第6章_燃烧过程及混合气形成

合集下载

简述柴油机混合气的形成和燃烧过程的主要特点

简述柴油机混合气的形成和燃烧过程的主要特点

简述柴油机混合气的形成和燃烧过程的主要特点
柴油机混合气的形成主要通过喷油器将柴油喷入气缸内,并与空气混合形成可燃的混合气。

在柴油机中,柴油的喷射是通过高压喷油系统实现的,喷油器会将柴油以高速喷入气缸内,形成小的液滴。

随着喷雾进一步扩散和混合,柴油蒸发成为气态,与周围的空气发生反应,形成高温、高压的混合气。

柴油机燃烧过程的主要特点有以下几点:
1. 自燃性:柴油机的燃烧过程是自燃的,即燃料不需要预先混合空气,在高温和高压的条件下,柴油会自发地点燃。

2. 气缸压力高:由于柴油机采用的是压燃式燃烧方式,混合气在气缸内的压力相对较高,通常达到较高的压缩比,从而增加了柴油机的热效率和功率。

3. 燃烧过程较长:相对于汽油机的燃烧过程来说,柴油机的燃烧速率较慢。

这是因为柴油燃料的自燃性会引起燃烧的延迟,混合气的蒸发和扩散时间相对较长。

4. 高温高压条件下生成大量烟雾:由于柴油燃烧过程中温度和压力较高,同时还有一部分未完全燃烧的碳氢化合物存在,因此柴油机的排放中常常会产生大量的烟雾和颗粒物。

综上所述,柴油机混合气的形成和燃烧过程具有高压、自燃、延迟燃烧和较高的烟雾排放等特点。

这些特点决定了柴油机在高负荷工况下有较高的热效率和牵引力,适用于重载和长途运输等场景。

发动机原理第六章柴油机混合气形成与燃烧

发动机原理第六章柴油机混合气形成与燃烧

2.对柴油机燃烧室的要求:
① α小,但应燃烧完全及时; ② 适度的ΔP/ΔΦ和Pz值;以保证工作柔和,
平稳,可靠; ③ 排气品质好; ④ 变工况适应好;应在负荷、转速变化时,
柴油机性能稳定; ⑤ 冷起动性好; ⑥ 制造、维修方便。
3、直喷式燃烧室的空气涡流运动
空气涡流运动是加速混合气形成的 有效手段;也是保证完善燃烧的重 要条件。
3.影响喷注质量的主要因素:
喷注结构,喷油压力,气缸内空气的压力,柴油
的粘度等。
二、空气运动对混合气形成的影响
缸内空气的涡流运动能加速雾化的油滴与 周围空气的混合,促进燃烧过程的进行。
但涡流过强,会使燃烧产物与邻近的喷注重叠; 涡流过强也使进气阻力加大,充量系数下降。
三、典型燃烧室结构分析
1.燃烧室分为两大类:直喷式和分开式。 直喷式燃烧室:燃油直接喷入由活塞顶和缸盖形成的
汽油机:提高火焰传播速度。 柴油机:保证及时形成较均匀的混合气。
第一节 混合气形成与燃烧过程
一、燃烧方式--油滴扩散燃烧
柴油机是在压缩过程中活塞接近上止点时,借助喷 油设备将燃油在高压下成雾状喷入燃烧室,以便 与空气形成可燃混合气。
油滴的着火要满足两个条件: (1)混合气的温度要高于着火临界温度。 (2)混合气的浓度要适当,即混合气的浓度要在
不变)
面容比大,经济性较差,启动性差(传热和流动损失大,装电热塞)
涡流室式燃烧室
1)预燃室式燃烧室
混合气形成:空间雾化混合为主。一般采用轴针 式喷油器。
主要特点:
喷雾质量要求不高(预燃室形成强的紊流和二次喷射的燃
烧涡流形成混合气)。
ΔP/ΔΦ较小,工作柔和。 空气利用率高,α值可较小。 变工况适应性好,对转速不敏感。 NOx排放低 启动性差,面容比较大,经济性差 低速噪声(惰转噪声)大(预燃室气体速度低,油束贯穿力大,

内燃机原理第六章 燃烧的基础知识

内燃机原理第六章 燃烧的基础知识

作用于液滴表面张力
We
液滴张力
a d0 u2
a —周围空气密度,kg/m3;
u —气液两相间的相对速度,m/s;
—液体表面张力,N/m;
d0 —液滴直径,m。
We
破碎可能性 汽、柴油:Wec 10 ~ 14
液滴最大直径:d 0 m a x
Wec a u2
强化燃料雾化的方法:
提高燃烧室内的空气压力——增大周围空气密度; 提高燃料喷射压力——增大液滴的相对速度;
一、湍流(紊流,Turbulence)定义 流速大小和方向无规则变化的微元气体流动。
湍流影像
进气流场
压缩湍动能
二、湍流特征参数 ➢湍流强度
脉动速度uT 瞬时速度u
平均速度U
速度
曲轴 转角
ICE在第i个循环、曲轴转角为 φ时的瞬时湍流速度:
u(,i) U (,i) uT (,i)
集总平均速度:
➢高能点火可以拓宽着火极限
二、火焰的传播
已燃气体
火花
火焰前锋面
vL
气缸 未燃气体
火焰层厚度
未燃气体
预热区
反应区 已燃气体
混合气浓度
混合气温度
反应速度
燃烧速率:
dm dt
vL
FL
m
m —混合气质量 FL —火焰前锋表面积 m —混合气密度
燃烧放热速率:
dQB dt
vL FL m Hum
甲醇
提高燃烧室内空气温度——减小液滴表面张力。
一、喷雾特性
贯穿距离
喷雾特性 喷雾锥角
➢贯穿距离
喷雾粒径
要求:足够的距离,穿过火焰,防止“火包油”
孔式喷油器贯穿距离计算方法:

第六章:柴油机燃料供给系统

第六章:柴油机燃料供给系统
1)发火性:指柴油的自燃能力,用十六烷值评定。 柴油的十六烷值大,发火性好,容易自燃。国家标 准规定轻柴油的十六烷值不小于45。 (45-55为宜)
柴油及其使用性能
汽车构造
2)蒸发性:指柴油蒸发汽化的能力,用柴油馏出 某一百分比的温度范围即馏程和闪点表示。比如, 50%馏出温度即柴油馏出50%的温度,此温度越 低,柴油的蒸发性越好,混合气形成速度就越快, 易完全燃烧。但蒸发性过高,则会使全部柴油迅 速燃烧,缸内压力急剧升高,柴油机工作粗暴。 闪点低,蒸发性好。
空间雾化混合
油雾的形成 燃料以高压、高速从喷油器以 圆锥形的油束喷出,由于受到 高密度空气的摩擦阻力作用, 被分裂为许多油线进而成为油粒。
空气的运动促进混合 将燃油喷成雾状油束是混合气 形成的第一步,其次是使油粒
分布得更均匀。
汽车构造
空间雾化混合
汽车构造
最有效的措施:空气运动 多采用两种办法:(l)使进气产生涡流;(2)产生挤压涡流
油膜蒸发混合
它是将柴油喷向球形油膜燃 烧室的壁面上,在强烈地空气 涡流作用下,燃油的大部分 (95%)形成油膜.由于油束贯 穿空气和室壁的反射,必然有 少量油粒(5%)悬浮在空间, 形成着火源。油膜在热能作 用下,逐层蒸发、逐层卷走、 逐层燃烧,产生了燃气涡流, 其燃烧速度是前期慢、后期 快,使燃烧过程加速进行到 终点。
混合气的形成(空间雾化混合或油膜蒸发混合)、 点火和燃烧方式不同于汽油机;
柴油机的a>1,燃烧充分,排气污染小;
柴油机的喷油泵与喷嘴制造精度要求高,所以成本 较高;
柴油机工作粗暴,振动噪声大;柴油不易蒸发,冬 季冷车时起动困难;
排气噪声大,颗粒排放严重,废气中含SO2多
柴油及其使用性能

内燃机原理第六章-燃烧的基础知识

内燃机原理第六章-燃烧的基础知识

一、燃烧现象
燃烧过程(氧化过程)—着火阶段+燃烧阶段 ➢着火阶段 可燃混合气在一定压力、温度和浓度
反应速度
下,氧化反应突然加速,并出现火焰
的现象。 着火阶段——滞燃期
➢燃烧阶段
燃烧
滞燃期 i
着火后燃料与氧化剂剧烈放热的氧化反应。
ICE属周期性非稳定燃烧过程,燃烧持续期10-20ms, 着火过程只有0.3-0.03ms,滞燃期对性能影响大。
二、燃烧分类
固相燃烧:氧化剂在燃料表面的氧化反应
燃烧
预混合燃烧:燃料与氧化剂按一定比例混合
气相燃烧
扩散燃烧: 燃料与氧化剂彼此分离
层流预混合燃烧
层流扩散燃烧
紊流扩散燃烧
着火延迟
火焰按准球面传播
SI-ICE燃烧
油束外围燃烧
多区域同时着火燃烧
CI-ICE燃烧
HCCI(柴油)燃烧
两种燃烧方式对比
燃烧速度 混合气浓度 裂解
火花点火过程和湍流火焰 四、液体燃料的雾化和喷雾特性 五、油滴的蒸发和燃烧
单个油滴和油滴群的蒸发和燃烧 六、燃烧放热规律
放热速率和累积放热率
高电压(300~500V),低电流,温度3000K。 ➢火核形成
(二)点火能量 Eb Eb 30 ~ 50 mJ
过大
电极间隙 Sb 过小
Eb 50 mJ——高能点火
极间混合气多
Eb 大
电极散热快
Eb 大
Sbopt
Sb 0.6 ~ 0.8 mm
➢a 1.0 时,Eb 最小
➢每个 Eb 存在混合气的浓稀极限
作用于液滴表面张力
We
液滴张力
a d0 u2
a —周围空气密度,kg/m3;

柴油机混合气形成和燃烧

柴油机混合气形成和燃烧

.
11
三、柴油机的有害排放物和振动噪声
CO和HC的生成机理与汽油机相同,但a>1,缝隙激冷效应
小,故其排放小。 柴油机有害排放物:NOx, PM, 且二者矛盾。 CO2 1) NOx的生成机理:
根据燃料及其混合气形成方式分为: 热力NO(Themal NO)和快速NO(Prompt NO) ➢ 热力NO产生条件:高温、富氧、滞留时间汽油机
适应高效率低排放燃烧方式的要求
.
26
二、喷射雾化和油束特性
➢ 喷雾(油束)特性取决于喷油器的结构、喷射压力和背压, 是影响混合气形成的主要因素
➢ 油束特性:用几何形状和雾化质量评价
几何形状:贯穿距离L ;贯穿率和喷雾锥角或B
贯穿率:油束射程与喷 孔出口沿喷孔轴线到达 燃烧室壁面的距离的比
核心部分液滴 密集,速度高
.
粒径分布
粒子直径/nm
15
高温:在预混合火焰温度2000~2400K范围内出现峰值; 在
扩散火焰区缺氧
实验结果
未氧化PM。
由 HC
向碳烟
的转换
T>2400K时:PM

计算结果
C原子不易凝聚;
已形成的碳烟氧化。
急速加热到1700K以上 时,聚乙炔及碳蒸汽成 为中间产物而生成碳烟
➢危害:致癌物;大气可见度
喷射压力与供油压力有关; 但非线性关系,不可控。
.
30
直列泵
VE型分配泵: 一个柱塞,与固定
在一起的端面凸轮 盘一同旋转
调速手柄
调速套筒 飞锤 燃油入口
停车 调速弹簧 手柄
流回油箱
溢流节流孔
张力杠杆 断油阀
供油量控制:通过驾驶 调 压 阀 员/调速器调节油量控制

第6章 汽油机燃油系统

第6章  汽油机燃油系统

6.3.2
电控式燃油系统的工作过程
燃油箱内的汽油被电动汽油泵吸出 并加压至350kPa左右,压力燃油经汽油 滤清器滤去杂质后,被送至发动机上方 的分配油管。
分配油管与安装在各缸进气歧管上 的喷油器相通。 喷油器是一种电磁阀,由发动机电 控系统的计算机(又称ECU)控制。 通电时喷油器开启,压力燃油以雾 状喷入进气歧管内,与空气混合,在进 气行程中被吸进气缸。
图6-17 喷油器的安装位置
当ECM使电磁线圈通电时,便产生磁力, 将衔铁和针阀吸起,打开喷孔,一定压力的燃 油经针阀头部的轴针与喷孔之间的环形间隙高 速喷出,并被粉碎成雾状,与空气混合,在进 气行程中被吸入气缸(见图6-18)。
图6-18
1—针阀
喷油器
2—衔铁 3—插头 4—进油口 5—电磁线圈 6—喷孔
图6-13 叶轮式电动汽油泵
电动汽油泵在运转时,转子周围小槽 内的燃油跟随转子一同高速旋转。 由于离心力的作用,使燃油出口处油 压增高,同时在进口处产生一定的真空, 使燃油经过入口的滤网被吸入油泵,加压 后经过电动机周围的空间由出口泵出。
油泵出口处有一单向阀,在油泵不工作 时阻止燃油倒流回油箱,以保持发动机停机 后的燃油压力,便于再次起动。 其最大泵油压力较高(可达600kPa以 上),若因汽油滤清器堵塞等原因使油泵出 口一侧油压过高,与油泵一体的限压阀即被 顶开,使部分燃油回到进油口一侧,以保护 电动汽油泵。
(5)暖机工况
在暖机工况下,为保证发动机能稳 定运转,应提供足够浓的混合气。 随着发动机温度逐渐升高,混合气 浓度应逐渐减小,直至达到热车后正常 稳定怠速所要求的浓度为止。
(6)加速工况
由于汽油的运动惯性比空气大,其 雾化和蒸发也需要一定的时间,为保证 进入气缸的混合气不至于瞬时变稀,使 发动机的转速和功率能迅速增大,应在 节气门急剧开大的过程中,向进气管内 多供入一些汽油,以及时加浓混合气, 满足发动机加速的需要。

燃烧学-第六章

燃烧学-第六章

二、雾化方式和喷嘴
• 按照油的雾化机理,工程上油的雾化方式分为:压力式、旋 转式和气动式等。前两种又称为机械式雾化。如下图所示。
压力式雾化喷嘴
压力式雾化喷嘴又称为离心式机械雾化器。它可以用在航空喷气发动机、 燃气轮机、柴油机以及锅炉和工业窑炉上。 燃油在高压下通过雾化片的特殊机械结构将燃油雾化,通过喷油嘴喷出。 按该原理工作的雾化器有:直流式、离心式和转杯式
中间直径法(d50)
是一个假定液滴的直径,即液雾中大于或小于这一直径的两部分 液滴的总质量相等。
索太尔平均直径法(dSMD)
设在特定的液滴群中的滴数为N0 ,且所有液滴的直径都等于
dSMD,而这些液滴的总体积与总面积之比正好等于实际液滴群的总
体积与总面积之比。
18
(2)雾化角
出口雾化角
19
(3)燃料的流量密度分布 单位时间内通过与燃料喷射方向相垂直的单位截面上燃 油质量沿半径的分布规律。
20
(4)喷雾射程 喷嘴水平喷射时,油雾液滴丧失水平方向动能的行程。 不同直径油粒的射程也不同。射程取决于轴向速度和颗 粒度。射程的大小影响火焰长度。
21
(5)雾化均匀度 积分表示法 将大于某一直径d的所有液滴的质量占全部液滴质量的 百分数表示成液滴直径的函数。 微分表示法 将直径在d和d+Δ d之间的所有液滴的质量占全部液 滴总质量的百分数表示成液滴直径的函数。
7
四、雾化燃烧--重点
1.过程:
破碎 雾化器 液体 小液滴 悬浮 边蒸发边燃烧
燃料的蒸发表面积增加 上千倍
燃烧速度加快
2.关键问题:--雾化 (1)雾化方式:据液体燃料的蒸发性定 不易蒸发的液体--喷嘴雾化 (2)易蒸发的液体--汽化器

发动机燃烧着火过程

发动机燃烧着火过程

4.后燃期 从缓燃期终点D到燃料基本燃烧完毕(累计放热率 X>95%)的E点称为后燃期。由于柴油机混合气形成时间 短,油气混合极不均匀,总有一些燃料不能及时燃烧,拖 到膨胀期间继续燃烧,特别是在高负荷时,过量空气少, 后燃现象比较严重。后燃期内的燃烧放热,由于远离上止 点进行,热量不能有效利用,并增加了散热损失,使柴油 机经济性下降。此外,后燃还增加了活塞组的热负荷以及 使排气温度升高。 因此,应尽量缩短后燃期,减少后燃所占的百分比。 柴油机燃烧时,空气是过量的,只是混合不匀造成局部缺 氧。因此,加强缸内气体运动,可以加速后燃期的混合气 形成和燃烧速度,而且会使碳烟及不完全燃烧成分加速氧 化。
若能保证汽油机正常工作,着火落后期的长短对汽油 机性能影响不大,这一点与柴油机不同,因为汽油机性能 主要取决于何时着火而不是何时点火。 对着火落后期的要求主要是要稳定并尽可能短。稳定 是指每循环中的 ϕi长短不要离散过大,这就使B点的位置 相对稳定,由此使最高燃烧压力pmax所对应的角度相对稳 定,发动机循环波动率(见后述)不致于过大。所谓 ϕi尽 可能短是因为,过长会使ϕ i 的大小不稳定。考虑到pmax 出 现在上止点稍后为最佳时刻,一般使B点出现在上止点前 12-15 °较为合适。
1) 汽油机的点火提前规律 对于汽油机,最佳θig角将随转速的上升而加大,称为 转速提前;而又随进气管真空度的上升(负荷下降)而加 大,称为真空提前。图6-6 表示了最佳θig在n及负荷变化时 的变化规律。这是因为,在节气门开度不变时,各个转速 的着火落后期均变化不大。但转速上升后,相同落后期所 占的转角将正比增加,于是高转速时的着火落后角显著加 大。为保证最大压力点相位大致不变,必定要加大θig角。 在转速不变时,随着节气门的减小,进气管真空度上升, 残余废气系数φr将加大,使得燃烧速度下降。这样,着火 落后期和燃烧持续期都加大,就要求点火提前以保证加热 中心接近上止点位置。 化油器式汽油机设有机械的转速和真空提前装置来保 证上述要求。电控汽油喷射机型则直接靠点火提前角的 MAP图来加以精确控制。

简述柴油机混合气的形成和燃烧过程的主要特点

简述柴油机混合气的形成和燃烧过程的主要特点

简述柴油机混合气的形成和燃烧过程的主要特点
柴油机混合气的形成和燃烧过程的主要特点如下:
1. 混合气形成:柴油机燃烧采用的是直接喷射燃油的方式,燃油通过喷油嘴喷入到气缸内,然后与空气混合形成混合气。

相比汽油机的预混合气形式,柴油机的混合气是在气缸内形成的。

2. 混合气浓度高:柴油机的混合气浓度通常较为高,可达到14:1到25:1。

这是因为柴油机所使用的燃油具有较高的能
量密度,可以同时实现更高的压缩比和更高的燃烧温度。

3. 自燃点高:柴油机的混合气具有较高的自燃点。

由于混合气浓度高和燃油的特性,混合气需要达到一定的温度才能自发燃烧。

这有助于控制燃烧过程,防止发动机产生异常燃烧。

4. 点火方式不同:柴油机的燃烧是通过压燃来实现的,而非火花点火。

燃油喷入气缸后由于高压和高温的作用,使得燃油迅速氧化分解,产生大量的热量和高压气体。

然后,由于压燃的作用,燃料自燃并瞬间燃烧。

5. 燃烧时间长:相比于汽油机的快速燃烧,柴油机的燃烧过程时间较长。

这是因为在柴油机燃料的压燃条件下,燃烧速度较慢,需要一定时间来完成。

6. 黑烟排放:由于柴油机燃烧的特性,其排放中容易产生黑烟。

黑烟是不完全燃烧的产物,主要由碳颗粒组成。

为了减少黑烟排放,需要控制燃烧过程,提高燃烧效率。

总体而言,柴油机混合气的形成和燃烧过程具有混合气浓度高、自燃点高、点火方式不同、燃烧时间长和黑烟排放等特点。

这些特点决定了柴油机在燃烧效率、功率输出和排放控制等方面与汽油机有着不同的特性。

6柴油机的混合气形成与燃烧

6柴油机的混合气形成与燃烧
解决措施
① 提高过量空气系数 ② 组织气缸内气体运动
二、燃烧过程存在的问题
2.燃烧噪声
产生原因
柴油机的压缩比高,混合气几乎同时燃烧,急 剧升高的压力,直接使燃烧室壁面及活塞、曲 轴等机件受冲击,产生强烈振动,并通过气缸 壁传到外部,从而形成燃烧噪声。
解决措施
缩短滞燃期,减少滞燃期的喷油量,抑 制滞燃期中混合气的形成,是减轻噪声的主 要途径。
柴油机均在α>1的条件下工作,使柴油机容积利用 率这是其比质量,升功率不如汽油机的原因之一。
4、补燃期
定义:是从气缸内出现最高燃烧温度起,到燃烧
基本结束为止的一段时间,以曲轴转角表示。
特点:
时间短促,混合气不太均,对经济性不利。 后燃还增加了有关零部件的热负荷。 补燃期的终点很难准确地确定。
造成二者区别的原因: I. ①燃油的可压缩性,使系统内产生压
力波的传播;高压油管的弹性变形引 起容积的变化; II. ②压力波的往复反射和叠加的作用。
三、不正常喷射现象和穴蚀
(l)二次喷射现象:既在喷射终了喷油器
针阀落座以后,在压力波动的影响下再次升起 喷油的现象。
危害:
①压力低雾化不良,燃烧不完全,碳 烟增多,易引起喷孔堵塞;
图4-1 空气运动对混合气形成的影响
(1)空间雾化混合
说明:
喷注着火后,旋转的气流将燃烧产物吹 走,并及时向未燃烧完的油滴提供新鲜 空气,提高空气利用率,加速混合气的 形成和燃烧。
气缸内的涡流运动并非越强越好。涡流 过强,过强会使燃烧产物与相邻的喷注 重叠,从而影响燃烧,同时使进气阻力 加大,充量系数下降。
4.有害的废气成分
NOx是柴油机废气中主要有害成分。其生成 量 应取进决行于时反的应温物度N,2以、及02反、应O进、行N的的浓时度间,长反短。 因此,为降低NOx 生成量,必须降低火焰 高峰温度、缩短空气在高温下停留的时间, 减少过量空气系数等。

6-第六章 柴油机燃烧

6-第六章 柴油机燃烧

第六章柴油机燃烧由于能源短缺和人类对环境保护的日益关切,使得内燃机技术工作者对柴油机燃烧、经济性以及排放产生极大的兴趣。

然而,柴油机的燃烧过程是相当复杂的,它的详细机理还不十分清楚。

柴油与空气的可燃混合气在燃烧室内若干部位产生自燃,而与此同时,一些其他地方燃油可能仍处于液态。

许多发动机在运行条件下,着火开始而燃油仍在继续向燃烧室内喷射。

此时燃烧室内的燃油同全部喷射油量之比对燃烧过程有相当大的影响。

而燃油在燃烧室内的分布规律对燃烧的组织及其形态、对排放的形成都有重要影响。

本章就柴油机燃烧的基本内容及其目前发展做一分析论述。

§ 1 燃料的喷射与蒸发1.1 喷射油束的形态燃料在高压下经喷油器孔口射入燃烧室内,随着时间进展,燃料油束向前伸展和扩张。

为了解喷雾发展过程,人们通过等容模型燃烧室对单个油束的观察,得到有关喷射特性的认识。

1.高压、室温条件下喷射的油束日本学者藤本等人用高压等容模型燃烧室在室温条件下做试验。

燃烧室内压力为p0=0.098~9.91MPa,喷孔直径为0.27mm,喷油量取0.09g,喷油器开启压力p j=33.7MPa。

试验表明,从喷射开始后约0.5ms 至喷射结束时,油束形态有类似模式,如图6-1所示。

一个充分发展的油束,可将其分成各具特征的若干部分。

主流区:位于油束核心部分,单位体积内油滴量多,粒度大,流速大,动量大,为高密度的主流部分。

混流区:燃料油滴数量少,粒度也小,流速低,在油滴间卷吸入大量空气形成浓度减小的混合流域,它处于主流区的周围。

初始部分l s:油束刚离喷口具有较明显的圆锥形部分的长度。

混合部分l c:从初始部分末端至油束边界成湍流状态部分的长度。

穿透部分l p:为l s+l c,即基本保持圆锥形部分的长度。

稀释部分l d:油束的顶端,燃油稀疏部分。

通过观察和测量得知,喷射油束卷吸周围空气进入穿透部分。

而油束顶端在向前伸展中一方面排开周围空气,同时也卷吸进一些空气形成不断增长的逐渐稀薄的可燃混合气。

第六章汽油机混合气的形成和燃烧

第六章汽油机混合气的形成和燃烧

(1)层流火焰燃烧速率
火焰传播速度是指火焰前锋面在法线方 向上相对于未燃混合气的移动速度。层流火 焰传播速度很低,主要受混合气温度、压力、 充量系数以及燃料特性等因素影响,实际发 动机中还应考虑残余废气系数的影响。
层流火焰传播速度远远不能满足实际发 动机燃烧的要求。实际发动机中的火焰传播 是以湍流火焰方式进行的。
2、爆燃的危害
a.机件过载:强烈的冲击波能使缸壁、缸盖、活塞、连杆、曲轴等 部件的机械负荷增加,使机件变形甚至损坏。
b.机件烧损:汽油机燃烧终了的温度可达2000-2500℃ ,而活塞 顶、燃烧室壁及缸壁的温度仅为100-300 ℃ 。除了冷却水的作用外,能 够维持这样低温度的原因,还包括在这些壁面上形成了气体的附面层。它 起到隔热的作用。而强烈爆燃时的冲击波会破坏这一附面层,使机件直接 与高温燃气接触。而严重爆燃时,局部燃气温度可高达4000℃以上,这样 会使活塞头部和气门等零件烧损。同时热量传给冷却水引起发动机过热。
3、防止爆燃的方法 a.使用抗爆性高的燃料 采用高辛烷值燃料.使用抗爆剂提高汽油的抗爆性 b.降低末端混合气的温度和压力 降低冷却水温度、进气温度、使用浓混合气、推迟点火,采用进气节 油,降低压缩比,及时清除燃烧室积炭,合理设计燃烧室,如加强末端混 合气的冷却、排气门的冷却等。 c.缩短火焰前锋传播到末端混合气的时间 合理组织气缸扰流,提高火焰传播速度;合理设计燃烧室,使火焰传 播距离缩短。 d.混合气中废气的百分数愈多则不易自行发火,因为废气会阻碍混合 气自行发火的化学反应过程。因而,油门关小则不易发生爆燃。 e.汽油机转速提高时,混合气的扰流强度提高,火焰传播速度加快。 因而,汽油机转速提高时不易发生爆燃。 f.点火时刻推迟是避免爆燃的有效手段,
3.负荷:在汽油机上,转速保持不变,通过改变节气门开度来调节进 入气缸的混合气量,以达到不同的负荷要求。

6单元 柴油机的燃烧过程和燃烧规律

6单元 柴油机的燃烧过程和燃烧规律
②减小备燃期内喷入的油量(选择合适的喷油规律,先 少后多);
③控制蒸发速度(油膜蒸发缓和);
3)排气冒黑烟
缓燃期燃油被高温废气包围:高温缺氧→裂解→脱氢 →聚合形成碳烟。 一般在高负荷时发生如汽车加速,爬坡或超载。
减少冒黑烟的措施: ①增大过量空气系数α:改进进气系统ην↑,减少喷 油量降低功率使用。
单元6 柴油机混合气的形成和燃烧
课前回顾
问题一:传统汽油机与柴油机的混合气形成方式及着火方式 有什么不同?
汽油机:缸外形成混合气,点燃;柴油机:缸内喷射,压燃。
问题二:为什么传统汽油机采用缸外混合,火花塞点燃式燃 烧,柴油机采用缸内喷射,压燃式燃烧?
燃料的品性决定了混合气的形成方式及着火方式。
蒸发性:汽油>柴油; 发火性(自燃性):柴油>汽油。
1)泵-管-喷嘴系列 (1)直列柱塞泵
高压油管 燃油滤清器 停油电磁阀
回油管 润滑机油管
P7100泵 正时齿轮
4、应用吸振减振材料制造薄板零件,如油底壳、 缸盖罩等。在缸体与油底壳之间、缸盖与缸盖罩 之间采用较“软”的垫片,对振动起到阻尼使用。
5、改进消声器的结构、材料;改进空气滤清器、 冷却风扇等的设计以及适当调节配气相位,以降 低气体动力噪声。
6、遮蔽噪声源,采用对作为主要噪声源的发动机 的局部或整体加隔声罩的方法等。
6-1柴油机燃烧过程
1、混合气形成特点: 3)混合气形成不均匀 ,为了提高经济性总体过量空气系 数>1.2。导致容积利用率低,升功率低(傻大黑粗)。
傻大黑粗
高富帅???
6-1柴油机燃烧过程
2、混合气形成方式: 油膜蒸发混合,燃料大部 分顺气流方向喷到燃烧室 壁面上,形成一层油膜, 油膜受热蒸发,在旋转气 流作用下与空气相混合形 成可燃混合气。

可燃混合气的形成与燃烧过程

可燃混合气的形成与燃烧过程

二.可燃混合气的形成与燃烧大体分四个时期(1)备燃期:从喷油开始→开始着火燃烧为止喷入气缸中的雾状柴油并不能马上着火燃烧,气缸中的气体温度,虽然已高于柴油的自燃点,但柴油的温度不能马上升高到自燃点,要经过一段物理和化学的准备过程。

也就是说,柴油在高温空气的影响下,吸收热量,温度升高,逐层蒸发而形成油气,向四周扩散并与空气均匀混合(物理变化)。

随着柴油温度升高,少量的柴油分子首先分解,并与空气中的氧分子进行化学反映,具备着火条件而着火,形成了火源中心,为燃烧作好了准备。

这一时期很短,一般仅为0.0007~0.003 秒。

(2)速燃期:从燃烧开始→气缸内出现时为止火源中心已经形成,已准备好了的混合气迅速燃烧,在这一阶段由于喷入的柴油几乎同时着火燃烧,而且是在活塞接近上止点,气缸工作容积很小的情况下进行燃烧的,因此,气缸内的压力P迅速增加,温度升高很快。

(3)缓燃期:从出现→出现为止这一阶段喷油器继续喷油,由于燃烧室内的温度和压力都高,柴油的物理和化学准备时间很短,几乎是边喷射边燃烧。

但因为气缸中氧气减少,废气增多,燃烧速度逐渐减慢,气缸容积增大。

所以气缸内压力略有下降,温度达到最高值,通常喷油器已结束喷油。

(4)后燃期:缓燃期以后的燃烧这一时期,虽然不喷油,但仍有一少部分柴油没有燃烧完,随着活塞下行继续燃烧。

后燃期没有明显的界限,有时甚至延长到排气冲程还在燃烧。

后燃期放出的热量不能充分利用来作功,很大一部分热量将通过缸壁散至冷却水中,或随废气排出,使发动机过热,排气温度升高,造成发动机动力性下降,经济性下降。

因此,要尽可能地缩短后燃期。

综上所述,要使燃烧过程进行得好,混合气形成的好环是关键,所以对混合气形成的要求如下:①必须要有足够的空气量和适当的柴油量因为柴油燃烧放出热量是由于柴油和空气中的氧气在一定温度和压力条件下产生化学作用的结果,所以空气与柴油是放热的两个重要因素。

空气量与柴油量比例不同,所形成的可燃混合气的成分也就不同,一般要求:α=1.3~1.5 ;α过大,混合气过稀,燃烧速度慢,散发热量多,Ne↓ ;α 过小,混合气过浓,燃烧不完全,油耗增加,冒黑烟,经济性变坏。

柴油机可燃混合气的形成方法

柴油机可燃混合气的形成方法

柴油机可燃混合气的形成方法柴油机是一种燃烧内燃机,其燃烧过程是在高压下进行的。

在柴油机中,燃油和空气是分开进入燃烧室的,这就要求燃烧室内的空气和燃油能够进行充分的混合,形成可燃的混合气体。

而柴油机的燃油是通过高压喷射进入气缸内的,因此如何让燃油和空气充分混合是非常关键的。

1. 喷油嘴的喷油方式柴油机采用高压喷油的方式将燃油喷入燃烧室,为了使燃油和空气充分混合,喷油嘴的工作方式显得尤为重要。

通常情况下,柴油机采用喷雾式喷油嘴,喷油嘴的内部结构影响喷油的质量和形状。

喷油嘴的孔径、喷嘴形状、嘴孔数量等参数的优化,可以改善燃油喷雾的品质,使其更加均匀细密,有利于燃油和空气混合。

2. 空气进气方式为了使燃油和空气在燃烧室内更充分地混合,柴油机的进气系统也需要进行优化。

空气的进气方式对于可燃混合气的形成起到了决定性的作用。

通常情况下,柴油机采用中冷或者涡轮增压的方式增加空气量,克服空气进入不足的问题。

在进气系统中加入进气道膜片、进气道加热等装置,也可以提高空气的进气速度和进气流量,使得空气能够更快更加均匀地进入燃烧室,加强混合。

3. 活塞结构和形态柴油机的活塞结构和形态也会影响可燃混合气的形成。

为了提高燃烧室内空气的流动性,柴油机的活塞通常采用凹形设计,这可以使空气在进入燃烧室之前形成漩涡,从而增加空气和燃油的接触面积。

活塞的头部也可以加工成不同的形状,如切角、圆弧等,以改善空气流动的连续性和流速分布状态,从而提高混合气的质量和完整度。

4. 点火系统要使混合气在燃烧室内完全燃烧,必须采用合理的点火系统。

点火系统不仅需要能够在恰当的时机引燃混合气,还需要能够使燃烧在较短的时间内完成。

目前柴油机采用的点火系统主要有两种:机械式点火和电控式点火。

机械式点火通常采用压电式喷嘴,将燃油喷入燃烧室后即可引燃;而电控式点火则采用电子控制系统,能够对点火时间和点火能量进行精确的控制,以确保混合气的燃烧质量。

柴油机可燃混合气的形成方法包括喷油嘴的喷油方式、空气进气方式、活塞结构和形态、点火系统等多方面的因素。

汽车发动机原理课后习题答案

汽车发动机原理课后习题答案

第一章发动机的性能1.简述发动机的实际工作循环过程。

1)进气过程:为了使发动机连续运转,必须不断吸入新鲜工质,即是进气过程。

此时进气门开启,排气门关闭,活塞由上止点向下止点移动。

2)压缩过程:此时进排气门关闭,活塞由下止点向上止点移动,缸内工质受到压缩、温度。

压力不断上升,工质受压缩的程度用压缩比表示。

3)燃烧过程:期间进排气门关闭,活塞在上止点前后。

作用是将燃料的化学能转化为热能,使工质的压力和温度升高,燃烧放热多,靠近上止点,热效率越高。

4)膨胀过程:此时,进排气门均关闭,高温高压的工质推动活塞,由上止点向下至点移动而膨胀做功,气体的压力、温度也随之迅速下降。

(5)排气过程:当膨胀过程接近终了时,排气门打开,废气开始靠自身压力自由排气,膨胀过程结束时,活塞由下止点返回上止点,将气缸内废气移除。

3.提高发动机实际工作循环热效率的基本途径是什么?可采取哪些基本措施?提高实际循环热效率的基本途径是:减小工质传热损失、燃烧损失、换气损失、不完全燃烧损失、工质流动损失、工质泄漏损失。

提高工质的绝热指数κ。

可采取的基本措施是:⑴减小燃烧室面积,缩短后燃期能减小传热损失。

⑵. 采用最佳的点火提前角和供油提前角能减小提前燃烧损失或后燃损失。

⑶采用多气门、最佳配气相位和最优的进排气系统能减小换气损失。

⑷加强燃烧室气流运动,改善混合气均匀性,优化混合气浓度能减少不完全燃烧损失。

⑸优化燃烧室结构减少缸内流动损失。

⑹采用合理的配缸间隙,提高各密封面的密封性减少工质泄漏损失。

4.什么是发动机的指示指标?主要有哪些?答:以工质对活塞所作之功为计算基准的指标称为指示性能指标。

它主要有:指示功和平均指示压力.指示功率.指示热效率和指示燃油消耗率。

5.什么是发动机的有效指标?主要有哪些?答:以曲轴输出功为计算基准的指标称为有效性能指标。

主要有:1)发动机动力性指标,包括有效功和有效功率.有效转矩.平均有效压力.转速n和活塞平均速度;2)发动机经济性指标,包括有效热效率.有效燃油消耗率;3)发动机强化指标,包括升功率PL.比质量me。

汽油机可燃混合气的形成

汽油机可燃混合气的形成

汽油机可燃混合气的形成汽油机是一种常见的内燃机,其工作原理是通过燃烧混合气体产生能量驱动车辆或机械运转。

而汽油机的可燃混合气的形成是实现这一过程的关键。

本文将从混合气的组成、混合气的调配以及混合气的点火等方面,详细介绍汽油机可燃混合气的形成过程。

我们来了解一下汽油机可燃混合气的组成。

可燃混合气主要由空气和汽油组成。

空气中含有氧气,而氧气是燃烧的必要条件。

汽油则是一种燃料,其中含有碳氢化合物。

在燃烧过程中,汽油中的碳氢化合物与氧气发生化学反应,产生二氧化碳、水和能量。

因此,混合气中的氧气和汽油的比例是影响燃烧效果的重要因素。

混合气的调配是形成可燃混合气的关键步骤。

混合气的调配是通过进气系统实现的。

汽油机进气系统通常包括空气滤清器、进气管道、节气门和进气歧管等部件。

空气滤清器的作用是过滤空气中的杂质,保证进入气缸的空气质量。

进气管道将空气引入到发动机内部。

节气门的开度可以调节空气的流量。

而进气歧管则将空气分配到各个气缸中。

通过调节这些部件,可以控制混合气中空气和汽油的比例,以实现最佳的燃烧效果。

混合气的点火是混合气燃烧的关键步骤。

点火系统由点火线圈、火花塞和点火控制装置组成。

点火线圈将电能转化为高压电流,通过火花塞引燃混合气。

点火控制装置则控制点火时间和点火顺序。

在正时点,点火线圈会产生高压电流,使火花塞产生火花,点燃混合气。

混合气的点火需要考虑到点火的时机和点火的能量。

时机过早或过晚,都会影响燃烧效果。

能量不足则无法点燃混合气,能量过大则会造成爆震。

汽油机可燃混合气的形成是一个复杂的过程,需要考虑到混合气的组成、混合气的调配以及混合气的点火等因素。

只有在合适的条件下,混合气才能充分燃烧,释放出足够的能量,推动发动机正常工作。

因此,在汽油机维护和使用过程中,需要对混合气进行合理的调配和点火控制,以确保发动机的高效运行。

谈汽油机可燃混合气的形成与燃烧过程

谈汽油机可燃混合气的形成与燃烧过程

摘要气缸内的可燃混合气通过火花塞点火燃烧,使气缸内气体的压力、温度急剧升高,为膨胀做功积聚能量。

在燃烧过程中,燃料的燃烧是否正常,与混合气的浓度有很大关系,只有燃料正常的燃烧,才能在燃烧进程位于上止点附近最大限度的提高缸内气体的压力和温度,燃料燃烧的是否完全、最高压力点的位置、压力增长率是否合适,对发动机性能有很大的影响。

关键词混合气浓度可燃一、可燃混合气的形成现代大多数汽油机都采用进气道间歇式多点喷射系统,在进气行程开始和排气行程结束时,喷油器根据发动机电子控制单元(ECU)发出的指令,向进气门前方的进气道中(或直接向气缸中)喷射出雾状汽油,与空气混合后,由进气门进入气缸,直到压缩行程接近终了形成可燃混合气。

二、可燃混合气浓度的表示方法可燃混合气是指汽油与空气按一定比例混合的混合物。

可燃混合气的浓度是指可燃混合气中燃料的含量。

可燃混合气的浓度通常用空燃比和过量空气系数表示。

1.空燃比混合气中所含空气质量(kg)与燃料质量(kg)的比值,称为空燃比。

即R=空气质量燃料质量理论混合气是指1 kg汽油完全燃烧需要空气14.7 kg,即空燃比为147。

R<147的混合气称为浓混合气;R>147的混合气称为稀混合气。

对于不同燃料,其理论空燃比数值不同。

2.过量空气系数过量空气系数就是在燃烧过程中,实际供给的空气质量与理论上燃料完全燃烧时所需的空气质量之比,也就是实际空燃比与理论空燃比之比,即α=燃烧过程中实际供给的空气质量理论上完全燃烧时所需的空气质量=实际空燃比理论空燃比由以上可知,无论使用何种燃料,α=1的可燃混合气即为理论混合气(又称标准混合气);α<1的为浓混合气;α>1的为稀混合气。

可燃混合气的浓度对发动机的动力性和经济性有很大影响。

三、燃烧过程Ⅰ-着火延迟期;Ⅱ-速燃期;Ⅲ-补燃期;θ-点火提前角1开始点火;2形成火燃中心;3最高压力点图汽油机燃烧过程燃料在气缸内从着火到燃烧是很复杂的热反应过程,高速汽油机的燃烧过程持续时间很短,正常燃烧过程如图所示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2,挤流 压缩时空气被挤入燃烧室凹坑内形成挤流
膨胀时燃烧气体冲出凹坑形成逆挤流
挤流强度 ∝ dk/D,S0 特点:不影响φc和Ω,但强度较弱,作用小 于涡流,起辅助作用 思考:汽油机中的挤流运动
3,湍流(紊流) 湍流是指无规则的小尺度气体运动,也称微涡流 湍流可以改善微观的油气混合程度 形成方式:
4,后燃期( φD~φE )
现象 剩余10~20%的燃料继续燃烧, 远离TDC,气流扰动变弱,燃烧速度 下降. 后燃期过长,会造成: 等容度↓,散热↑,碳烟和微粒 排放↑,排温↑ , η t ↓ ; 减少后燃的基本思路 加速混合,以加快燃烧;燃油充分 雾化.
燃烧特性测试例:柴油机
满足欧Ⅳ排放的 Cummins 重型柴油机
Bertrand D. Hsu(徐大宏). Practical Diesel-Engine Combustion Analysis. 2002 SAE International

2,速燃期( φB~φC )
影响 dp/dφ的主要因素: 燃烧开始时的可燃混合气量 ∵ 控制对策:滞燃期中的混合 气生成量和着火时间,亦即喷油 速率和混合速率 dp/dφ与dQB/dφ的关系: 最大值基本对应,但过分后燃 时例外
3,缓燃期( φC~φD )
现象 剩余燃料边蒸发混合边燃烧, 燃烧速率受控于燃料扩散混合 速率,也称为扩散燃烧期, 出现柴油机燃烧特有的"双峰 "现象; pmax的大小及位置:上止点后 10~15CA,取决于喷油时间, 着火落后期,预混燃烧; 缓燃期燃烧 "过缓",会造 成: 等容度↓,散热↑,ηi ↓;碳 烟和微粒排放↑
瞬时放热率 (J/deg)
例:柴油机燃烧特性 不同负荷燃烧特性对比
小负荷 大负荷 BMEP=0.6MPa BMEP=1.6MPa 燃烧持续期(oCA) 最大爆发压力(bar) 主燃期平均压升率 (bar/oCA) 最高瞬时放热率(J/oCA) 着火落后期(oCA) 44 100.6 2.3 115 8 37 136.1 2.4 192 7
汽油机燃烧过程及分析 柴油机燃烧过程及分析 合理的燃烧放热规律 汽油机与柴油机燃烧特性对比
分析方法:
示功图,P (φ) = f (燃烧速率,温度,燃室容积) 放热速率ROHR (Rate of Heat Release) dQ B 1 dp dV pV dk - V +kp = (k-1)2 d +α t FW (T-TW ) d d d k-1
滚流
本章要点
扩散燃烧速度 着火落后期 dp/dφ 1. 喷油规律和供油规律的异同及原因 2. 喷油规律对燃烧特性的影响 3. 内燃机中空气运动的方式及适用范围 4. 两种混合气形成方式的对比 5. 汽油机混合气形成(6.3节)内容自学,但不作为重点. 混合气 形成速度 气流运动 燃烧室形状 喷油规律
第6章 燃烧过程及混合气形成
发动机(内燃机)燃烧的特点:
高速(混合+着火+燃烧=10~2ms) 高温(2000℃ 左右) 高压(柴油机高达100bar 以上) 复杂过程:流动,喷雾,多相流,燃烧化学
内燃机燃烧所追求的目标: 高ηe(ηi) ,高Pme(Pmi),低污染,低噪声振动
6.1 实际发动机的燃烧过程及放热规律 主要内容
6.1.1 汽油机燃烧过程及分析
汽油机着火和燃烧的高速摄影
火核形成
特点:均质透明火焰,前锋面皱褶
1, 着火落后期(φA~φB )
现象: 在φ A 点开始火花点火,高 温单阶段着火; 在φ B 点产生稳定的火核, 开始火焰传播; φ B 点也可用CA05表示,即 累计放热5%的相位. 特性参数:着火落后期φi 10°~ 20°CA 注意区别点火提前角θig φ i 相对稳定(相对柴油机), 因此θ ig对pmax相位有重要影响
pmax位置,φc=10~15 CA( ATDC)
3,后燃期(φC~φD )
现象 燃烧剩余约10%燃料,主要存在 于火焰前锋面扫过后尚未完全燃烧 区域,壁面附近未燃混合气 要求: 燃期短—后燃期↑, ηi ↓ , 排温 ↑,甚至"放炮" 燃烧净—否则,HC ↑ ,CO ↑
6.1.2 柴油机燃烧过程
分为四期: 着火落后期( φA~φB ) 速燃期( φB~φC ) 缓燃期( φC~φD ) 后燃期( φD~φE ) 分析中注意与汽油机燃烧过程 的不同
1, 着火落后期( φ A ~φB )
现象: 喷雾及混合+低温多阶段着火, 是复杂的物理化学过程 ; 影响着火落后期的主要因素:
温度,压力,喷油量,雾化特性
着火点的判断方式: P-φ图,ROHR ,火焰图像 柴油机的着火落后期对后续燃烧 过程有重要影响. 为什么柴油机着火时可 明显看到"脱离压缩线" 的现象,而汽油机不能?
2,速燃期( φB~φC )
现象 大面积多点着火,燃烧极快, 压力陡升; 速燃期也称为预混合燃烧期, 但与汽油机的预混合燃烧有所 不同; 主要控制参数:dp/dφ 对动力性,ηi ,η m ,NOx, 振动噪声有显著影响, 一般柴油机: dp/dφ =0.2~0.6 (MPa/CA)
例:柴油机燃烧特性
14
缸内压力 (MPa)
12 10 8 6 4 2 0
缸内压力 (MPa)
TDC 1500r/min 小负荷 BMEP=0.6MPa
14 12 10 8 6 4 2
TDC
1500r/min 大负荷 BMEP=1.6MPa
200 160 120 80 40 0
0
200 160 120 80 40 0
95%
累计放热率
0.6 0.4 0.2 0.0 -30
问题:为什么不研究汽 油机的喷油规律?
5%
-20 -10 0 10 20 30 40 50 60
曲轴转角 (deg)
瞬时放热率 (J/deg)
缸内气流运动
分类: 涡流,滚流,挤流——控制油气宏观混合 湍流——促进油气微观混合 1, 涡流(Swirl) 绕气缸中心线的有规则的气流运动.柴油机中最常用 (1)涡流种类:进气涡流,压缩涡流 (2)评价指标:涡流比Ω=涡流转速 / 发动机转速
项目 型号 型式 气缸数 总排量 /L 压缩比 最大功率/转速 (kW/ rmin-1) 最大转矩/转速 (Nm/ rmin-1) 燃油供给系统 后处理系统 参数 Cummins ISBe4 140 四冲程,直列, 增压中冷,直喷,水冷 4 4.5 17.3 103/2500 550/1500 高压共轨 尿素SCR
6.2 柴油机燃油喷射及混合气形成原理
由第5章和6.1节可知:柴油机混合气形成过程极短(<0.5ms) 经历:燃料喷射雾化汽化混合 扩散燃烧速度 着火落后期 dp/dφ 混合气 形成速度 气流运动 燃烧室形状 喷油规律
本节从油,气两个方面介绍柴油机混合气形成过程
柴油机喷雾燃烧高速摄影例 条件:涡流比2.5,4孔喷嘴,乙醇-柴油混合燃料
活塞运动自然形成的湍流,较弱且不可控; 预燃室中的空气运动(如图,压缩和膨胀均有); 非回转体燃烧室(参见讲义图9-10); 燃烧冲击形成湍流(预燃室的主燃室)
4 滚流 绕垂直于气缸轴线的有规则的 气流运动(与涡流相反),也称 纵向涡流 近年来开发的混合气形成方式 主要用于缸内直喷式汽油机
用滚流形成大范围的油气混合 滚流被压扁,破碎 形成高度湍流强化微混合.
喷油规律的优化
随着降低NOx和噪声的要 求不断提高,初始喷油速率不 断降低,以至于出现了预喷射 (Pilot Injection)
负荷率95%
14
TDC
缸内压力 (MPa)
12 10 8 6 4 2 0
1500r/min 大负荷 BMEP=1.6MPa
200 160 120 80 40 0
Hale Waihona Puke 1.0 0.8来源:清华大学
燃油喷射过程(机械式)
(1)喷射延迟阶段 供油提前角θfs-供油始点至TDC的 角度(油泵出油) 喷油提前角θfj-喷油始点至TDC的角 度(针阀始动) 喷油延迟角=θfs-θfj,转速越高, 油管越长,延迟角越大 (2)主喷射阶段 喷油始点~喷油器端压力开始下降点 喷入绝大部分燃油,具有良好的雾化 qn = f(Δp, 针阀升程,喷油持续期) (3)喷油结束阶段 喷油器端压力急剧下降点~针阀落座 燃油雾化质量差,尽可能减少喷油量
1.0 0.8
瞬时放热率 (J/deg)
1.0
95%
0.8
95%
累计放热率
0.6 0.4 0.2 0.0 -30
累计放热率
0.6 0.4 0.2 0.0 -30
5%
-20 -10 0 10 20 30 40 50 60
5%
-20 -10 0 10 20 30 40 50 60
曲轴转角 (deg)
曲轴转角 (deg)
2, 明显燃烧期(φB~φC )
现象: 由明显火核产生~火焰充满 燃烧室; 90%燃料在此期间被燃烧. 也称为速燃期 放热速率特征值CA50:累计放 热50%的相位,0~10 CAATDC 主要控制参数1: 最高爆发压力pmax pmax ↑,ηi ↑,W i ↑, NOx ↑,机械负荷及热负荷↑; 但
喷油时刻对柴油机性能的影响
COMBUSTION ANALYSIS OF TWO INJECTION TIMINGS
Test Condition and Results of Two Fuel Injection Timings Fuel Injection Timing Pmax (MPa) BSFC (kg/kWh) Smoke (Bosch #) NOx (ppm) Injection Start (CA BTDC) Injection Duration (CA) Relative Efficiency (%) Calculated Peak Temperature (K) Exhaust Temperature (C) Early 16.40 0.1919 0.15 1413 19.5 36.2 94.4 2028 455 Late 15.07 0.1968 0.27 1145 16.5 36.9 92.0 1979 473
相关文档
最新文档