的判定定理,注意对应二字的理解很重要.7.D解析:D【分析】求出∠PDA=∠PEA=90°,∠DAP=∠EAP ,根据AAS 推出两三角形全等即可.【详解】解:∵PD ⊥AB ,PE ⊥AF ,∴∠PDA=∠PEA=90°,∵AP 平分∠BAF ,∴∠DAP=∠EAP ,在△APD 和△APE 中DAP EAP PDA PEA AP AP ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△APD ≌△APE (AAS ),故选:D .【点睛】本题考查了全等三角形的判定的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS .8.C解析:C【分析】证明EF ∥BC 即可得到A 正确,证明()Rt ACB Rt FEC HL ≅,得AC =EF =12cm ,CE =BC =5cm ,得到B 正确,根据∠A +∠ACD =∠F +∠ACD =90°即可证明D 正确.【详解】解:∵EF ⊥AC ,∠ACB =90°,∴∠AEF =∠ACB =90°,∴EF ∥BC ,∴∠F =∠BCF ,故A 正确;在Rt ACB 和Rt FEC 中,CB EC AB FC =⎧⎨=⎩, ∴()Rt ACB Rt FEC HL ≅,∴AC =EF =12cm ,∵CE =BC =5cm ,∴AE =AC ﹣CE =7cm .故B 正确;如图,记AB与EF交于点G,如果AE=CE,∵EF∥BC,∴EG是△ABC的中位线,∴EF平分AB,而AE与CE不一定相等,∴不能证明EF平分AB,故C错误;,∵Rt ACB Rt FEC∴∠A=∠F,∴∠A+∠ACD=∠F+∠ACD=90°,∴∠ADC=90°,∴AB⊥CF,故D正确.∴结论不正确的是C.故选:C.【点睛】本题考查全等三角形的性质和判定,解题的关键是掌握全等三角形的性质和判定定理.9.C解析:C【分析】根据三角形全等的判定方法结合全等的判定方法逐一进行来判断.【详解】解:A.添加AE=CE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;B.添加DE=BE后,根据已知两边和其中一边的对角对应相等,两个三角形不一定全等;故不符合题意;C.添加∠D=∠B,根据AAS可证明△ADE≌△CBE,故此选项符合题意;D.添加∠A=∠C,根据AAS可证明△ADE≌△CBE,故此选项不符合题意;故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、AAS、ASA.关键在于应根据所给的条件判断应证明哪两个三角形全等.10.C解析:C【分析】由AD FC =推出AC=FD ,根据已知AB FE =添加夹角相等或第三边相等即可判定.【详解】∵AD FC =,∴AC=FD ,∵AB FE =,∴当A F ∠=∠(//AB EF 也可得到)或BC ED =时,即可判定F ABC ED ≌△△, 故B E ∠=∠不能判定F ABC ED ≌△△,故选:C .【点睛】此题考查添加一个条件证明两个三角形全等,熟记全等三角形的判定定理并熟练应用是解题的关键.11.D解析:D【分析】利用构成三角形的条件,以及全等三角形的判定得解.【详解】解:A ,AB BC CA +=,不满足三边关系,不能画出三角形,故选项错误; B ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;C ,不满足三角形全等的判定,不能画出唯一的三角形,故选项错误;D ,可以利用直角三角形全等判定定理HL 证明三角形全等,故选项正确.故选:D【点睛】本题考查三角形全等的判定以及构成三角形的条件,解题的关键是熟练掌握全等三角形的判定方法.12.C解析:C【分析】在△ACD 和△ABD 中,AD=AD ,AB=AC ,由全等三角形判定定理对选项一一分析,排除不符合题意的选项即可.【详解】解:添加A 选项中条件可用HL 判定两个三角形全等,故选项A 不符合题意;添加B 选项中的条件可用SSS 判定两个三角形全等,故选项B 不符合题意;添加C 选项中的条件∠1=∠2可得∠CDA=∠BDA ,结合已知条件不SS 判定两个三角形全等,故选项C 符合题意;添加D 选项中的条件可用SAS 判定两个三角形全等,故选项D 不符合题意.故选:C .【点睛】本题考查了全等三角形的判定,判定三角形全等的方法:SSS、SAS、ASA、AAS,判断直角三角形全等的方法:“HL”.二、填空题13.21【分析】如图作DHBA交BA的延长线于H作DFBC的延长线于F作DEAC于E首先证明利用面积法求出DE即可解决问题【详解】解:作DHBA交BA的延长线于H作DFBC的延长线于F作DEAC于E设则解析:21【分析】如图,作DH⊥BA交BA的延长线于H,作DF⊥BC的延长线于F,作DE⊥AC于E,首先证明DH DE DF==,利用面积法求出DE,即可解决问题.【详解】解:作DH⊥BA交BA的延长线于H,作DF⊥BC的延长线于F,作DE⊥AC于E,180,180BAD CAD BAD DAH∠+∠=︒∠+∠=︒,CAD DAH∴∠=∠,180,180BCD ACD BCD DCF∠+∠=︒∠+∠=︒,ACD DCF∴∠=∠,,,DH BH DE AC DF BF⊥⊥⊥,DH DE DF∴==,设DH DE DF x===,则有:11112222AB DH BC DF AB BC AC DE ⋅⋅+⋅⋅=⋅⋅+⋅⋅,∴34125x x x+=+,6x∴=,∴S四边形ABCD=1111345621 2222AB CB AC DE⋅+⋅=⨯⨯+⨯⨯=.故答案为:21.【点睛】本题考查了角平分线的性质、三角形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.14.4【分析】根据垂直的定义得到∠BCD=延长CD 到H 使DH=CD 由线段中点的定义得到AD=BD 根据全等三角形的性质得到AH=BC=4【详解】∵DC ⊥BC ∴∠BCD=∵∠ACB=∴∠ACD=如图延长CD解析:4【分析】根据垂直的定义得到∠BCD=90︒,延长CD 到H 使DH=CD ,由线段中点的定义得到 AD=BD ,根据全等三角形的性质得到 AH=BC=4.【详解】∵ DC ⊥BC ,∴ ∠BCD=90︒,∵ ∠ACB=120︒,∴ ∠ACD=30︒,如图,延长 CD 到 H 使 DH=CD ,∵ D 为 AB 的中点,∴ AD=BD ,在 ΔADH 与 ΔBCD 中,CD DH ADH BDC AD BD =⎧⎪∠=∠⎨⎪=⎩,∴ ΔADH ≅ΔBCD(SAS),∴ AH=BC=4,∠AHD=∠BCD=90°,∴点A 到CD 的距离为4,故答案为:4.【点睛】本题考察全等三角形的判定与性质,正确作出辅助线是解题的关键.15.(1)(2)(3)(4)【分析】在△ABC 中AB=ACAD 是△ABC 的平分线可知直线AD 为△ABC 的对称轴再根据图形的对称性逐一判断【详解】解:(1)∵在中是的角平分线∴∵∴∴∴平分故(1)正确;(解析:(1)(2)(3)(4)【分析】在△ABC 中,AB=AC ,AD 是△ABC 的平分线,可知直线AD 为△ABC 的对称轴,再根据图形的对称性,逐一判断.【详解】解:(1)∵在ABC 中,AB AC =,AD 是ABC 的角平分线,∴BAD CAD ∠=∠.∵DE AB ⊥,DF AC ⊥,∴ADE 90BAD ∠∠=︒-,ADF 90CAD ∠∠=︒-,∴ADE ADF ∠∠=, ∴DA 平分EDF ∠,故(1)正确;(2)由(1)可知,ADE ADF ∠∠=,在AED 和AFD 中,EAD FAD,AD AD,ADE ADF,∠=∠⎧⎪=⎨⎪∠=∠⎩∴()AED AFD ASA ≅,∴AE AF =,DE DF =,故(2)正确;(3)在AD 上取一点M ,连结BM ,CM .在ABM 和ACM 中,AB AC BAD CAD AM AM =⎧⎪∠=∠⎨⎪=⎩∴()ABM ACM SAS ≅,∴BM CM =,故(3)正确;(4)在ABD 和ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩∴()ABD ACD SAS ≅.∵DE AB ⊥,DF AC ⊥,∴∠AED=∠AFD=90°在ADE 和ADF 中,AED=AFD BAD CAD AD AD ∠∠⎧⎪∠=∠⎨⎪=⎩∴()ADE ADF AAS ≅. ∵ABD ACD ≅∴∠ABC=∠ACB ,BD=CD ,∵DE AB ⊥,DF AC ⊥,∴∠BED=∠CFD在BED 和CFD △中,EBD FCD BED CFD BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED CFD AAS ≅,∴图中共有3对全等三角形,故(4)正确.故答案为:(1)(2)(3)(4).【点睛】本题考查了等腰三角形的性质,利用三角形全等是正确解答本题的关键.16.3【分析】由AD ⊥CEBE ⊥CE 可以得到∠BEC=∠CDA=90°再根据∠ACB=90°可以得到∠BCE=∠CAD 从而求得△CEB ≌△ADC 然后利用全等三角形的性质可以求得BE 的长【详解】解:∵∠A解析:3【分析】由AD ⊥CE ,BE ⊥CE ,可以得到∠BEC=∠CDA=90°,再根据∠ACB=90°,可以得到∠BCE=∠CAD ,从而求得△CEB ≌△ADC ,然后利用全等三角形的性质可以求得BE 的长.【详解】解:∵∠ACB=90°,BE ⊥CE ,AD ⊥CE ,∴∠BCE+∠DCA=90°,∠BEC=∠CDA=90°,∴∠ACD+∠CAD=90°,∴∠BCE=∠CAD ,在△CEB 和△ADC 中,BCE CAD BEC CDA AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CEB ≌△ADC (AAS );∴BE=CD ,CE=AD=9.∵DC=CE-DE ,DE=6,∴DC=9-6=3,∴BE=3.故答案为:3【点睛】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.4cm【分析】根据求得AM的长度利用角平分线上的点到角两边的距离相等即可求解【详解】解:解得∵OM平分∠POQ∴故答案为:4cm【点睛】本题考查角平分线的性质掌握角平分线上的点到角两边的距离相等是解解析:4cm【分析】根据12AOMS OA AM=⋅求得AM的长度,利用角平分线上的点到角两边的距离相等即可求解.【详解】解:114822AOMS OA AM AM=⋅=⨯=,解得4cmAM=,∵OM平分∠POQ,∴4cmMB AM==,故答案为:4cm.【点睛】本题考查角平分线的性质,掌握角平分线上的点到角两边的距离相等是解题的关键.18.2或【分析】分点Q在BC上和点Q在AC上根据全等三角形的性质分情况列式计算【详解】由题意得AP=3tBQ=2tAC=8cmBC=6cmCP=8﹣3tCQ=6﹣2t①如图当与全等时PC=QC解得;②如解析:2或145.【分析】分点Q在BC上和点Q在AC上,根据全等三角形的性质分情况列式计算.【详解】由题意得,AP=3t,BQ=2t,AC=8cm,BC=6cm,∴ CP=8﹣3t,CQ=6﹣2t,①如图,当PMC△与QNC全等时,PC=QC,6283t t-=-,解得2t=;②如图,当PMC △与QNC 全等时,点P 已运动至BC 上,且与点Q 相遇, 则PC=QC ,6238t t -=-,解得145t =;故答案为:2或145. 【点睛】 本题考查了全等三角形的性质,掌握全等三角形对应边相等是解决问题的关键. 19.【分析】如图延长AD 至点E 使得DE=AD 可证△ABD ≌△CDE 可得AB=CEAD=DE 在△ACE 中根据三角形三边关系即可求得AE 的取值范围即可解题【详解】解:延长AD 至点E 使得DE=AD ∵点D 是BC解析:15a <<【分析】如图延长AD 至点E ,使得DE=AD ,可证△ABD ≌△CDE ,可得AB=CE ,AD=DE ,在△ACE 中,根据三角形三边关系即可求得AE 的取值范围,即可解题.【详解】解:延长AD 至点E ,使得DE=AD ,∵点D 是BC 的中点,∴BD=CD在△ABD 和△CDE 中,AD DE ADB CDE BD CD ⎧⎪∠∠⎨⎪⎩===,∴△ABD ≌△CDE (SAS ),∴AB=CE ,∵△ACE 中,AC-CE <AE <AC+CE ,即:AC-AB <AE <AC+AB ,∴2<AE <10,∴1<AD <5.故答案为:1<AD <5.【点睛】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD ≌△CDE 是解题的关键.20.或【分析】根据等腰三角形的性质作辅助线构造全等三角形得到对应线段相等即可得到结论【详解】①如图所示:∴∵∴∵∴∴在△和中∴△△FDE ∴∴②当时同①的方法有:∴综上所述满足条件的点坐标为或故答案为:或解析:(8)0,或(40), 【分析】根据等腰三角形的性质,作辅助线构造全等三角形,得到对应线段相等即可得到结论.【详解】①如图所示:90AFE ︒∠=,∴90AFD OFE ︒∠+∠=,∵90OFE OEF ︒∠+∠=,∴AFD OEF ∠=∠,∵90AFE ︒∠=,45EAF ︒∠=,∴45AEF EAF ︒∠==∠,∴AF EF =,在△ADF 和FOE 中,ADE FOE AFD OEF AF EF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADF ≌△FDE ,∴4FO AD ==,8OE DF OD FO ==+=,∴(40)E ,. ②当90AEF ︒∠=时,同①的方法有:8OF =,4OE =,∴(40)E ,, 综上所述,满足条件的点E 坐标为(8)0,或(40), 故答案为:(8)0,或(40), 【点睛】本题考查三角形全等性质和判定、等腰直角三角形的性质,注意直角三角形按角分类讨论分三种情况,不要漏解.三、解答题21.见解析【分析】根据ASA 定理证明三角形全等,从而利用全等三角形的性质求解.【详解】证明:∵DE=BF ,∴DE+EF=BF+EF ;∴DF=BE ;∵AF BD ⊥,CE BD ⊥∴∠AFD=∠CEB=90°∵//AD CB∴∠B=∠D在Rt △ADF 和Rt △BCE 中B D DF BE AFD CEB ∠=∠⎧⎪=⎨⎪∠=∠⎩∴Rt △ADF ≌Rt △BCE∴AF CE =【点睛】本题考查了三角形全等的判定及性质;由DE=BF 通过等式的性质得DF=BE 在三角形全等的证明中经常用到,应注意掌握应用.22.(1)见解析,1.2;(2)x=d 或x≥a【分析】(1)可以取BC =1.2cm (1cm <BC <2cm ),画出图形即可;(2)当x =d 或x≥a 时,三角形是唯一确定的.【详解】(1)如图,选取的BC 的长约为1.2cm ,故答案是:1.2;(2)若△ABC 的形状、大小是唯一确定的,则x 的取值范围是x =d 或x≥a ,故答案为:x=d 或x≥a .【点睛】本题考查全等三角形的判定,解题的关键是理解题意,掌握“有两边和其中一边的对角分别相等的两个三角形不一定全等”,属于中考常考题型.23.见详解【分析】先根据条件求出BC=EF ,根据平行线性质求出∠B=∠E ,∠ACB=∠DFE ,根据ASA 推出△ABC ≌△DEF 即可.【详解】∵FB =CE ,∴FB+FC=FC+CE ,即BC=FE ,又∵AB ∥ED ,AC ∥FD ,∴∠B=∠E ,∠ACB=∠DFE ,在△ABC 和△DEF 中,B E BC FEACB DFE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△DEF (ASA )∴AB=DE .【点睛】本题考查了平行线的性质和全等三角形的性质和判定的应用,主要考查学生的推理论证能力.24.(1)作图见解析,45;(2)能,45【分析】(1)以点O 为圆心,任意长为半径,画圆弧,并分别交OA 、OC 于点H 、点G ;再分别以点H 、点G 为圆心,以大于12HG 的长度为半径画圆弧并相较于点P ,过点P 作射线OM 即为∠AOC 的平分线;同理得∠BOC 的平分线ON ;通过量角器测量即可得到∠MON ; (2)根据题意,得114522COM AOC BOC ∠=∠=+∠,12CON BOC ∠=∠,结合MON COM CON ∠=∠-∠,经计算即可得到答案.【详解】(1)作图如下用量角器量得:∠MON =45故答案为:45;(2)∵∠AOC ,∠BOC 的平分线OM ,ON ,且∠AOB =90° ∴()11145222COM AOC AOB BOC BOC ∠=∠=∠+∠=+∠ 12CON BOC ∠=∠ ∴11454522MON COM CON BOC BOC ∠=∠-∠=+∠-∠=. 【点睛】本题考查了角平分线、射线的知识;解题的关键是熟练掌握角平分线、角的运算的性质,从而完成求解.25.证明见解析【分析】利用AAS 证明△ABC ≌△CED 即可得到结论.【详解】证明:∵//AB CD ,∴BAC ECD ∠=∠,在ABC 和CED 中BAC ECD B EAC CD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()ABC CED AAS △≌△,∴BC ED =.【点睛】此题考查全等三角形的判定及性质,熟记三角形全等的判定定理及根据已知题意确定两个三角形对应相等的条件是解题的关键.26.BC=CD,证明见解析(答案不唯一).【分析】已知两组对应边相等,则找另一组边相等或找另一组对应角相等均可证明△ABC ≌△ADC .【详解】解:若添加条件为:BC=CD,证明如下:在△ABC 和△ADC 中AC AC BC CD AB AD =⎧⎪=⎨⎪=⎩∴△ABC ≌△ADC (SSS )(答案不唯一).【点睛】本题主要考查了全等三角形的判定,灵活运用全等三角形的判定方法是解答本题的关键.。
成都七中初二上学期期末数学试卷(附答案)
( √)
cc
的一次函数称为“勾股一次函数”,若点 P 1, 3 5 在“勾股一次函数”的图象上,且
5
Rt△ABC 的面积是 5,则 c 的值是
.
18. 如图,在平面直角坐标系中,点 A (0, 3),点 B (4, 1),点 P 是 x 轴正半轴上一动点.给
出 4 个结论:
①线段 AB 的长为 5; ②在 △AP B 中,若 AP
=
√13,则
△AP B
的面积是
3√2;
③使 △AP B 为等腰三角形的点 P 有 3
④设点
P
的坐标为
(x, 0),则
√ 9
+
x2
个√; + (4
−
x)2
+
1
的最小值为
4√2.
其中正确的结论有
.
三解答题
19. 计算.
√
√ (1) 24 − 3
2 − √3 −27;
3
√
√ (2)9 8 ÷ 3
1 × 2√5.
A1A2B2C2 为正方形;按此方法在直线 l 上顺次取点 B3,B4,· · ·,Bn,依次作正
方形 A2A3B3C3,A3A4B4C4,· · ·,An−1AnBnCn,则 A3 的坐标为
,B5
的坐标为
.
17. 如图,已知 a,b,c 分别是 Rt△ABC 的三条边长,∠C = 90◦,我们把关于 x 的形如 y = a x+ b
D. 4,5,6
5. 下列各统计量中,表示一组数据波动程度的量是 ( )
A. 平均数
B. 众数
C. 方差
D. 频率
6. 下列计算结果正确的是 √
四川省成都七中实验学校2013-2014学年下期八年级入学考试数学试题(含答案)
(全卷共 150 分,时间 120 分钟)
A 卷(100 分) 一、选择题(每小题 3 分,共 30 分)
1、下列各数中是无理数的是( )
1 (A) 7
3
(B) 9 ) (B)7,24,25, (D)n, 2n 1 ,n+1 (D)±1 (D) y (C) 27
3
(D)
2、下列各组数中,是勾股数的为( (A)1.5,2,2.5, (C)0.3,0.4,0.5,
3、已知点 A(3,a+1)在 x 轴上,则 a 等于( ) (A)-1 (B)1 (C)0 4、下列函数中,y 随 x 增大而减小的是( ) (A) y x 1 (B) y 2 x 3 5、下列不等式中,总能成立的是( (A) a 2 0 (B)2a>a ) (C) a 2 0 (C) y 2 x 1
1 x 1 与 x 轴交于点 C,两 2
直线 l1 , l 2 相交于点 B。 (1) 、求直线 l1 的解析式和点 B 的坐标; (2) 、求△ABC 的面积。
五、解答题(共 18 分)
19、 (8 分)如图,A、B 两座城市相距 100 千米,现计划要在两座城市之间修筑一条高等级 公路(即:线段 AB) 。经测量,森林保护区中心 P 点在 A 城市的北偏东 30 0 方向,B 城市的 北偏西 45 0 方向上。已知森林保护区的范围在以 P 为圆心,50 千米为半径的圆形区域内。 请问:计划修筑这条高等级公路会不会穿越森林保护区?为什么?
5 x 2 3( x 1) (2)解不等式组 1 3 1 7 x 2 2
(3)计算: (3) 27 1 2
【精品】2013-2014年四川省成都七中实验中学八年级(上)期中数学试卷带答案
2013-2014学年四川省成都七中实验中学八年级(上)期中数学试卷一、选择题:(本大题10个小题,每小题3分,共30分)1.(3分)2的平方根是()A.﹣1.414 B.±1.414 C.D.2.(3分)已知下列各式:①②2x﹣3y=5③xy=2④x+y=z﹣1⑤,其中为二元一次方程的个数是()A.1 B.2 C.3 D.43.(3分)下列不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.8,15,17 D.4,5,64.(3分)已知x2m﹣1+3y4﹣2n=﹣7是关于x,y的二元一次方程,则m、n的值是()A.B.C.D.5.(3分)甲看乙的方向是北偏东30°,那么乙看甲的方向是()A.南偏东60°B.南偏西60°C.南偏东30°D.南偏西30°6.(3分)若点M位于x轴下方,距x轴3个单位长,且位于y轴左方,距y轴2个单位长,则M点的坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,﹣3)D.(2,﹣3)7.(3分)已知直角三角形的两条边的长为3和4,则第三条边的长为()A.5 B.4 C.D.5或8.(3分)若一个二元一次方程组的解是,则这个方程组是()A.B.C.D.9.(3分)如图,平面直角坐标系中,直线AB与x轴的夹角为60°,且点A的坐标为(﹣2,0),点B在x轴的上方,设AB=a,那么点B的坐标为()A.B.C.D.10.(3分)已知点A(2,0)、点B(﹣,0)、点C(0,1),以A,B,C三点为顶点画平行四边形.则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题:(本大题5个小题,每小题3分,共15分)11.(3分)估算比较大小:(填“>”、“<”或“=”)﹣3﹣2.12.(3分)已知a<b<0,则点A(a﹣b,b)在第象限.13.(3分)已知点A(a,﹣2)与点B(3,﹣2)关于y轴对称,则a=,点C的坐标为(4,﹣3),若将点C向上平移3个单位,则平移后的点C的坐标为.14.(3分)已知﹣2a﹣y+3b3x与3a2x b2﹣4y的和是一个单项式,则x+y=.15.(3分)如图,小方格都是边长为1的正方形,求四边形ABCD的面积.三、解答题:(本大题8个小题,共52分)16.(3分)计算:(1);(2);(3);(4).17.(6分)已知点P(2,﹣3)在第四象限,求:(1)点P分别关于x轴、y轴、原点的对称点M1、M2、M3的坐标;(2)P点分别到x轴、y轴、原点的距离.18.(9分)如图,AB为一棵大树,在树上距地面10米的D处有两只猴子,他们同时发现C处有一筐水果,一只猴子从D处往上爬到树顶A处,又沿滑绳AC 滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.19.(10分)如图,已知正方形ABCD的边长为4,将正方形ABCD置于平面直角坐标系中,使A点与坐标系的原点重合,AB与x轴正半轴成30°角,求点B、C、D的坐标.20.某森林管理处雇用两架农用直升机向森林喷洒药物,两飞机在同一地点出发,甲飞机沿北偏东45°方向以20km/h的速度飞行,乙飞机沿南偏东30°方向以20km/h的速度飞行,3h后,乙飞机发现有部分药品误放在甲机上,而此时,乙飞机只能沿北偏东15°的方向追赶甲机,则乙机该以怎样的速度飞行才能正好赶上甲机?一、填空题:(共5个小题,每小题4分,共20分)21.(4分)请你观察思考下列计算过程:∵112=121,∴=11;同样:∵1112=12321,∴=111;…由此猜想=.22.(4分)如果△ABC的三边长a,b,c满足关系式+|c﹣15|+b2﹣18b+81=0,则△ABC的形状是.23.(4分)二元一次方程组的解中,x、y的值相等,则k=.24.(4分)在平面直角坐标系中,已知A(3,﹣2),x轴上确定一点P,使△AOP为等腰三角形,则符合条件的P点的坐标为.25.(4分)如图,已知A l(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A 5(2,﹣1),….则点A2007的坐标为.26.(8分)已知(x﹣15)2=169,(y﹣1)3=﹣0.125,求的值.27.(10分)某车间有100名工人,生产某种由1个螺栓与2个螺母组成的配套产品,每人每天平均生产螺栓15个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才使产品配套?28.(12分)在直角坐标系中,四边形OABC各个顶点坐标分别为(0,0),(2,3),(5,4)(8,2).(1)画出平面直角坐标系,并画四边形OABC.(2)试确定图中四边形OABC的面积.(3)如果将四边形OABC绕点O旋转180°,试确定旋转后四边形上各个顶点的坐标.2013-2014学年四川省成都七中实验中学八年级(上)期中数学试卷参考答案与试题解析一、选择题:(本大题10个小题,每小题3分,共30分)1.(3分)2的平方根是()A.﹣1.414 B.±1.414 C.D.【解答】解:2的平方根是±.故选:D.2.(3分)已知下列各式:①②2x﹣3y=5③xy=2④x+y=z﹣1⑤,其中为二元一次方程的个数是()A.1 B.2 C.3 D.4【解答】解:①是分式方程,故不是二元一次方程;②正确;③是二次方程,故不是二元一次方程;④有3个未知数,故不是二元一次方程;⑤是一元一次方程.故选:A.3.(3分)下列不能构成直角三角形的是()A.6,8,10 B.5,12,13 C.8,15,17 D.4,5,6【解答】解:A、∵62+82=102,∴能构成直角三角形;B、∵52+122=132,∴能构成直角三角形;C、∵82+152=172,∴能构成直角三角形;D、∵52+42≠62,∴不能构成直角三角形.故选:D.4.(3分)已知x2m﹣1+3y4﹣2n=﹣7是关于x,y的二元一次方程,则m、n的值是()A.B.C.D.【解答】解:根据题意,得2m﹣1=1,解得m=1;4﹣2n=1,解得n=,即;故选:D.5.(3分)甲看乙的方向是北偏东30°,那么乙看甲的方向是()A.南偏东60°B.南偏西60°C.南偏东30°D.南偏西30°【解答】解:由题意可知∠1=30°,∵AB∥CD,∴∠1=∠2,由方向角的概念可知乙在甲的南偏西30°.故选:D.6.(3分)若点M位于x轴下方,距x轴3个单位长,且位于y轴左方,距y轴2个单位长,则M点的坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,﹣3)D.(2,﹣3)【解答】解:∵点M在第三象限内,距y轴2个单位长,∴点M的横坐标为﹣2;∵点M距x轴3个单位长,点M的纵坐标为﹣3,∴点M的坐标为(﹣2,﹣3).故选:C.7.(3分)已知直角三角形的两条边的长为3和4,则第三条边的长为()A.5 B.4 C.D.5或【解答】解:设第三边为x(1)若4是直角边,则第三边x是斜边,由勾股定理,得32+42=x2,所以x=5.(2)若4是斜边,则第三边x为直角边,由勾股定理,得32+x2=42,所以x=,所以第三边的长为5或.故选:D.8.(3分)若一个二元一次方程组的解是,则这个方程组是()A.B.C.D.【解答】解:A、不是方程xy=2的解,故选项错误;B、不是方程x﹣2y=1的解,故选项错误;C、正确;D、不是方程x+y=0的解,故选项错误.故选:C.9.(3分)如图,平面直角坐标系中,直线AB与x轴的夹角为60°,且点A的坐标为(﹣2,0),点B在x轴的上方,设AB=a,那么点B的坐标为()A.B.C.D.【解答】解:∵∠BAC=60°,∠BCA=90°,AB=a,则AC=AB×cos60°=a,BC=AB×sin60°=a,∴点B的横坐标为a﹣2,纵坐标为a.故选:D.10.(3分)已知点A(2,0)、点B(﹣,0)、点C(0,1),以A,B,C三点为顶点画平行四边形.则第四个顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:根据平行四边形的边的性质知,对边相等.可以知道另一个顶点的坐标可以为:(1,﹣1)或(2,1)或(﹣2,1).∴不在第三象限.故选C.二、填空题:(本大题5个小题,每小题3分,共15分)11.(3分)估算比较大小:(填“>”、“<”或“=”)﹣3<﹣2.【解答】解:∵3=,2=,∴3>2,∴﹣3<﹣2.故答案为<.12.(3分)已知a<b<0,则点A(a﹣b,b)在第三象限.【解答】解:∵a<b<0,∴a﹣b<0,∴点A(a﹣b,b)的横坐标小于0,纵坐标小于0,符合点在第三象限的条件,故答案填:三.13.(3分)已知点A(a,﹣2)与点B(3,﹣2)关于y轴对称,则a=﹣3,点C的坐标为(4,﹣3),若将点C向上平移3个单位,则平移后的点C的坐标为(4,0).【解答】解:∵点A(a,﹣2)与点B(3,﹣2)关于y轴对称,∴a=﹣3;∵点C的坐标为(4,﹣3),∴将点C向上平移3个单位,则平移后的点C的坐标为(4,﹣3+3),即(4,0).故答案为:(4,﹣3);(4,0).14.(3分)已知﹣2a﹣y+3b3x与3a2x b2﹣4y的和是一个单项式,则x+y=1.【解答】解:∵﹣2a﹣y+3b3x与3a2x b2﹣4y的和是一个单项式,∴,解得:,∴x+y=2﹣1=1.故答案为:1.15.(3分)如图,小方格都是边长为1的正方形,求四边形ABCD的面积12.【解答】解:由题意可得:四边形ABCD的面积=5×5﹣×1×2﹣×4×3﹣×2×3﹣×2×3=12,所以,四边形ABCD的面积为12.故答案为12.三、解答题:(本大题8个小题,共52分)16.(3分)计算:(1);(2);(3);(4).【解答】解:(1)=+1﹣=1;(2)=2++﹣1+=2++4﹣1+﹣1=2+4;(3)将x﹣2=2(y﹣1)代入②得:4(y﹣1)+(y﹣1)=5,解得:y=2,∴x﹣2=2×1,∴x=4,∴方程组的解为:;(4)由①得:x=y+3,代入②得:2y+3(y+3﹣y)=11,解得:y=1,则x=4,∴方程组的解为:.17.(6分)已知点P(2,﹣3)在第四象限,求:(1)点P分别关于x轴、y轴、原点的对称点M1、M2、M3的坐标;(2)P点分别到x轴、y轴、原点的距离.【解答】解:(1)∵点P(2,﹣3)在第四象限,∴点P分别关于x轴、y轴、原点的对称点M1、M2、M3的坐标为:(2,3),(﹣2,﹣3),(﹣2,3);(2)P点分别到x轴、y轴、原点的距离为:3,2,=.18.(9分)如图,AB为一棵大树,在树上距地面10米的D处有两只猴子,他们同时发现C处有一筐水果,一只猴子从D处往上爬到树顶A处,又沿滑绳AC 滑到C处,另一只猴子从D滑到B,再由B跑到C处,已知两只猴子所经路程都为15米,求树高AB.【解答】解:Rt△ABC中,∠B=90°,设BC=a(米),AC=b(米),AD=x(米)则10+a=x+b=15(米).∴a=5(米),b=15﹣x(米)又在Rt△ABC中,由勾股定理得:(10+x)2+a2=b2,∴(10+x)2+52=(15﹣x)2,解得,x=2,即AD=2(米)∴AB=AD+DB=2+10=12(米)答:树高AB为12米.19.(10分)如图,已知正方形ABCD的边长为4,将正方形ABCD置于平面直角坐标系中,使A点与坐标系的原点重合,AB与x轴正半轴成30°角,求点B、C、D的坐标.【解答】解:过点B作BE⊥x轴于点E,过点D作DF⊥x轴于点F,过点D作DM⊥y轴,CM∥y轴,交点为M,∵∠BOE=30°,OB=AB=4,∴BE=OB=2,∴OE==2,∴点B的坐标为:(2,2);∵∠BOD=90°,∴∠DOF=60°,∴∠ODF=30°,∴AF=OD=2,∴DF=2,∴点D的坐标为:(﹣2,2);∵∠FDM=∠CDO=90°,∴∠CDM=∠ADF=30°,∴CM=CD=2,DM=2,∴点C的坐标为:(2﹣2,2+2).20.某森林管理处雇用两架农用直升机向森林喷洒药物,两飞机在同一地点出发,甲飞机沿北偏东45°方向以20km/h的速度飞行,乙飞机沿南偏东30°方向以20km/h的速度飞行,3h后,乙飞机发现有部分药品误放在甲机上,而此时,乙飞机只能沿北偏东15°的方向追赶甲机,则乙机该以怎样的速度飞行才能正好赶上甲机?【解答】解:由题意知,∠CAB=180°﹣45°﹣30°=105°,∠ABC=30°+15°=45°,AB=20×3=60千米,如图,过点A作AE⊥BC垂足为点E,∠ACB=180°﹣105°﹣45°=30°,CE==60千米,则BC=BE+CE=60+60千米,AC=2AE=120千米,乙飞机沿北偏东15°的方向追赶甲机的时间:(120﹣20×3)÷20=3小时,乙飞机飞行速度(60+60)÷3=20+20千米/小时;答:乙机该以20+20千米/小时的速度飞行才能正好赶上甲机.一、填空题:(共5个小题,每小题4分,共20分)21.(4分)请你观察思考下列计算过程:∵112=121,∴=11;同样:∵1112=12321,∴=111;…由此猜想=111111111.【解答】解:∵112=121,∴;同样∵1112=12321,∴;…由此猜想=111111111.故本题的答案是111111111.22.(4分)如果△ABC的三边长a,b,c满足关系式+|c﹣15|+b2﹣18b+81=0,则△ABC的形状是直角三角形.【解答】解:∵+|c﹣15|+b2﹣18b+81=0,∴+|c﹣15|+(b﹣9)2=0,∴a+2b=30,c﹣15=0,b﹣9=0,∴a=12,b=9,c=15,∵122+92=152,∴△ABC是直角三角形.故答案为:直角三角形.23.(4分)二元一次方程组的解中,x、y的值相等,则k=2.【解答】解:由题意得:y=x,代入方程组得:,解得:x=1,k=2,则k=2.故答案为:2.24.(4分)在平面直角坐标系中,已知A(3,﹣2),x轴上确定一点P,使△AOP为等腰三角形,则符合条件的P点的坐标为(6,0),(,0),(﹣,0),(,0).【解答】解:如图,OA==;①若OA=AP,则点P1(6,0);②若OA=OP,则点P2(,0),P3(﹣,0);③若OP=AP,则P4(,0);∴符合条件的P点的坐标为:(6,0),(,0),(﹣,0),(,0).故答案为:(6,0),(,0),(﹣,0),(,0).25.(4分)如图,已知A l(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),….则点A2007的坐标为(﹣502,502).【解答】解:由图形以及叙述可知各个点(除A1点和第四象限内的点外)都位于象限的角平分线上,第一象限角平分线的点对应的字母的下标是2,6,10,14,即4n﹣2(n是自然数,n是点的横坐标的绝对值);同理第二象限内点的下标是4n﹣1(n是自然数,n是点的横坐标的绝对值);第三象限是4n(n是自然数,n是点的横坐标的绝对值);第四象限是1+4n(n是自然数,n是点的横坐标的绝对值);2007=4n﹣1则n=502,当2007等于4n+1或4n或4n﹣2时,不存在这样的n的值.故点A2007在第二象限的角平分线上,即坐标为(﹣502,502).故答案填(﹣502,502).26.(8分)已知(x﹣15)2=169,(y﹣1)3=﹣0.125,求的值.【解答】解:∵(x﹣15)2=169,(y﹣1)3=﹣0.125,∴x﹣15=±13,y﹣1=﹣0.5,∴x=28或x=2,y=0.5,当x=28,y=0.5时,原式=﹣﹣=2﹣2+3=3;当x=2,y=0.5时,原式=﹣﹣=﹣+1=1.27.(10分)某车间有100名工人,生产某种由1个螺栓与2个螺母组成的配套产品,每人每天平均生产螺栓15个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才使产品配套?【解答】解:设应分配x人生产螺栓,y人生产螺母,由题意得,,解得:.答:应分配40人生产螺栓,60人生产螺母.28.(12分)在直角坐标系中,四边形OABC各个顶点坐标分别为(0,0),(2,3),(5,4)(8,2).(1)画出平面直角坐标系,并画四边形OABC.(2)试确定图中四边形OABC的面积.(3)如果将四边形OABC绕点O旋转180°,试确定旋转后四边形上各个顶点的坐标.【解答】解:(1)如图:四边形OABC即为所求;=S△OAE+S四边形AEFB+S四边形BFGC﹣S△OCG=×2×3+×(3+4)×(5﹣2)(2)S四边形OABC+×(4+2)×(8﹣5)﹣×8×2=14.5;(3)如图:旋转后四边形上各个顶点的坐标分别为:(0,0),(﹣2,﹣3),(﹣5,﹣4)(﹣8,﹣2).。
成都七中初中初二半期数学试卷及解析
‘ {·
., 工、 ·. .I_' L� u τ
m I 页,:J� '"页
二 tlU豆
ω [饷]他山乡份材咛于Wlr跺 均锹
之一和·
/J.
土斗
- ;
3
j与· C-3 ] -J)
,-易 llf. 5-,fo [角手柯]枫:;
J .,-I斤·J.) = ;,+ [-(巧’习习’巧
三角号槐 IS llJ锦帆二lff-Js t 项宁!
l 了灿仅
个蚊有〈
3.1川 131 L i 3 ,J
〉
(丰11专I!川之间阳一个 I )叫主耐, ,无理删
A. I个
B. 2个'
:τ2以下列 八· 3.
M
5, 3
蚊踹为边陀仰叫 B. 6, 8, LO
3
个数的贷才C平 /J 斗1
c. 3 A
D. 4 个 〉
D. 6, 12, 13
.. 4.下列运算正确的{
【某七初期中 9】
【初二暑假.勤思班.第六讲.例题 2】
【某七初期中 11】
【初二暑假.勤思班.第三讲.例题 1(2)】
【某七初期中 13】 【某七初期中 18】 【某七初期中 20】
【初二暑假.勤思班.第五讲.演练 5】 【初二暑假.勤思班.第四讲.例题 3】 【初二秋季.勤思班.第三讲.例题 2】
题 18 方程与不等式 二元一次为程组解法
8
女
19 方程与不等式
为程的应用
8
女
20 勾股定理
勾股定理与金等综合 10
2018-2019 某七初学校初二(上)数学期中
匹配度分析
考试题目
【某七初期中 1】
四川省成都市七中育才学校2018-2019学年八年级上学期期中测试数学试题(含答案)
-16 4 (-5)2642 23271 21 成都七中育才学校 2018-2019 学年度上期初 2020 届半期考试数学试卷A 卷(共 100 分)一、选择题(每小题 3 分,共 30 分)1.下列是二元一次方程的是( ) A .4x+3=x B .12x=7y C .2x-2y 2=4D .3x+2y=xy2.下列四个实数中,无理数是( ) 9A .B .5C . -3πD .03.直角三角形的两条直角边的长分别为 4 和 5,则斜边长是()A .3B .41C .4.下列各式中,正确的是()D .9A .= -5 B . (- 5)2= 5C . = -4D . = ±25.能使x - 2 有意义的 x 的范围是()A .x ≤2B .x ≥2C .x ≠2D .x >26.估计 80 在()A .5~6 之间B .6~7 之间C .7~8 之间D .8~9 之间7.的立方根是( )A .8B .4C .2D .168.在△ABC 中,已知∠A 、∠B 、∠C 的度数之比是 1:1:2,AB=8,△ABC 的面积为( )A .8B .12C .16D .32 9.如图是甲、乙、丙三人玩跷跷板的示意图(支点在跷跷板中点处),图中已知了乙、丙的体重,则甲的体重取值范围在数轴上表示正确的是( )A .B .C .D .10.如图所示,有一“工”字形的机器零件,它是轴对称图形,图中所有的角都是直角,图中数据单位:cm , 那么 A .B 两点之间的距离为( )A .16cmB .8cm C .20cm D .16cm 二、填空题(每小题 4 分,共 16 分)11.2 的平方根是.12.若+|b ﹣6|=0,则以a 、b 为边长的等腰三角形的周长是 .10 题图13.比较大小: 4 35 2 ,.941a - 33 + 2 2 3 - 2 2FFF14.如图,△ABC 中,∠C=90°,AC=6,AB=10,点 D 是边 BC 上一点.若沿 AD 将△ACD 翻折,点 C 刚好落在 AB 边上点 E 处,则 AD= . 三 、 解 答 题 ( 共 54 分 ) 15.(每小题 5 分,共 10 分)(1)解方程: (2x +1)2- 25 = 0(2)解方程组:- = -316.(每小题 5 分,共 10 分)17.(6 分)已知 x =1 , y = 1 ,求代数式 x2 - y 2的值.18. (8 分)如图,在△ABC 中, AB=10,BD=8,AD=6,CD=2 3 . (1)试说明AD ⊥BC ;(2)试求点 D 到直线 AC 的距离.B19.(10 分)已知关于 x 方程组的解是正数ADC18 题图(1)求 a 的取值范围;(2)化简+ 4a + 5 .20.(10 分)问题背景:我们学习等边三角形时得到直角三角形的一个性质:在直角三角形中,如果一个锐角等于 30°,那么它所对的直角边等于斜边的一半.即:如图 1,在 Rt △ABC 中,∠ACB=90°,∠ABC=30°, 1则:AC=2AB .(1)如图 1,连接 AB 边上中线 CF ,试说明△ACF 为等边三角形;(2)如图 2,在(1)的条件下,点 D 是边 CB 延长线上一点,连接 AD ,作等边△ADE ,且点 E 在∠ACB 的内部,连接 BE ,EF .试说明 EF ⊥AB ;(3)如图 3,在(1)的条件下,若 D 为 BC 中点,连接 AD ,作等边△ADE ,且点 E 在∠ACB 的内部,连接 BE .已知 AC=2,试求△BDE 的面积.EEAAACBC BDCDB图 1 图 2 图 3(a - 4)2x 2 - 9 + 9 - x 2 +102 3 3 4一、填空题(每小题 4 分,共 20 分)B 卷(50 分)21.已知 x 、y 为实数,且 y =,则 x + y =.522. 若关于 x 的不等式组的整数解共有 4 个,则整数解是是.23. 如图,如果以正方形 ABCD 的对角线 AC 为边作第二个正方形 ACEF ,再以对角线 AE 为边作第三个正方形AEGH ,如此下去,…,已知正方形 ABCD 的面积 S 1 为 1,按上述方法所作的正方形的面积依次为 S 2,S 3,…S n (n 为正整数),那么按照此规律,第 5 个正方形的边长为 ;第 n 个正方形的面积 S n = . 24.如图,线段 AB=5,P 是平面内直线 AB 上方一动点,且满足 S △PAB =15,则点 P 到 A 、B 两点距离之和 PA+PB 的最小值为 . 25. 如图△ ABD 和△ ACE 是△ABC 外两个等腰直角三角形,∠BAD= ∠CAE=90 °.下列说法正确的是: . ①CD=BE ;②DC ⊥BE ;③DE 2+BC 2=2BD 2+EC 2;④ FA 平分∠DFE ;⑤取 BC 的中点 M ,连 MA ,则 MA ⊥DE.DE23 题图二、解答题(共 30 分)26. (8 分)观察下列各式及其变形过程:24 题图B25 题图a 1 =1 2 + 2 = 1 - 1 , 1 2 a 2 = = 1 - 1,a 3 == 1 -1(1)按照此规律,写出第五个等式a 5 = ;(2)按照此规律,若 S n = a 1 + a 2 + a 3 ++ a n ,试用含 n 的代数式表示 S n ;AFC2 3 + 3 2 1 3 4 + 4 313 DF27.(10 分)如图①,在△ABC 中,∠C=90°,分别以△ABC 三边为边向外作三个正方形,其面积分别用 S 1,S 2,S 3 表示,则不难证明 S 1=S 2+S 3.(1)如图②,在△ABC 中,∠C=90°,分别以△ABC 三边为直径向外作三个半圆,其面积分别用 S 1,S 2, S 3 表示,那么 S 1,S 2,S 3 之间有什么关系;(不必证明)(2)如图③,△ABC 中,∠C=90°,分别以△ABC 三边为边向外作三个正三角形,其面积分别用 S 1、S 2、 S 3 表示,请你确定 S 1,S 2,S 3 之间的关系并加以证明;图①图②图③图④(3)利用图①的结论,解决下列问题:如图④,Rt △ABC 中,∠C=90°,AC=5,BC=8.分别以 AB 、AC 、BC 为边在 AB 的同侧作正方形 ABEF 、ACPQ 、BCMN ,四块阴影部分的面积分别为 S 1、S 2、 S 3、S 4.则 S 1+S 2+S 3+S 4= .28.(12 分)如图 1,在四边形 ABCD 中,AD ∥BC ,∠B=90°,∠DCB=30°,CD = 2,AD=3.点 E ,F 同时从B 点出发,沿射线 BC 向右匀速移动,已知点 F 的移动速度是点 E 移动速度的 2 倍,以 EF 为一边在CB 的上方作等边△EFG ,设 E 点移动距离为 x (0<x <6). (1)AB = ;BC = ;(2)当 3≤x <6 时,求△EFG 与四边形 ABCD 重叠部分面积 y 与 x 之间的关系式; (3)如图 2,当点 F 到达 C 点时,将等边△EFG 绕点 E 逆时针旋转 α°(0<α<180),直线 EF 分别与直线CD 、直线AD 交于点 M 、N .是否存在这样的α,使△DMN 为等腰三角形?若存在,请直接写出此时线段 DM 的长度;若不存在,请说明理由.GABEC图 1图 2备用图备用图成都七中育才学校2018-2019学年度上期初2020届半期考试数学答案A 卷(共100分)一、选择题(每小题3分,共30分) BCCBB DCCCD二、填空题(每小题4分,共16分)11.±2. 12.15. 13.< <. 14.35. 三、解答题(共54分)15.(每小题5分,共10分) (1)x=2或x=-3 (2)13a b =-⎧⎨=⎩16.(每小题5分,共10分) (1)=2521(3)5----- =-12(2)14x x >⎧⎨≤⎩ 解集为1<x ≤417.(1)x=322- ,y=322+; (2)242-18.(1)∵62+82=102∴∠ADB =90°(2)过点D 作DE ⊥AC 于点E∵ AC=226(23)43+= ∴43623DE =⨯ 得DE=3.19.(1)由 5139x y a x y a -=+⎧⎨+=+⎩ 得454x a y a =+⎧⎨=-+⎩则 45040a a +>⎧⎨-+>⎩ ∴544a -<<. (2)原式=445a a -++=4-a+4a+5=3a+920.(1)∵AC=12AB=AF ,且∠A=60°∴△ACF 为等边三角形;(2)易证△ACD ≌△AFE ,则∠ACB=∠AFE=90°∴EF ⊥AB(3)过点E 作EG ⊥CB 于点G ,连接EFGD FACBE易证△ACD ≌△AFE ,则∠ACB=∠AFE=90° ∴EF ⊥AB 则EF 垂直平分AB ∴AE=BE 由∵△ADE 等边∴AE=AD ,则AD=A E=BE 即△BDE 等腰 ∵AC=2∴CB=23,则CD=3,DG=BG=32△ACD 中,AD=222(3)7+= ∴DE=BE=7 ∴2235(7)()22-=∴1155332224BDES BD EG ==⨯⨯=.。
2022-2023学年四川省成都七中育才学校八年级第一学期期中数学试卷及参考答案
成都市七中育才学校2022-2023学年度上半期学业质量监测八年级数学试卷A 卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(每小题4分,共32分,请将正确的答案涂在答题卡上)1.的绝对值是( )A.4-B.4C.2-D.22.下列各数中的无理数是( )B.227C.3.4D.23.三个正方形的面积如图,中间三角形为直角三角形,则正方形A 的边长为( )A.6B.36C.64D.84.下列二次根式是最简二次根式的是( )5.在平面直角坐标系中,点()2,2P -在( )A.第一象限B.第二象限C.第三象限D.第四象限6.如图作图所示,点A 所表示的数为x ,则x =( )A.1B.1- D.7.为响应国家“双减”政策,丰富学生的课余生活.“青青草原”社团打算规划一块面积为2300m 的土地,使它的长与宽的比为3:2,则宽约为多少m ?( )A.12~13之间B.13~14之间C.14~15之间D.15~16之间8.对于函数23y x =-+,下列结论正确的是( )A.它的图象必经过点()1,3B.它的图象经过第一、三、四象限C.当0x >时,0y <D.y 随x 的增大而减小第Ⅱ卷(非选择题,共68分)二、填空题(本大题共4小题,每小题4分,共16分)1的相反数是__________,绝对值是______________.10.平面直角坐标系中,若点A在第二象限,且到x轴的距离为3,到y轴的距离为2,则点A的坐标为________.11.如图,有五个小正方形,每个小正方形的边长为1,可通过“剪一剪”,“拼一拼”,将其拼成一个正方形,则这个正方形的边长是____________.12.已知函数y=(1)自变量x的取值范围为___________;(2)当4x=时,y的值为___________.三、解答题(本大题共6小题,共52分)13.(12分)(1;)(12012-⎛⎫+- ⎪⎪⎝⎭14.(6分)解方程:()22180x--=.15.(8分)已知31a b+-的平方根是3±,c262a b c+-的值.16.(8分)如图,在平面直角坐标系中,已知点()5,1A-,()4,5B-,()2,2C-.(1)画出ABC△.(2)若111A B C△与ABC△关于y轴对称,则点1A的坐标是________.111A B C△的面积是___________.17.(8分)如图,某小区的两个喷泉A ,B 位于小路AC 的同侧,两个喷泉的距离AB 的长为250m .现要为喷泉铺设供水管道AM ,BM ,供水点M 在小路AC 上,供水点M 到AB 的距离MN 的长为120m ,BM 的长为150m .(1)求供水点M 到喷泉A ,B 需要铺设的管道总长;(2)求出喷泉B 到小路AC 的最短距离.18.(10分)如图,四边形OABC 是一张长方形纸片,将其放在平面直角坐标系中,使得点O 与坐标原点重合,点A 、C 分别在x 轴、y 轴的正半轴上,点B 的坐标为()3,4,D 的坐标为()2,4.现将纸片沿过D 点的直线折叠,使顶点C 落在线段AB 上的点F 处,折痕与y 轴的交点记为E .(1)求点F 的坐标和FDB ∠的大小;(2)在x 轴正半轴上是否存在点Q ,满足QDE CDE S S =△△,若存在,求出Q 点坐标,若不存在请说明理由; (3)点P 在直线DE 上,且PEF △为等腰三角形,请直接写出点P 的坐标.B 卷(共50分)一、填空题(本大题共5小题,每小题4分,共20分,答案写在答题卡上)19.点()2,a 和()1,5b +关于x 轴对称,则a b +=___________.20.已知18y ==____________.21.已知一次函数()12y m x m =-+-图像不经过第一象限,求m 的取值范围___________.22.如图,在Rt ABC △中,点D 在AC 边上,且满足45ABD ∠=︒,当DE BC ⊥,1DE =,3BE =,EC =____.23.如图,在平面直角坐标系中,C 点坐标()2,0,B 点坐标()6,0,A 点在直线:OA y =上,且满足OA AB =,D 为直线OA 上一动点,连接DC ,DC 绕点C 顺时针旋转90︒得到CE ,连接DE ,BE ,则BE 的最小值为____. 二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)24.(8分)已知x =,y =; (1)求223x y xy +-的值;(2)若x 的小数部分为a ,y 的小数部分为b ,求2()a b +的值.25.(10分)在ABC △和CDE △中,90ACB ECD ∠∠==︒,AC BC =,点D 是CB 延长线上一动点,点E 在线段AC 上,连接DE 与AB 交于点F .(1)如图1,若30EDC ∠=︒,6EF =,求AEF △的面积.(2)如图2,若BD AE =,求AF 、AE 、BC 之间的数量关系.(3)如图3,移动点D ,使得点F 是线段AB 的中点时,3DB =,AB =P ,Q 分别是线段AC ,BC 上的动点,且AP CQ =,连接DP ,FQ ,求DP FQ +的最小值.26.(12分)已知,如图1,直线:4AB y kx k =--,分别交平面直角坐标系于A ,B 两点,直线:22CD y x =-+分别交平面直角坐标系于C ,D 两点,两直线交于点(),E a a -;(1)求点E 的坐标和k 的值;(2)如图2,点M 是y 轴上一动点,连接ME ,将AEM △沿ME 翻折,当A 点对应点刚好落在x 轴上时,求ME 所在直线解析式;(3)在直线AB 上是否存在点P ,使得45ECP ∠=︒,若存在,请求出P 点坐标,若不存在请说明理由.参考答案一、选择题(每小题4分,共32分)1.D2.A3.A4.D5.B6.D7.C8.D二、填空题(每小题4分,共16分)9.11 10.()2,3-12.1x > 三、解答题(共52分)13.(12分)(1)==(2)331=+-7=-14.(6分)()214x -= 13x =,21x =-15.(8分)310a b +=3c =原2210311=⨯-=16.(8分)(1) (2)()5,1++5,517.(8分) (1)在Rt BMN △中,90BNM ∠=︒ 22222215012090BN BM MN =-=-= ∴90BN =米∴25090160AN AB BN =-=-= 在Rt ANN △,90ANM ∠=︒∴222222*********AM AN MN =+=+=. ∴200AM =米∴200150350AM BM +=+=米(2)在AMB △中22222200150250AM BM AB +∞=+== ∴90AMB ∠=︒∴B 到AC 的距离为150BM =米18.(10分)解:(1)∵1BD =,2CD =∴2DF =,BF =∴(3,4F ,60FOB ∠=︒(2)∵折叠∴ODE FDE △≌△∴ODE FDE S S =△△过F 作FQ DE ∥交x 轴于Q设:6FQ l y kx =+,则k =(3,4F -得4y =+-令0y =,则4x =∴43Q ⎛⎫- ⎪ ⎪⎝⎭(3)(11,4P ,(23,4P +,3P -,(4P -B 卷(50分)一、填空题(每小题4分,共20分)19.-4 20.21.12m <≤22.2 23.2 二、解答题。
成都七中初二上数学半期考试试题及标准答案
成都七中育才学校初2015级八年级上册数学半期测试 命题人:刘爽 陆恒 审题人:陈英测试时间 120分钟 满分150分A 卷(100分)(温馨提示:请将答案填写在答题卷的答题框内)选择题(每小题3分,共30分)1、下列各组数中,相等的是( )A. 5-与5-B. 2-与38-C. 3-与13- D. 4- 2、以下列各组数据为边长能组成直角三角形的是 ( )A .2、3、5B .4、5、6C .6、8、10D .1、1、13的整数部分是( )A .5 B. 6 C. 7 D. 84、立方根等于它本身的数是( )A .0和1 B. 0和±1 C. 1 D. 05、已知0<a ,那么点(1,)a a -在( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限6、下列说法正确的有( )①无限小数都是无理数; ②正比例函数是特殊的一次函数;a =; ④实数与数轴上的点是一一对应的;A. 3个B. 2个C. 1个D. 0个7、函数4y x =-有意义,则x 的取值范围是( ) A .x ≥0 B .x ≠4 C .x>4 D .x ≥0且x ≠48、下列图象中,不是..函数图象的是( )9、一次函数y=-x+1的图象是( )10、△ABC 中的三边分别是m 2-1,2m ,m 2+1(m>1),那么( )A .△ABC 是直角三角形,且斜边长为m 2+1.B .△ABC 是直角三角形,且斜边长为2m .C .△ABC 是直角三角形,且斜边长为m 2-1.D .△ABC 不是直角三角形。
二.填空题 (每小题3分,共12分)11、4的平方根...是 ,8的立方根...是 ; 12、点A (3,4)到x 轴的距离为 ,到y 轴的距离为 ;13、若5y x b =+-是正比例函数,则b= ;14、已知Rt △ABC 一直角边为8,斜边为10,则S △ABC = ;三.计算题(每小题4分,共16分)15、计算:(1)(2)- 解方程: (3)22(1)8x += (4)33(21)81x -=- 四.解答题(共42分)16、(8分)若, (1) 求x y +的值;(2)求22x xy y -+的值. 17、(8分)△ABC 在方格中的位置如图所示。
四川省成都七中实验学校2013-2014学年八年级数学上学期第一次月考试题 (word含答案)
A
B
D
C
20.(本小题 10 分)一个无盖长方体盒子的长、宽、高分别是 8cm ,8cm,12cm.
(1)一只蚂蚁想从盒底的 A 点沿长方体的表面爬到盒顶的 B 点,有很多种走法。你能帮助小
蚂蚁设计一条最短路线吗?并计算最短路程为多少?
(2)若给长方体盒子加上盖子能放入木棒的最大长度是多少?
B组 一、填空题(每小题 4 分,共 20 分)
A. 2
2
B. 3
3. 下列能构成直角三角形三边长的是( )
C. 4
A. 4、5、6 B. 3、4、5 C. 2、3、4 D. 1、2、3
4. 下列结论正确的是( )
A. (6)2 6
D. 5
B. ( 3)2 9 C. (16)2 16 D.
5. 如果梯子的底端离建筑物 5 米,13 米长的梯子可以达到该建筑物的高度是 ( )
25.
设
S1 =1
2013 1
1 12
设 S S1 S2 ... Sn ,则 S=___
1 22
,
S2 =1
二、解答题(共 30 分)
26.(本小题 10 分)若 a2 3a 1 b2 2b 1 0
1 22
1 32
x2
,
S3 =1
1 32
1 42
,…,
19.(本小题 8 分)实数 a 、 b 在数轴上的位置如图所示,请化简: a a 2 b2 .
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
成都市七中育才学校八年级数学上册第十四章《整式的乘法与因式分解》阶段测试(答案解析)
一、选择题1.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便.原理是:如对于多项式44x y -,因式分解的结果是()()()22x y x y x y-++,若取9x =,9y =,则各个因式的值是:0x y -=,18x y +=,22162x y +=,于是就可以把“018162”作为一个六位数的密码.对于多项式32x xy -,取30x =,20y =,用上述方法产生的密码不可能是( ) A .301050B .103020C .305010D .5010302.已知435x y +-与2(24)x y --互为相反数,则x y 的值为( ) A .2-B .2C .1-D .13.已3,2x y a a ==,那么23x y a +=( ) A .10B .15C .72D .与x ,y 有关4.下列有四个结论,其中正确的是( ) ①若1(1)1x x +-=,则x 只能是2;②若()2(1)1x x ax -++的运算结果中不含2x 项,则1a = ③若10,16a b ab +==,则6a b -= ④若4,8x y a b ==,则232x y -可表示为a bA .①②③④B .②③④C .①③④D .②④5.设, a b 是实数,定义一种新运算:()2*a b a b =-.下面有四个推断: ①**a b b a =; ②()222**a b a b =; ③()()**a b a b -=-; ④()**a b c a b a c +=+*. 其中所有正确推断的序号是( ) A .①②③④B .①③④C .①②D .①③6.下列计算一定正确的是( ) A .235a b ab += B .()235610a ba b -=C .623a a a ÷=D .()222a b a b +=+7.计算2019202040.753⎛⎫⨯- ⎪⎝⎭的结果是( )A .43B .43-C .0.75D .-0.758.记A n =(1﹣212)(1﹣213)(1﹣214)…(1﹣21n ),其中正整数n ≥2,下列说法正确的是( ) A .A 5<A 6 B .A 52>A 4A 6C .对任意正整数n ,恒有A n <34D .存在正整数m ,使得当n >m 时,A n <100820159.如果单项式223a b a b m n -+-与38b m n 是同类项,那么这两个单项式的积是( ) A .6163m n -B .6323m n -C .383m n -D .6169m n -10.如图所示,在这个数据运算程序中,如果开始输入的x 的值为10,那么第1次输出的结果是5,返回进行第二次运算,那么第2次输出的结果是16,……以此类推,第204次输出的结果是( )A .1B .2C .4D .511.下列运算正确的是( ) A .3515x x x ⋅= B .()3412x x -=C .()32628y y =D .623x x x ÷=12.下列计算正确的是( ) A .(ab 3)2=a 2b 6 B .a 2·a 3=a 6 C .(a +b )(a -b )=a 2-2b 2 D .5a -2a =3 13.下列计算正确的是( )A .a 3+a 3=a 6B .a 3·a=a 4C .a 3÷a 2=a 3D .(2a 2)3 =6a 514.若y 2+4y 1x y +-0,则xy 的值为( ) A .﹣6 B .﹣2 C .2 D .6 15.已知代数式2a -b =7,则-4a +2b +10的值是( )A .7B .4C .-4D .-7二、填空题16.因式分解()()26x mx x p x q +-=++,其中m 、p 、q 都为整数,则m 的最大值是______.17.若x 、y 为有理数,且22(2)0x y ++-=,则2021()xy的值为____.18.若2,3x y a a ==,则22x y a +=_______________________. 19.若294x kx ++是一个完全平方式,则k 的值为_____. 20.若2a x =,3b x =,则32a b x -=___________.21.一个三角形的面积为3xy -4y ,一边长是2y ,则这条边上的高为_____. 22.计算:()()299990.045⎡⎤⨯-⎣⎦的结果是______.23.已知香蕉,苹果,梨的价格分别为a ,b ,c (单位:元/千克)、用20元正好可以买三种水果各1千克:买1千克香蕉,2千克苹果,3千克梨正好花去42元,若买b 千克香需w 元,则w =___________.(结果用含c 的代数式表示) 24.分解因式3225a ab -=____. 25.因式分解:(x +3)2-9=________.26.设(2a+3b )2=(2a ﹣3b )2+A ,则A =__________三、解答题27.(1)23235ab a b ab (2)23233x xxx28.给出下列算式:2231842-==⨯;22531644-==⨯;22752446-==⨯; 22973248-==⨯.······()1观察上面一系列式子,你能发现什么规律?()2用含(n n 为正整数)的式子表示出来你发现的规律,并证明这个规律﹔ ()3计算2220212019-=_ _,此时n =_ .29.某园林公司现有A 、B 两个区,已知A 园区为长方形,长为()x y +米,宽为()x y -米;B 园区为正方形,边长为(3)x y +米.(1)请用代数式表示A 、B 两园区的面积之和并化简;(2)现根据实际需要对A 园区进行整改,长增加(11)x y -米,宽减少(2)x y -米,整改后A 区的长比宽多350米,且整改后两园区的周长之和为980米. ①求x ,y 的值;②若A 园区全部种植C 种花,B 园区全部种植D 种花,且C 、D 两种花投入的费用与收益如表:投入(元/平方米)1216收益(元/平方米)2226比较整改后A、B两园区的净收益的大小关系.(净收益=收益-投入)30.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式.例如由图①可以得到两数和的平方公式:(a+b)2=a2+2ab+b2.请解答下列问题:(1)写出由图②可以得到的数学等式;(2)利用(1)中得到的结论,解决下面问题:若a+b+c=6,a2+b2+c2=14,求ab+bc+ac 的值;(3)可爱同学用图③中x个边长为a的正方形,y个宽为a,长为b的长方形,z个边长为b的正方形,拼出一个面积为(2a+b)(a+4b)的长方形,则x+y+z=.。
成都七中育才中学八年级(上)第7周周练数学试卷
成都七中育才中学八年级(上)第7周周练数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2013秋•崇州市校级期中)下列几种说法:(1)无理数都是无限小数;(2)带根号的数是无理数;(3)实数分为正实数和负实数;(4)无理数包括正无理数、零和负无理数.其中正确的有()A.(1)(2)(3)(4) B.(2)(3) C.(1)(4) D.只有(1)2.(3分)下列各式中,正确的是()A.=±5 B.=C.=4D.3.(3分)若是方程x﹣ky=0的解,则k的值为()A.B.﹣C.﹣D.4.(3分)若最简二次根式与是同类二次根式,则a的取值为()A.a=4 B.a=5 C.a=6 D.a=75.(3分)(2015•嘉兴)一元一次不等式2(x+1)≥4的解在数轴上表示为()A.B.C.D.6.(3分)设a为实数且0<a<1,则在a2,a,,这四个数中()A. B. C. D.7.(3分)(2015•乐山)下列说法不一定成立的是()A.若a>b,则a+c>b+c B.若a+c>b+c,则a>bC.若a>b,则ac2>bc2D.若ac2>bc2,则a>b8.(3分)要使有意义,则x的取值范围是()A.x>4 B.x≠5 C.x≥4或x≠5 D.x≠59.(3分)已知关于a,b的方程组,则a+b的值为()A.﹣4 B.4 C.﹣2 D.210.(3分)若+|2a﹣b+1|=0,则(b﹣a)2005的值为()A.﹣1 B.1 C.52005 D.﹣52005二、填空题(每小题3分,共15分)11.(3分)的平方根是,(﹣6)2的算术平方根是.12.(3分)将,,从小到大排列.13.(3分)关于x,y的二元一次方程组的解满足x=y,则k=.14.(3分)(2)2003•()2004=.15.(3分)若是方程2x+y=10的一个解,则2﹣6a﹣3b的值为.三、解答题16.(16分)计算:(1)(﹣3)0﹣+|1﹣|+;(2);(3);(4)(﹣2+)(﹣2﹣)﹣(﹣)2.17.(8分)解不等式,并在数轴上表示出解集(请铅笔直尺规范作图).(1)﹣x+1>7x﹣3;(2).18.(20分)解二元一次方程组(1)(用代入消元法);(2)(用加减消元法);(3);(4).19.(5分)已知3x+m=7,其中x≥0,求m的取值范围.20.(6分)关于x,y的方程组与有相同的解,求a,b的值.四、附加题21.(2014春•庐江县校级期中)x,y为实数,且,化简:=.22.已知x+=,则x﹣的值为.23.已知a,b,c是满足,且abc≠0,则a:b:c=.24.已知a=﹣,求代数式a3+5a2﹣4a﹣6的值.五、附加题25.(2013•武汉模拟)已知△ABC中,AB=AC.(1)如图1,在△ADE中,若AD=AE,且∠DAE=∠BAC,求证:CD=BE;(2)如图2,在△ADE中,若∠DAE=∠BAC=60°,且CD垂直平分AE,AD=3,CD=4,求BD的长;(3)如图3,在△ADE中,当BD垂直平分AE于H,且∠BAC=2∠ADB时,试探究CD2,BD2,AH2之间的数量关系,并证明.考点卡片1.非负数的性质:绝对值任意一个数的绝对值都是非负数,当几个数或式的绝对值相加和为0时,则其中的每一项都必须等于0.根据上述的性质可列出方程求出未知数的值.2.平方根(1)定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“a”,负的平方根表示为“﹣a”.正数a的正的平方根,叫做a的算术平方根,记作a.零的算术平方根仍旧是零.平方根和立方根的性质1.平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2.立方根的性质:一个数的立方根只有一个,正数的立方根是正数,负数的立方根是负数,0的立方根是0.3.算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为a.(2)非负数a的算术平方根a 有双重非负性:①被开方数a是非负数;②算术平方根a 本身是非负数.(3)求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.4.非负数的性质:算术平方根(1)非负数的性质:算术平方根具有非负性.(2)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0利用此性质列方程解决求值问题.5.无理数(1)、定义:无限不循环小数叫做无理数.说明:无理数是实数中不能精确地表示为两个整数之比的数,即无限不循环小数.如圆周率、2的平方根等.(2)、无理数与有理数的区别:①把有理数和无理数都写成小数形式时,有理数能写成有限小数和无限循环小数,比如4=4.0,13=0.33333…而无理数只能写成无限不循环小数,比如2=1.414213562.②所有的有理数都可以写成两个整数之比;而无理数不能.(3)学习要求:会判断无理数,了解它的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,如分数π2是无理数,因为π是无理数.无理数常见的三种类型(1)开不尽的方根,如等.(2)特定结构的无限不循环小数,如0.303 003 000 300 003…(两个3之间依次多一个0).(3)含有π的绝大部分数,如2π.注意:判断一个数是否为无理数,不能只看形式,要看化简结果.如是有理数,而不是无理数.6.实数(1)实数的定义:有理数和无理数统称实数.(2)实数的分类:实数{有理数{正有理数0负有理数无理数{正无理数负无理数或实数{正实数0负实数.7.实数大小比较实数大小比较(1)任意两个实数都可以比较大小.正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小.(2)利用数轴也可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.8.完全平方公式(1)完全平方公式:(a±b)2=a2±2ab+b2.可巧记为:“首平方,末平方,首末两倍中间放”.(2)完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.(3)应用完全平方公式时,要注意:①公式中的a,b可是单项式,也可以是多项式;②对形如两数和(或差)的平方的计算,都可以用这个公式;③对于三项的可以把其中的两项看做一项后,也可以用完全平方公式.9.分式有意义的条件(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.(3)分式的值为正数的条件是分子、分母同号.(4)分式的值为负数的条件是分子、分母异号.10.零指数幂零指数幂:a0=1(a≠0)由a m÷a m=1,a m÷a m=a m﹣m=a0可推出a0=1(a≠0)注意:00≠1.11.二次根式有意义的条件判断二次根式有意义的条件:(1)二次根式的概念.形如a(a≥0)的式子叫做二次根式.(2)二次根式中被开方数的取值范围.二次根式中的被开方数是非负数.(3)二次根式具有非负性.a(a≥0)是一个非负数.学习要求:能根据二次根式中的被开方数是非负数来确定二次根式被开方数中字母的取值范围,并能利用二次根式的非负性解决相关问题.【规律方法】二次根式有无意义的条件1.如果一个式子中含有多个二次根式,那么它们有意义的条件是:各个二次根式中的被开方数都必须是非负数.2.如果所给式子中含有分母,则除了保证被开方数为非负数外,还必须保证分母不为零.12.二次根式的性质与化简(1)二次根式的基本性质:①a≥0;a≥0(双重非负性).②(a)2=a (a≥0)(任何一个非负数都可以写成一个数的平方的形式).③a2=a(a≥0)(算术平方根的意义)(2)二次根式的化简:①利用二次根式的基本性质进行化简;②利用积的算术平方根的性质和商的算术平方根的性质进行化简.ab=a•b ab=ab(3)化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.【规律方法】二次根式的化简求值的常见题型及方法1.常见题型:与分式的化简求值相结合.2.解题方法:(1)化简分式:按照分式的运算法则,将所给的分式进行化简.(2)代入求值:将含有二次根式的值代入,求出结果.(3)检验结果:所得结果为最简二次根式或整式.13.同类二次根式同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.合并同类二次根式的方法:只合并根式外的因式,即系数相加减,被开方数和根指数不变.【知识拓展】同类二次根式把几个二次根式化为最简二次根式以后,如果被开方数相同,那么这几个二次根式叫做同类二次根式.(1)同类二次根式类似于整式中的同类项.(2)几个同类二次根式在没有化简之前,被开方数完全可以互不相同.(3)判断两个二次根式是否是同类二次根式,首先要把它们化为最简二次根式,然后再看被开方数是否相同.14.二次根式的混合运算(1)二次根式的混合运算是二次根式乘法、除法及加减法运算法则的综合运用.学习二次根式的混合运算应注意以下几点:①与有理数的混合运算一致,运算顺序先乘方再乘除,最后加减,有括号的先算括号里面的.②在运算中每个根式可以看做是一个“单项式“,多个不同类的二次根式的和可以看作“多项式“.(2)二次根式的运算结果要化为最简二次根式.(3)在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.二次根式的化简求值二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.16.二元一次方程的解(1)定义:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.(2)在二元一次方程中,任意给出一个未知数的值,总能求出另一个未知数的一个唯一确定的值,所以二元一次方程有无数解.(3)在求一个二元一次方程的整数解时,往往采用“给一个,求一个”的方法,即先给出其中一个未知数(一般是系数绝对值较大的)的值,再依次求出另一个的对应值.17.二元一次方程组的解(1)定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.(2)一般情况下二元一次方程组的解是唯一的.数学概念是数学的基础与出发点,当遇到有关二元一次方程组的解的问题时,要回到定义中去,通常采用代入法,即将解代入原方程组,这种方法主要用在求方程中的字母系数.18.解二元一次方程组(1)用代入法解二元一次方程组的一般步骤:①从方程组中选一个系数比较简单的方程,将这个方程组中的一个未知数用含另一个未知数的代数式表示出来.②将变形后的关系式代入另一个方程,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求出x(或y)的值.④将求得的未知数的值代入变形后的关系式中,求出另一个未知数的值.⑤把求得的x、y的值用“{”联立起来,就是方程组的解.(2)用加减法解二元一次方程组的一般步骤:①方程组的两个方程中,如果同一个未知数的系数既不相等又不互为相反数,就用适当的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,得到一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一起,就得到原方程组的解,用{x=ax=b的形式表示.19.解三元一次方程组(1)三元一次方程组的定义:方程组含有三个未知数,每个方程中含未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫做三元一次方程组.(2)解三元一次方程组的一般步骤:①首先利用代入法或加减法,把方程组中一个方程与另两个方程分别组成两组,消去两组中的同一个未知数,得到关于另外两个未知数的二元一次方程组.②然后解这个二元一次方程组,求出这两个未知数的值.③再把求得的两个未知数的值代入原方程组中的一个系数比较简单的方程,得到一个关于第三个未知数的一元一次方程.④解这个一元一次方程,求出第三个未知数的值.⑤最后将求得的三个未知数的值用“{”合写在一起即可.20.不等式的性质(1)不等式的基本性质①不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变,即:若a>b,那么a±m>b±m;②不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,即:若a>b,且m>0,那么am>bm或am>bm;③不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变,即:若a>b,且m<0,那么am<bm或am<bm;(2)不等式的变形:①两边都加、减同一个数,具体体现为“移项”,此时不等号方向不变,但移项要变号;②两边都乘、除同一个数,要注意只有乘、除负数时,不等号方向才改变.【规律方法】1.应用不等式的性质应注意的问题:在不等式的两边都乘以(或除以)同一个负数时,一定要改变不等号的方向;当不等式的两边要乘以(或除以)含有字母的数时,一定要对字母是否大于0进行分类讨论.2.不等式的传递性:若a>b,b>c,则a>c.21.在数轴上表示不等式的解集用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.【规律方法】不等式解集的验证方法某不等式求得的解集为x>a,其验证方法可以先将a代入原不等式,则两边相等,其次在x>a的范围内取一个数代入原不等式,则原不等式成立.22.解一元一次不等式根据不等式的性质解一元一次不等式基本操作方法与解一元一次方程基本相同,都有如下步骤:①去分母;②去括号;③移项;④合并同类项;⑤化系数为1.以上步骤中,只有①去分母和⑤化系数为1可能用到性质3,即可能变不等号方向,其他都不会改变不等号方向.注意:符号“≥”和“≤”分别比“>”和“<”各多了一层相等的含义,它们是不等号与等号合写形式.23.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.24.线段垂直平分线的性质(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.25.等边三角形的判定与性质(1)等边三角形是一个非常特殊的几何图形,它的角的特殊性给有关角的计算奠定了基础,它的边角性质为证明线段、角相等提供了便利条件.同是等边三角形又是特殊的等腰三角形,同样具备三线合一的性质,解题时要善于挖掘图形中的隐含条件广泛应用.(2)等边三角形的特性如:三边相等、有三条对称轴、一边上的高可以把等边三角形分成含有30°角的直角三角形、连接三边中点可以把等边三角形分成四个全等的小等边三角形等.(3)等边三角形判定最复杂,在应用时要抓住已知条件的特点,选取恰当的判定方法,一般地,若从一般三角形出发可以通过三条边相等判定、通过三个角相等判定;若从等腰三角形出发,则想法获取一个60°的角判定.26.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=c2﹣b2,b=c2﹣a2及c=a2+b2.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.。
成都市七中育才学校八年级上册压轴题数学模拟试卷含详细答案
成都市七中育才学校八年级上册压轴题数学模拟试卷含详细答案一、压轴题1.如图(1),AB =4cm ,AC ⊥AB ,BD ⊥AB ,AC =BD =3cm .点 P 在线段 AB 上以 1/cm s 的速度由点 A 向点 B 运动,同时,点 Q 在线段 BD 上由点 B 向点 D 运动.它们运动的时间为 t (s ).(1)若点 Q 的运动速度与点 P 的运动速度相等,当t =1 时,△ACP 与△BPQ 是否全等,请说明理由, 并判断此时线段 PC 和线段 PQ 的位置关系;(2)如图(2),将图(1)中的“AC ⊥AB ,BD ⊥AB”为改“∠CAB =∠DBA =60°”,其他条件不变.设点 Q 的运动速度为x /cm s ,是否存在实数x ,使得△ACP 与△BPQ 全等?若存在,求出相应的x 、t 的值;若不存在,请说明理由.2.如图,Rt ACB △中,90ACB ∠=︒,AC BC =,E 点为射线CB 上一动点,连结AE ,作AF AE ⊥且AF AE =.(1)如图1,过F 点作FD AC ⊥交AC 于D 点,求证:FD BC =;(2)如图2,连结BF 交AC 于G 点,若3AG =,1CG =,求证:E 点为BC 中点. (3)当E 点在射线CB 上,连结BF 与直线AC 交于G 点,若4BC =,3BE =,则AG CG=______.(直接写出结果) 3.某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究.(1)如图1,在△ABC 中,∠ABC 与∠ACB 的平分线交于点P ,∠A =64°,则∠BPC = ;(2)如图2,△ABC 的内角∠ACB 的平分线与△ABC 的外角∠ABD 的平分线交于点E .其中∠A =α,求∠BEC .(用α表示∠BEC );(3)如图3,∠CBM 、∠BCN 为△ABC 的外角,∠CBM 、∠BCN 的平分线交于点Q ,请你写出∠BQC 与∠A 的数量关系,并证明.4.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.5.如图1,在等边△ABC 中,E 、D 两点分别在边AB 、BC 上,BE =CD ,AD 、CE 相交于点F .(1)求∠AFE 的度数;(2)过点A 作AH ⊥CE 于H ,求证:2FH +FD =CE ;(3)如图2,延长CE 至点P ,连接BP ,∠BPC =30°,且CF =29CP ,求PF AF的值. (提示:可以过点A 作∠KAF =60°,AK 交PC 于点K ,连接KB )6.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向AB 左侧作等边△ABE ,直线CE 与直线AD 交于点F .请探究线段EF 、AF 、DF 之间的数量关系,并证明. 同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC 的度数可以求出来.”小强:“通过观察和度量,发现线段DF 和CF 之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB 为边向AB 右侧作等边△ABE ,其它条件均不改变,请在图2中补全图形,探究线段EF 、AF 、DF 三者的数量关系,并证明你的结论.”(1)求∠DFC 的度数;(2)在图1中探究线段EF 、AF 、DF 之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF 、AF 、DF 之间的数量关系,并证明.7.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上,那么EMF ∠的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线上,那么EMF ∠的度数是_______.(2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM ,FM 为折痕,折叠后的C 点落在1B M 或1B M 的延长线上左侧,且80EMF ∠=︒,求11C MB ∠的度数; ②把一张长方形的纸片按如图④所示的方式折叠,B 点与M 点重合,EM ,FM 为折痕,折叠后的C 点落在1A M 或1A M 的延长线右侧,且60EMF ∠=︒,求11C MA ∠的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB ,FB 为折痕,设ABC α∠=︒,EBF β∠=︒,11A BC γ∠=︒,求α,β,γ之间的数量关系.8.已知ABC 和ADE 都是等腰三角形,AB AC =,AD AE =,DAE BAC ∠=∠. (初步感知)(1)特殊情形:如图①,若点D ,E 分别在边AB ,AC 上,则DB __________EC .(填>、<或=)(2)发现证明:如图②,将图①中的ADE 绕点A 旋转,当点D 在ABC 外部,点E 在ABC 内部时,求证:DB EC =.(深入研究)(3)如图③,ABC 和ADE 都是等边三角形,点C ,E ,D 在同一条直线上,则CDB ∠的度数为__________;线段CE ,BD 之间的数量关系为__________.(4)如图④,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,点C 、D 、E 在同一直线上,AM 为ADE 中DE 边上的高,则CDB ∠的度数为__________;线段AM ,BD ,CD 之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC 和ADE 都是等腰直角三角形,90BAC DAE ∠=∠=︒,将ADE 绕点A 逆时针旋转,连结BE 、CD .当5AB =,2AD =时,在旋转过程中,ABE △与ADC 的面积和的最大值为__________.9.在△ABC 中,∠BAC =45°,CD ⊥AB ,垂足为点D ,M 为线段DB 上一动点(不包括端点),点N 在直线AC 左上方且∠NCM =135°,CN =CM ,如图①.(1)求证:∠ACN =∠AMC ;(2)记△ANC 得面积为5,记△ABC 得面积为5.求证:12S AC S AB=; (3)延长线段AB 到点P ,使BP =BM ,如图②.探究线段AC 与线段DB 满足什么数量关系时对于满足条件的任意点M ,AN =CP 始终成立?(写出探究过程)10.请按照研究问题的步骤依次完成任务.(问题背景)(1)如图1的图形我们把它称为“8字形”, 请说理证明∠A+∠B=∠C+∠D .(简单应用)(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=20°,∠ADC=26°,求∠P的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,若∠ABC=36°,∠ADC=16°,猜想∠P的度数为;(拓展延伸)(4)在图4中,若设∠C=x,∠B=y,∠CAP=13∠CAB,∠CDP=13∠CDB,试问∠P与∠C、∠B之间的数量关系为(用x、y表示∠P);(5)在图5中,AP平分∠BAD,CP平分∠BCD的外角∠BCE,猜想∠P与∠B、D的关系,直接写出结论.11.(1)探索发现:如图1,已知Rt△ABC中,∠ACB=90°,AC=BC,直线l过点C,过点A作AD⊥l,过点B作BE⊥l,垂足分别为D、E.求证:AD=CE,CD=BE.(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y=﹣3x+3与y轴交于点P,与x轴交于点Q,将直线PQ绕P点沿逆时针方向旋转45°后,所得的直线交x轴于点R.求点R的坐标.12.在等边△ABC的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1米的速度由A向B和由C向A爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D、E处,请问:(1)如图1,在爬行过程中,CD和BE始终相等吗,请证明?(2)如果将原题中的“由A向B和由C向A爬行”,改为“沿着AB和CA的延长线爬行”,EB与CD交于点Q,其他条件不变,蜗牛爬行过程中∠CQE的大小保持不变,请利用图2说明:∠CQE=60°;(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,如图3,则爬行过程中,证明:DF=EF13.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?14.(1)问题发现:如图1,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.①请直接写出∠AEB的度数为_____;②试猜想线段AD与线段BE有怎样的数量关系,并证明;(2)拓展探究:图2,△ACB和△DCE均为等腰三角形,∠ACB=∠DCE=90°,点A、D、E 在同-直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数线段CM、AE、BE之间的数量关系,并说明理由.15.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,∠DCE=,BC、DC、CE之间的数量关系为;(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).16.在初中数学学习阶段,我们常常会利用一些变形技巧来简化式子,解答问题.材料一:在解决某些分式问题时,倒数法是常用的变形技巧之一,所谓倒数法,即把式子变成其倒数形式,从而运用约分化简,以达到计算目的.例:已知:21 14 xx=+,求代数式x2+21x的值.解:∵21 14 xx=+,∴21xx+=4即21xx x+=4∴x+1x=4∴x2+21x=(x+1x)2﹣2=16﹣2=14材料二:在解决某些连等式问题时,通常可以引入参数“k”,将连等式变成几个值为k的等式,这样就可以通过适当变形解决问题.例:若2x=3y=4z,且xyz≠0,求xy z+的值.解:令2x=3y=4z=k(k≠0)则11k k k k x 622,,,117234y z 7k k 3412x y z ===∴===++ 根据材料回答问题:(1)已知2114x x x =-+,求x +1x的值. (2)已知523a b c ==,(abc ≠0),求342b c a+的值. (3)若222222yz zx xy x y z bz cy cx az ay bx a b c++===+++++,x ≠0,y ≠0,z ≠0,且abc =7,求xyz 的值.17.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD 中,∠BAD=∠BCD=90°,AB=AD ,若AC=2cm ,求四边形ABCD 的面积.解:延长线段CB 到E ,使得BE=CD ,连接AE ,我们可以证明△BAE ≌△DAC ,根据全等三角形的性质得AE=AC=2, ∠EAB=∠CAD ,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S 四边形ABCD =S △ABC +S △ADC =S △ABC +S △ABE =S △AEC ,这样,四边形ABCD 的面积就转化为等腰直角三角形EAC 面积.(1)根据上面的思路,我们可以求得四边形ABCD 的面积为 cm 2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm ,∠G=∠N=90°,求五边形FGHMN 的面积.18.完全平方公式:()2222a b a ab b ±=±+适当的变形,可以解决很多的数学问题.例如:若3,1a b ab ,求22a b +的值. 解:因为3,1a b ab 所以()29,22a b ab +==所以2229,22a b ab ab ++==得227a b +=.根据上面的解题思路与方法,解决下列问题:(1)若228,40x y x y +=+=,求xy 的值;(2)①若()45x x -=,则()224x x -+= ; ②若()()458x x --=则()22()45x x -+-= ; (3)如图,点C 是线段AB 上的一点,以AC BC 、为边向两边作正方形,设6AB =,两正方形的面积和1218S S +=,求图中阴影部分面积.19.如图1,直角三角形DEF 与直角三角形ABC 的斜边在同一直线上,∠EDF =30°,∠ABC =40°,CD 平分∠ACB ,将△DEF 绕点D 按逆时针方向旋转,记∠ADF 为α(0°<α<180°),在旋转过程中;(1)如图2,当∠α= 时,//DE BC ,当∠α= 时,DE ⊥BC ;(2)如图3,当顶点C 在△DEF 内部时,边DF 、DE 分别交BC 、AC 的延长线于点M 、N , ①此时∠α的度数范围是 ;②∠1与∠2度数的和是否变化?若不变求出∠1与∠2度数和;若变化,请说明理由; ③若使得∠2≥2∠1,求∠α的度数范围.20.学习了三角形全等的判定方法(即“SAS ”、“ASA ”、“AAS ”、“SSS ”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)全等,垂直,理由详见解析;(2)存在,11tx=⎧⎨=⎩或232tx=⎧⎪⎨=⎪⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP和△BPQ全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC 和线段 PQ 的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP 和△BPQ 中,{AP BQA B AC BP=∠=∠=∴△ACP ≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC 与线段PQ 垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,34t t xt =-⎧⎨=⎩解得11t x =⎧⎨=⎩; ②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,34xt t t =⎧⎨=-⎩解得:232t x =⎧⎪⎨=⎪⎩ 综上所述,存在11t x =⎧⎨=⎩或232t x =⎧⎪⎨=⎪⎩使得△ACP 与△BPQ 全等. 【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.2.(1)见解析;(2)见解析;(3)113或53【解析】【分析】(1)证明△AFD ≌△EAC ,根据全等三角形的性质得到DF=AC ,等量代换证明结论; (2)作FD ⊥AC 于D ,证明△FDG ≌△BCG ,得到DG=CG ,求出CE ,CB 的长,得到答案;(3)过F 作FD ⊥AG 的延长线交于点D ,根据全等三角形的性质得到CG=GD ,AD=CE=7,代入计算即可.【详解】解:(1)证明:∵FD ⊥AC ,∴∠FDA=90°,∴∠DFA+∠DAF=90°,同理,∠CAE+∠DAF=90°,∴∠DFA=∠CAE ,在△AFD 和△EAC 中,AFD EAC ADF ECA AF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFD ≌△EAC (AAS ),∴DF=AC ,∵AC=BC ,∴FD=BC ;(2)作FD ⊥AC 于D ,由(1)得,FD=AC=BC ,AD=CE ,在△FDG 和△BCG 中,90FDG BCG FGD BGCFD BC ︒⎧∠=∠=⎪∠=∠⎨⎪=⎩, ∴△FDG ≌△BCG (AAS ),∴DG=CG=1,∴AD=2,∴CE=2,∵BC=AC=AG+CG=4,∴E 点为BC 中点;(3)当点E 在CB 的延长线上时,过F 作FD ⊥AG 的延长线交于点D ,BC=AC=4,CE=CB+BE=7,由(1)(2)知:△ADF ≌△ECA ,△GDF ≌△GCB ,∴CG=GD ,AD=CE=7,∴CG=DG=1.5, ∴4 1.5111.53AG CG +==,同理,当点E 在线段BC 上时,4 1.551.53AG CG -==, 故答案为:113或53.【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键. 3.(1)∠BPC =122°;(2)∠BEC =2a ;(3)∠BQC =90°﹣12∠A ,证明见解析 【解析】【分析】(1)根据三角形的内角和化为角平分线的定义;(2)根据三角形的一个外角等于与它不相邻的两个内角的和,用∠A 与∠1表示出∠2,再利用∠E 与∠1表示出∠2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出∠EBC 与∠ECB ,然后再根据三角形的内角和定理列式整理即可得解.【详解】解:(1)BP 、CP 分别平分ABC ∠和ACB ∠,12PBC ABC ∴∠=∠,12PCB ACB ∠=∠, 180()BPC PBC PCB ∴∠=︒-∠+∠11180()22ABC ACB =︒-∠+∠, 1180()2ABC ACB =︒-∠+∠, 1(180180)2A =︒-︒-∠, 1180902A =-︒+︒∠, 9032122=︒+=︒,故答案为:122︒;(2)CE 和BE 分别是ACB ∠和ABD ∠的角平分线, 112ACB ∴∠=∠,122ABD ∠=∠, 又ABD ∠是ABC ∆的一外角,ABD A ACB ∴∠=∠+∠,112()122A ABC A ∴∠=∠+∠=∠+∠, 2∠是BEC ∆的一外角,112111222BEC A A α∴∠=∠-∠=∠+∠-∠=∠=; (3)1()2QBC A ACB ∠=∠+∠,1()2QCB A ABC ∠=∠+∠, 180BQC QBC QCB ∠=︒-∠-∠,11180()()22A ACB A ABC =︒-∠+∠-∠+∠, 11180()22A A ABC ACB =︒-∠-∠+∠+∠, 结论:1902BQC A ∠=︒-∠.【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键.4.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E 作EF ∥AC 交AB 于F ,根据已知条件得到△ABC 是等边三角形,推出△BEF 是等边三角形,得到BE=EF ,∠BFE=60°,根据全等三角形的性质即可得到结论; (3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=12CF=3. 【详解】解:(1)∵AB=AC ,∴∠ABC=∠ACB ,∵DE=DC ,∴∠E=∠DCE ,∴∠ABC-∠E=∠ACB-∠DCB ,即∠EDB=∠ACD ;(2)∵△ABC 是等边三角形,∴∠B=60°,∴△BEF 是等边三角形,∴BE=EF ,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD ,在△DEF 与△CAD 中,EDF DCA DFE CAD DE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△CAD (AAS ),∴EF=AD ,∴AD=BE ;(3)连接AF ,如图3所示:∵DE=DC ,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF 平分∠ABC ,∴∠ABF=∠CBF ,在△ABF 和△CBF 中,AB BC ABF CBF BF BF =⎧⎪∠=∠⎨⎪=⎩, △ABF ≌△CBF (SAS ),∴AF=CF ,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH ⊥CD ,∴AH=12AF=12CF=3, ∵∠DEC=∠ABC+∠BDE ,∴∠BDE=75°-60°=15°, ∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.5.(1)∠AFE =60°;(2)见解析;(3)75【解析】【分析】(1)通过证明 BCE CAD ≌ 得到对应角相等,等量代换推导出60AFE ∠=︒; (2)由(1)得到60AFE ∠=︒,CE AD = 则在Rt AHF △ 中利用30°所对的直角边等于斜边的一半,等量代换可得;(3)通过在PF 上取一点K 使得KF =AF ,作辅助线证明ABK 和ACF 全等,利用对应边相等,等量代换得到比值.(通过将ACF 顺时针旋转60°也是一种思路.)【详解】(1)解:如图1中.∵ABC 为等边三角形,∴AC =BC ,∠BAC =∠ABC =∠ACB =60°,在BCE 和CAD 中,60BE CD CBE ACD BC CA =⎧⎪∠=∠=︒⎨⎪=⎩, ∴ BCE CAD ≌(SAS ),∴∠BCE =∠DAC ,∵∠BCE +∠ACE =60°,∴∠DAC +∠ACE =60°,∴∠AFE =60°.(2)证明:如图1中,∵AH ⊥EC ,∴∠AHF =90°,在Rt △AFH 中,∵∠AFH =60°,∴∠FAH =30°,∴AF =2FH ,∵ EBC DCA ≌,∴EC =AD ,∵AD =AF +DF =2FH +DF ,∴2FH +DF =EC .(3)解:在PF 上取一点K 使得KF =AF ,连接AK 、BK ,∵∠AFK =60°,AF =KF ,∴△AFK 为等边三角形,∴∠KAF =60°,∴∠KAB =∠FAC ,在ABK 和ACF 中,AB AC KAB ACF AK AF =⎧⎪∠=∠⎨⎪=⎩, ∴ ABK ACF ≌(SAS ),BK CF =∴∠AKB =∠AFC =120°,∴∠BKE =120°﹣60°=60°,∵∠BPC =30°,∴∠PBK =30°,∴29BK CF PK CP===,∴79PF CP CF CP=-=,∵45()99 AF KF CP CF PK CP CP CP ==-+=-=∴779559CPPFAF CP== .【点睛】掌握等边三角形、直角三角形的性质,及三角形全等的判定通过一定等量代换为本题的关键.6.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE,∴△ABG≌△EBF(SAS),∴BG=BF,又AF垂直平分BC,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.7.90︒,45︒;20︒,30︒;2a γβ+=,2a γβ-=.【解析】【分析】(1)①如图①知1112EMC BMC ∠=∠,1112C MF C MC ∠=∠得 ()1112EMF BMC C MC ∠=∠+∠可求出解. ②由图②知111111,22EBA ABC C BF C BC ∠=∠∠=∠得()1112EBF ABC C BC ∠=∠+∠可求出解.(2)①由图③折叠知11,CMF FMC BME EMB ∠=∠∠=∠,可推出11()BMC EMF EMF C MB ∠-∠-∠=∠,即可求出解.②由图④中折叠知11,CMF C MF ABE A BE ∠=∠∠=∠,可推出()112906090A MC ︒︒︒-+∠=,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a ββγ-=-、a ββγ-=+,即可求得 2a γβ+=、2a γβ-=.【详解】解:(1)①如图①中,1112EMC BMC ∠=∠,1112C MF C MC ∠=∠, ()1111111800229EMF EMC C MF BMC C MC ︒︒∴∠=∠+∠=∠⨯=+∠=, 故答案为90︒. ②如图②中,111111,22EBA ABC C BF C BC ∠=∠∠=∠, ()111111904522EBF EBC C BF ABC C BC ︒︒∴∠=∠+∠=∠+∠=⨯=, 故答案为45︒.(2)①如图③中由折叠可知,11,CMF FMC BME EMB ∠=∠∠=∠,1111C MF EMB EMF C MB ∠+∠-∠=∠,11CMF BME EMF C MB ∴∠+∠-∠=∠,11()BMC EMF EMF C MB ∴∠-∠-∠=∠,111808020C MB ︒︒︒∴-=∠=;②如图④中根据折叠可知,11,CMF C MF ABE A BE ∠=∠∠=∠,112290CMF ABE AMC ︒∠+∠+∠=,112()90CMF ABE AMC ︒∴∠+∠+∠=,()1129090EMF A MC ︒︒∴-∠+∠=, ()112906090A MC ︒︒︒∴-+∠=, 1130AMC ︒∴∠=;(3)如图⑤-1中,由折叠可知,a ββγ-=-,2a γβ∴+=;如图⑤-2中,由折叠可知,a ββγ-=+,2a γβ∴-=.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.8.(1)=;(2)证明见解析;(3)60°,BD=CE ;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC AB AC=,结合AB=AC ,得到DB=EC ; (2)由旋转得到的结论判断出△DAB ≌△EAC ,得到DB=CE ;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB ≌△EAC ,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE 的面积始终保持不变,而在旋转的过程中,△ADC 的AC 始终保持不变,即可.【详解】[初步感知](1)∵DE ∥BC , ∴DB EC AB AC=, ∵AB=AC ,∴DB=EC ,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),∴DB=CE ;[深入探究](3)如图③,设AB ,CD 交于O ,∵△ABC 和△ADE 都是等边三角形,∴AD=AE ,AB=AC ,∠DAE=∠BAC=60°,∴∠DAB=∠EAC ,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===, ∴△DAB ≌△EAC (SAS ),∴DB=CE ,∠ABD=∠ACE ,∵∠BOD=∠AOC ,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中AD AE DAB EAC AB AC ⎪∠⎪⎩∠⎧⎨===,∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+12×AC×AD=5+2=7, 故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.9.(1)证明见解析;(2)证明见解析;(3)当AC =2BD 时,对于满足条件的任意点N ,AN =CP 始终成立,证明见解析.【解析】【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM ;(2)过点N 作NE ⊥AC 于E ,由“AAS ”可证△NEC ≌△CDM ,可得NE=CD ,由三角形面积公式可求解;(3)过点N 作NE ⊥AC 于E ,由“SAS ”可证△NEA ≌△CDP ,可得AN=CP .【详解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM .∵∠NCM=135°,∴∠ACN=135°﹣∠ACM ,∴∠ACN=∠AMC ;(2)过点N 作NE ⊥AC 于E ,∵∠CEN=∠CDM=90°,∠ACN=∠AMC ,CM=CN ,∴△NEC ≌△CDM (AAS ),∴NE=CD ,CE=DM ;∵S 112=AC•NE ,S 212=AB•CD , ∴12S AC S AB=; (3)当AC=2BD 时,对于满足条件的任意点N ,AN=CP 始终成立,理由如下:过点N 作NE ⊥AC 于E ,由(2)可得NE=CD ,CE=DM .∵AC=2BD ,BP=BM ,CE=DM ,∴AC ﹣CE=BD+BD ﹣DM ,∴AE=BD+BP=DP .∵NE=CD ,∠NEA=∠CDP=90°,AE=DP ,∴△NEA ≌△CDP (SAS ),∴AN=PC .【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.10.(1)见解析;(2)∠P=23º;(3)∠P=26º;(4)∠P=23x y+;(5)∠P=1802B D︒+∠+∠.【解析】【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到∠1=∠2,∠3=∠4,列方程组即可得到结论;(3)由AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,推出∠1=∠2,∠3=∠4,推出∠PAD=180°-∠2,∠PCD=180°-∠3,由∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,推出2∠P=∠B+∠D,即可解决问题;(4)根据题意得出∠B+∠CAB=∠C+∠BDC,再结合∠CAP=13∠CAB,∠CDP=13∠CDB,得到y+(∠CAB-13∠CAB)=∠P+(∠BDC-13∠CDB),从而可得∠P=y+∠CAB-13∠CAB-∠CDB+13∠CDB=23x y+;(5)根据题意得出∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,再结合AP平分∠BAD,CP平分∠BCD的外角∠BCE,得到12∠BAD+∠P=[∠BCD+12(180°-∠BCD)]+∠D,所以∠P=90°+12∠BCD-12∠BAD +∠D=1802B D︒+∠+∠.【详解】解:(1)证明:在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(2)解:如图2,∵AP、CP分别平分∠BAD,∠BCD,∴∠1=∠2,∠3=∠4,由(1)的结论得:3124P BP D∠+∠=∠+∠⎧⎨∠+∠=∠+∠⎩①②,①+②,得2∠P+∠2+∠3=∠1+∠4+∠B+∠D,∴∠P=12(∠B+∠D)=23°;(3)解:如图3,∵AP平分∠BAD的外角∠FAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∴∠PAD=180°-∠2,∠PCD=180°-∠3,∵∠P+(180°-∠1)=∠D+(180°-∠3),∠P+∠1=∠B+∠4,∴2∠P=∠B+∠D,∴∠P=12(∠B+∠D)=12×(36°+16°)=26°;故答案为:26°;(4)由题意可得:∠B+∠CAB=∠C+∠BDC,即y+∠CAB=x+∠BDC,即∠CAB-∠BDC=x-y,∠B+∠BAP=∠P+∠PDB,即y+∠BAP=∠P+∠PDB,即y+(∠CAB-∠CAP)=∠P+(∠BDC-∠CDP),即y+(∠CAB-13∠CAB)=∠P+(∠BDC-13∠CDB),∴∠P=y+∠CAB-13∠CAB-∠CDB+13∠CDB= y+23(∠CAB-∠CDB)=y+23(x-y)=21 33 x y+故答案为:∠P=2133x y+;(5)由题意可得:∠B+∠BAD=∠D+∠BCD,∠DAP+∠P=∠PCD+∠D,∴∠B-∠D=∠BCD-∠BAD,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠BAP=∠DAP,∠PCE=∠PCB,∴12∠BAD+∠P=(∠BCD+12∠BCE)+∠D,∴12∠BAD+∠P=[∠BCD+12(180°-∠BCD)]+∠D,∴∠P=90°+12∠BCD-12∠BAD +∠D=90°+12(∠BCD-∠BAD)+∠D=90°+12(∠B-∠D)+∠D=1802B D︒+∠+∠,故答案为:∠P=1802B D︒+∠+∠.【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型.11.(1)见解析(2)(4,2)(3)(6,0)【解析】【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则341bk b=⎧⎨+=⎩,解得1k2b3⎧=-⎪⎨⎪=⎩∴直线PR为y=﹣12x+3由y=0得,x=6∴R(6,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.12.(1)相等,证明见解析;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)先证明△ACD≌△CBE,再由全等三角形的性质即可证得CD=BE;(2)先证明△BCD≌△ABE,得到∠BCD=∠ABE,求出∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC,∠CQE=180°-∠DQB,即可解答;(3)如图3,过点D作DG∥BC交AC于点G,根据等边三角形的三边相等,可以证得AD=DG=CE;进而证明△DGF和△ECF全等,最后根据全等三角形的性质即可证明.【详解】(1)解:CD和BE始终相等,理由如下:如图1,AB=BC=CA,两只蜗牛速度相同,且同时出发,∴CE=AD,∠A=∠BCE=60°在△ACD与△CBE中,AC=CB,∠A=∠BCE,AD=CE∴△ACD≌△CBE(SAS),∴CD=BE,即CD和BE始终相等;(2)证明:根据题意得:CE=AD,∵AB=AC,∴AE=BD,∴△ABC是等边三角形,∴AB=BC,∠BAC=∠ACB=60°,∵∠EAB+∠ABC=180°,∠DBC+∠ABC=180°,∴∠EAB=∠DBC,在△BCD和△ABE中,BC=AB,∠DBC=∠EAB,BD=AE∴△BCD≌△ABE(SAS),∴∠BCD=∠ABE∴∠DQB=∠BCQ+∠CBQ=∠ABE+∠CBQ=180°-∠ABC=180°-60°=120°,∴∠CQE=180°-∠DQB=60°,即CQE=60°;(3)解:爬行过程中,DF始终等于EF是正确的,理由如下:如图,过点D作DG∥BC交AC于点G,∴∠ADG=∠B=∠AGD=60°,∠GDF=∠E,∴△ADG为等边三角形,∴AD=DG=CE,在△DGF和△ECF中,∠GFD=∠CFE,∠GDF=∠E,DG=EC∴△DGF≌△EDF(AAS),∴DF=EF.【点睛】本题主要考查了全等三角形的判定与性质和等边三角形的性质;题弄懂题中所给的信息,再根据所提供的思路寻找证明条件是解答本题的关键.13.(1)BP=3cm ,CQ=3cm ;(2)全等,理由详见解析;(3)154;(4)经过803s 点P 与点Q 第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP 、CQ 的长;(2)利用SAS 可证三角形全等;(3)三角形全等,则可得出BP=PC ,CQ=BD ,从而求出t 的值;(4)第一次相遇,即点Q 第一次追上点P ,即点Q 的运动的路程比点P 运动的路程多10+10=20cm 的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中, PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ;(4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.14.(1)①60°;②AD=BE.证明见解析;(2)∠AEB =90°;AE=2CM+BE ;理由见解析.【解析】【分析】(1)①由条件△ACB 和△DCE 均为等边三角形,易证△ACD ≌△BCE ,从而得到:AD=BE ,∠ADC=∠BEC .由点A ,D ,E 在同一直线上可求出∠ADC ,从而可以求出∠AEB 的度数.②由△ACD ≌△BCE ,可得AD=BE ;(2)首先根据△ACB 和△DCE 均为等腰直角三角形,可得AC=BC ,CD=CE ,∠ACB=∠DCE=90°,据此判断出∠ACD=∠BCE ;然后根据全等三角形的判定方法,判断出△ACD ≌△BCE ,即可判断出BE=AD ,∠BEC=∠ADC ,进而判断出∠AEB 的度数为90°;根据DCE=90°,CD=CE ,CM ⊥DE ,可得CM=DM=EM ,所以DE=DM+EM=2CM ,据此判断出AE=BE+2CM .【详解】(1)①∵∠ACB=∠DCE ,∠DCB=∠DCB ,∴∠ACD=∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE ,∴AD=BE ,∠CEB=∠ADC=180°−∠CDE=120°,∴∠AEB=∠CEB−∠CED=60°;②AD=BE.证明:∵△ACD ≌△BCE ,∴AD=BE .(2)∠AEB =90°;AE=2CM+BE ;理由如下:∵△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE= 90°,∴AC = BC , CD = CE , ∠ACB =∠DCB =∠DCE -∠DCB , 即∠ACD = ∠BCE ,∴△ACD ≌△BCE ,∴AD = BE ,∠BEC = ∠ADC=135°.。