双星模型

合集下载

2023届高三物理复习重难点突破33双星多星模型 卫星的变轨及能量问题 拉格朗日点(解析版)

2023届高三物理复习重难点突破33双星多星模型  卫星的变轨及能量问题  拉格朗日点(解析版)

专题33 双星多星模型卫星的变轨及能量问题拉格朗日点考点一双星模型双星系统:绕公共圆心转动的两个星体组成的系统,而且两颗星与该中心点总在同一直线上,如图,1.两个星体各自所需的向心力由彼此间的万有引力相互提供,即Gm1m2L2=m1ω21r1,Gm1m2L2=m2ω22r22.两颗星的周期及角速度都相同,即T1=T2,ω1=ω23.两颗星的半径与它们之间的距离关系为:r1+r2=L4.由m1ω21r1=m2ω22r2 得:两颗星到圆心的距离r1、r2与星体质量成反比,即m1m2=r2r15.双星的总质量公式m1+m2=4π2L3T2G推论:L3T2=kM总6.双星的运动周期T=2π)(213mmGL1.(多选)我国天文学家通过“天眼”(FAST,500米口径球面射电望远镜)在武仙座球状星团M13中发现一个脉冲双星系统,如图所示,由恒星A与恒星B组成的双星系统绕其连线上的O点做匀速圆周运动,若恒星A的质量为3m,恒星B的质量为5m,恒星A和恒星B之间的距离为L,引力常量为G。

下列说法正确的是()A.恒星A运行的角速度大于恒星B运行的角速度 B.恒星A与恒星B的线速度之比为5:3C.恒星A到O点的距离为35L D.恒星B的运行周期为π√L32Gm【答案】BD【解析】A.由于双星系统在相等时间内转过的圆心角相同,则双星的角速度一定相等,A错误;C.对恒星A有G5m×3mL2=3mω2rA对恒星B有G3m×5mL2=5mω2rB解得rArB=53又由于rA +rB=L解得rA=58L,rB=38L C错误;B.根据v=ωr解得vAvB=53B正确;D.恒星B的运行周期为T=2πω=π√L32GmD正确。

2.(2022·全国·高三课时练习)(多选)天文学家通过观测两个黑洞并合的事件,间接验证了引力波的存在。

该事件中甲、乙两个黑洞的质量分别为太阳质量的36倍和29倍,假设这两个黑洞绕它们连线上的某点做圆周运动,且两个黑洞的间距缓慢减小。

双星系统

双星系统
一、双星模型 (1)定义:绕公共圆心转动的两个星体组成的系统 ,我们称之为双星系统,如图所示.
(2)特点: ①各自所需的向心力由彼此间的万有引力相互提供 ②两颗星的周期及角速度都相同 ③两颗星的半径与它们之间的距离关系为 (3)两颗星到圆心的距离与星体质量成反比,与星体 运动的线速度成反比.
拓展: 1.若在双星模型中,图中L、m1、m2、G为已知量, 双星运动的周期如何表示? 2.若双星运动的周期为T,双星之间的距离为L,G 已知,双星的总质量如何表示?
球的影响,可以将月球和地球看成 上述星球A和B,月球绕其轨道中 心运行的周期记为T1ቤተ መጻሕፍቲ ባይዱ但在近似处 理问题时,常常认为月球是绕地心
做圆周运动的,这样算得的运行周 期为T2。已知地球和月球的质量分 别为5.98×1024 kg和7.35×1022 kg 。求T2与T1两者的平方之比。(结果 保留3位小数)
[典例2] (多选)宇宙间存在一些离其他恒星较远的三星 系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R,忽略
其他星体对它们的引力作用,三星在同一平面内绕三角 形中心O做匀速圆周运动,万有引力常量为G,则
(1)每颗星做圆周运动的线速度? (2)每颗星做圆周运动的角速度? (3)每颗星做圆周运动的周期?
(二)宇宙三星模型 (1)定义:所研究星体的万有引力的合力提供做圆周运 动的向心力,除中央星体外,各星体的角速度或周期 相同. (2)三星模型: ①三颗星位于同一直线上,两颗环绕
星围绕中央星在同一半径 为R的圆形轨道上运行 ②三颗质量均为m的星体位 于等边三角形的三个顶点 上(如图乙所示).
(三)宇宙四星模型
万有引力的合力提供做圆周运动的向心力,除中央 星体外,各星体的角速度或周期相同.

(完整版)双星三星四星问题

(完整版)双星三星四星问题

双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。

2.模型条件: (1)两颗星彼此相距较近。

(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3)两颗星绕同一圆心做圆周运动。

3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。

(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。

(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。

②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。

二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

双星模型知识点总结

双星模型知识点总结

双星模型知识点总结双星模型(Dual Star Model)是一种用于研究宇宙中双星系统的模型,这是一种包括一颗恒星和另一颗天体(通常是另一个恒星)的天体系统。

在宇宙中,双星系统是非常普遍的一种天体系统。

在这种系统中,两颗天体围绕着彼此运转,并由于引力相互作用而产生一系列复杂的现象。

因此,研究双星系统可以帮助我们更深入地了解宇宙的一些基本物理规律,例如引力相互作用、恒星演化、宇宙起源等。

双星系统的构成双星系统通常由两种类型的天体组成,分别为主要成员(Primary)和次要成员(Secondary)。

主要成员通常是一颗恒星,而次要成员则可以是其他类型的天体,例如行星、白矮星或中子星。

在一些情况下,双星系统的两颗天体都是恒星,这样的系统被称为双星。

双星的形成双星系统的形成有多种机制。

一种常见的形成机制是原始星团或星云中的恒星形成,这些恒星在形成过程中可能由于相互间的引力相互作用而形成双星系统。

另一种形成机制是两颗恒星在宇宙中产生的碰撞或者合并。

除此之外,还有一种形成机制是一颗恒星向另一颗恒星捕获而形成。

双星系统分类根据双星系统的性质和构成,我们可以根据多种分类方法对双星系统进行分类。

其中一个常见的分类方法是根据双星系统的物理间距来分类。

按照这种分类方法,双星系统可以被分为紧密双星系统和松散双星系统。

紧密双星系统是指两颗天体之间距离很近,它们之间的引力相互作用非常显著,造成一系列复杂的演化过程和现象。

而松散双星系统的两颗天体之间间距较大,它们之间引力相互作用较小。

另一个常见的分类方法是根据双星系统的构成类别来分类。

按照这种分类方法,我们可以将双星系统分为天体-恒星双星系统、恒星-恒星双星系统、行星-行星双星系统等等。

双星的运动规律双星系统的运动规律是由两颗天体间的引力相互作用决定的。

在双星系统中,两颗天体围绕着彼此运转。

根据牛顿引力定律,两颗天体之间的引力与它们之间的质量和距离成反比。

因此,双星系统中的天体将沿着椭圆轨道相互运转。

双星三星四星问题说课讲解

双星三星四星问题说课讲解

双星三星四星问题双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。

2.模型条件: (1)两颗星彼此相距较近。

(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3)两颗星绕同一圆心做圆周运动。

3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。

(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。

(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。

②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。

二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

高考专题10 双星及多星问题-高考物理一轮复习专题详解 Word版含解析

高考专题10 双星及多星问题-高考物理一轮复习专题详解 Word版含解析

高考重点难点热点快速突破1.双星模型(1)定义:绕公共圆心转动的两个星体组成的系统,我们称之为双星系统,如图所示.(2)特点:①各自所需的向心力由彼此间的万有引力相互提供,即Gm 1m 2L 2=m 1ω 21r 1,Gm 1m 2L2=m 2ω 22r 2 ②两颗星的周期及角速度都相同,即T 1=T 2,ω1=ω2③两颗星的半径与它们之间的距离关系为:r 1+r 2=L (3)两颗星到圆心的距离r 1、r 2与星体质量成反比,即m 1m 2=r 2r 1. 2.多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R 的圆形轨道上运行(如图3甲所示).②三颗质量均为m 的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙所示).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O ,外围三颗星绕O 做匀速圆周运动(如图丁所示).典例分析【例1】 (多选)(2017年昆明模拟)宇宙中两颗相距很近的恒星常常组成一个系统,它们以相互间的万有引力彼此提供向心力,从而使它们绕着某一共同的圆心做匀速圆周运动,若已知它们的运转周期为T ,两星到某一共同圆心的距离分别为R 1和R 2,那么,系统中两颗恒星的质量关系是( )A .这两颗恒星的质量必定相等B .这两颗恒星的质量之和为4π2R 1+R 23GT 2C .这两颗恒星的质量之比为m 1∶m 2=R 2∶R 1D .其中必有一颗恒星的质量为4π2R 1+R 23GT 2【答案】 BC【例2】:2016年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角,这是一个划时代的发现.在如图所示的双星系统中,A、B两个恒星靠着相互之间的引力正在做匀速圆周运动,已知恒星A的质量为太阳质量的29倍,恒星B的质量为太阳质量的36倍,两星之间的距离L=2×105 m,太阳质量M=2×1030 kg,引力常量G=6.67×10-11N·m2/kg2,π2=10.若两星在环绕过程中会辐射出引力波,该引力波的频率与两星做圆周运动的频率具有相同的数量级,则根据题目所给信息估算该引力波频率的数量级是( )A.102 Hz B.104 Hz C.106 Hz D.108 Hz【答案】 A【例3】:.经过用天文望远镜长期观测,人们在宇宙中已经发现了许多双星系统,通过对它们的研究,使我们对宇宙中物质的存在形式和分布情况有了较深刻的认识,双星系统由两个星体组成,其中每个星体的线度都远小于两星体之间的距离,一般双星系统距离其他星体很远,可以当成孤立系统来处理.现根据对某一双星系统的测量确定,该双星系统中每个星体的质量都是M,两者相距L,它们正围绕两者连线的中点做圆周运动.(1)计算出该双星系统的运动周期T;(2)若该实验中观测到的运动周期为T 观测,且T 观测∶T =1∶N (N >1).为了理解T 观测与T 的不同,目前有一种流行的理论认为,在宇宙中可能存在一种望远镜观测不到的暗物质.作为一种简化模型,我们假定在以这两个星体连线为直径的球体内均匀分布这种暗物质.若不考虑其他暗物质的影响,根据这一模型和上述观测结果确定该星系间这种暗物质的密度.【答案】 (1)πL2L GM (2)3N -1M2πL3 【解析】 (1)双星均绕它们连线的中点做圆周运动,万有引力提供向心力,则G M 2L 2=M ⎝⎛⎭⎪⎫2πT 2·L 2,解得T =πL2L GM.【例4】:由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m 、B 、C 两星体的质量均为m ,三角形的边长为a ,求:(1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T .【答案 】 (1)23G m 2a 2 (2)7G m 2a 2 (3)74a (4)πa 3Gm【解析】(1)由万有引力定律,A 星体所受B 、C 星体引力大小为F BA =G m A m B r 2=G 2m 2a2=F CA方向如图所示则合力大小为F A =F BA ·cos 30°+F CA ·cos 30°=23G m 2a2(3)由于m A =2m ,m B =m C =m通过分析可知,圆心O 在BC 的中垂线AD 的中点 则R C =⎝ ⎛⎭⎪⎫34a 2+⎝ ⎛⎭⎪⎫12a 2=74a (4)三星体运动周期相同,对C 星体,由F C =F B =7G m 2a 2=m (2πT)2R C ,可得T =πa 3Gm. 专题练习1:宇宙间存在一些离其他恒星较远的三星系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R ,忽略其他星体对它们的引力作用,三星在同一平面内绕三角形中心O 做匀速圆周运动,万有引力常量为G ,则( )A .每颗星做圆周运动的线速度为 Gm RB .每颗星做圆周运动的角速度为 3GmR 3C .每颗星做圆周运动的周期为2πR 33GmD .每颗星做圆周运动的加速度与三星的质量无关 【答案】 ABC【解析】由图可知,每颗星做匀速圆周运动的半径r =R2cos 30°=33R .由牛顿第二定律得Gm 2R 2·2cos 30°=m v 2r =mω2r =m 4π2T2r =ma ,可解得v =GmR,ω= 3GmR 3,T =2πR 33Gm ,a =3GmR2,故A 、B 、C 均正确,D 错误. 2.宇宙中存在一些质量相等且离其他恒星较远的四颗星组成的四星系统,通常可忽略其他星体对它们的引力作用.设四星系统中每个星体的质量均为m ,半径均为R ,四颗星稳定分布在边长为a 的正方形的四个顶点上.已知引力常量为G.关于宇宙四星系统,下列说法错误的是( )A . 四颗星围绕正方形对角线的交点做匀速圆周运动B . 四颗星的轨道半径均为C . 四颗星表面的重力加速度均为D . 四颗星的周期均为2πa【答案】B3.宇宙中存在一些离其他恒星较远,由质量相等的三个星体组成的三星系统,通常可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在的一种形式是三个星体位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,如图所示.设每个星体的质量均为m,相邻的两个星体之间的距离为L,引力常量为G,则( )A.该圆形轨道的半径为3 2 LB.每个星体的运行周期均为3πL3 2GmC.每个星体做圆周运动的线速度均为Gm LD.每个星体做圆周运动的加速度均与星体的质量无关【答案】:C4.双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动,研究发现,双星系统演化过程中,两星的总质量、距离和周期均可能发生变化,若某双星系统中两星做圆周运动的周期为T ,经过一段时间演化后,两星总质量变为原来的k 倍,两星之间的距离变为原来的n 倍,则此时圆周运动的周期为( )A.n 3k 2B.n 3k T C.n 2kT D.n kT 【答案】:B【解析】:设m 1的轨道半径为r 1,m 2的轨道半径为r 2,由于它们之间的距离恒定,因此双星在空间的绕向一定相同,同时角速度和周期也都相同,两星之间的万有引力提供两星做圆周运动的向心力,即Gm 1m 2r 1+r 22=m 1r 1⎝⎛⎭⎪⎫2πT 2,Gm 1m 2r 1+r 22=m 2r 2⎝ ⎛⎭⎪⎫2πT 2,可得T =2πr 1+r 23G m 1+m 2,故当两恒星总质量变为原来的k倍,两星间距变为原来的n 倍时,圆周运动的周期变为n 3kT ,B 正确. 5.经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的直径远小于两个星体之间的距离,而且双星系统一般远离其他天体.如图所示,两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1∶m 2=3∶2.则可知( )A .m 1、m 2做圆周运动的角速度之比为2∶3B .m 1、m 2做圆周运动的线速度之比为3∶2C .m 1做圆周运动的半径为r 1=25LD .m 2做圆周运动的半径为r 2=25L【答案:】C6. (多选)宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统.在浩瀚的银河系中,多数恒星都是双星系统.设某双星系统P、Q绕其连线上的O点做匀速圆周运动,如图所示.若PO>OQ,则( )A.星球P的质量一定大于Q的质量B.星球P的线速度一定大于Q的线速度C.双星间距离一定,双星的质量越大,其转动周期越大D.双星的质量一定,双星之间的距离越大,其转动周期越大【答案】BD7. (多选)宇宙中两个相距较近的星球可以看成双星,它们只在相互间的万有引力作用下,绕两球心连线上的某一固定点做周期相同的匀速圆周运动.根据宇宙大爆炸理论,双星间的距离在不断缓慢增加,设双星仍做匀速圆周运动,则下列说法正确的是( ) A.双星相互间的万有引力不变B.双星做圆周运动的角速度均增大C.双星做圆周运动的速度均减小D.双星做圆周运动的半径均增大【答案】CD【解析】双星间的距离在不断缓慢增加,由万有引力定律,F=G,知万有引力减小,A错误;根据万有引力提供向心力得G=m1r1ω2=m2r2ω2,可知m1r1=m2r2,知轨道半径比等于质量之反比,双星间的距离变大,则双星的轨道半径都变大,B 错误,D 正确;根据G=m 1v 1ω=m 2v 2ω,可得线速度减小,C 正确8. (多选)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕其连线上的某一点做周期相同的匀速圆周运动.若某双星系统中两星做圆周运动的周期为T ,两星总质量为M ,两星之间的距离为r ,两星质量分别为m 1、m 2,做圆周运动的轨道半径分别为r 1、r 2,则下列关系式中正确的是( )A . M =B . r 1=rC . T =2πD . =【答案】AC【解析】由于它们之间的距离恒定,因此双星在空间的绕向一定相同,同时角速度和周期也都相同.由向心力公式可得:对m 1:=m 1ω2r 1① 对m 2:=m 2ω2r 2②;由①②式可得:m 1r 1=m 2r 2 ,即=,D 错误.r 1+r 2=r ,得:r 1=r =r ,B 错误.将ω=,r 1=r 代入①式,可得:=m 1·r,得:T =2π,M =,A 、C 正确.9.宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用.已观测到稳定的四星系统存在两种基本的构成形式:一种是四颗星稳定地分布在边长为a 的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,其运动周期为T 1;另一种形式是有三颗星位于边长为a 的等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行,其运动周期为T 2,而第四颗星刚好位于三角形的中心不动.试求两种形式下,星体运动的周期之比T 1T 2.【答案】T 1T 2=6+634+2【解析】:对于第一种形式,一个星体在其它三个星体的万有引力作用下围绕正方形对角线的交点做匀速圆周运动,其轨道半径为:r1=22a.。

新教材高中物理第七章拓展课6双星模型及近地卫星与地球同步卫星的比较pptx课件新人教版必修第二册

新教材高中物理第七章拓展课6双星模型及近地卫星与地球同步卫星的比较pptx课件新人教版必修第二册
A.直线三星系统中甲星和丙星的线速度相同
B.直线三星系统的运动周期T=4πR
R 5GM
C.三角形三星系统中星体间的距离L=3 152R
D.三角形三星系统的线速度大小为12
5GM R
答案:BC
拓展二 近地卫星、地球同步卫星和赤道上的物体三种匀速圆周运 动的比较
【导思】 (1)地球静止卫星和赤道上的物体ቤተ መጻሕፍቲ ባይዱ什么相同点和不同点? (2)地球同步卫星和近地卫星有什么相同点和不同点?
(2)两颗星体的角速度大小、周期相同吗?
【归纳】 1.双星模型 (1)模型建构 在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用 下绕两者连线上的某点做周期相同的匀速圆周运动的星球称为双星.
(2)模型特点 ①两颗星体各自所需的向心力由彼此间的万有引力相互提供(如图), 即GmL1m2 2=m1ω12r1=m2ω22r2. ②两颗星体的运动周期及角速度都相同,即T1=T2,ω1=ω2. ③两颗星体的轨道半径与它们之间距离的关系为r1+r2=L.
赤道上的物体、近地卫星、地球同步卫星的比较
向心力来源 向心力方向 重力与万有引力
的关系
赤道上的物体 万有引力的分力
重力略小于万有 引力
近地卫星
地球同步卫星
万有引力
指向地心
重力等于万有引力
线速度
v3=ω3(R+h) v1<v3<v2(v2为第一宇宙速度)
角速度 向心加速度
ω1=ω自
ω1=ω3<ω2 a1<a3<a2
提示:(1)相同点:周期和角速度相同.不同点:向心力来源不同. 对于地球静止卫星,万有引力全部提供向心力,有GMr2m=man=mω2r. 对于赤道上的物体,万有引力的一个分力提供向心力,有GRM2m=mg+mω2R, 因此要通过v=ωr,an=ω2r比较两者的线速度和向心加速度的大小. (2)相同点:都是万有引力提供向心力. 即都满足GMr2m=mvr2=mω2r=m4Tπ22r=man. 不同点:轨道半径不同.近地卫星的轨道半径约等于地球的半径,地球同步卫 星的轨道半径约等于地球半径的7倍.

0衡水中学物理最经典-物理建模系列(八) 天体运行中的“两种常见模型”

0衡水中学物理最经典-物理建模系列(八) 天体运行中的“两种常见模型”

物理建模系列(八) 天体运行中的“两种常见模型”1.双星模型 (1)模型构建在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做周期相同的匀速圆周运动的行星称为双星.(2)模型条件①两颗星彼此相距较近.②两颗星靠相互之间的万有引力做匀速圆周运动. ③两颗星绕同一圆心做圆周运动. (3)模型特点①“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F 1=F 2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力.②“周期、角速度相同”——两颗行星做匀速圆周运动的周期、角速度相等. ③“半径反比”——圆心在两颗行星的连线上,且r 1+r 2=L ,两颗行星做匀速圆周运动的半径与行星的质量成反比.2.三星模型 系统三星系统(正三角形排列)三星系统(直线等间距排列)图示向心力的来源另外两星球对其万有引力的合力另外两星球对其万有引力的合力例 (2018·河北定州中学摸底)双星系统中两个星球A 、B 的质量都是m ,相距L ,它们正围绕两者连线上某一点做匀速圆周运动.实际观测该系统的周期T 要小于按照力学理论计算出的周期理论值T 0,且TT 0=k (k <1),于是有人猜测这可能是受到了一颗未发现的星球C的影响,并认为C 位于A 、B 的连线正中间,相对A 、B 静止,则A 、B 组成的双星系统周期理论值T 0及C 的质量分别为( )A .2π L 22Gm ,1+k 24k m B .2π L 32Gm ,1-k 24k m C .2π2Gm L 3,1+k 24km D .2πL 32Gm ,1-k 24k2m 【解析】 由题意知,A 、B 的运动周期相同,设轨道半径分别为r 1、r 2,对A 有,Gm 2L2=m ⎝⎛⎭⎫2πT 02r 1,对B 有,Gm 2L2=m ⎝⎛⎭⎫2πT 02r 2,且r 1+r 2=L ,解得T 0=2π L 32Gm;有C 存在时,设C 的质量为M ,A 、B 与C 之间的距离r ′1=r ′2=L 2,则Gm 2L 2+GMm r ′21=m ⎝⎛⎭⎫2πT 2r 1,Gm 2L 2+GMm r ′22=m ⎝⎛⎭⎫2πT 2r 2,解得T =2π L 32G (m +4M ),TT 0=mm +4M=k 得M =1-k 24k 2m .【答案】 D解答双星问题应注意“两等”“两不等”(1)“两等”①它们的角速度相等.②双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等的.(2)“两不等”①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离.②由m 1ω2r 1=m 2ω2r 2知由于m 1与m 2一般不相等,故r 1与r 2一般也不相等.[高考真题]1.(2016·课标卷Ⅲ,14)关于行星运动的规律,下列说法符合史实的是( ) A .开普勒在牛顿定律的基础上,导出了行星运动的规律 B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律【解析】 开普勒在天文观测数据的基础上,总结出了开普勒天体运动三定律,找出了行星运动的规律,而牛顿发现了万有引力定律,A 、C 、D 错误,B 正确.【答案】 B2.(2014·课标卷Ⅱ,18)假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0;在赤道的大小为g ;地球自转的周期为T ;引力常量为G .地球的密度为( )A.3πGT 2g 0-gg 0 B .3πGT 2g 0g 0-gC.3πGT2 D .3πGT 2g 0g【解析】 由万有引力定律可知:在两极处G Mm R 2=mg 0,在赤道上:G Mm R 2=mg +m (2πT )2R ,地球的质量:M =43πR 3ρ,联立三式可得:ρ=3πGT 2g 0g 0-g,选项B 正确.【答案】 B3.(2015·课标卷Ⅱ,16)由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行.已知同步卫星的环绕速度约为3.1×103 m/s ,某次发射卫星飞经赤道上空时的速度为1.55×103 m/s ,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为( )A .西偏北方向,1.9×103 m/sB .东偏南方向,1.9×103 m/sC .西偏北方向,2.7×103 m/sD .东偏南方向,2.7×103 m/s【解析】 附加速度Δv 与卫星飞经赤道上空时速度v 2及同步卫星的环绕速度v 1的矢量关系如图所示.由余弦定理可知,Δv =v 21+v 22-2v 1v 2cos 30°≈1.9×103 m/s ,方向东偏南方向,故B 正确,A 、C 、D 错误.【答案】 B[名校模拟]4.(2018·山东临沂高三上学期期中)据报道,2020年前我国将发射8颗海洋系列卫星,包括2颗海洋动力环境卫星和2颗海陆雷达卫星(这4颗卫星均绕地球做匀速圆周运动),以加强对黄岩岛、钓鱼岛及西沙群岛全部岛屿附近海域的监测.设海陆雷达卫星的轨道半径是海洋动力环境卫星的n 倍,下列说法正确的是( )A .在相同时间内,海陆雷达卫星到地心的连线扫过的面积与海洋动力环境卫星到地心的连线扫过的面积相等B .海陆雷达卫星做匀速圆周运动的半径的三次方与周期的平方之比等于海洋动力环境卫星做匀速圆周运动的半径的三次方与周期的平方之比C .海陆雷达卫星与海洋动力环境卫星角速度之比为n 32∶1D .海陆雷达卫星与海洋动力环境卫星周期之比为1∶n 32【解析】 由于轨道半径不同,相同时间内扫过的面积不相等,A 错;由开普勒第三定律r 3T2=k 可知,B 项正确;由ω=GM r 3∝r -32得,ω1∶ω2=n -32∶1,由T =2πr 3GM得,T 1∶T 2=1∶n -32,C 、D 均错.【答案】 B5.(2018·山东济南一中上学期期中)在未来的“星际穿越”中,某航天员降落在一颗不知名的行星表面上.该航天员从高h =L 处以初速度v 0水平抛出一个小球,小球落到星球表面时,与抛出点的距离是5L ,已知该星球的半径为R ,引力常量为G ,则下列说法正确的是( )A .该星球的质量M =v 20R22GLB .该星球的质量M =2v 20R25GLC .该星球的第一宇宙速度v =v 0 R 2LD .该星球的第一宇宙速度v =v 0R L【解析】 在该星球表面处:mg =GMm R 2,g =GM R 2,x =v 0t ,y =12gt 2=L ,t =2Lg,由5L =x 2+y 2,得g =v 202L ,M =v 20R 22GL,该星球的第一宇宙速度v =gR =v 0R2L,故A 、C 正确.【答案】 AC 6.(2018·山东潍坊高三上学期期中)2017年8月16日凌晨,中国量子卫星“墨子”在酒泉卫星发射中心成功发射,目前“墨子”已进入离地面高度为h 的极地预定轨道(轨道可视为圆轨道),如图所示.若“墨子”从北纬30°的正上方按图示方向第一次运行至南纬60°正上方,所用时间为t ,已知地球半径为R ,地球表面的重力加速度为g ,引力常量为G ,忽略地球自转,由以上条件可知( )A .地球的质量为gRGB .卫星运行的角速度为π2tC .卫星运行的线速度为πR2tD .卫星运行的线速度为π(R +h )2t【解析】 在地球表面Mg =GMm R 2,M =gR 2G ,A 错;第一次运行至南纬60°历时t =T4,而T =2πω,所以ω=π2t ,B 对;v =ω(R +h )=π(R +h )2t,C 错,D 对.【答案】 BD课时作业(十三) [基础小题练]1.(2018·华中师大第一附中高三上学期期中)已知甲、乙两行星的半径之比为2∶1,环绕甲、乙两行星表面运行的两卫星周期之比为4∶1,则下列结论中正确的是( )A .甲、乙两行星表面卫星的动能之比为1∶4B .甲、乙两行星表面卫星的角速度之比为1∶4C .甲、乙两行星的质量之比为1∶2D .甲、乙两行星的第一宇宙速度之比为2∶1 【解析】 由GMm r 2=mrω2=m v 2r 得ω=GMr 3,v = GM r ,E k =12m v 2, T =2πω=2πr 3GM,代入数据得M 甲∶M 乙=1∶2,ω甲∶ω乙=1∶4,v 甲∶v 乙=1∶2,卫星质量关系不知,不能比较动能大小.【答案】 BC2.天文学家新发现了太阳系外的一颗行星,这颗行星的体积是地球的a 倍,质量是地球的b 倍.已知某一近地卫星绕地球运动的周期约为T ,引力常量为G ,则该行星的平均密度为( )A.4πGb 2T 2a 2 B .4πa GT 2bC.3πb GT 2aD .4πbGT 2a【解析】 对于近地卫星,设其质量为m ,地球的质量为M ,半径为R ,则根据万有引力提供向心力有,G Mm R 2=m ⎝⎛⎭⎫2πT 2R ,得地球的质量M =4π2R 3GT 2,地球的密度为ρ=M 43πR 3=3πGT2;已知行星的体积是地球的a 倍,质量是地球的b 倍,结合密度公式ρ=mV ,得该行星的平均密度是地球的b a 倍,所以该行星的平均密度为3πbGT 2a,故C 正确.【答案】 C3.双星运动是产生引力波的来源之一,假设宇宙中有一双星系统由a 、b 两颗星体组成,这两颗星体绕它们连线的某一点在万有引力作用下做匀速圆周运动,测得两星体的轨道半径之和为l 1,轨道半径之差为l 2,a 星体轨道半径大于b 星体轨道半径,a 星体的质量为m 1,引力常量为G ,则b 星体的周期为( )A.2π2l 21(l 1-l 2)Gm 1B .2π2l 21(l 1+l 2)Gm 1C.2π2l 21(l 1-l 2)Gm 1(l 1+l 2)D .2π2l 21(l 1+l 2)Gm 1(l 1-l 2)【解析】 设a 星体运动的轨道半径为r 1,b 星体运动的轨道半径为r 2,则r 1+r 2=l 1,r 1-r 2=l 2,解得r 1=l 1+l 22,r 2=l 1-l 22,双星系统根据Gm 1m 2l 21=m 1⎝⎛⎭⎫2πT 2r 1,Gm 1m 2l 21=m 2⎝⎛⎭⎫2πT 2r 2,得m 1m 2=r 2r 1,即双星系统中星体质量与轨道半径成反比,得b 星体的质量m 2=r 1m 1r 2=(l 1+l 2)m 1l 1-l 2,a 、b 两星体运动周期相同,对a 星体有Gm 1m 2l 21=m 1⎝⎛⎭⎫2πT 2r 1,解得T =2π2l 21(l 1-l 2)Gm 1,A 选项正确.【答案】 A4.(2018·江苏泰州高三上学期期中)2016年10月19日3时31分,神舟十一号载人飞船与天宫二号空间实验室成功实现自动交会对接,此时天宫二号绕地飞行一圈时间为92.5 min ,而地球同步卫星绕地球一圈时间为24 h ,根据此两组数据我们能求出的是( )A .天宫二号与地球同步卫星受到的地球引力之比B .天宫二号与地球同步卫星的离地高度之比C .天宫二号与地球同步卫星的线速度之比D .天宫二号与地球同步卫星的加速度之比【解析】 由F =GMm r 2及GMm r 2=mrω2=m v 2r =ma 可知,ω=GMr 3,T =2π r 3GM,a =GMr2,v =GMr,已知周期关系可确定半径关系,进而确定线速度关系,加速度关系,但由于不知天宫二号和同步卫星的质量关系,故所受地球引力关系不确定,地球半径未知,所以离地高度关系不确定,C 、D 正确.【答案】 CD5.(2018·安徽师大附中高三上学期期中)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星的公转视为匀速圆周运动.忽略行星自转影响,火星和地球相比( )行星 半径/m 质量/kg 公转轨道半径/m地球 6.4×106 6.0×1024 1.5×1011 火星3.4×1066.4×10232.3×1011A.火星的“第一宇宙速度”约为地球的第一宇宙速度的0.45倍 B .火星的“第一宇宙速度”约为地球的第一宇宙速度的1.4倍 C .火星公转的向心加速度约为地球公转的向心加速度的0.43倍 D .火星公转的向心加速度约为地球公转的向心加速度的0.28倍 【解析】 根据第一宇宙速度公式v = GMR (M 指中心天体太阳的质量),v 火v 地=R 地R 火=6.4×1063.4×106=1.4 ,故A 错误,B 正确.根据向心加速度公式a =GMr 2(M 指中心天体太阳的质量),a 火a 地=r 2地r 2火=(1.5×10112.3×1011)2=0.43,故C 正确,D 错误.【答案】 BC6.(2018·山东泰安高三上学期期中)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步椭圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点.轨道3到地面的高度为h ,地球的半径为R ,地球表面的重力加速度为g .以下说法正确的是( )A .卫星在轨道3上的机械能大于在轨道1上的机械能B .卫星在轨道3上的周期小于在轨道2上的周期C .卫星在轨道2上经过Q 点时的速度小于它在轨道3上经过P 时的速度D .卫星在轨道3上的线速度为v =Rg R +h【解析】 卫星经历两次点火加速才转移至同步轨道3,在轨道3上的机械能肯定大于轨道1上的机械能,A 对;由T =2πr 3GM可知,B 错;由于v =GMr,所以v 1>v 3,又轨道2上Q 点离心运动,由v Q >v 1可知v Q >v 3,所以v Q >v P ,C 错;将r =R +h ,GM =gR 2,代入v =GMr得v =R gR +h,D 对. 【答案】 AD[创新导向练]7.巧思妙想——以“苹果”为话题考查天体运行规律已知地球的半径为6.4×106 m ,地球自转的角速度为7.27×10-5rad/s ,地球表面的重力加速度为9.8 m/s 2,在地球表面发射卫星的第一宇宙速度为7.9×103 m/s ,第三宇宙速度为16.7×103 m/s ,月地中心间距离为3.84×108 m .假设地球上有一颗苹果树长到月球那么高,则当苹果脱离苹果树后,请根据此时苹果线速度的计算,判断苹果将不会( )A .落回地面B .成为地球的“苹果月亮”C .成为地球的同步“苹果卫星”D .飞向茫茫宇宙【解析】 地球自转的角速度为7.27×10-5rad/s ,月球到地球中心的距离为3.84×108 m ,地球上有一棵苹果树长到了接近月球那么高,根据v =rω得:苹果的线速度为v =2.8×104 m/s ,第三宇宙速度为16.7×103 m/s ,由于苹果的线速度大于第三宇宙速度,所以苹果脱离苹果树后,将脱离太阳系的束缚,飞向茫茫宇宙,故A 、B 、C 正确.【答案】 ABC8.科学探索——以“一箭20星”为背景考查卫星运行参数月球和地球的质量之比为a ∶1,半径之比为b ∶1,将一单摆由地球带到月球,将摆球从与地球表面相同高度处由静止释放(释放点高度低于悬点高度),释放时摆线与竖直方向的夹角相同,当摆球运动到最低点时,在月球上和地球上摆线对摆球的拉力之比为( )A.b 2a B .a b 2C.a 2bD .b a2【解析】 设重力加速度大小为g ,摆球释放的高度为h ,摆球运动到最低点有mgh =12m v 2,摆球在最低点有F -mg =m v 2l ,得F =mg +2mghl,F 与g 成正比.在星球表面上有GMm R 2=mg ,得g =GM R 2,故摆球在月球和地球上受到的拉力之比为ab 2,B 选项正确. 【答案】 B9.军事科技——以导弹拦截为背景考查万有引力定律知识2016年1月27日,我国在境内再次成功地进行了陆基中段反导拦截技术试验,中段是指弹道导弹在大气层外空间依靠惯性飞行的一段.如图所示,一枚蓝军弹道导弹从地面上A 点发射升空,目标是攻击红军基地B 点,导弹升空后,红军反导预警系统立刻发现目标,从C 点发射拦截导弹,并在弹道导弹飞行中段的最高点D 将其击毁.下列说法中正确的是( )A .图中E 到D 过程,弹道导弹机械能不断增大B .图中E 到D 过程,弹道导弹的加速度不断减小C .弹道导弹在大气层外运动轨迹是以地心为焦点的椭圆D .弹道导弹飞行至D 点时速度大于7.9 km/s【解析】 图中E 到D 过程, 导弹在大气层外空间依靠惯性飞行,没有空气阻力,机械能不变,远离地球,轨道变大,速度减小,万有引力减小,所以加速度减小,在万有引力作用下,运动轨迹是以地心为焦点的椭圆,A 错误,B 、C 正确;第一宇宙速度是近地卫星的环绕速度,而D 点在大气层外部,所以轨道要大于近地卫星轨道,运行速度要小于第一宇宙速度,D 错误;故选B 、C.【答案】 BC10.探测火星——以火星探测为背景考查星体运行规律随着人类航天事业的进步,太空探测越来越向深空发展,火星正在成为全球航天界的“宠儿”.我国计划于2020年发射火星探测器,一步实现绕、落、巡工程目标.假设某宇航员登上了火星,在其表面以初速度v 竖直上抛一小球(小球仅受火星的引力作用),小球上升的最大高度为h ,火星的直径为d ,引力常量为G ,则( )A .火星的第一宇宙速度为v d hB .火星的密度为3v 24πGhdC .火星的质量为v 2d 22GhD .火星的“近火卫星”运行周期为2πvd h【解析】 在火星表面竖直上抛的小球做匀减速直线运动,设火星表面的重力加速度为g ,第一宇宙速度为v 0,火星的自转周期为T ,则2gh =v 2,得g =v 22h,在火星表面的物体的重力等于万有引力,也是在火星表面附近做圆周运动的向心力,mg =G Mm r 2=m (2πT )2r ,又r=d 2,M =43πr 3·ρ,得:v 0=v d 4h ,M =v 2d 28Gh ,ρ=3v 24πGhd,T =2πv dh2,故选B. 【答案】 B[综合提升练]11.(2018·山东淄博一中高三上学期期中)如图所示,火箭载着宇宙探测器飞向某行星,火箭内平台上还放有测试仪器.火箭从地面起飞时,以加速度g 02竖直向上做匀加速直线运动(g 0为地面附近的重力加速度),已知地球半径为R 0.(1)到某一高度时,测试仪器对平台的压力是起飞前的1718,求此时火箭离地面的高度h ;(2)探测器与箭体分离后,进入行星表面附近的预定轨道,进行一系列科学实验和测量,若测得探测器环绕该行星运动的周期为T 0,试问:该行星的平均密度为多少?(假定行星为球体,且已知万有引力恒量为G )【解析】 (1)火箭起飞前有:N 1=mg 0 火箭起飞后有:N 2-mg =mg 02 且有N 1N 2=1718GMmR 2=mg 0 GMm(R +h )2=mg联立以上各式解得h =R2.(2)设行星半径为r ,质量为M ,密度为ρ,则 GM 1m r 2=mr ⎝⎛⎭⎫2πT 02由ρ=M 1V ,V =43πr 3得ρ=3πGT 20. 【答案】 (1)R 2 (2)3πGT 2012.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看成是平坦的),已知月球半径为R ,万有引力常量为G .求:(1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大?(3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【解析】 (1)设月球表面的重力加速度为g ,由平抛运动规律有h =12gt 2① L =v 0·t ②得g =2h v 20L 2③ 着陆器在月球表面所受的万有引力等于重力,GM 月m R 2=mg ④得M 月=2h v 20R 2GL 2⑤ (2)卫星绕月球表面运行,有GM 月m ′R 2=m ′v 2R ⑥联立⑤⑥得v =v 0L2hR ⑦ (3)由牛顿第二定律有G M 月m (R +H )2=m (R +H )4π2T 2⑧联立⑤⑧得T =2π2L 2(R +H )3hR 2v 20. 【答案】 (1)2h v 20L 2 2h v 20R 2GL 2 (2)v 0L 2hR (3)2π2L 2(R +H )3hR 2v 20。

物理建模系列(八) 天体运行中的“两种常见模型”

物理建模系列(八) 天体运行中的“两种常见模型”

物理建模系列(八) 天体运行中的“两种常见模型”1.双星模型 (1)模型构建在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做周期相同的匀速圆周运动的行星称为双星.(2)模型条件①两颗星彼此相距较近.②两颗星靠相互之间的万有引力做匀速圆周运动. ③两颗星绕同一圆心做圆周运动. (3)模型特点①“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供,故F 1=F 2,且方向相反,分别作用在两颗行星上,是一对作用力和反作用力.②“周期、角速度相同”——两颗行星做匀速圆周运动的周期、角速度相等. ③“半径反比”——圆心在两颗行星的连线上,且r 1+r 2=L ,两颗行星做匀速圆周运动的半径与行星的质量成反比.2.三星模型例 (2018·河北定州中学摸底)双星系统中两个星球A 、B 的质量都是m ,相距L ,它们正围绕两者连线上某一点做匀速圆周运动.实际观测该系统的周期T 要小于按照力学理论计算出的周期理论值T 0,且TT 0=k (k <1),于是有人猜测这可能是受到了一颗未发现的星球C的影响,并认为C 位于A 、B 的连线正中间,相对A 、B 静止,则A 、B 组成的双星系统周期理论值T 0及C 的质量分别为( )A .2π L 22Gm ,1+k 24km B .2π L 32Gm ,1-k 24k m C .2π2Gm L 3,1+k24km D .2πL 32Gm ,1-k 24k2m 【解析】 由题意知,A 、B 的运动周期相同,设轨道半径分别为r 1、r 2,对A 有,Gm 2L2=m ⎝⎛⎭⎫2πT 02r 1,对B 有,Gm 2L2=m ⎝⎛⎭⎫2πT 02r 2,且r 1+r 2=L ,解得T 0=2π L 32Gm;有C 存在时,设C 的质量为M ,A 、B 与C 之间的距离r ′1=r ′2=L 2,则Gm 2L 2+GMm r ′21=m ⎝⎛⎭⎫2πT 2r 1,Gm 2L 2+GMm r ′22=m ⎝⎛⎭⎫2πT 2r 2,解得T =2πL 32G (m +4M ),TT 0=mm +4M=k 得M =1-k 24k 2m .【答案】 D解答双星问题应注意“两等”“两不等”(1)“两等”①它们的角速度相等.②双星做匀速圆周运动的向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等的.(2)“两不等”①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离.②由m 1ω2r 1=m 2ω2r 2知由于m 1与m 2一般不相等,故r 1与r 2一般也不相等.[高考真题]1.(2016·课标卷Ⅲ,14)关于行星运动的规律,下列说法符合史实的是( ) A .开普勒在牛顿定律的基础上,导出了行星运动的规律 B .开普勒在天文观测数据的基础上,总结出了行星运动的规律C .开普勒总结出了行星运动的规律,找出了行星按照这些规律运动的原因D .开普勒总结出了行星运动的规律,发现了万有引力定律【解析】 开普勒在天文观测数据的基础上,总结出了开普勒天体运动三定律,找出了行星运动的规律,而牛顿发现了万有引力定律,A 、C 、D 错误,B 正确.【答案】 B2.(2014·课标卷Ⅱ,18)假设地球可视为质量均匀分布的球体.已知地球表面重力加速度在两极的大小为g 0;在赤道的大小为g ;地球自转的周期为T ;引力常量为G .地球的密度为( )A.3πGT 2g 0-gg 0 B .3πGT 2g 0g 0-gC.3πGT2 D .3πGT 2g 0g【解析】 由万有引力定律可知:在两极处G Mm R 2=mg 0,在赤道上:G Mm R 2=mg +m (2πT )2R ,地球的质量:M =43πR 3ρ,联立三式可得:ρ=3πGT 2g 0g 0-g,选项B 正确.【答案】 B3.(2015·课标卷Ⅱ,16)由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道.当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行.已知同步卫星的环绕速度约为3.1×103 m/s ,某次发射卫星飞经赤道上空时的速度为1.55×103 m/s ,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示,发动机给卫星的附加速度的方向和大小约为( )A .西偏北方向,1.9×103 m/sB .东偏南方向,1.9×103 m/sC .西偏北方向,2.7×103 m/sD .东偏南方向,2.7×103 m/s【解析】 附加速度Δv 与卫星飞经赤道上空时速度v 2及同步卫星的环绕速度v 1的矢量关系如图所示.由余弦定理可知,Δv =v 21+v 22-2v 1v 2cos 30°≈1.9×103 m/s ,方向东偏南方向,故B 正确,A 、C 、D 错误.【答案】 B[名校模拟]4.(2018·山东临沂高三上学期期中)据报道,2020年前我国将发射8颗海洋系列卫星,包括2颗海洋动力环境卫星和2颗海陆雷达卫星(这4颗卫星均绕地球做匀速圆周运动),以加强对黄岩岛、钓鱼岛及西沙群岛全部岛屿附近海域的监测.设海陆雷达卫星的轨道半径是海洋动力环境卫星的n 倍,下列说法正确的是( )A .在相同时间内,海陆雷达卫星到地心的连线扫过的面积与海洋动力环境卫星到地心的连线扫过的面积相等B .海陆雷达卫星做匀速圆周运动的半径的三次方与周期的平方之比等于海洋动力环境卫星做匀速圆周运动的半径的三次方与周期的平方之比C .海陆雷达卫星与海洋动力环境卫星角速度之比为n 32∶1D .海陆雷达卫星与海洋动力环境卫星周期之比为1∶n 32【解析】 由于轨道半径不同,相同时间内扫过的面积不相等,A 错;由开普勒第三定律r 3T2=k 可知,B 项正确;由ω=GM r 3∝r -32得,ω1∶ω2=n -32∶1,由T =2πr 3GM得,T 1∶T 2=1∶n -32,C 、D 均错.【答案】 B5.(2018·山东济南一中上学期期中)在未来的“星际穿越”中,某航天员降落在一颗不知名的行星表面上.该航天员从高h =L 处以初速度v 0水平抛出一个小球,小球落到星球表面时,与抛出点的距离是5L ,已知该星球的半径为R ,引力常量为G ,则下列说法正确的是( )A .该星球的质量M =v 20R22GLB .该星球的质量M =2v 20R25GLC .该星球的第一宇宙速度v =v 0 R 2LD .该星球的第一宇宙速度v =v 0R L【解析】 在该星球表面处:mg =GMm R 2,g =GM R 2,x =v 0t ,y =12gt 2=L ,t =2Lg,由5L =x 2+y 2,得g =v 202L ,M =v 20R22GL,该星球的第一宇宙速度v =gR =v 0R2L,故A 、C 正确.【答案】 AC6.(2018·山东潍坊高三上学期期中)2017年8月16日凌晨,中国量子卫星“墨子”在酒泉卫星发射中心成功发射,目前“墨子”已进入离地面高度为h 的极地预定轨道(轨道可视为圆轨道),如图所示.若“墨子”从北纬30°的正上方按图示方向第一次运行至南纬60°正上方,所用时间为t ,已知地球半径为R ,地球表面的重力加速度为g ,引力常量为G ,忽略地球自转,由以上条件可知( )A .地球的质量为gRGB .卫星运行的角速度为π2tC .卫星运行的线速度为πR2tD .卫星运行的线速度为π(R +h )2t【解析】 在地球表面Mg =GMm R 2,M =gR 2G ,A 错;第一次运行至南纬60°历时t =T4,而T =2πω,所以ω=π2t ,B 对;v =ω(R +h )=π(R +h )2t,C 错,D 对.【答案】 BD课时作业(十三) [基础小题练]1.(2018·华中师大第一附中高三上学期期中)已知甲、乙两行星的半径之比为2∶1,环绕甲、乙两行星表面运行的两卫星周期之比为4∶1,则下列结论中正确的是( )A .甲、乙两行星表面卫星的动能之比为1∶4B .甲、乙两行星表面卫星的角速度之比为1∶4C .甲、乙两行星的质量之比为1∶2D .甲、乙两行星的第一宇宙速度之比为2∶1【解析】 由GMm r 2=mrω2=m v 2r得 ω=GMr 3,v = GM r ,E k =12m v 2, T =2πω=2πr 3GM,代入数据得M 甲∶M 乙=1∶2,ω甲∶ω乙=1∶4,v 甲∶v 乙=1∶2,卫星质量关系不知,不能比较动能大小.【答案】 BC2.天文学家新发现了太阳系外的一颗行星,这颗行星的体积是地球的a 倍,质量是地球的b 倍.已知某一近地卫星绕地球运动的周期约为T ,引力常量为G ,则该行星的平均密度为( )A.4πGb 2T 2a 2 B .4πa GT 2bC.3πb GT 2aD .4πbGT 2a【解析】 对于近地卫星,设其质量为m ,地球的质量为M ,半径为R ,则根据万有引力提供向心力有,G Mm R 2=m ⎝⎛⎭⎫2πT 2R ,得地球的质量M =4π2R 3GT 2,地球的密度为ρ=M 43πR 3=3πGT2;已知行星的体积是地球的a 倍,质量是地球的b 倍,结合密度公式ρ=mV ,得该行星的平均密度是地球的b a 倍,所以该行星的平均密度为3πbGT 2a,故C 正确.【答案】 C3.双星运动是产生引力波的来源之一,假设宇宙中有一双星系统由a 、b 两颗星体组成,这两颗星体绕它们连线的某一点在万有引力作用下做匀速圆周运动,测得两星体的轨道半径之和为l 1,轨道半径之差为l 2,a 星体轨道半径大于b 星体轨道半径,a 星体的质量为m 1,引力常量为G ,则b 星体的周期为( )A.2π2l 21(l 1-l 2)Gm 1B .2π2l 21(l 1+l 2)Gm 1C.2π2l 21(l 1-l 2)Gm 1(l 1+l 2)D .2π2l 21(l 1+l 2)Gm 1(l 1-l 2)【解析】 设a 星体运动的轨道半径为r 1,b 星体运动的轨道半径为r 2,则r 1+r 2=l 1,r 1-r 2=l 2,解得r 1=l 1+l 22,r 2=l 1-l 22,双星系统根据Gm 1m 2l 21=m 1⎝⎛⎭⎫2πT 2r 1,Gm 1m 2l 21=m 2⎝⎛⎭⎫2πT 2r 2,得m 1m 2=r 2r 1,即双星系统中星体质量与轨道半径成反比,得b 星体的质量m 2=r 1m 1r 2=(l 1+l 2)m 1l 1-l 2,a 、b 两星体运动周期相同,对a 星体有Gm 1m 2l 21=m 1⎝⎛⎭⎫2πT 2r 1,解得T =2π2l 21(l 1-l 2)Gm 1,A 选项正确.【答案】 A4.(2018·江苏泰州高三上学期期中)2016年10月19日3时31分,神舟十一号载人飞船与天宫二号空间实验室成功实现自动交会对接,此时天宫二号绕地飞行一圈时间为92.5 min ,而地球同步卫星绕地球一圈时间为24 h ,根据此两组数据我们能求出的是( )A .天宫二号与地球同步卫星受到的地球引力之比B .天宫二号与地球同步卫星的离地高度之比C .天宫二号与地球同步卫星的线速度之比D .天宫二号与地球同步卫星的加速度之比【解析】 由F =GMm r 2及GMm r 2=mrω2=m v 2r =ma 可知,ω=GMr 3,T =2π r 3GM,a =GMr2,v =GMr,已知周期关系可确定半径关系,进而确定线速度关系,加速度关系,但由于不知天宫二号和同步卫星的质量关系,故所受地球引力关系不确定,地球半径未知,所以离地高度关系不确定,C 、D 正确.【答案】 CD5.(2018·安徽师大附中高三上学期期中)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星的公转视为匀速圆周运动.忽略行星自转影响,火星和地球相比( )A.B .火星的“第一宇宙速度”约为地球的第一宇宙速度的1.4倍 C .火星公转的向心加速度约为地球公转的向心加速度的0.43倍 D .火星公转的向心加速度约为地球公转的向心加速度的0.28倍 【解析】 根据第一宇宙速度公式v = GMR (M 指中心天体太阳的质量),v 火v 地=R 地R 火=6.4×1063.4×106=1.4 ,故A 错误,B 正确.根据向心加速度公式a =GMr 2(M 指中心天体太阳的质量),a 火a 地=r 2地r 2火=(1.5×10112.3×1011)2=0.43,故C 正确,D 错误.【答案】 BC6.(2018·山东泰安高三上学期期中)发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步椭圆轨道3.轨道1、2相切于Q 点,轨道2、3相切于P 点.轨道3到地面的高度为h ,地球的半径为R ,地球表面的重力加速度为g .以下说法正确的是( )A .卫星在轨道3上的机械能大于在轨道1上的机械能B .卫星在轨道3上的周期小于在轨道2上的周期C .卫星在轨道2上经过Q 点时的速度小于它在轨道3上经过P 时的速度D .卫星在轨道3上的线速度为v =Rg R +h【解析】 卫星经历两次点火加速才转移至同步轨道3,在轨道3上的机械能肯定大于轨道1上的机械能,A 对;由T =2πr 3GM可知,B 错;由于v =GMr,所以v 1>v 3,又轨道2上Q 点离心运动,由v Q >v 1可知v Q >v 3,所以v Q >v P ,C 错;将r =R +h ,GM =gR 2,代入v =GMr得v =R gR +h,D 对. 【答案】 AD[创新导向练]7.巧思妙想——以“苹果”为话题考查天体运行规律已知地球的半径为6.4×106 m ,地球自转的角速度为7.27×10-5rad/s ,地球表面的重力加速度为9.8 m/s 2,在地球表面发射卫星的第一宇宙速度为7.9×103 m/s ,第三宇宙速度为16.7×103 m/s ,月地中心间距离为3.84×108 m .假设地球上有一颗苹果树长到月球那么高,则当苹果脱离苹果树后,请根据此时苹果线速度的计算,判断苹果将不会( )A .落回地面B .成为地球的“苹果月亮”C .成为地球的同步“苹果卫星”D .飞向茫茫宇宙【解析】 地球自转的角速度为7.27×10-5rad/s ,月球到地球中心的距离为3.84×108 m ,地球上有一棵苹果树长到了接近月球那么高,根据v =rω得:苹果的线速度为v =2.8×104 m/s ,第三宇宙速度为16.7×103 m/s ,由于苹果的线速度大于第三宇宙速度,所以苹果脱离苹果树后,将脱离太阳系的束缚,飞向茫茫宇宙,故A 、B 、C 正确.【答案】 ABC8.科学探索——以“一箭20星”为背景考查卫星运行参数月球和地球的质量之比为a ∶1,半径之比为b ∶1,将一单摆由地球带到月球,将摆球从与地球表面相同高度处由静止释放(释放点高度低于悬点高度),释放时摆线与竖直方向的夹角相同,当摆球运动到最低点时,在月球上和地球上摆线对摆球的拉力之比为( )A.b 2a B .a b 2C.a 2bD .b a2【解析】 设重力加速度大小为g ,摆球释放的高度为h ,摆球运动到最低点有mgh =12m v 2,摆球在最低点有F -mg =m v 2l ,得F =mg +2mghl,F 与g 成正比.在星球表面上有GMm R 2=mg ,得g =GM R 2,故摆球在月球和地球上受到的拉力之比为ab2,B 选项正确. 【答案】 B9.军事科技——以导弹拦截为背景考查万有引力定律知识2016年1月27日,我国在境内再次成功地进行了陆基中段反导拦截技术试验,中段是指弹道导弹在大气层外空间依靠惯性飞行的一段.如图所示,一枚蓝军弹道导弹从地面上A 点发射升空,目标是攻击红军基地B 点,导弹升空后,红军反导预警系统立刻发现目标,从C 点发射拦截导弹,并在弹道导弹飞行中段的最高点D 将其击毁.下列说法中正确的是( )A .图中E 到D 过程,弹道导弹机械能不断增大B .图中E 到D 过程,弹道导弹的加速度不断减小C .弹道导弹在大气层外运动轨迹是以地心为焦点的椭圆D .弹道导弹飞行至D 点时速度大于7.9 km/s【解析】 图中E 到D 过程, 导弹在大气层外空间依靠惯性飞行,没有空气阻力,机械能不变,远离地球,轨道变大,速度减小,万有引力减小,所以加速度减小,在万有引力作用下,运动轨迹是以地心为焦点的椭圆,A 错误,B 、C 正确;第一宇宙速度是近地卫星的环绕速度,而D 点在大气层外部,所以轨道要大于近地卫星轨道,运行速度要小于第一宇宙速度,D 错误;故选B 、C.【答案】 BC10.探测火星——以火星探测为背景考查星体运行规律随着人类航天事业的进步,太空探测越来越向深空发展,火星正在成为全球航天界的“宠儿”.我国计划于2020年发射火星探测器,一步实现绕、落、巡工程目标.假设某宇航员登上了火星,在其表面以初速度v 竖直上抛一小球(小球仅受火星的引力作用),小球上升的最大高度为h ,火星的直径为d ,引力常量为G ,则( )A .火星的第一宇宙速度为v d hB .火星的密度为3v 24πGhdC .火星的质量为v 2d 22GhD .火星的“近火卫星”运行周期为2πvd h【解析】 在火星表面竖直上抛的小球做匀减速直线运动,设火星表面的重力加速度为g ,第一宇宙速度为v 0,火星的自转周期为T ,则2gh =v 2,得g =v 22h,在火星表面的物体的重力等于万有引力,也是在火星表面附近做圆周运动的向心力,mg =G Mm r 2=m (2πT )2r ,又r=d 2,M =43πr 3·ρ,得:v 0=v d 4h ,M =v 2d 28Gh ,ρ=3v 24πGhd,T =2πv dh2,故选B. 【答案】 B[综合提升练]11.(2018·山东淄博一中高三上学期期中)如图所示,火箭载着宇宙探测器飞向某行星,火箭内平台上还放有测试仪器.火箭从地面起飞时,以加速度g 02竖直向上做匀加速直线运动(g 0为地面附近的重力加速度),已知地球半径为R 0.(1)到某一高度时,测试仪器对平台的压力是起飞前的1718,求此时火箭离地面的高度h ;(2)探测器与箭体分离后,进入行星表面附近的预定轨道,进行一系列科学实验和测量,若测得探测器环绕该行星运动的周期为T 0,试问:该行星的平均密度为多少?(假定行星为球体,且已知万有引力恒量为G )【解析】 (1)火箭起飞前有:N 1=mg 0 火箭起飞后有:N 2-mg =mg 02 且有N 1N 2=1718GMmR 2=mg 0 GMm(R +h )2=mg联立以上各式解得h =R2.(2)设行星半径为r ,质量为M ,密度为ρ,则 GM 1m r 2=mr ⎝⎛⎭⎫2πT 02由ρ=M 1V ,V =43πr 3得ρ=3πGT 20. 【答案】 (1)R 2 (2)3πGT 2012.中国计划在2017年实现返回式月球软着陆器对月球进行科学探测,宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出一小球,测出水平射程为L (这时月球表面可以看成是平坦的),已知月球半径为R ,万有引力常量为G .求:(1)月球表面处的重力加速度及月球的质量M 月;(2)如果要在月球上发射一颗绕月球运行的卫星,所需的最小发射速度为多大?(3)当着陆器绕距月球表面高H 的轨道上运动时,着陆器环绕月球运动的周期是多少?【解析】 (1)设月球表面的重力加速度为g ,由平抛运动规律有h =12gt 2① L =v 0·t ②得g =2h v 20L 2③ 着陆器在月球表面所受的万有引力等于重力,GM 月m R 2=mg ④得M 月=2h v 20R 2GL 2⑤ (2)卫星绕月球表面运行,有GM 月m ′R 2=m ′v 2R ⑥联立⑤⑥得v =v 0L2hR ⑦ (3)由牛顿第二定律有G M 月m (R +H )2=m (R +H )4π2T 2⑧联立⑤⑧得T =2π2L 2(R +H )3hR 2v 20. 【答案】 (1)2h v 20L 2 2h v 20R 2GL 2 (2)v 0L 2hR (3)2π2L 2(R +H )3hR 2v 20。

高中物理必修二科学思维系列——双星模型

高中物理必修二科学思维系列——双星模型

核心素养提升微课堂科学思维系列——双星模型1.模型构建在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做周期相同的匀速圆周运动的星球称为双星.2.模型特点①两颗星球角速度相同,间距不变,绕两者连线上某点旋转,轨迹为同心圆.②两颗星球各自需要的向心力由彼此间的万有引力提供,即 Gm 1m 2L 2=m 1ω21r 1,Gm 1m 2L2=m 2ω22r 2. ③两颗星球的周期及角速度都相同,即T 1=T 2,ω1=ω2,且T 1=T 2=2πL 3G (m 1+m 2). ④两颗星球的轨道半径与两者间的距离关系为r 1+r 2=L ,要注意r 1、r 2和L 的区别.⑤由m 1a 1=m 2a 2可以推出a 1a 2=m 2m 1. 【典例】方法技巧解决双星问题的关键对于双星问题,关键抓住“四个相等”,即向心力、角速度、周期大小相等,轨道半径之和等于两星间距,然后运用万有引力提供向心力列式求解.变式训练1(多选)两颗靠得很近的天体称为双星,它们都绕两者连线上某点做匀速圆周运动,因而不至于由于万有引力而吸引到一起,以下说法中正确的是()A.它们做圆周运动的角速度之比与其质量成反比B.它们做圆周运动的线速度之比与其质量成反比C.它们做圆周运动的半径与其质量成正比D.它们做圆周运动的半径与其质量成反比解析:两天体绕连线上的某点做圆周运动的周期相等,角速度也相等,故A错误;因为两天体做圆周运动的向心力由两天体间的万有引力提供,向心力大小相等,由G m1m2=m1r1ω2,GL2m1m2=m2r2ω2可知,m1r1ω2=m2r2ω2,所以它们的轨道半径与它L2们的质量成反比,C错误,D正确;而线速度又与轨道半径成正比,所以线速度与它们的质量也是成反比的,B正确.答案:BD变式训练2(多选)经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的线度远小于两个星体之间的距离,而且双星系统一般远离其他天体,如图所示.两颗星球组成的双星,在相互之间的万有引力作用下,绕连线上的O 点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L ,质量之比为m 1:m 2=3:2.则可知( )A .m 1、m 2做圆周运动的线速度之比为3:2B .m 1、m 2做圆周运动的角速度之比为2:3C .m 1做圆周运动的半径为25LD .m 1、m 2做圆周运动的向心力大小相等解析:双星系统周期相同(角速度相同),所受万有引力作为向心力相同,所以B 项错误,D 项正确;由F =mω2r ,m 1r 1ω2=m 2r 2ω2,得m 1v 1=m 2v 2,v 1v 2=m 2m 1=23,A 项错误;r 1r 2=m 2m 1又r 1+r 2=L ,所以r 1=m 2m 1+m 2L =25L ,C 项正确. 答案:CD变式训练3 银河系的恒星中大约四分之一是双星,某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观测得其周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知万有引力常量为G .由此可求出S 2的质量为( )A.4π2r 2(r -r 1)GT 2B.4π2r 31GT 2C.4π2r 3GT 2D.4π2r 2r 1GT 2解析:设S 1、S 2两星体的质量分别为m 1、m 2,根据万有引力定律和牛顿定律得:对S 1有G m 1m 2r 2=m 1⎝ ⎛⎭⎪⎫2πT 2r 1, 解之可得m 2=4π2r 2r 1GT 2.所以正确选项是D.答案:D变式训练4 月球与地球质量之比约为180,月球和地球可视为一个由两质点构成的双星系统,它们都围绕地月连线上某点O 做匀速圆周运动.据此观点,可知月球与地球绕O 点运动线速度大小之比约为( )。

《宇宙双星模型》课件

《宇宙双星模型》课件
2023
《宇宙双星模型》 ppt课件
REPORTING
2023
目录
• 双星模型简介 • 双星系统的运动规律 • 双星模型在天文学中的应用 • 双星模型的研究前景与挑战 • 总结与展望
2023
PART 01
双星模型简介
REPORTING
定义与概念
总结词
双星模型是指由两个恒星组成的相对稳定的系统,它们通过引力相互作用,围 绕彼此旋转。
双星演化理论的完善
虽然已经建立了一套相对完善的双星演化理论,但随着观 测数据的不断增多和理论研究的不断深入,需要进一步完 善双星演化理论。
2023
PART 05
总结与展望
REPORTING
双星模型的意义与价值
理论意义
双星模型在天文学中具有重要的理论 意义,它为研究恒星演化、星系形成 和演化等提供了重要的理论基础。
双星系统中的两颗恒星通过相互吸引和旋转,形成稳定的双星结构。在星系形成 过程中,双星系统可以聚集周围的物质,形成更大的恒星群或行星系统,从而影 响整个星系的形状和演化。
双星在恒星演化中的作用
总结词
双星在恒星演化中起到关键作用,它们通过相互作用加速恒 星的演化进程。
详细描述
在双星系统中,两颗恒星之间存在相互作用,如物质交换和 轨道扰动等,这些作用可以加速恒星的演化进程。例如,双 星中的一颗恒星可能因为吸收了另一颗恒星的物质而迅速膨 胀,最终导致超新星爆发。
详细描述
双星模型是研究恒星系统的一个重要概念,它涉及到两个恒星在相互引力的作 用下,形成一个相对稳定的系统。这两个恒星可以是类似太阳的恒星,也可以 是其他类型的天体,如白矮星、中子星等。
双星系统的形成
总结词
双星系统的形成通常发生在恒星形成过程中,当两颗恒星在引力作用下逐渐靠近,最终形成一个双星系统。

万有引力与航天专题:双星模型、变轨问题和地球表面物体的运动

万有引力与航天专题:双星模型、变轨问题和地球表面物体的运动

二、变轨问题
卫 星 的 发 射 过 程 动 画
二、卫星的变轨问题
1.变轨原理及过程 人造卫星的发射过程要经过多
次变轨方可到达预定轨道,如图所示。
(1)为了节省能量 ,在赤道上顺着地球自转方向发射卫星到圆 轨道Ⅰ上。 (2)在A点点火加速,由于速度变大,进入椭圆轨道Ⅱ。 (3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。
期相等,角速度也相等。由 v=rω 得线速度与 两子星圆周运动的半径是成正比的。因为两子 星圆周运动的向心力由两子星间的万有引力提 供,向心力大小相等,
由G
M1M 2 L2
M1r12 , G
M1M 2 L2
M 2r22
可知: M1r1 2 M 2r2 2 ,所以它们的轨道半径
与它们的质量是成反比的。而线速度又与轨 道半径成正比,所以线速度与它们的质量也 是成反比的。正确答案为:BD。
【解析】这两颗星必须各自以一定的速度绕某一中心转 动才不至于因万有引力作用而吸引在一起,从而保持两 星间距离L不变,且两者做匀速圆周运动的角速度ω必 须相同。如图所示,两者轨迹圆的圆心为O,圆半径分 别为R1和R2。由万有引力提供向心力,有
处理方法:
对m1来说:
G
m1m2 L2
=m1ω2R1
对m2来说:
A.飞船在轨道Ⅱ上经过P的速度小于经过Q的速度 B.飞船在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经 过M的速度 C.飞船在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运 动的周期 D.飞船在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上 经过M的加速度
反思总结 1.变轨的两种情况
2.相关物理量的比较
(1)两个不同轨道的“切点”处线速度v不相等,图中vⅢ>vⅡB,vⅡA>vⅠ。 (2)同一个椭圆轨道上近地点和远地点线速度大小不相等,vⅡA>vⅡB, (3)两个不同圆轨道上的线速度v不相等,轨道半径越大,v越小,图中vⅠ>vⅢ。 (4)卫星在同一点的不管是椭圆还是圆,加速度一定相等。

第五章 第3课时 专题强化:卫星变轨问题 双星模型-2025物理大一轮复习讲义人教版

第五章 第3课时 专题强化:卫星变轨问题 双星模型-2025物理大一轮复习讲义人教版

第3课时专题强化:卫星变轨问题双星模型目标要求 1.会处理人造卫星的变轨和对接问题。

2.掌握双星、多星系统,会解决相关问题。

3.会应用万有引力定律解决星球“瓦解”和黑洞问题。

考点一卫星的变轨和对接问题1.卫星发射模型(1)为了节省能量,在赤道上顺着地球自转方向先发射卫星到圆轨道Ⅰ上,卫星在轨道Ⅰ上做匀速圆周运动,有G Mmr12=mv2r1,如图所示。

(2)在A点(近地点)点火加速,由于速度变大,所需向心力变大,G Mmr12<mv A2r1,卫星做离心运动进入椭圆轨道Ⅱ。

(3)在椭圆轨道B点(远地点),G Mmr22>mv B2r2,将做近心运动,再次点火加速,使GMmr22=mv B′2r2,进入圆轨道Ⅲ。

思考若使在轨道Ⅲ运行的宇宙飞船返回地面,应如何操作?答案使飞船先减速进入椭圆轨道Ⅱ,到达近地点时,使飞船再减速进入近地圆轨道Ⅰ,之后再减速做近心运动着陆。

2.变轨过程分析(1)速度:设卫星在圆轨道Ⅰ和Ⅲ上运行时的速率分别为v1、v3,在椭圆轨道Ⅱ上过A点和B 点时速率分别为v A、v B,四个速度关系为v A>v1>v3>v B。

(2)向心加速度在A点,轨道Ⅰ上和轨道Ⅱ上的向心加速度关系aⅠA =aⅡA,在B点,轨道Ⅱ上和轨道Ⅲ上的向心加速度关系aⅡB =aⅢB,A、B两点向心加速度关系a A>a B。

(均选填“>”“=”或“<”)(3)周期卫星在Ⅰ、Ⅱ、Ⅲ轨道上的运行周期T1、T2、T3的关系为T1<T2<T3。

(4)机械能在一个确定的圆(椭圆)轨道上机械能守恒。

若卫星在Ⅰ、Ⅱ、Ⅲ轨道的机械能分别为E1、E2、E3,从轨道Ⅰ到轨道Ⅱ和从轨道Ⅱ到轨道Ⅲ都需要点火加速,则机械能关系为E1<E2<E3。

例1(2024·黑龙江哈尔滨市第九中学月考)在发射一颗质量为m的人造地球同步卫星时,先将其发射到贴近地球表面运行的圆轨道Ⅰ上(离地面高度忽略不计),再通过一椭圆轨道Ⅱ变轨后到达距地面高为h的预定圆轨道Ⅲ上。

“双星”模型的构建和应用

“双星”模型的构建和应用

“双星”模型的构建和应用江苏省宜兴第一中学潘华君一、模型构建双星系统由宇宙中两颗相距较近的天体构成,忽略系统外其它星体的作用(也可称为“孤星系统”),系统内各子星均绕着它们的中心连线上某一点做匀速圆周运动,所需的向心力由系统内其它星体对其的万有引力提供,示意图如图1。

运动特点:(1)两星体做匀速圆周运动的周期、频率、角速度相等;(2)轨道半径与物体的质量成反比;(3)线速度大小与物体的质量成反比;(4)两星体在转动中动量大小相等;(5)在匀速圆周运动中,万有引力始终与速度垂直,不做功,故转动中两星体动能不变。

注意点:万有引力定律中的r为两星体之间的距离,而向心力公式中的r为所研究星体做圆周运动的轨道半径。

二、模型应用1.“地月系统”中的应用例1.月球与地球质量之比约为1∶80,有研究者认为月球和地球可视为一个由两质点构成的双星系统,它们都围绕月地连线上某点O做匀速圆周运动.据此观点,可知月球与地球绕O点运动的线速度大小之比约为A.1∶6400 B.1∶80 C.80∶1 D.6400∶1解析:月球和地球构成的双星系统绕某点O做匀速圆周运动,彼此间的万有引力提供向心力。

由上面结论3可知,故正确答案是C。

点评:本题是对传统地月系统的重新认识,需按题意确立模型,作出双星运动的示意图,如图1,从而发现两个天体具有相同的角速度是解题的关键,同时依据模型特点可以很快得出结论。

2.“一线穿珠”中的应用例2.小球A和B用细线连接,可以在光滑的水平杆上无摩擦地滑动,已知它们的质量之比m1:m2=3:1,当这一装置绕着竖直轴转动且两球与杆达到相对静止时,如图2所示,A、B两球转动的A.线速度大小相等B.角速度相等 C.向心力之比3:1 D.半径之比1:3解析:当两球随轴作稳定转动时,把它们联系着的同一细线提供的向心力是相等的,即,同轴转动中的角速度也是相等的,ω1=ω2,从这两点分析可知两球的运动可等效为双星模型,由模型特点可知,.所以本题的正确选项是BD。

9教案-双星问题PPT课件

9教案-双星问题PPT课件
“二绕一”模型和“三角形”模型。 二、 两种模型下的处理方法:
1、画出运动示意图 2、某一星体做圆周运动的向心力是由 其它星体对该星体万有引力的合力提供 3、根据几何关系,找准半径,问题迎刃而解。
22
2.四星系统 例5.质量相等的四颗星组成的四星系统,四 星系统离其他恒星较远,可忽略其他星体对四 星系统的引力作用.已观测到边长为a的正方形 的四个顶点上,各星均围绕正方形对角线的交 点做匀速圆周运动,运动周期为T1。
3.5ms
所以 n 6 12
3.5
n
显然,该式中n有大于2的解,故暗星B有可能是黑洞.
15
4、一种特殊天体—黑洞
GM 天体的第一宇宙速度 v1 R
天体的第二宇宙速度 v2 2v1
2GM R
当天体的第二宇宙速度大于或等于光速c 时,该天 体就成为黑洞。
由v2≥c得:
这是判断普通天体是否变成黑洞的根据之一
r1=0,r2=L 物理含义是什么?
双星系统中,若质量差别很大,则质量较大的天 体,可认为是不转的,只有小质量的天体转动。 例如:月球绕地球,地球绕太阳运动,都可以看 成是双星模型的近似。
4
4、双星运动的角速度、周期、速度
Gm1 m2
L3
T 2
L3
Gm1 m2
v1
Gm
2 2
m1 m2 L
向心力由万有引力提供。
双星模型示意图
2
2、确定双星的旋转半径
已知双星的质量m1、m2和距离L,求双星的半径r1 =? r2 =? 解:对双星分别利用向心力公式
规律:半径与质量成反比
3
3、圆周运动与双星运动的关系
说出双星半径表达式?
拓展: 当m1>>m2时, m1 +m2→ m1 , m2/m1 →0 你能得出什么结论?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双星模型、三星模型、四星模型
天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。

双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。

双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。

【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。

双星系统在银河系中很普遍。

利用双星系统中两颗恒星的运动特征可推算出它们的总质量。

已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。

(引力常量为G )
【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案
之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了
LMCX3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考
虑其他天体的影响.A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的
距离保持不变,如图4-2所示.引力常量为G ,由观测能够得到可见星A 的速率v
和运行周期T.
(1)可见星A 所受暗星B 的引力F a 可等效为位于O 点处质量为m′的星体(视为质
点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m′(用m 1、m 2表示).
(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式;
(3)恒星演化到末期,如果其质量大于太阳质量m s 的2倍,它将有可能成为黑洞.若可见星A 的速率v=2.7×105 m/s ,运行周期T=4.7π×104 s ,质量m 1=6m s ,试通过估算来判断暗星B 有可能是黑洞吗?
(G=6.67×10-11 N·m 2/kg 2,m s =2.0×1030 kg )
【例题3】天体运动中,将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距始终保持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为L ,质量分别为M 1、M 2,试计算(1)双星的轨道半径(2)双星运动的周期。

【例题4】我们的银河系的恒星中大约四分之一是双星.某双星由质量不等的星体S 1和S 2构成,两星在相互之间的万有引力作用下绕两者连线上某一定点C 做匀速圆周运动.由天文观察测得其运动周期为T ,S 1到C 点的距离为r 1,S 1和S 2的距离为r ,已知引力常量为G .由此可求出S 2的质量为 ( )
A .212)(4GT r r r 2π
B .2312π4GT r
C .23
2π4GT r D . 2122π4GT
r r
【例题5】如右图,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速周运动,星球A 和B 两者中心之间距离为L 。

已知A 、B 的中心和O 三点始
终共线,A 和B 分别在O 的两侧。

引力常数为G 。

⑴求两星球做圆周运动的周期。

⑵在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A和B,月球绕其轨道中心运行为的周期记为T1。

但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期T2。

已知地球和月球的质量分别为 5.98×1024kg 和7.35 ×1022kg 。

求T2与T1两者平方之比。

(结果保留3位小数)
【例题6】【2012•江西联考】如右图,三个质点a、b、c质量分别为m1、m2、M(M>>m1,M>> m2)。

在c的万有引力作用下,a、b在同一平面内绕c沿逆时针方向做匀
速圆周运动,它们的周期之比T a∶T b=1∶k;从图示位置开始,在b运动一
周的过程中,则()
A.a、b距离最近的次数为k次
B.a、b距离最近的次数为k+1次
C.a、b、c共线的次数为2k
D.a、b、c共线的次数为2k-2
【例题7】宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,通常可忽略其他星体对它们的引力作用.已观测到稳定的三星系统存在两种基本的构成形式:
一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R 的圆轨道上运行;另一种形式是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的圆形轨道运行.设每个星体的质量均为m .
(1)试求第一种形式下,星体运动的线速度和周期.
(2)假设两种形式下星体的运动周期相同,第二种形式下星体之间的距离应为多少?
【例题8】(2012•湖北百校联考)宇宙中存在由质量相等的四颗星组成的四星系统,四星系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用.已观测到稳定的四星系统存在两种基本的构成形式:一种是四颗星稳定地分布在边长为a 的正方形的四个顶点上,均围绕正方形对角线的交点做匀速圆周运动,其运动周期为;另一种形式是有三颗星位于边长为a 的等边三角形的三个项点上,并沿外接于等边三角形的圆形轨道运行,其运动周期为,而第四颗星刚好位于三角形的中心不动.试求两种形式下,星体运动的周期之比12
T T .。

相关文档
最新文档