刚体 物理
大学物理第5章刚体的定轴转动
d ctdt
对上式两边积分得
d c td t
0 0
t
1 2 ct 2
2 2 600π π 3 rad s 由给定条件, c 2 t 300 2 75
d π 2 由角速度的定义,则任意 t 时刻的角速度可写为: d t 150
得到: 转子转数:
A M d E K
a b
动能定理
动量定理
A F ds E K
动能定理 角动量定理 角动量 守恒
t 0Fdt P
t
动量守恒
F 0, P 0
t 0 M z dt Lz
t
M 0, L 0
§5.1 刚体、刚体运动
一、一般运动 二、刚体的定轴转动 三、解决刚体动力学问题的一般方法
基本方法: 加
质点系运动定理 刚体特性 平动:动量定理
刚体定轴转动的 动能定理 角动量定理
F mac
可以解决刚体的一般运动(平动加转动)
一、一般运动
1. 刚体 特殊的质点系, 形状和体积不变化 —— 理想化模型 在力作用下,组成物体的所有质点间的距离始终保持不变 2. 自由度 确定物体的位置所需要的独立坐标数 —— 物体的自由度数 z
刚体平面运动可看做刚体的平动与定轴转动的合成。 例如:车轮的滚动可以看成车轮随轮 轴的平动与绕轮轴的转动的组合。 描述刚体平面运动的自由度:3个
定点转动 刚体运动时,刚体上的一点固定不动,刚体绕过定点的一 瞬时转轴的转动,称作定点转动。
描述定点转动的自由度:3个
刚体的一般运动 质心的平动
+
绕质心的转动
z
描述刚体绕定轴转动的角量: 角坐标
刚体转动的物理原理
刚体转动的物理原理
刚体转动是指刚体围绕固定轴线的旋转运动。
对于一个刚体,其旋转运动的物理原理可以通过以下几个方面来解释:
1. 转动惯量:刚体的转动惯量代表了刚体围绕轴线旋转时对转动的惰性。
刚体的转动惯量与刚体的质量分布和绕轴线的位置有关。
转动惯量越大,对于同样的转动力矩,刚体转动的角加速度越小。
2. 转动力矩:刚体转动时,如果施加一个力矩以改变刚体的角动量,刚体就会产生角加速度。
转动力矩是指力在刚体上产生的旋转效果,它的大小等于力的大小乘以力臂的长度。
力臂是力相对于轴线的垂直距离。
3. 角动量守恒:在没有外力或外力作用力矩为零的情况下,刚体的角动量守恒。
刚体的角动量是指刚体沿轴线旋转时的动量,它等于刚体转动惯量乘以角速度。
角动量守恒意味着刚体在旋转过程中,如果没有外力或外力矩的作用,角动量保持不变。
4. 角动量定理:角动量定理描述了刚体转动时角动量的变化率等于作用在刚体上的外力矩。
即角动量的变化等于力矩的时间积分。
这个定理可以用来分析刚体在外力矩作用下的角加速度和角速度变化。
总之,刚体转动的物理原理主要涉及转动惯量、转动力矩、角动量守恒和角动量
定理等概念,通过这些原理可以解释和描述刚体转动的运动规律。
大学物理第三章刚体力学
薄板的正交轴定理:
Jz Jx J y
o x
y
X,Y 轴在薄板面上,Z轴与薄板垂直。
例3、质量m,长为l 的四根均匀细棒, O 组成一正方形框架,绕过其一顶点O 并与框架垂直的轴转动,求转动惯量。 解:由平行轴定理,先求出一根棒 对框架质心C的转动惯量:
C
m, l
1 l 2 1 2 2 J ml m( ) ml 12 2 3
M F2 d F2 r sin
若F位于转动平面内,则上式简化为
M Fd Fr sin
力矩是矢量,在定轴转动中, 力矩的方向沿着转轴,其指向 可按右手螺旋法则确定:右手 四指由矢径r的方向经小于的 角度转向力F方向时,大拇指的 指向就是力矩的方向。根据矢 量的矢积定义,力矩可表示为:
例9 行星运动的开普勒第二运动定律:行星对太阳 的位矢在相等的时间内扫过相等的面积。 解:行星在太阳引力(有心 力)作用下沿椭圆轨道运动, 因而行星在运行过程中,它 对太阳的角动量守恒不变。
L rmvsin 常量
因而掠面速度:
dS dt
r dr sin 2dt
1 rv sin 常量 2
Fi fi Δmi ai
切向的分量式为
Fi sin i f i sin i mi ri
Fi sin i f i sin i mi ri
两边同乘ri,得
Fi ri sin i fi ri sin i mi ri2
上式左边第一项为外力Fi对转轴的力矩,而第二项是 内力fi 对转轴的力矩。对刚体的所有质点都可写出类 似上式的方程,求和得
质点的角动量一质量为m的质点以速度v运动相对于坐标原点o的位置矢量为r定义质点对坐标原点o的角动量为sinrmv282质点的角动量定理质点所受的合外力对某一参考点的力矩等于质点对该点的角动量对时间的变化率角动量定理
物理刚体运动
角位移
角速度
d dt
角加速度 d
dt
4.角速度矢量
ω
角速度的方向:与刚体 转动方向呈右手螺旋关系。
在定轴转动中,角速度 的方向沿转轴方向。
角速度矢量
例1:一飞轮转速n=1500r/min,受制动后均匀减速, 经t=50 s后静止。(1)求角加速度α和飞轮从制动开 始到静止所转转数N;(2)求制动开始后t=25s 时飞 轮的速度 ;(3)设飞轮的半径r=1m,求在t=25s 时边缘上一点的速度和加速度。
刚体对 o 点的角动量,等于各个质点角动量的
矢量和。
对于定轴转动,我们感兴趣的只是 L 对沿 Oz 轴的分量 Lz,叫做刚体绕定轴转动的角动量。
而这个分量Lz 实际上就是各质点的角动量沿 Oz 轴的分量 Li z 之和。
从图中可以看出: Lix Li cos
因此
Lz Li cos mi Rivi cos
r
m2
m1
1 2
m
r
当不计滑轮质量及摩擦阻力矩即令m=0、M=0
时,有
T1
T2
2m1m2 m2 m1
g
a m2 m1 g m2 m1
上题中的装置叫阿特伍德机,是一种可用来测 量重力加速度g的简单装置。因为在已知m1、 m2 、 r和J的情况下,能通过实验测出物体1和2的加速度 a,再通过加速度把g算出来。在实验中可使两物体 的m1和m2相近,从而使它们的加速度a和速度v都 较小,这样就能角精确地测出a来。
刚体运动时,如果刚体的各个质点在运动中 都绕同一直线圆周运动,这种运动就叫做转动, 这一直线就叫做转轴。
大学物理04刚体
合外力矩沿着转 轴方向的分量
----微分形式
冲量矩
Mdt dL
t2
Mdt
t1
L2 L1
dL
L2
L1
J2
J1
----积分形式
如果转动惯量变化了
t2
Mdt
t1
L2 L1
dL
J22
J11
二当、刚M体定0 轴转动角动量守恒
B两滑轮的角加速度分别为 A和 B ,不 计滑轮轴的摩擦,这两个滑轮的角加速
度大小满足(A )
A A B
R
R
B A B
C A B
m
F
A
B
[例12]质量为mA的物体A静止在光滑水平面 上,它和一质量不计的绳索相连接,此绳 索跨过一半径为R、质量为mc的圆柱形滑 轮C,并系在另一质量为mB的物体B上,B 竖直悬挂。圆柱形滑轮可绕其几何中心轴
0.5m
JC 1 0.32 2 0.52
0.59kg m2
例4质量m,长度L 的均质细杆的转动惯量 (1)转轴过杆的端点
dm m
dl L
dm
dx
x
J L x2dm L x2dx 1 mL2
0
0
3
(2)转轴过杆的中点
dm dx x
J
单位:kg m2
连续分布有
r 2dl 线分布,为线密度
J
r
2dm
r
2
ds
面分布, 为面密度
r 2 dV 体分布,为体密度
简述刚体的定义
简述刚体的定义“刚体”是物理学中众多概念中的一个,它指的是一种物体,它的形状在外力作用之下不会改变的物体。
由此可见,它不仅是指物体的形状保持不变,而且它的大小、位置也是不变的。
也就是说,它的状态只有位置和速度能够改变,其它的一切都是不变的。
刚体是力学中最重要的概念之一,它几乎是物理学的组成部分,它给物理学提供了重要的控制条件。
以前,物理学家们认为只有圆柱形的物体才是真正的刚体,因为它的形状是不变的。
但是,经过研究,人们发现,任何形状的物体都可以被称为刚体,只要它的形状在外力作用之下不变。
刚体有三大特点:一是它的形状不变,即不会受到外力的影响而改变;二是它的大小和位置不变,即受外力的影响而变化的程度很小;三是它的状态只有位置和速度能够改变,其它一切都是不变的。
刚体运动学可以将刚体运动分为两类:一种是“直线运动”,即物体直线运动,此时物体的位置和速度定义为“直线参数”;另一种是“转动运动”,即物体围绕某一刚体轴线旋转,此时物体的位置和速度定义为“转动参数”。
此外,刚体的定义也与坐标系有关,当物体改变坐标系时,刚体的定义也会发生变化。
也就是说,当我们把物体从一个坐标系放到另一个坐标系时,物体仍然是刚体,它的形状和大小依旧不变,但是其位置和速度会发生变化。
为了更直观地理解刚体的定义,可以以一个重力场为例,当重力力场作用于一个刚体,它的形状不变,它的大小和位置也是不变的,只有它的速度会受到重力力场的影响而发生变化。
总之,刚体的定义是指一个物体的形状保持不变,它的大小和位置也是不变的,而它的状态只有位置和速度可以改变,其它一切都是不变的。
此外,刚体的定义还与坐标系有很大关系,当物体改变坐标系时,它仍然是刚体,但是其位置和速度会发生变化。
大学物理—刚体的动轴转动
25
麦克斯韦分布
2 1 2 d mgR J mR 3 2 dt
设圆盘经过时间t停止转动,则有
t 0 2 1 g dt R d 0 0 3 2
F1
转动 平面
F
F2
r F1 只能引起轴的
变形, 对转动无贡献。 注 (1)在定轴动问题 中,如不加说明,所指的 力矩是指力在转动平面内 的分力对转轴的力矩。
r
(2) M Z rF2 sin F2d
d r sin 是转轴到力作
用线的距离,称为力臂。
F123麦克来自韦分布例 2: 一半径为 R ,质量为 m 匀质圆盘,平放 在粗糙的水平桌面上。设盘与桌面间摩擦系数为 ,令圆盘最初以角速度 0 绕通过中心且垂直盘 面的轴旋转,问它经过多少时间才停止转动?
d r dr
R
e
解 : 因摩擦力不是集中作用于一点,而是分布 在整个圆盘与桌子的接触面上,力矩的计算要用积 分法。在图中,把圆盘分成许多环形质元,每个质 元的质量dm=rddre,所受到的阻力矩是rdmg 。
a m2 G2
a
21
式中是滑轮的角加速度,a是物体的加速度。滑轮 边缘上的切向加速度和物体的加速度相等,即
麦克斯韦分布
a r
从以上各式即可解得
m 2 m1 g M r / r m 2 m1 g M / r a
J m 2 m1 2 r 1 m 2 m1 m 2
1. 刚体的角动量
图为以角速度绕定轴oz 转动的一根均匀细棒。
L
z
ri
O
Li
把细棒分成许多质点,其中第 i 个质点的质量为 mi 当细棒以转动时,该 质点绕轴的半径为 ri
物理3
刚体力学基础
3-1 刚体运动的描述
一、刚体 rigid body 在外力作用下,形状和大小都不发生变化的物体。
刚体可视为无数个连续分布的质点组成的质点系。 ——理想模型
组成刚体的每个质点称为刚体的一个质量元。每 个质量元都服从质点力学规律。 质点
集合
质点系
特例
刚体
特点:任意两点间的距离始终保持不变。
方向: 右手螺旋方向
0
0
o
3、角加速度的方向与角 速度增量方向一致,当与 同号时,加速转动; 与 异号时,减速转动。
3、刚体定轴 转动方程 可用第一章圆周运动的方程
匀速率圆周运动
d dt
at 0
an
v
2
R
2
R
指向圆心
0 t
匀变速率圆周运动
π 2 π 450
( 300 ) 3 10
3
4
3-2 刚体定轴转动定律
角动量守恒定律 质点获得加速度 刚体获得角加速度
• •
力
改变质点的运动状态 改变刚体的转动状态
一、力矩 moment of force
z
F//
F
力 F 对 Z 轴的力矩
M F d
M F r sin
M ij
(2) 刚体内作用力和反 作用力的力矩互相抵消
M ij M
ji
rj
j
O
M
d
ji
i F ri ij
F ji
二、定轴转动定律 转动惯量 1、定轴转动定律 取刚体内任一质元i,它所受合外力为Fi,内力为fi。
名词解释刚体的概念
名词解释刚体的概念刚体是一个物理学中的重要概念,它是一个理想化的物体模型。
在三维空间中,刚体是指无论接受到多大的外力或外力矩,其形状、大小和体积都不会发生变化的物体。
本文将从不同角度解释和探讨刚体的概念。
一、定义刚体是指在外力作用下不会发生形状、大小和体积变化的物体。
也就是说,刚体在受到外力时,内部各部分之间的相对位置保持不变。
这个定义要求刚体具有精确的几何形状,且不受约束。
二、运动与静止刚体可以进行平动和转动两种运动。
平动是指整个刚体沿一个直线或曲线移动,而转动是刚体绕一个固定轴旋转。
无论是平动还是转动,刚体的几何形状不会发生变化。
三、刚体的惯性刚体具有惯性的特性。
惯性是指物体继续保持原来状态的性质。
刚体由于具有惯性,所以在没有外力作用时,保持静止或匀速直线运动。
这个性质是牛顿第一定律的基础。
四、刚体力学基本定律刚体力学基本定律包含平衡定律和运动学定律。
平衡定律主要包括平衡条件和力矩平衡条件。
平衡条件要求刚体的合力为零,力矩平衡条件要求刚体的合力矩为零。
运动学定律主要包括质心运动定律和角动量定律。
五、刚体的应用刚体的概念在物理学和工程学中有广泛的应用。
在物理学中,刚体概念常用于解释刚体物理学中的各种现象与规律。
在工程学中,刚体的概念被应用于机械设计、结构工程和材料力学等领域。
例如,刚体的概念在建筑物的结构设计中发挥重要作用,确保建筑物在外力作用下保持稳定。
六、刚体的限制与现实世界的差异虽然刚体是一个理想化的模型,但实际物体很难完全符合刚体的定义。
现实世界的物体通常都有一定的柔软性和变形性。
即使是最坚硬的材料也会在受到极大外力时发生一些微小的变形。
这种变形可能是临时的,也可能是永久性的。
因此,在实际应用中,我们需要根据具体情况进行刚体假设的简化。
综上所述,刚体是一个理想化的物体模型,它在物理学和工程学中起着重要的作用。
刚体的定义、运动学特性和力学定律是深入研究和理解刚体的关键。
尽管现实世界的物体不太可能完全符合刚体的定义,但刚体模型仍然具有广泛的应用价值。
刚体的知识点总结
刚体的知识点总结一、刚体的概念刚体是物理学中的一个重要概念,它是指在运动或静止过程中,形状和大小不发生改变的物体。
刚体具有以下特点:1. 刚体的分子结构相对固定,对外力的变形能力非常小。
2. 刚体受到外力作用时,其内部分子之间的相对位置发生微小变化,但整体上保持不变。
3. 刚体在变形后会恢复原状,即使外力作用消失后也会保持所受外力时的状态。
刚体的概念在物理学中有重要的应用,在力学、动力学、静力学等领域都有广泛的应用。
二、刚体的基本性质1. 自由度刚体在运动过程中具有自由度的概念,即刚体在空间中的自由度是指其可以围绕固定坐标系的运动方式。
2. 平移运动刚体在空间中可以进行平移运动,即整个刚体的位置随时间发生变化,但其形状和大小保持不变。
3. 旋转运动刚体在空间中也可以进行旋转运动,即围绕某一固定点或者固定轴进行旋转运动,这种运动称为刚体的自由旋转。
4. 刚体的定点定轴运动刚体在空间中也可以进行以某一固定点为中心或者以某一固定轴为旋转轴的运动,这种运动称为刚体的定点定轴运动。
5. 定点定轴自由度刚体在空间中具有三个定点定轴自由度,即刚体的位置可以变化,且可以绕三个固定轴进行旋转运动。
6. 刚体的平移自由度刚体在空间中具有三个平移自由度,即刚体在空间中可以相对于三个坐标轴进行平移运动。
7. 刚体的旋转自由度刚体在空间中具有三个旋转自由度,即刚体在空间中可以绕三个坐标轴进行旋转运动。
以上是刚体的基本性质,了解这些性质有助于我们在物理学研究中更深入地理解刚体的运动规律。
三、刚体的运动学分析1. 刚体的速度刚体在空间中的运动状态可以用速度来描述,刚体的速度分为线速度和角速度。
线速度是描述刚体中任一点的速度,通常用矢量来表示,可以用向量表示。
角速度则是描述刚体的旋转运动状态,通常用矢量来表示,可以用向量表示。
2. 刚体的加速度刚体在运动中会受到外力的影响,导致其速度发生变化,这种速度变化的率就是刚体的加速度。
大学物理 第3章 刚体力学基础
2 1
Jd
1 2
J22
1 2
J12
2 Md (1 J2 )
1
2
力矩对刚体所做的功,等于刚体转动动能的增量。
例 如图所示,一根质量为m,长为l的均匀细棒OA,可绕固定点O在竖直平 面内转动.今使棒从水平位置开始自由下摆,求棒摆到与水平位置成30°角 时中心点C和端点A的速度.
F
·
F
式中为力F到轴的距离
F
若力的作用线不在转动在平面内,
则只需将力分解为与轴垂直、平行
r
的两个分力即可。
力对固定点的力矩为零的情况:
1、力F等于零, 2、力F的作用线与矢径r共线
(有心力对力心的力矩恒为零)。
力对固定轴的力矩为零的情况:
若力的作用线与轴平行 若力的作用线与轴相交
则力对该轴无力矩作用。
dJ R2dm
考虑到所有质元到转轴的距离均为R,所以细圆环对中心轴的转动惯量为
J dJ R2dm R2 dm mR2
m
m
(2)求质量为m,半径为R的圆盘对中心轴的转动惯量.整个圆盘可以看成许
多半径不同的同心圆环构成.为此,在离转轴的距离为r处取一小圆环,如
图2.36(b)所示,其面积为dS=2πrdr,设圆盘的面密度(单位面积上的质量)
力矩在x,y,z轴的分量式,称力对轴的矩。例如上面所列
Mx , My , Mz , 即为力对X轴、Y轴、Z轴的矩。 设力F 的作用线就在Z轴
的转动平面内,作用点到Z
轴的位矢为r,则力对Z轴
的力矩为
M z rF sin
r sin F F rF sin rF
workbench中刚体的定义
workbench中刚体的定义Workbench中的刚体定义刚体是物理学中的一个重要概念,它是指在外力作用下,无论是平动还是转动,形状和大小都保持不变的物体。
在工程领域和物理实验中,对刚体的定义和研究有着重要的意义。
刚体的定义可以从不同角度进行解释。
从力学角度来看,刚体是指由多个质点组成的物体,质点之间的相对位置保持不变。
也就是说,在刚体上作用的外力不会改变刚体内部质点之间的相对位置。
这意味着刚体在受力作用下,形状和大小都不会发生变化。
这种特性使得刚体的运动可以简化为质点的运动,从而简化了复杂的物理问题的分析和计算。
从材料的角度来看,刚体是指具有足够强度和刚度的材料制成的物体。
这种材料可以抵抗外力的变形,并保持其形状和大小不变。
常见的刚体材料包括金属、硬塑料、玻璃等。
刚体的定义还可以从微观角度进行解释。
在微观粒子层面,刚体是由原子和分子构成的。
原子和分子之间通过化学键或物理力相互连接,形成一个整体。
在刚体内部,原子和分子之间的相对位置保持稳定,使得刚体整体保持稳定。
总结起来,刚体的定义可以概括为:在外力作用下,刚体的形状和大小保持不变,质点之间的相对位置保持稳定。
刚体的定义不仅适用于理论研究,也广泛应用于工程设计和实际应用中。
在工程设计中,刚体的定义对于结构的稳定性和强度分析至关重要。
工程师需要根据刚体的定义,设计出足够强度和刚度的结构,以保证其在外力作用下不会发生变形或破坏。
例如,在建筑设计中,对于梁、柱等承重结构,需要根据刚体的定义来确定结构的尺寸和材料,以保证其能够承受预期的荷载。
在物理实验中,刚体的定义也是进行实验的基础。
通过对刚体的研究,可以了解和验证力学定律和物理规律。
例如,通过对刚体在斜面上滚动的实验,可以验证动能定理和动量守恒定律。
需要注意的是,刚体的定义是理想化的,在现实世界中很难找到真正符合刚体定义的物体。
实际物体总会受到一定的外力作用,从而产生微小的形变和变形。
因此,在实际应用中,需要根据具体情况进行合理的近似和修正,以提高分析和计算的准确性。
大学物理-第三章 刚体力学
大小:M rF sin Fd
M
O
z
M
r
d
P*
F
方向:右手螺旋,图中向上
0 , M o,沿转轴向上,使刚体绕转轴逆时针转
2 , M o,沿转轴向下,使刚体绕转轴顺时针转
上一页 下一页
2.外力F不在转动平面内 MFOFr FFz r F r Fz
T
N2
mg T2 T2 2m
2mg
解 : 设 整 体 顺 时 针 运 动, 即 两 滑 轮 转 轴 正 向 向内 。
右 质 点2m正 向 向 下 , 左 质 点m正 向 向 上 ,
受力分析如图。
上一页 下一页
右质点 2mg T2 2ma
左质点 T1 mg ma
右 滑 轮 T2 r
Tr
第三章 刚体力学
上一页 下一页
刚体:不发生形变的物体(理想模型)
刚体模型突出了物体的大小形状,忽略形变和振动。 刚体的运动形式:平动、转动、滚动、进动
刚体复杂运动可视为:平动 转动(绕某轴线转动) 刚体力学研究方法 把刚体看成不变质点系(任意两个质元的相对距离 保持不变),运用质点系定理和定律研究刚体的运动。
m 2
r
2
左滑轮Tr
T1r
m 2
r 2
关联方程 a r
解出 T 11 mg 8
N1
T
T1
mg
T1 m
mg
T
N2
a
mg T2
T2 2m
2mg
上一页 下一页
M,
J
大学物理第四章
二、平动和转动
1、平动 当刚体运动时,如果刚体内任何一条给定的直
线,在运动中始终保持它的方向不变,这种运动叫 平动(translation)。
平动时,刚体内各质点在任一时 刻具有相同的速度和加速度。
刚体内任何一个质点的运动,都可代表整个刚体的 运动,如质心。
可以用质点动力学的方法来处理刚体的平动问题。
如:车轮的滚动。
返回 退出
3、刚体的定轴转动 定轴转动时,刚体上各点都绕同一固定转轴作
不同半径的圆周运动。
在同一时间内,各点转过的圆弧长度不同,但 在相同时间内转过的角度相同,称为角位移,它可 以用来描述整个刚体的转动。
作定轴转动时,刚体内各点具 有相同的角量,包括角位移、角速 度和角加速度。但不同位置的质点 具有不同的线量,包括位移、速度 和加速度。
直角坐标系中,采用用 、 ,如图所示:
最后,刚体绕定轴转动时,需
要一个坐标来描述,选定参考方 z
向后,转动位置用表示。
p
总的说来,刚体共有6个自由
度,其中3个平动自由度,3个转 动自由度。
y
物体有几个自由度,它
o
的运动定律可归结为几个
独立的方程。
x
返回 退出
返回 退出
§4-2 力矩 转动惯量 定轴转动定律 一、力矩
v r
返回 退出
三、定轴转动定律
对刚体中任一质量元
mi
受外力 Fi 和内力 fi
应用牛顿第二定律,可得:
F ifi m ia i
采用自然坐标系,上式切向分量式为:
F isii n fisi i n m ia it m ir i
F ir isiin fir isiin m ir i2
大学物理教程第五章刚体的转动
⼤学物理教程第五章刚体的转动第五章刚体的转动§5-1 刚体的平动、转动和定轴转动⼀、刚体在外⼒作⽤下形状和⼤⼩都不变化的物体称为刚体.和这定义等价的另⼀定义是:如果物体在外⼒作⽤下它的任意两点之间的距离保持不变,则这物体称为刚体.刚体是⼀种理想模型,在⾃然界中是找不到的.实际上任何物体在外⼒作⽤下,它的形状和⼤⼩都或多或少要发⽣变化.但有许多物体,如果外⼒不甚⼤的话,它的形状和⼤⼩的改变不显著,这样的物体和刚体很接近,刚体⼒学中的结论对于这样的物体⼤致与经验符合.因此在实际问题中这样的物体可以当刚体来处理.⼆、平动和转动刚体的最简单的运动是平动和转动.在§1-3中关于参考系的平动的定义对刚体也适⽤.即如果刚体运动时,它⾥⾯任⼀直线的⽅位始终保持不变,则其运动称为平动.平动的特点是,任⼀时刻刚体中各点的速度和加速度都相等,任⼀点的运动都可以代表整个刚体的运动.刚体运动时,如果刚体中所有质点都绕着⼀条直线作圆周运动(如图5-1),则这刚体的运动称为转动,这条直线称为转轴.座钟的指针、CD 光碟、涡轮发电机的叶⽚和车辆的轮⼦的运动都是转动.转动刚体的转轴可以是固定的(例如涡轮叶⽚的转轴),也可以是运动的(例如车轮的转轴).转轴固定的转动称为定轴转动.可以证明,刚体的⼀般运动可以当作是由⼀平动和⼀绕瞬时轴的转动组合⽽成.例如车轮在地⾯上滚动(图5-2a),可以看成是由车轮随轮轴的平动以及车轮绕轮轴的转动组合⽽成.车轮上任⼀点P 的瞬时速度v ,等于轮轴的瞬时速度v 0与由于该点随车轮绕轮轴转动所具有的速度v r 的⽮量和,如图5-2(b)所⽰.三、定轴转动如图5-1,P 为刚体中⼀质点,当刚体绕定轴转动时,P 作圆周运动,圆⼼O 为转轴与圆平⾯的交点.由于刚体中任意两点之间的距离是固定不变的,刚体中各质点在同⼀时间Δt 内具有相同的⾓位移Δθ,因此在任⼀时刻各质点具有相同的⾓速度ω和⾓加速度α.所以我们可以⽤Δθ、ω和α作为描写刚体绕定轴转动的物理量,称为刚体的⾓位移、⾓速度和⾓加速度.我们在§1-4中讲过的⾓位移、⾓速度和⾓加速度等概念都适⽤于刚体的定轴转动.如果将⾓位移Δθ图5-1图5-2改为θ,则§1-4中公式θ = ωt ,ω = ω0 + αt 及θ = ω0t +21αt 2对刚体的定轴转动亦适⽤.⾄于刚体内各质点的速度和加速度则由于各质点到转轴的距离不同⽽各不相同,但这些线量与⾓量之间的关系仍然由(1-49)式、(1-51)式及(1-52)式表⽰.例题5-1 ⼀转速为1.80×103 r/min 的飞轮,因受制动⽽均匀地减速,经20.0s 停⽌转动.(1) 求⾓加速度和从制动开始到停⽌转动飞轮转过的转数;(2) 求制动开始后t = 10.0s 时飞轮的⾓速度;(3) 设飞轮半径为0.500m ,求在t = 10.0s 时飞轮边缘上⼀点的线速度和切向与法向加速度.解 (1) 设ω0为初⾓速度,由题意得rad/s π60rad/s 60101.80π2π230=??==n ω s 0.20 ,0==t ω因飞轮均匀减速,其转动为匀变速转动,由§1-4公式,⾓加速度为220rad/s π3rad/s 20.0π60-=-=-=t ωωα从开始制动到停⽌转动飞轮的⾓位移θ及转过的转数N 依次为rad π600rad 20.03π2120.0π6021220=??-=+=t t αωθ 300 2ππ600π2===θN (2) t = 10.0s 时飞轮的⾓速度为()rad/s π30rad/s 10.03ππ600=?-=+=t αωω(3) t = 10.0s 时,飞轮边缘上⼀点的线速度为m/s 1.47m/s 30π.5000=?==ωr v相应的切向加速度及法向加速度为22t m/s 71.4m/s 3π.5000-=?-==αr a()23222n m/s 1044.4m/s 30π.5000?=?==ωr a §5-2 ⼒矩转动定律转动惯量⼀、⼒对转轴的⼒矩根据经验,⼒可以使物体转动.但使物体转动的作⽤,不仅与⼒的⼤⼩有关,⽽且与⼒的⽅向以及⼒的作⽤线和转轴的距离有关.例如当我们⽤⼿关门时,⼒的作⽤线和门的转轴的距离越⼤,越容易把门关上.如果⼒的作⽤线通过门的转轴,或⼒的⽅向与转轴平⾏,则不论⽤多⼤的⼒也不能把门关上.⾸先讨论⼒在垂直于转轴的平⾯内的情形.图5-3为与转轴垂直的刚体的截⾯图,⼒F 在此平⾯内,⼒的作⽤线与转轴的距离为d ,d 称为⼒臂,⼒的⼤⼩F 与⼒臂d 的乘积称为⼒F 对转轴的⼒矩,⽤M 表⽰,则M = Fd (5-1)设r 为从转轴到⼒的作⽤点P 的径⽮,φ为r 与F 之间的夹⾓,由图5-3看出,d = r sin φ,故(5-1)式可写为r F Fr M ⊥==?sin (5—2)其中⊥F 为⼒F 在垂直于r ⽅向的分量.上式表⽰,只有⼒F 在垂直于r ⽅向的分量才对⼒矩有贡献.当φ = 0或φ =180°时M = 0,此时⼒的作⽤线通过转轴,0=⊥F ,d = 0.如果⼒F 不在垂直于转轴的平⾯内,则将F 分解为⼆分⼒F l 、F 2.F l 在垂直于转轴的平⾯内,F 2与转轴平⾏(图5-4).由于平⾏分⼒F 2对物体转动不起作⽤,可以不考虑,因此在⼒矩定义式(5-1)或式(5-2)中,F 应理解为外⼒在垂直于转轴的平⾯内的分⼒.⼒对定轴的⼒矩不但有⼤⼩,⽽且有转向.⼀般规定,如果⼒矩使刚体沿反时针⽅向转动,⼒矩为正;如果⼒矩使刚体沿顺时针⽅向转动,⼒矩为负.如果同时有⼏个⼒作⽤于刚体,则刚体所受的合⼒矩等于各个⼒对转轴的⼒矩的代数和.⼒对转轴的⼒矩与⼒对⼀点的⼒矩之间的关系如上所述,如果⼒F 与转轴不垂直,可将它分解为垂直于转轴的分⼒F l 和平⾏于转轴的分⼒F 2.设O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.r 为从O 点到P 点的径⽮(图5-4).则由(4-37)式得⼒F 对O 点的⼒矩为M = r × F = r × (F l + F 2) = r × F l + r × F 2将上式两边投影在转轴上.现在来看左右两边投影的意义.左边为⼒F 对O 点的⼒矩在转轴上的投影,右边r × F 2与转轴垂直,它在转轴上的投影为零.r × F l 与转轴平⾏,它在转轴上的投影等于F l r sin φ(图5-4).⽽后者等于⼒F 对转轴的⼒矩.故得结论:⼒F 对转轴的⼒矩等于⼒F 对O 点的⼒矩M 在转轴上的投影,其中O 为通过⼒F 的作⽤点P ⽽垂直于转轴的平⾯与转轴的交点.应当注意,⼒对⼀点的⼒矩是⽮量,⼒对转轴的⼒矩是标量.这是因为后者是前者的投影之故.⼆、转动定律刚体可看成是由⽆数质点组成,当刚体绕定轴转动时,各个质点都绕定轴作圆周运动,取质点P i 来考虑,设其质量为Δm i ,与转轴的距离为r i ,图5-5为经过P i ⽽垂直于转轴的刚体的截⾯图,作⽤于P i 的⼒有外⼒F i 及内⼒F ’i ,令F i t 及F ’i t 分别表⽰F i 及F ’i 沿切线⽅向的分量,则由切向运动⽅程得F i t + F ’i t = Δm i · r i α两边乘以r i :F i t r i + F ’i t r i = (Δm i r i 2)α将此式对刚体中⼀切质点求和得图5-3 图5-4∑∑∑='+ii i i ii i i i r m r F r F α)Δ(2t t (5-3) ∑'i ii r F t 为所有内⼒对转轴的⼒矩的代数和,即合内⼒矩.下⾯证明此合内⼒矩等于零.取刚体中两质点P i 及P j 来考虑.根据⽜顿第三定律,这两质点相互作⽤的⼒⼤⼩相等⽅向相反,且在同⼀直线上(图5-6),此⼆⼒有相同的⼒臂d ,但因⼆⼒⽅向相反,故其对转轴的合⼒矩为零.⼜因内⼒总是成对的,每⼀对内⼒的合⼒矩既然等于零,所以所有内⼒的合⼒矩亦必等于零,即0t ='∑iii r F 因此,(5-3)式化为∑∑=ii i i i i r m r F α)Δ(2t (5-4)∑iii r F t 为所有外⼒对转轴的⼒矩的代数和,即合外⼒矩,⽤M 表⽰,则上式化为∑=ii i r m M α)Δ(2 (5-5)对于⼀定刚体及⼀定转轴来说,上式中∑ii i r m 2Δ为⼀恒量,称为刚体对该转轴的转动惯量,⽤J 表⽰,即∑=ii i r m J 2Δ (5-6)这样(5-5)式便化为αJ M = (5-7)此式表⽰,刚体的⾓加速度与它所受的合外⼒矩成正⽐,与刚体的转动惯量成反⽐,这⼀关系称为转动定律.这是刚体绕定轴转动的基本定律.刚体绕定轴转动的其他定律都可以由这条定律导出.值得注意,这条定律是从⽜顿第⼆、第三定律推出的.三、转动惯量把转动定律αJ M =与⽜顿第⼆定律F = ma ⽐较,可以看出,这两个式⼦⼗分相似,M 对应于F ,α对应于a ,J 对应于m .我们知道,物体的质量m 是物体的平动惯性⼤⼩的量度,与此类似,物体的转动惯量J 是物体的转动惯性⼤⼩的量度.这可以从转动定律αJ M =看出.转动惯量不同的两个刚体,在相同的图5-5 图5-6外⼒矩作⽤下,转动惯量⼤的刚体⾓加速度⼩,就是它的⾓速度难于改变,也就是转动惯性⼤;反之,转动惯量⼩的刚体,它的转动惯性⼩.根据转动惯量定义:∑=ii i r m J 2Δ如果刚体是由若⼲个质量为m 1,m 2,m 3,…的质点组成,在(5-6)式中Δm i 应代以m i ,得+++=233222211r m r m r m J (5-8)如果刚体的质量连续分布在⼀体积内,(5-6)式中总和式应代以积分式,Δm 应代以d m (刚体中的质量元),得==VV V r m r J d d 22ρ(5-9)其中d V 为刚体的体积元,ρ为体积元d V 处的质量体密度,此积分遍及于刚体的整个体积V .(5-9)式可推求如下:将刚体划分为许许多多⼩部分,每⼀部分的线度极⼩,使它可以看成⼀质点.设各⼩部分的质量为Δm 1,Δm 2,…,Δm i ,…,与转轴的距离依次为r 1,r 2,…,r i ,…,按照(5-6)式,刚体的转动惯量J 近似地等于∑i i m r Δ2,即∑≈ii i m r J Δ2设λ为各⼩部分的线度的最⼤值,λ越⼩,每⼀⼩部分越接近于⼀质点,因此和数∑i i m r Δ2越接近于J ,所以当0→λ时,和数∑i i m r Δ2的极限值便完全等于J 了,即∑→=ii i m r J Δlim 20λ按照⾼等数学,上式中右式就是定积分?Vm r d 2,于是得 ??==VV V r m r J d d 22ρ这就是(5-9)式如果刚体的质量连续分布在⼀⾯上或⼀细线上,则需引⽤质量⾯密度或线密度概念,计算转动惯量公式与上式相同,只需将体密度换为⾯密度或线密度,将体积元换为⾯积元或线元即可.参看例题5-2及5-3.在国际单位制中转动惯量单位为千克平⽅⽶,符号为kg·m 2,转动惯量的量纲为ML 2.⼏何形状简单的刚体,其转动惯量可⽤积分法算出,见表5-1.表5-1 质量分布均匀的⼏种刚体的转动惯量a) 细棒(转轴通过中⼼与棒垂直) b) 细棒(转轴过棒的⼀端与棒垂直) 2121ml J = 231ml J =c) 圆柱体(转轴沿⼏何轴) d) 球体(转轴沿球的任⼀直径)221mR J = 252mR J =e) 薄圆筒(转轴沿⼏何轴) f ) 圆筒(转轴沿⼏何轴)2mR J = )(212221R R m J +=例题5-2 求质量为m 、板长为l 的均匀细棒对于通过棒的中点⽽与棒垂直的轴的转动惯量.解在棒上取与轴OO ’距离为x 、长为d x 的⼀⼩段来考虑(图5-7),这⼀⼩段的质量为d m = λd x .其中λ为棒的质量线密度.根据转动惯量定义,棒对轴OO ’的转动惯量为32222121d d l x x m x J l l -λλ===?? 棒的质量线密度lm =λ,代⼊上式得 2121ml J = 例题5-3 求质量为m 、半径为r 的匀质圆盘对于通过圆⼼⽽垂直于圆平⾯的轴的转动惯量.解在圆盘上取⼀半径为x ,宽为d x 的圆环来考虑(图5-8),这圆环的⾯积为2πx d x ,质量为d m = 2πσx d x ,其中σ为圆盘的质量⾯密度.根据转动惯量定义,圆盘对通过圆⼼O ⽽垂直圆平⾯的轴的转动惯量为4032π21d π2d r x x m x J r σσ===?? 圆盘的质量⾯密度2πrm =σ,代⼊上式得 221mr J = 上式对匀质圆柱体对于它的⼏何轴的转动惯量亦适⽤.决定刚体的转动惯量J 的⼤⼩因素有三:①刚体的质量;②刚体质量分布情况;③刚体的转轴的位置.例如质量均匀、⼤⼩相同的铅球和铜球,由于铅球质量较⼤,所以对于位置相同的轴来说,铅球的J 较⼤.⼜如有两个圆柱体,外径相等,质量也相等,但其中⼀个为实⼼,另⼀个为空⼼(质量分布不同),则对于它们的⼏何轴来说空⼼的圆柱体的J 较⼤.⼜如同⼀根棒对于通过棒的中⼼与棒垂直的轴与对于通过棒的⼀端与棒垂直的轴的J 不相同.例题 5-4 在半径分别为R 1、R 2的阶梯形滑轮上反向绕有两根轻绳,各悬挂质量为m 1、m 2的物体,如图5-9所⽰.若滑轮与轴间的摩擦忽略不计,滑轮的转动惯量为J ,求滑轮的⾓加速度α及各绳中张⼒F T1、F T2.解分析各物体的受⼒情况,如图5-9右图,对于滑轮,重⼒和轴的⽀承⼒通过轴⼼,其⼒矩为零.由于是轻绳,应有F T1 = F’T1,F T2 = F ’T2.先假设物体运动⽅向为:m 1的加速度a 1向下,m 2的加速度a 2向上,滑轮沿顺时针⽅向转动.选取物体运动⽅向为坐标轴正向,根据⽜顿第⼆定律和转动定律可得111T 1a m F g m =- 2222T a m g m F =- αJ R F R F =-22T 11T 滑轮边缘的切向加速度等于物体的加速度:αα2211 ,R a R a == 解以上各式得 g R m R m J R m R m 2222112211++-=α g m R m R m J R R m R m J R g m F 1222211212222111T )(???? ?++++=-=α图5-7 图5-8图5-9gm R m R m J R R m R m J R g m F 2222211211211222T )(???? ?++++=+=α讨论:1) 当m 1gR 1 > m 2gR 2 时,物体运动⽅向与原假定⽅向相同.2) 当m 1gR 1 = m 2gR 2 时,α = 0,滑轮作匀速转动或静⽌,运动状态或⽅向由初时刻条件决定.3) 当m 1gR 1 < m 2gR 2时,物体运动⽅向与原假定⽅向相反,即m 1向上,m 2向下,滑轮沿反时针⽅向转动.§5-3 转动动能⼒矩的功⼀、转动动能如图5-10,设刚体绕通过O 点⽽垂直于图平⾯的定轴转动,⾓速度为ω.当刚体转动时,刚体中各质点都绕定轴作圆周运动,因⽽都有动能.刚体的转动动能等于刚体中所有质点的动能之和.设各质点的质量为Δm 1,Δm 2,Δm 3,…,与转轴的距离为r 1,r 2,r 3,…,线速度为v 1 = r 1ω,v 2 = r 2ω,v 3 = r 3ω,…,则刚体的转动动能为22223322222211k Δ21 Δ21Δ21Δ21ωωωω??=+++=∑i i i r m r m r m r m E 但J r m ii i =∑2Δ为刚体的转动惯量,故E k ⼜可写为2k 21ωJ E =(5-10)即刚体的转动动能等于刚体的转动惯量与⾓速度的平⽅的乘积的⼀半,(5-10)式与平动动能公式2k 21v m E =形式相似,⽽且量纲也相同.⼆、⼒矩的功如图5-11,设绕定轴转动的刚体在外⼒F 作⽤下有⼀⾓位移d θ,⼒F 在垂直于转轴的平⾯上,从转轴到⼒的作⽤点的径⽮为r ,则⼒的作⽤点的位移d r 的⼤⼩为d s = r d θ.根据定义,⼒F 在位移d r 中的功为d W = F · d r = F cos α d s因α与φ互为余⾓,cos α = sin φ,故上式可写为d W = Fr sin φd θ⼜由(5-2)式Fr sin φ = M 为⼒F 对转轴的⼒矩,故⼜可写为图5-10 图5-11d W = M d θ(5-11)这就是⼒矩M 在微⼩⾓位移d θ中的功的公式.当刚体在⼒矩M 作⽤下产⽣⼀有限⾓位移θ时,⼒矩的功等于(5-11)式的积分:=θθ0d M W (5-12)如果⼒矩M 为常量,则θθθθθM M M W ===??00d d (5-13)如果刚体同时受到⼏个⼒作⽤,则(5-11)及(5-12)式中M 应理解为这⼏个⼒的合⼒矩.当外⼒矩对刚体作功时,刚体的转动动能就要变化,下⾯我们来求⼒矩的功与刚体转动动能的变化之间的关系.由转动定律tJ J M d d ωα== 其中M 为作⽤于刚体的合外⼒矩,在d t 时间内刚体的⾓位移为d θ = ωd t ,合外⼒矩的功为ωωωωθd d d d d d J t t J M W =??== 当刚体的⾓速度由ω1变为ω2时,合外⼒矩对刚体所作的功等于上式的积分,即21222121d 21ωωωωωωJ J J W -==? (5-14)上式指出,合外⼒矩对刚体所作的功等于刚体的转动动能的增量.例题5-5 ⼀长为l 质量为m 的均匀细长杆OA ,绕通过其⼀端点O 的⽔平轴在铅垂⾯内⾃由摆动.已知另⼀端点A 过最低点时的速率为v 0,杆对通过端点O ⽽垂直于杆长的轴的转动惯量231ml J =,若空⽓阻⼒及轴上的摩擦⼒都可以忽略不计,求杆摆动时A 点升⾼的最⼤⾼度h .解作⽤于杆的⼒有重⼒m g 及轴对杆的⽀承⼒F N ,⽀承⼒F N 通过O 点,其⼒矩为零.重⼒m g 作⽤于杆的质⼼C ,⼒矩为θsin 2l mg ,当杆沿升⾼⽅向有⾓位移d θ时,由于重⼒矩与⾓位移转向相反.其元功为θθd sin 2d l mg W -= 设θm 为杆的最⼤⾓位移,当杆从平衡位置转到最⼤⾓位移θm 位置时,重⼒矩所作的总功为)cos 1(2d sin 2d m 0m θθθθ--=-==??l mg l mg W W 由图5-12看出,h = l (1-cos θm ),代⼊上式得图5-12mgh W 21-= 杆在平衡位置时的⾓速度l00v =ω,在⾓位移最⼤时的⾓速度0m =ω.由于合外⼒矩的功等于转动动能的增量,故得 20220220613121 21021v v m l m l J m gh W -=??-=-=-=ω由此得 gh 320v = §5-4 绕定轴转动的刚体的⾓动量和⾓动量守恒定律当刚体以⾓速度ω绕定轴转动时,刚体中各质点都绕定轴作圆周运动.设质点P i 的质量为Δm i ,与轴的距离为r i ,线速度的⼤⼩为v i ,则质点P i 的动量的⼤⼩为Δm i v i (图5-13),P i 对转轴的⾓动量为Δm i v i r i .刚体中所有质点的⾓动量之和称为刚体对转轴的⾓动量,⽤L 表⽰,则ωωωJ r m r m r m L i i i i i i i i i i =??===∑∑∑22ΔΔΔv这样,刚体的转动定律可写为tL t J t JM d d d )d(d d ===ωω即 tJ t L M d )d(d d ω== (5-15)可以证明:(5-15)式不但适⽤于绕定轴转动的刚体,⽽且适⽤于绕定轴转动的任意物体或物体系.所不同的是,对于绕定轴转动的刚体来说,转动惯量J 是不变的,但对于绕定轴转动的任意物体或物体系来说,J 是可以变化的.在特殊情形下,如果作⽤于转动物体的合外⼒矩M = 0,则由(5-15)式,我们有L = J ω = 常量(5-16)即当物体所受的合外⼒矩等于零时,物体的⾓动量J ω保持不变,这⼀结论称为⾓动量守恒定律.⾓动量守恒有两种情形:① J 不变的情形,由(5-16)式得知ω亦不变,地球的⾃转差不多是这种情形;② J 是变化的情形,由(5-16)式得知,当J 减⼩时,ω增⼤;当J 增⼤时,ω减⼩.例如⼀⼈坐在可以绕铅直轴⾃由转动的凳⼦上,⼿中握着两个很重的哑铃.当他两臂伸开时,使凳⼦和⼈⼀起转动起来,假设轴承处的摩擦很⼩可以忽略不计,则凳⼦和⼈没有受到外⼒矩作⽤,其⾓动量J ω保持不变(图5-14a).当⼈把两臂收缩时,转动惯量J 减⼩,⾓速度ω就增⼤,即是说⽐两臂伸开时要转得快些(图5-14b).⼜如跳⽔运动员在空中翻筋⽃图5-13时,先把两臂伸直,当他从跳板跳起时使他⾃⼰以某⼀⾓速度绕通过腰部的⼀⽔平轴线转动,在空中时使臂和腿尽量蜷缩起来,以减⼩转动惯量,因⽽⾓速度增⼤,在空中迅速翻转,当他快要接近⽔⾯时,再伸直两臂和腿以增⼤转动惯量,减⼩⾓速度,以便竖直地进⼊⽔中.⾓动量守恒定律,与前⾯介绍过的动量守恒定律和能量守恒定律⼀样,是⾃然界中的普遍规律之⼀,不但适⽤于宏观物体的机械运动,也适⽤于原⼦、原⼦核和基本粒⼦等微观粒⼦的运动.例题5-6 ⼀⽔平放置的圆盘形转台.质量为m ’,半径为R ,可绕通过中⼼的竖直轴转动,摩擦阻⼒可以忽略不计.有⼀质量为m 的⼈站在台上距转轴为2R 处.起初⼈和转台⼀起以⾓速度ω1转动,当这⼈⾛到台边后,求⼈和转台⼀起转动的⾓速度ω2.解以⼈和转台为⼀系统,该系统没有受到外⼒矩作⽤,因此⾓动量守恒:J 1ω1 = J 2ω2 =常量即 22212221421ωω??? ??+'=???? ?+'mR R m R m R m 由此得 12422ωωmm m m +'+'= 思考题5-1 对于定轴转动刚体上的不同点来说,下⾯的物理量中哪些具有相同的值,哪些具有不同的值?线速度、法向加速度、切向加速度、⾓位移、⾓速度、⾓加速度.5-2 飞轮转动时,在任意选取的⾓位移间隔Δθ内,⾓速度的增量Δω相等,此飞轮是在作匀加速转动吗?5-3 作⽤在刚体上的合外⼒为F ,合外⼒矩为M ,举例说明在什么情况下(1) F ≠ 0⽽M = 0;(2) F = 0⽽M ≠ 0;(3) F = 0且M = 0.5-4 当刚体受到若⼲外⼒作⽤时,能否⽤平⾏四边形法先求它们的合⼒,再求合⼒的⼒矩?其结果是否等于各外⼒的⼒矩之和?5-5 在磁带录⾳机中,驱动装置将磁带匀速拉过读写磁头,于是磁带被拉出的⼀端卷带轴上剩余的磁带半径逐渐减⼩,作⽤在该卷带轴上的⼒矩随时间如何变化?该卷带轴的⾓速度随时间如何变化?5-6 如果要设计⼀个存储能量的飞盘,在质量和半径相同的情况下,应该选取质量均匀分布的圆盘形的还是质量集中在边缘的圆环形的呢?当⾓速度相同时,⼆者的转动动能之⽐为多少?图5-145-7 ⼏何形状完全相同的铁圆盘与铝圆盘,哪⼀个绕中⼼对称轴的转动惯量⼤?要使它们由静⽌开始绕轴转动并获得相同的⾓速度,对哪⼀个圆盘外⼒矩要作更多的功?5-8 恒星起源于缓慢旋转的⽓团,在重⼒作⽤下,这些⽓团的体积逐渐减⼩,在恒星尺度收缩的过程中,它的⾓速度如何变化?习题5-1 ⼀个螺丝每厘⽶长度上有20条螺纹,⽤电动螺丝起⼦驱动,在12.8s 内推进了1.37cm ,求螺丝的平均⾓速度.5-2 转盘半径为10.0cm ,以⾓加速度10.0 rad/s 2由静⽌开始转动,当t = 5.00s 时,求(1) 转盘的⾓速度;(2) 转盘边缘的切向加速度和法向加速度.5-3 ⼀个匀质圆盘由静⽌开始以恒定⾓加速度绕过中⼼⽽垂直于盘⾯的定轴转动.在某⼀时刻,转速为10.0 r/s ,再转60转后,转速变为15.0 r/s ,试计算:(1)⾓加速度;(2)由静⽌达到10.0 r/s 所需时间;(3)由静⽌到10.0 r/s 时圆盘所转的圈数.5-4 如图所⽰,半径r 1 = 30.0 cm 的A 轮通过⽪带被半径为r 2 = 75.0 cm 的B 轮带动,B 轮以π rad/s 的匀⾓加速度由静⽌起动,轮与⽪带间⽆滑动发⽣,试求A 轮⾓速度达到3.00×103 r/min 所需要的时间.5-5 在边长为b 的正⽅形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中⼀质点A ,平⾏于对⾓线BD 的转轴,如图所⽰.(2)通过A 垂直于质点所在平⾯的转轴.5-6 求半径为R ,质量为m 的均匀半圆环相对于图中所⽰轴线的转动惯量.5-7 代换汽车引擎盖密封垫时要求对螺栓的扭矩达到90.0N·m(扭矩过⼤会使密封垫失效),如果使⽤长度为45.0 cm 的扳⼿,如图所⽰,在垂直于扳⼿⼿柄⽅向⽤多⼤的作⽤⼒可以完成这⼀⼯作?5-8 ⽔井上提⽔的辘轳为圆柱形,半径为0.200m ,质量为5.00kg ,辘轳缠绕的轻绳上悬挂的⽔桶质量为3.00kg ,如图所⽰.辘轳失去控制使⽔桶⽆初速地下落,在2.00s 后达到井下⽔⾯,忽略辘轳轴上的摩擦阻⼒,求(1) ⽔桶下落的加速度;(2) 井⼝到⽔⾯的深度;(3) 辘轳的⾓加速度.题5-4图题5-5图题5-6图题5-7图5-9 圆盘形飞轮直径为1.25m ,质量为80.0kg ,飞轮上附着的滑轮半径为0.230m ,质量可以忽略,电动机通过环绕滑轮的⽪带驱动飞轮顺时针旋转,如图所⽰.当飞轮的⾓加速度为1.67rad/s 2时,上段⽪带中的张⼒为135N ,忽略轴上的摩擦阻⼒,求下段⽪带中的张⼒.5-10 制陶旋盘半径为0.500m ,转动惯量为12.0kg·m 2,以转速50.0r/min 旋转.陶⼯⽤湿抹布沿径向施加70.0N 的⼒按住旋盘的边缘,使之在6.00s 内制动,求旋盘的边缘和湿抹布之间的有效滑动摩擦系数.5-11 ⼀轻绳跨过滑轮悬有质量不等的⼆物体A 、B ,如图所⽰,滑轮半径为20.0 cm ,转动惯量等于50.0 kg·m 2,滑轮与轴间的摩擦⼒矩为98.1N·m ,绳与滑轮间⽆相对滑动,若滑轮的⾓加速度为2.36 rad/s 2,求滑轮两边绳中张⼒之差.5-12 如图所⽰的系统中,m 1 = 50.0 kg ,m 2 = 40.0 kg ,圆盘形滑轮质量m = 16.0 kg ,半径R = 0.100 m ,若斜⾯是光滑的,倾⾓为30°,绳与滑轮间⽆相对滑动,不计滑轮轴上的摩擦,(1)求绳中张⼒;(2)运动开始时,m 1距地⾯⾼度为1.00 m ,需多少时间m 1到达地⾯?5-13 飞轮质量为60.0 kg ,半径为0.250 m ,当转速为1.00×103 r/min 时,要在5.00 s 内令其制动,求制动⼒F ,设闸⽡与飞轮间摩擦系数µ = 0.400,飞轮的转动惯量可按匀质圆题5-8图题5-9图题5-11图题5-12图题5-13图题5-15图盘计算,闸杆尺⼨如图所⽰.5-14 ⼀个风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,⽌动前它转过了75转,在此过程中制动⼒作的功为44.4 J ,求风扇的转动惯量和摩擦⼒矩.5-15 如图所⽰,质量为24.0 kg 的⿎形轮,可绕⽔平轴转动,⼀绳缠绕于轮上,另⼀端通过质量为5.00 kg 的圆盘形滑轮悬有10.0 kg 的物体,当重物由静⽌开始下降了0.500 m 时,求:(1)物体的速度;(2)绳中张⼒.设绳与滑轮间⽆相对滑动.5-16 蒸汽机的圆盘形飞轮质量为200 kg ,半径为1.00 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5.00 min 内停下来,求在此期间飞轮轴上的平均摩擦⼒矩及此⼒矩所作的功.5-17 长为85.0 cm 的均匀细杆,放在倾⾓为45°的光滑斜⾯上,可以绕过上端点的轴在斜⾯上转动,如图所⽰,要使此杆实现绕轴转动⼀周,⾄少应给予它的下端多⼤的初速度? 5-18 如图所⽰,滑轮转动惯量为0.0100 kg·m 2,半径为7.00 cm ,物体质量为5.00 kg ,由⼀绳与劲度系数k = 200 N/m 的弹簧相连,若绳与滑轮间⽆相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧⽆伸长时,使物体由静⽌⽽下落的最⼤距离;(2)物体速度达最⼤值的位置及最⼤速率. 5-19 圆盘形飞轮A 质量为m ,半径为r ,最初以⾓速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静⽌,如图所⽰,两飞轮啮合后,以同⼀⾓速度ω转动,求ω及啮合过程中机械能的损失. 5-20 ⼀⼈站在⼀匀质圆板状⽔平转台的边缘,转台的轴承处的摩擦可忽略不计,⼈的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静⽌的,这⼈把⼀质量为m 的⽯⼦⽔平地沿转台的边缘的切线⽅向投出,⽯⼦的速率为v (相对于地⾯).求⽯⼦投出后转台的⾓速度与⼈的线速度.5-21 ⼀⼈站⽴在转台上,两臂平举,两⼿各握⼀个m = 4.00 kg 的哑铃,哑铃距转台轴r 0 = 0.800 m ,起初,转台以ω0 = 2π rad/s 的⾓速度转动,然后此⼈放下两臂,使哑铃与轴相距r = 0.200 m ,设⼈与转台的转动惯量不变,且J = 5.00 kg·m 2,转台与轴间摩擦忽略不计,求转台⾓速度变为多⼤?整个系统的动能改变了多少?5-22 证明刚体中任意两质点相互作⽤⼒所作之功的和为零.如果绕定轴转动的刚体除受到轴的⽀承⼒外仅受重⼒作⽤,试证明它的机械能守恒.5-23 ⼀块长L = 0.500 m ,质量为m =3.00 kg 的均匀薄⽊板竖直悬挂,可绕通过其上端的⽔平轴⽆摩擦地⾃由转动,质量m = 0.100 kg 的球以⽔平速度v 0 = 50.0 m/s 击中⽊板中题5-17图题5-18图题5-19图⼼后⼜以速度v = 10.0 m/s 反弹回去,求⽊板摆动可达到的最⼤⾓度.⽊板对于通过其上端轴的转动惯量为231L m J '= . 5-24 半径为R 质量为m '的匀质圆盘⽔平放置,可绕通过圆盘中⼼的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具⼩车分别沿⼆轨道反向运⾏,相对于圆盘的线速度值同为v .若圆盘最初静⽌,求⼆⼩车开始转动后圆盘的⾓速度.5-25 花样滑冰运动员起初伸展⼿臂以转速1.50r/s 旋转,然后他收拢⼿臂紧靠⾝体,使他的转动惯量减少到原来的3/4,求该运动员此时的转速.5-26 旋转⽊马转盘半径为2.00m ,质量为25.0kg ,假设可视为圆盘形刚体,转速为0.200r/ s ,⼀个质量为80.0kg 的⼈站在转盘边缘.当此⼈⾛到距转轴1.00m 处时,求转盘的⾓速度和⼈和转盘组成的系统转动动能的改变量.。
大学物理第5章刚体
B C
分析受力和力矩情况
第一篇 力 学
解:由ABC和绳子组成系统为研究对象,分析受力和力矩情况。
系统受到的合力矩: M m2 gr m3gr
对整个系统列出角动量定理积分形式
t
Mdt Lt L0
t0
分别计算,有 Mdt (m2gr m1gr)t
L0 0
0
L
LA
若质量连续分布 J r2dm
一维
二维
三维
dm
dl
线密度 dm dl
J r2dl
面密度 dm dS
J r2dS
体密度 dm dV
J r2dV
第一篇 力 学
例1.求长为L、质量为m的均匀细棒对图中不同轴的转动惯量。
解:取如图坐标,dm=dx
J A
L x2dx mL2 / 3
0
L
JC
2 L
x2dx
mL2
/12
2
A L
A
C
L/2
B X
B L/2 X
例2.求质量为m、半径为R的均匀圆环的转动惯量。轴与圆环平面垂
直并通过圆心。
解:
J R2dm R2 dm mR2
O
R
dm
第一篇 力 学
例3.求长求质量为m、半径为R均匀圆盘的转动惯量。轴与盘平面垂 直并通过盘心。
解:取半径为r宽为dr 的薄圆环
dm 2rdr
dJ r2dm 2r3dr
dr rR
J dJ R 2r3dr 1 R4
0
2
m
R 2
刚体的概念
刚体的概念
刚体的概念
在物理学中,刚体是一种性质,它指的是一种物体不可能修改其形状或尺寸的物质。
这是从物理性质上来定义的,而非从物理形状来定义。
刚体在物理中是很重要的概念,因为它的存在是建立起物理理论的基石。
刚体可以分为仿射刚体和回转刚体。
前者具有平行平移性质,即当仿射变换施加到仿射刚体时,它会产生平行平移的动作;而后者则具有转动性质,即当施加变换到回转刚体时,它会产生转动的作用。
由于刚性的存在,使物理学中力学的研究成为可能,位移、速度、加速度这些物理概念就是以刚体作为基础所研究出来的。
此外,刚体的概念在动力机械学中也起着重要作用,因为有了刚体可以利用运动定律来研究动机械设备的运动性能等问题。
因此,可以看出,刚体在物理学中是十分重要的概念,在众多的物理理论研究中都有着重要的作用。
下面的研究工作也可以利用刚体的概念来进行,因为刚体可以用来理解许多物理概念,包括力学中的运动、加速度及动力学中的机械作动等问题。
其中,刚体可以分为仿射刚体和回转刚体,其区别在于前者能够施加一个平行移动的作用,而后者可以施加一个转动的作用。
刚体物理知识点总结
刚体物理知识点总结一、刚体的定义及特性1. 刚体的定义刚体是指在外力作用下,形状和尺寸不发生变化的物体。
一般来说,刚体是指没有内部相对运动的物体。
2. 刚体的特性刚体有以下几个特性:a. 物体的形状和尺寸在运动过程中不发生变化;b. 物体的不同部分之间不发生相对位移;c. 在极端条件下,刚体也会发生形变,但可以看作是不可压缩的。
二、刚体的平动和转动1. 刚体的平动刚体的平动是指刚体作直线运动的情况。
在平动的过程中,刚体上各点的速度都是相同的,这是因为刚体的各点不能相对位移,所以只能做整体平移运动。
2. 刚体的转动刚体的转动是指刚体作圆周运动的情况。
在转动的过程中,刚体各点的速度和加速度都不相同,这是因为刚体的各点在转动时会有相对位移,出现了圆周运动。
三、刚体的运动学1. 刚体的位移刚体的位移是指刚体某一点经过一定时间后的位置变化,可以用矢量来表示。
2. 刚体的速度刚体的速度是指刚体某一点的位移随时间的变化率,通常表示为瞬时速度或平均速度。
3. 刚体的加速度刚体的加速度是指刚体某一点的速度随时间的变化率,可以用矢量来表示。
4. 刚体的角位移、角速度和角加速度在刚体的转动运动中,还涉及到角位移、角速度和角加速度的概念。
角位移是指刚体某一点的角度随时间的变化量,角速度是指刚体某一点的角位移随时间的变化率,而角加速度是指刚体某一点的角速度随时间的变化率。
四、刚体的动力学1. 牛顿定律在刚体运动中的应用刚体的运动过程中会受到外力的影响,根据牛顿定律可以得到刚体的运动规律。
在刚体的运动过程中,如果受到的合外力不为零,刚体将发生加速度,根据牛顿第二定律可以得到加速度的大小和方向。
2. 刚体的转动惯量和角动量在刚体的转动运动中,需要引入转动惯量和角动量的概念。
转动惯量是衡量刚体抵抗转动的能力大小,它是刚体的质量分布和转动轴的位置决定的。
角动量是刚体的转动运动的物理量,它是刚体的转动惯量和角速度的乘积。
3. 常见刚体的运动条件在刚体的运动过程中,还需要考虑摩擦力、滚动摩擦力、空气阻力等对刚体运动的影响。
物理刚体知识点总结
物理刚体知识点总结一、刚体的概念和性质刚体是指物体的形状和大小在外力作用下不发生变化的物体。
刚体的性质包括:刚体的各部分之间的相对位置关系在运动时不发生变化;刚体的各点在一个时间内不发生相对位移;刚体是不可压缩的;刚体的形状和大小在外力作用下不发生变化。
在学习刚体的物理知识时,需要掌握刚体的这些概念和性质。
二、刚体的平动和转动运动刚体的运动包括平动和转动两种。
平动是指刚体的各点在任一时刻都有同样的速度和同样的加速度,而转动是指刚体的各点在任一时刻都有不同的速度和不同的加速度。
在学习刚体的物理知识时,需要了解平动和转动的特点,以及刚体在这两种运动中的表现和规律。
三、刚体的运动方程和刚体的运动规律刚体的运动方程描述了刚体在平动和转动中的运动规律。
对于平动,刚体的平动方程是牛顿第二定律的推广和应用,即F=ma;对于转动,刚体的转动方程涉及力矩和角加速度的关系,即τ=Iα。
刚体的运动规律包括牛顿定律、动量定理和角动量定理。
在学习刚体的物理知识时,需要掌握刚体的运动方程和运动规律,并能够应用它们解决实际问题。
四、刚体的静力学刚体的静力学研究了刚体在平衡状态下的性质和规律。
刚体在平衡状态下,外力矩的和为零,即Στ=0;刚体的平衡方程是ΣF=0。
刚体的静力学还包括平衡条件和平衡的稳定性条件。
在学习刚体的物理知识时,需要了解刚体的静力学和平衡状态的相关概念和定律,并能够应用这些知识解决实际问题。
五、刚体的运动学刚体的运动学研究了刚体的位移、速度和加速度等运动参数的关系。
刚体的平动和转动运动都涉及位置、速度和加速度的关系。
刚体的平动运动参数包括位移、速度和加速度;刚体的转动运动参数包括角位移、角速度和角加速度。
在学习刚体的物理知识时,需要了解刚体的运动学,并能够应用它们描述和分析刚体的运动。
六、刚体的动力学刚体的动力学研究了刚体的运动与外力之间的关系。
刚体在运动中受到的外力包括平动受力和转动受力。
平动受力包括牛顿定律描述的作用在质点上的力,而转动受力则是力矩的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
dm dV
例:一匀质细棒的质量为M,长为L,求以下三种情 况下细棒对给定转轴的转动惯量。 (a)转轴通过棒的中心并与棒垂直; (b)转轴通过棒的一端并与棒垂直; (c)转轴通过棒上离中心为D的一点并与棒垂直。转动 惯量与距离D的关系是什么? z (a) 棒的质量线密度为λ = M/L, 如图所示,转动轴O通过棒的中心。 在棒上离轴x处取一线元dx, 其质量为:dm dx 转动惯量为:dJC
平动:刚体中所 有点的运动轨迹都保 持完全相同.
特点:各点运动 状态一样,如: 、 a v 等都相同.
平动 可用质心运动讨论。
描述刚体平动时可以用一点的运动来代表, 常用刚体的质心运动代表整个刚体的平动。
转动 在刚体运动过程中, 如果刚体上所有的点 都绕同一条直线作圆周运动,那么这种运动就称为 转动。这条直线称为转轴。 转动:分定轴转动和非定轴转动 如果转轴对参照系是固定的,刚体的转动称 为定轴转动,它是转动的最简单情况。
当D = L/2时,J就是绕端点轴的转动惯量。
细棒的转动惯量随中心转轴的距离增加而增加。
细棒绕中心轴的转动惯量系数为1/12, 绕端点轴的转动惯量系数为1/3。
(2)一匀质球壳的质量为M,内半径为R0,外半径 为R,求球壳对通过球心的转轴的转动惯量。转 动惯量与半径比R0/ R的关系是什么?
z
解:球壳的体积为:
当球壳的质量和外半径一定时,球 壳的转动惯量随厚度的减小而增加。 球体绕半径轴的转动惯量系数为2/5, 球面绕半径轴的转动惯量系数为2/3。
V
4π 3 3 ( R R0 ) 3
M 3M 质量体密度为: 3 V 4π( R3 R0 )
M D R0 R θ r dv O φ
x
y
如图所示,在球壳中取一体积元,
其体积为:
dv r sin ddrd
2
体积元体积为:
z M D R0 R θ r dv O φ
dv r sin ddrd
J d sin d r dr
3 4 0 0 R0 2π 1)dcos ( R R0 ) x 5 0
2
π
1 3 1 5 5 2π( cos cos ) ( R R0 ) 3 0 5
5 2 R5 R0 8 5 5 π ( R R0 ) M 3 3 . 5 R R0 15
2
其质量为:
y
dm dv r 2 sin ddrd
体积元到转动轴z的距离为:
x
D r sin
转动惯量为:
x
dJ D2dm d sin3 dr 4dr
dJ D dm d sin dr dr
2 3 4
z M D R0 R θ r dv O φ
球壳的转动惯量为 :
z
O
x
dx
x
当转动轴距离中心的转轴为D时: 积分下限是: ( L / 2 D)
D -L/2 O' O L M x dx L/2
积分上限是: ( L / 2 D)
可计算转动惯量。
x
不过利用平行轴定理立即可得:
1 J J C MD ML2 MD 2 12
2
当D = 0时,J就是绕中心轴的转动惯量;
与转动惯量有关的因素:
刚体的质量、刚体的形状(质量分布)、转轴的位置。
转动惯量的计算
J z mi ri2 J z r dm 或者 M
2
i
物理意义:转动惯性的量度
质量连续分布刚体的转动惯量 对质量线分布的刚体: dm dl 对质量面分布的刚体: dm dS 对质量体分布的刚体:
刚体的一般运动可看作: 平 动
+
转 动
的合成
2. 刚体对转轴的转动惯量
转动惯量 (rotational inertia)定义为:
J mi ri
i
2
J
r
M
2
dm
转动惯量的单位是:单位kg· 2 m 因此:
Lz J z
转动惯量J等于刚体中每个质点的质量与这一质 点到转轴的距离的平方的乘积的和,而与质点的运 动速度无关,决定于刚体的各部分的质量对给定转 轴的分布情况。
1.6
刚体定轴转动中的牛顿力学
刚体:在外力作用下,形状和大小都不发生 变化的物体. 刚体的形状与大小始终保持不变,因而各部分之 间的相对位置保持不变。刚体是这样一种特殊的质 点系,其中任意两质点的距离都保持不变。 说明:⑴ 刚体是理想模型 ⑵ 刚体模型是为简化问题引进的.
刚体的运动形式:平动、转动.
π
讨论: 5 2 R5 R0 球壳的转动惯量为: J M 3 3
5 R R0
当R0 = 0时,球壳变成球体,球体的转动惯量为
2 J1 MR 3 5
当R0→R时,球壳演变成球面,将分子和分母分别 展开,可得球面的转动惯量
2 2 J MR 0 3
比较同一质量和半径的球体和球面,由于球面质量 的分布离轴更远,其转动惯量更大。
O
x dx
x
x dm x dm
2 2
整个棒绕轴的转动惯量为
z
1 3 L 12
O
1 3 J C x dx x 3 L/ 2
2
L/2
L/2
x dx
x
L/ 2
1 2 ML . 12
(b) 转轴通过棒的一端并与棒垂直;
M dx 解:取质元 dm L L 2 2 M J z x dm x dx 0 L 1 J z ML2 3