cxy几何概型经典例题

合集下载

几何概型练习苏教版必修

几何概型练习苏教版必修

几何概型练习苏教版必

YUKI was compiled on the morning of December 16, 2020
第8课时7.3.3 几何概型(3)
分层训练
1、如图,某人向圆
内投镖,如果他每次都投入圆内,那
么他投中正方形区域
的概率为( ) A .
2π B .1π
C .23
D .13
2、现有100ml 的蒸馏水,假定里面有一个细菌,现从中抽取20ml 的蒸馏水,则抽到细菌的概率为( )
A .1100
B .120
C .110
D .15
3、一艘轮船只有在涨潮的时候才能驶入港口,已知该港口每天涨潮的时间为早晨5:00至6:00和下午4:30至5:30,则该船在一昼夜内可以进港的概率是__________
4、一只蚂蚁在三边长分别为3,4,5的三角形的边上爬行,某时刻该蚂蚁距离三角形的三个顶点的距离均超过1的概率为( ) A.43 B.21 C.31 D.3
2 5、若过正三角形ABC 的顶点A 任作一条直线L ,则L 与线段BC 相交的概率为_______
拓展延伸
6、往一边长为6厘米的正方形桌面上随机地扔一半径为1厘米的质地均匀的小圆片,求圆片在桌面上与桌面四周无交点的概率.
7、从(0,1)中随机地取两个数,求两数平方和小于1
4
的概率.
本节学习疑点:
7.3.3 几何概型(3)
1、A
2、D
3、1/12
4、B
5、1/3
6、946
422==P 7、 1/2 8、设两数分别为,x y ,则
22140101x y x y ⎧+<⎪⎪<<⎨⎪<<⎪⎩,211()42116P ππ⋅⋅==。

几何概型的经典例题

几何概型的经典例题

几何概型的经典例题
一、例题
在区间[ - 1,2]上随机取一个数x,则| x|≤slant1的概率为多少?
二、解析
1. 首先确定全部结果构成的区域长度
- 区间[ - 1,2]的长度为2-( - 1)=3。

2. 然后确定满足条件| x|≤slant1,即-1≤slant x≤slant1的区域长度
- 区间[ - 1,1]的长度为1-( - 1)=2。

3. 最后根据几何概型的概率公式P(A)=(构成事件A的区域长度(面积或体积))/(试验的全部结果所构成的区域长度(面积或体积))
- 这里是在数轴上的区间问题,属于长度型几何概型,所以P = (2)/(3)。

三、例题
已知正方形ABCD的边长为2,在正方形ABCD内随机取一点P,求点P到正方形各顶点的距离都大于1的概率。

四、解析
1. 首先确定全部结果构成的区域面积
- 正方形ABCD的边长为2,则其面积S = 2×2 = 4。

2. 然后确定满足条件的区域面积
- 点P到正方形各顶点的距离都大于1,那么点P在以正方形各顶点为圆心,1为半径的四个四分之一圆的外部(这些圆在正方形内部的部分)。

- 四个四分之一圆的面积之和相当于一个半径为1的圆的面积,即
S_1=π×1^2=π。

- 满足条件的区域面积S_2=4 - π。

3. 最后根据几何概型的概率公式
- 这里是平面区域问题,属于面积型几何概型,所以P=frac{S_2}{S}=(4 - π)/(4)。

几何概型例题及解析

几何概型例题及解析

几何概型例题及解析题目:在边长为2的正方形内随机取一个点,则该点到正方形四个顶点的距离都大于1的概率是( )。

A. 1/2B. 1/4C. 3/4D. 1/16解析:在边长为2的正方形内,到四个顶点距离都大于1的区域是一个边长为1的正方形。

因此,所求概率为小正方形的面积与大正方形面积之比,即1/4。

题目:在半径为2的圆内随机取一条弦,则弦长小于等于2√3的概率为( )。

A. 1/4B. 1/2C. 3/4D. √3/2解析:在半径为2的圆内,弦长小于等于2√3的弦对应的圆心角为120°。

因此,所求概率为120°/360° = 1/3,但选项中并没有这个值,可能题目有误或选项不完整。

题目:在区间[0, 2]上随机取两个数x和y,则满足x^2 + y^2 ≤ 2的概率是( )。

A. π/4B. π/2C. 1 - π/4D. 1 - π/2解析:在区间[0, 2]上随机取两个数x和y,对应的平面区域是一个边长为2的正方形。

满足x^2 + y^2 ≤ 2的区域是一个半径为√2的圆在正方形内的部分。

所求概率为圆的面积与正方形面积之比,即π*(√2)^2 / (2*2) = π/2。

题目:在边长为1的正方形内随机取一个点,则该点到正方形中心的距离小于1/2的概率为( )。

A. 1/4B. 1/2C. 3/4D. √2/2解析:在边长为1的正方形内,到中心距离小于1/2的区域是一个边长为1/2的正方形。

因此,所求概率为小正方形的面积与大正方形面积之比,即(1/2)^2 = 1/4。

题目:在三维坐标系中,随机取一个点P(x, y, z),其中x, y, z ∈ [0, 1],则点P到原点O的距离小于等于√2/2的概率为( )。

A. π/6B. π/4C. π/3D. π/2解析:在三维坐标系中,到原点距离小于等于√2/2的点构成一个半径为√2/2的球在[0, 1]^3内的部分。

所求概率为球的体积与[0, 1]^3的体积之比,即(π*(√2/2)^3) / 1^3 = π/6。

几何概型、古典概型常考经典好题(史上最全面含答案)

几何概型、古典概型常考经典好题(史上最全面含答案)

几何概型、古典概型常考经典题(史上最全面)1.在长为2的线段AB 上任意取一点C ,则以线段AC 为半径的圆的面积小于π的概率为( ) A .14 B.12 C .34 D.π42.已知正棱锥S-ABC 的底面边长为4,高为3,在正棱锥内任取一点P ,使得V P-ABC <12V S-ABC 的概率是( ) A .34 B.78 C .12 D.143.如图所示,A 是圆上一定点,在圆上其他位置任取一点A ′,连接AA ′,得到一条弦,则此弦的长度小于或等于半径长度的概率为( )A .12 B.32 C .13 D.144.在区间⎣⎢⎡⎦⎥⎤-π6,π2上随机取一个数x ,则sin x +cos x ∈[1, 2 ]的概率是( ) A .12 B.34 C .38 D.585.若m ∈(0,3),则直线(m +2)x +(3-m)y -3=0与x 轴、y 轴围成的三角形的面积小于98的概率为________.6.如图,正四棱锥S-ABCD 的顶点都在球面上,球心O 在平面ABCD 上,在球O 内任取一点,则这点取自正四棱锥内的概率为________.7.平面区域A 1={}(x ,y )|x 2+y 2<4,x ,y ∈R ,A 2={(x ,y )||x |+|y |≤3,x ,y ∈R}.在A 2内随机取一点,则该点不在A 1内的概率为________.8.在边长为4的等边三角形OAB 及其内部任取一点P ,使得OA ―→·OP ―→≤4的概率为( )A.12B.14C.13D.189.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为35,则AD AB =________. 10.某人对某台的电视节目进行了长期的统计后得出结论,他任意时间打开电视机看该台节目时,看不到广告的概率为910,那么该台每小时约有________分钟的广告.11.小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于12,则周末去看电影;若此点到圆心的距离小于14,则去打篮球;否则,在家看书.则小波周末不在家看书的概率为________.12.在面积为S 的ABC ∆ 的边AB 上任取一点P ,则PBC ∆的面积大于4S 的概率为 .13.在ABC ∆中,060,2,6ABC AB BC ∠===,在BC 上任取一点D ,则使ABD ∆为钝角三角形的概率为( )A .16B .13C .12D .23 14.从区间[0,1]上随机抽取2n 个数1212,,,,,,,n n x x x y y y ,构成n 个数对11(,)x y ,22(,)x y ,[来源:学+,(,)n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为__________. A .4n m B .2n m C .4m n D .m n15. 在等腰Rt △ABC 中, (1)在斜边A B 上任取一点M ,求AM 的长小于AC 的长的概率.(2)过直角顶点C 在ACB ∠内作一条射线CM ,与线段AB 交于点M ,求AM<AC 的概率.(3)已知P 是△ABC 所在平面内一点,PB +PC +2PA =0,现将一粒黄豆随机撒在△PBC 内,则黄豆落在△PBC 内的概率是( )A .14B .13C .23D .1216.节日前夕,小李在家门前的树上挂了两串彩灯,这两串彩灯的第一次闪亮相互独立,且都在通电后的4秒内任一时刻等可能发生,然后每串彩灯在4秒内为间隔闪亮,那么这两串彩灯同时通电后,它们第一次闪亮的时刻相差不超过2秒的概率。

几何概型

几何概型

几何概型习题(含答案)一、单选题1.如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A.14B.8πC.12D.4π2.在区间[-2,2]上随机取一个数b,若使直线与圆有交点的概率为,则a =A.B.C.1D.23.在区间上随机取两个数x,y,记P为事件“”的概率,则A.B.C.D.4.甲乙两艘轮船都要在某个泊位停靠6小时,假定他们在一昼夜的时间段中随机地到达,试求这两艘船中至少有一艘在停泊位时必须等待的概率( )A.B.C.D.5.如图,边长为2的正方形中有一阴影区域,在正方形中随机撒一粒豆子,它落在阴影区域内的概率为.则阴影区域的面积约为( )A.B.C.D.无法计算6.在区间上随机取两个实数,记向量,,则的概率为()A.B.C.D.7.某景区在开放时间内,每个整点时会有一趟观光车从景区入口发车,某人上午到达景区入口,准备乘坐观光车,则他等待时间不多于10分钟的概率为()A.B.C.D.8.在上任取一个个实数,则事件“直线与圆”相交的概率为( )A.B.C.D.9.小赵和小王约定在早上7:00至7:15之间到某公交站搭乘公交车去上学,已知在这段时间内,共有2班公交车到达该站,到站的时间分别为7:05,7:15,如果他们约定见车就搭乘,则小赵和小王恰好能搭乘同一班公交车去上学的概率为()A.B.C.D.二、填空题10.任取两个小于1的正数x、y,若x、y、1能作为三角形的三条边长,则它们能构成钝角三角形三条边长的概率是________.11.已知,,,都在球面上,且在所在平面外,,,,,在球内任取一点,则该点落在三棱锥内的概率为__________.12.已知,点的坐标为,则当时,且满足的概率为__________.13.在区间上随机地取一个数,则事件“”发生的概率为_______。

几何概型 - 简单 - 习题

几何概型 - 简单 - 习题

几何概型一、选择题(共12小题;共60分)1. 下列关于几何概型的说法错误的是A. 几何概型是古典概型的一种,基本事件都具有等可能性B. 几何概型中事件发生的概率与它的位置或形状无关C. 几何概型在一次试验中可能出现的结果有无限多个D. 几何概型中每个结果的发生都具有等可能性2. 已知是长方形,,,为的中点,在长方形内随机取一点,取到的点到的距离大于的概率为A. B. C. D.3. 若将一个质点随机投入如图所示的长方形中,其中,,则质点落在以为直径的半圆内的概率是A. B. C. D.4. 张卡片上分别写有数字,,,,从这张卡片中随机抽取张,则取出的张卡片上的数字之和为奇数的概率为A. B. C. D.5. 设在上随机地取值,则关于的方程有实数根的概率为A. B. C. D.6. 如图,在半径为,弧长为的扇形中,以为直径作一个半圆.若在扇形内随机取一点,则此点取自阴影部分的概率是A. B. C. D.7. 在中,,,,在边上任取一点,则为钝角三角形的概率为A. B. C. D.8. 如图,在边长为的正方形内有区域(阴影部分所示),张明同学用随机模拟的方法求区域的面积.若每次在正方形内随机产生个点,并记录落在区域内的点的个数.经过多次试验,计算出落在区域内点的个数的平均值为个,则区域的面积约为A. B. C. D.9. 如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形的斜边,直角边,.的三边所围成的区域记为Ⅰ,黑色部分记为Ⅱ,其余部分记为Ⅲ.在整个图形中随机取一点,此点取自Ⅰ,Ⅱ,Ⅲ的概率分别记为,,,则A. B. C. D.10. 某个路口交通指示灯,红灯时间为秒,黄灯时间为秒,绿灯时间为秒,黄灯时间可以通行,当你到达路口时,等待时间不超过秒就可以通行的概率为A. B. C. D.11. 在长为的线段上任取一点,则点与线段两端点的距离都大于的概率等于A. B. C. D.12. 在区间内随机取出一个数,使得的概率为A. B. C. D.二、填空题(共5小题;共25分)13. 某路公共汽车每发车一次,某乘客到乘车点的时刻是随机的,则他候车时间不超过的概率为.14. 在区间上随机选取一个数,则的概率为.15. 已知事件“在矩形的边上随机取一点,使的最大边是”发生的概率为,则.16. 在边长为的正三角形内任取一点,则使点到三个顶点的距离至少有一个小于的概率是.17. 已知一只蚂蚁在边长分别为,,的三角形的边上随机爬行,则其恰在离三个顶点的距离都大于的地方的概率为.三、解答题(共5小题;共65分)18. 设有一个等边三角形网格,其中各个等边三角形的边长都是,现将直径等于的硬币投掷到此网格上,求硬币落下后与格线没有公共点的概率.19. 已知在等腰直角三角形中,.(1)在线段上任取一点,求使的概率;(2)在内任作射线,求使的概率.20. 在等腰的斜边上任取一点,求小于的概率.21. 如图,两盏路灯之间的距离是米,由于光线较暗,想在其间再随意安装两盏路灯、,问与,与之间的距离都不小于米的概率是多少?22. 在的水中有一个草履虫,现从中随机取出水放到显微镜下观察,求发现草履虫的概率.答案第一部分1. A 【解析】几何概型与古典概型是两种不同的概率模型,无包含关系.2. B3. B 【解析】长方形的面积,以为直径的半圆的面积,所以.4. C 【解析】采用列举法得所有的基本事件有,,,,,六种情况,其中两数字之和为奇数的有,,,四种情况,故所求概率为.5. C【解析】方程有实根,则,解得或(舍去).由几何概型的概率计算公式可知所求的概率为.6. B 【解析】阴影部分的面积为,扇形的面积为,所以在扇形内随机取一点,则此点取自阴影部分的概率.7. C 【解析】过点作,垂足为,则;过点作,交于点,则,,易知当点在线段和上时(不包括线段端点,,),为钝角三角形,故所求概率为.8. B 【解析】设区域的面积约为,根据题意有,所以,,所以区域的面积约为.9. A10. A11. D 【解析】将线段平均分成段,设中间两点分别为,,则当点在线段上时符合题意,所以概率.12. D第二部分13.【解析】本题可以看成向区间内均匀投点,求点落入内的概率.设某乘客候车时间不超过,所以.14.15.【解析】如图,设,根据对称性,由题中条件知,点的活动范围为,即.当时,,解得,所以.16.【解析】分别以点,,为圆心,以为半径作圆,与构成三个扇形,如图中阴影部分所示,当点落在其内时符合要求.所以.17.【解析】由题意可知,三角形的三条边长的和为,而蚂蚁要在离三个顶点的距离都大于的地方爬行,则它爬行的区域长度为,根据几何概型的概率计算公式可得所求概率为.第三部分18. 记事件为“硬币落下后与格线没有公共点”,如图所示,在等边三角形内作小等边三角形,使其三边与原等边三角形三边的距离都为,则小等边三角形的边长为.由几何概型的概率计算公式得.19. (1)设,,则.若,则,故的概率.(2)设,则.若,则,故的概率.20. 在上截取,于是,.21. 记:“与,与之间的距离都不小于米”,把三等分,由于中间长度为米所以.22. 记事件在取出的水中有草履虫,由几何概型的概率计算公式得.。

几何概型作业含答案

几何概型作业含答案

几何概型作业(含答案)1.某路口人行横道的信号灯为红灯和绿灯交替出现,红灯持续时间为40秒.若一名行人来到该路口遇到红灯,则至少需要等待15秒才出现绿灯的概率为()A.710B.58C.38D.310答案:B解析:行人在红灯亮起的25秒内到达该路口,即满足至少需要等待15秒才出现绿灯,根据几何概型的概率公式知,所求事件的概率P=2540=58,故选B.2.[2019吉林调研]如图,长方形的面积为1,将100个豆子随机地撒在长方形内,其中恰好有20个豆子落在阴影部分,则用随机模拟的方法估计图中阴影部分的面积为()A.15B.45C.120D.1100答案:A解析:设阴影部分的面积为S,依题意,得S 1=20 100,所以S=15,故选A.3.已知一只蚂蚁在边长分别为5,12,13的三角形的边上随机爬行,则其恰在到三个顶点的距离都大于1的地方的概率为()A.45B.35C .π60 D .π3答案:A解析:由题意可知,三角形的三条边长的和为5+12+13=30, 而蚂蚁要在离三个顶点的距离都大于1的地方爬行, 则它爬行的区域长度为3+10+11=24,根据几何概型的概率计算公式可得所求概率为2430=45.4.已知事件“在矩形ABCD 的边CD 上随机取一点P ,使△APB 的最大边是AB ”发生的概率为12,则ADAB =( )A.12 B .14 C .32 D .74答案:D解析:由已知,点P 的分界点恰好是边CD 的四等分点, 由勾股定理,可得AB 2=⎝ ⎛⎭⎪⎫34AB 2+AD 2,解得⎝ ⎛⎭⎪⎫AD AB 2=716,即AD AB =74,故选D.5.已知单位圆的圆心为O ,A 是圆上的一个定点,点B 在圆上,则使∠AOB <π3的概率为( )A.16 B .14 C .13 D .12 答案:C解析:如图,问题转化为劣弧的长与圆的周长的比,所以P =23π2π=13.6.[2019石家庄模拟]如图,M 是半径为R 的圆周上一个定点,在圆周上等可能地任取一点N ,连接MN ,则弦MN 的长度超过2R 的概率是()A.15 B .14 C .13 D .12答案:D解析:由题意知,当MN =2R 时,∠MON =π2, 所以所求概率为1-2×π22π=12.7.[2019广州模拟]在区间⎣⎢⎡⎦⎥⎤-π6,π2上随机取一个数x ,则sin x +cos x ∈[1,2]的概率是( ) A.12 B .34 C .38 D .58答案:B解析:因为x ∈⎣⎢⎡⎦⎥⎤-π6,π2,所以x +π4∈⎣⎢⎡⎦⎥⎤π12,3π4.由sin x +cos x =2sin ⎝ ⎛⎭⎪⎫x +π4∈[1,2],得22≤sin⎝ ⎛⎭⎪⎫x +π4≤1, 所以x ∈⎣⎢⎡⎦⎥⎤0,π2, 故要求的概率为π2-0π2-⎝ ⎛⎭⎪⎫-π6=34.8.[2019河南濮阳一模]如图所示的长方形的长为2、宽为1,在长方形内撒一把豆子(豆子大小忽略不计),然后统计知豆子的总数为m 粒,其中落在飞鸟图案中的豆子有n 粒,据此请你估计图中飞鸟图案的面积约为()A.n m B .2n m C .m n D .m 2n答案:B解析:长方形的面积为2,题图中飞鸟图案的面积与长方形的面积之比约为n m ,故图中飞鸟图案的面积约为2nm.故选B. 9.[2019山东烟台期末]在区间[0,π]上随机取一个数x ,则事件“sin x +cos x ≥22”发生的概率为( )A.12B .13123答案:C解析:由题意,可得⎩⎨⎧sin x +cos x ≥22,0≤x ≤π,即⎩⎨⎧sin ⎝ ⎛⎭⎪⎫x +π4≥12,0≤x ≤π,解得0≤x ≤7π12,故所求的概率为7π12π=712.10.[2019河北衡水联考]2017年8月1日是中国人民解放军建军90周年,中国人民银行为此发行了以此为主题的金银纪念币,如图所示是一枚8克圆形金质纪念币,直径22 mm ,面额100元.为了测算图中军旗部分的面积,现用1粒芝麻向硬币内投掷100次,其中恰有30次落在军旗内,据此可估计军旗的面积大约是( )A.363π10 mm 2 B .363π5 mm 2 C.726π5 mm 2 D .363π20 mm 2答案:A解析:向硬币内投掷100次,恰有30次落在军旗内,所以可估计军旗的面积大约是S =30100×π×112=363π10(mm 2).11.[2019广东肇庆模拟]已知m ∈[1,7],则函数f (x )=x 33-(4m -1)x 2+(15m 2-2m -7)x +2在实数集R 上是增函数的概率为( )A.14B .1324答案:B解析:f ′(x )=x 2-2(4m -1)x +15m 2-2m -7, 依题意,知f ′(x )在R 上恒大于或等于0, 所以Δ=4(m 2-6m +8)≤0,得2≤m ≤4. 又m ∈[1,7],所以所求的概率为4-27-1=13.故选B.12.[2019河南新乡一模]若x 是从区间[0,3]内任意选取的一个实数,y 也是从区间[0,3]内任意选取的一个实数,则x 2+y 2<1的概率为________.答案:π36解析:如图,不等式组⎩⎪⎨⎪⎧0≤x ≤3,0≤y ≤3表示的平面区域是正方形区域,面积为3×3=9,其中满足x 2+y 2<1的平面区域为阴影区域,其面积为14π·12=π4, 故所求的概率P =π49=π36.13.[2019福建三明段考]在区间[1,5]和[2,4]上分别取一个数,记为a ,b ,则方程x 2a 2-y 2b 2=1表示离心率小于5的双曲线的概率为________.答案:78解析:∵双曲线的离心率小于5, ∴1<e <5,∴1<ca <5, ∴1<1+b 2a 2<5,∴0<b 2a 2<4,解得b <2a (1≤a ≤5,2≤b ≤4).① ①式对应的平面区域如图中阴影部分所示,根据几何概型概率公式,得所求概率为 P =12×(3+4)×24×2=78.14.[2019福建漳州调研]在半径为2的圆C 内任取一点P ,则以点P 为中点的弦的弦长小于23的概率为________.答案:34解析:由题意可知,当且仅当弦心距d >22-⎝⎛⎭⎪⎫2322=1,即|CP |>1时,以点P 为中点的弦的弦长小于23,由几何概型的概率公式可得, 所求概率为π×22-π×12π×22=34.15.一个多面体的直观图和三视图如图所示,点M 是AB 的中点,一只蝴蝶在几何体ADF -BCE 内自由飞翔,则它飞入几何体F -AMCD 内的概率为________.答案:12解析:因为V F-AMCD=13S四边形AMCD·DF=14a3,V ADF-BCE=12a3,所以蝴蝶飞入几何体F-AMCD内的概率为14a312a3=12.16.[2019海南东方期末]已知在四棱锥P-ABCD中,P A⊥底面ABCD,底面ABCD是正方形,P A=AB=2,现在该四棱锥内部或表面任取一点O,则四棱锥O-ABCD的体积不小于23的概率为________.答案:2764解析:当四棱锥O-ABCD的体积为23时,设O到平面ABCD的距离为h,则有13×22×h=23,解得h=12.如图所示,在四棱锥P-ABCD内作平面EFGH平行于底面ABCD,且平面EFGH与底面ABCD的距离为12.因为P A⊥底面ABCD,且P A=2,所以PH P A =34,所以四棱锥O -ABCD 的体积不小于23的概率为 P =V 四棱锥P -EFGH V 四棱锥P -ABCD =⎝ ⎛⎭⎪⎫PH P A 3=⎝ ⎛⎭⎪⎫343=2764.17.[2019大连模拟]在[-1,1]上随机地取一个数k ,则事件“直线y =kx 与圆(x -5)2+y 2=9相交”发生的概率为________.答案:34解析:若直线y =kx 与圆(x -5)2+y 2=9相交, 则有圆心到直线的距离d =|5k |k 2+1<3,即-34<k <34,所以所求概率P =34-⎝ ⎛⎭⎪⎫-341-(-1)=34.18.一只小蜜蜂在一个棱长为4的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于1,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为________.答案:18解析:根据几何概型知识,概率为体积之比, 即P =(4-2)343=18.19.[2019河北唐山五校联考]向圆(x -2)2+(y -3)2=4内随机投掷一点,该点落在x 轴下方的概率为________.答案:16-34π解析:如图,连接CA ,CB ,依题意,圆心C 到x 轴的距离为3,所以弦AB的长为2. 又圆的半径为2,所以弓形ADB的面积为12×23π×2-12×2×3=23π-3,所以向圆(x-2)2+(y-3)2=4内随机投掷一点,该点落在x轴下方的概率P=23π-34π=16-34π.20.已知关于x的二次函数f(x)=b2x2-(a+1)x+1.(1)若a,b分别表示将一质地均匀的正方体骰子(六个面上的点数分别为1,2,3,4,5,6)先后抛掷两次时第一次、第二次向上一面出现的点数,求y=f(x)恰有一个零点的概率;(2)若a,b∈[1,6],求满足y=f(x)有零点的概率.解:(1)设(a,b)表示一个基本事件,则抛掷两次骰子的所有基本事件有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),…,(6,5),(6,6),共36个.用A表示事件“y=f(x)恰有一个零点”,令Δ=[-(a+1)]2-4b2=0,则a+1=2b,则A包含的基本事件有(1,1),(3,2),(5,3),共3个,所以P(A)=336=112.所以事件“y=f(x)恰有一个零点”发生的概率为1 12.(2)用B表示事件“y=f(x)有零点”,则B即为“a+1≥2b”.试验的全部结果所构成的区域为{(a,b)|1≤a≤6,1≤b≤6},构成事件B的区域为{(a,b)|1≤a≤6,1≤b≤6,a-2b+1≥0},如图:所以所求的概率为P(B)=12×5×525×5=14.所以事件“y=f(x)有零点”发生的概率为1 4.。

几何概型例题分析及习题(含答案)

几何概型例题分析及习题(含答案)

几何概型例题分析及练习题(含答案)[例1]甲、乙两人约定在下午 4:00~5:00间在某地相见他们约好当其中一人先到后一定要等 另一人15分钟,若另一人仍不到则可以离去,试求这人能相见的概率。

解:设x 为甲到达时间,y 为乙到达时间.建立坐标系,如图|x — y|乞15时可相见,即阴 60 -4527影部分P2 6021 21 [例3]将长为1的棒任意地折成三段,求三段的长度都不超过的概率。

2解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为1-x -y ,则基本事件 组所对应的几何区域可表示为门二{(x, y) |0 ::: x :: 1,0 ::: y ::: 1,0 ::: x • y ::: 1},即图中黄色区域,此区域面积为[例2]设A 为圆周上一定点, 率。

在圆周上等可能任取一点与A 连接,求弦长超过半径,2倍的概cf BCD P =-圆周1事件“三段的长度都不超过丄”所对应的几何区域可表示为2 111 A ={(x, y)| (x, yb 11,x , y ,1 — x — y }2 22=181丄”的概率为P 二直2 12即图中最中间三角形区域,此区域面积为此时事件“三段的长度都不超过2 • -(-)22 2解:| AB |=| AC 匸..2R .y=-15x-y=1515 06012[例4]两对讲机持有者张三、李四,为卡尔货运公司工作,他们对讲机的接收范围是25km,X i x 2 _ -a 0 X 2 = b 0解: (2)(1)利用计算器产生 0 变换 a = a ! ” 2 _ 1 , (3) 从中数出满足条件 b至1区间两组随机数a 1,b 1 b = b - ” 2 -1 1 2a 且a . 0且b 0的数m 4c :解法1:记 ABC 的三内角分别为 形”,则试验的全部结果组成集合$11={「, )0 J , :: ,0 J因为ABC 是锐角三角形的条件是n , 3TnJI0 ,且二川:—2 2所以事件A 构成集合A={(「)|,0 (2)由图2可知,所求概率为A 、B 、C,求 ABC 是锐角三角形的概率。

几何概型例题分析及习题(含答案)

几何概型例题分析及习题(含答案)

2几何概型例题分析及练习题(含答案)[例1]甲、乙两人约定在下午4:00~5:00间在某地相见他们约好当其中一人先到后一定要等另一人 15分钟,若另一人仍不 到则可以离去,试求这人能相见的概率。

解:设X 为甲到达时间,y 为乙到达时间.建立坐标系,如图[例2]设A 为圆周上一定点,在圆周上等可能任取一点与 A 连接,求弦长超过半径 2倍的概率[例3]将长为1的棒任意地折成三段,求三段的长度都不超过丄2的概率。

解:设第一段的长度为x ,第二段的长度为y ,第三段的长度为1 x y ,则基本事件组所对应的几何区域可表示为{(x,y)|O x 1,0 y 1,0 x y 1},即图中黄色区域,此区域面积为1。

2事件“三段的长度都不超过 1”所对应的几何区域可表2 示为1 1 1A {( x, y)|(x, y) , x -,y J x y 才即图中最中间三角形区域,此区域面积为 丄(丄)2 12 2 81此时事件“三段的长度都不超过1”的概率为P -8 1 2 14|x y| 15时可相见,即阴影部分602 452 602rinx-尸一 13flJ 1 S 哎y60 K解:| AB| | AC| ,2R .BCD圆周7 16A[例4]两对讲机持有者张三、李四,为卡尔货运公司工作,他们对讲机的接收范围是25,下午3: 00张三在基地正东30内 部处,向基地行驶,李四在基地正北 40内部处,向基地行 驶,试问下午3: 00,他们可以交谈的概率。

解:设x,y 为张三、李四与基地的距离x [0,30],y [0,40],以基地为原点建立坐标系.他们构成实数对(x,y ),表示区域总 面积为1200,可以交谈即x 2 y 2 25程x 2 ax b 0两根均为正数的概率a 2 4b 0-252 120025 192[例5]在区间[1,1]上任取两数a,b , 运用随机模拟方法求二次方解:(2)X2 a 0x2 b 0(1 )利用计算器产生变换 a a1 2 1,0至1区间两组随机数a1,b1b1 2 1,事件A表示b三角形的概率。

几何概型公考真题答案解析

几何概型公考真题答案解析

几何概型公考真题答案解析几何概型是公共考试中常见的一类题目类型,需要考生熟悉各种几何图形的性质和定理,并能够熟练运用这些知识解决问题。

本文将针对几何概型的一些常见题目进行解析,帮助考生更好地理解和掌握几何概型题的解题思路和方法。

首先,我们来看一个典型的几何概型题目:题目:在平面上有一个正方形ABCD,假设点E是线段BC的中点,点F是线段CD的中点。

连接线段AE和线段DF的交点为点P,连接线段AE和线段BF的交点为点Q,连接线段CD和线段BF的交点为点R。

求证:四边形PEQR是一个平行四边形。

解析:首先我们需要理解平行四边形的定义和性质。

平行四边形是指有四个边全部都是平行且两两相等的四边形。

所以,我们只需要证明四条边都是平行的,并且至少有两条边相等。

在这个题目中,我们可以观察到一些线段和角度的关系。

首先,根据正方形的定义可知,线段AB和线段DC平行且相等,线段BC和线段AD也平行且相等。

我们可以画出图形,帮助我们更好地理解题目。

接下来,我们需要确定点P、Q和R的位置。

由于E是线段BC的中点,所以点P位于线段AE上。

同理,点R位于线段CD上,点Q位于线段BF上。

由于线段AE和线段BF都与线段BC平行,所以根据平行线性质可知线段AE与线段BF平行。

同理,线段CD与线段BF也平行。

这样,我们得到了四边形PEQR的四条边都是平行的。

接下来,我们需要证明至少有两条边相等。

我们可以观察到,由于点E是线段BC的中点,所以线段AE和线段EC相等。

同理,由于点F是线段CD的中点,所以线段FD和线段FC相等。

根据等边和等角的性质,我们可以知道角A和角C相等,角D和角B相等。

这样,我们得到了两组边相等的情况。

综上所述,根据以上分析,我们可以得出结论:四边形PEQR是一个平行四边形。

通过对这个题目的解析,我们可以总结出几何概型题目的解题步骤和思路。

首先,我们需要理解题目中所给的图形和条件,并根据所给的信息画出图形,以帮助我们更好地理解题目。

几何概型典型例题ppt课件

几何概型典型例题ppt课件

则△PBC 的面积不小于 S 的概率是( ) 3
A. 2 B. 1 C. 3 D. 1
3
3
4
4
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
面积型概率(建系法)
1. 甲乙两人相约晚上7点到8点之间见面, 约定谁先到达约定地点就等对方20分钟, 等待超过20分钟则离开。求甲乙两人约 会成功的概率。
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
长度型概率
1.在长为 1 的线段 AB 上取一点 C,则 AC 之间的
距离小于 1 的概率为 2
A. 1 4
C. 3 4
B. 1 2
D. 7 8
[0,2] 任取的一个整数,求上述方程有实根的概率. (Ⅱ)若 a 是从区间[0,3] 任取的一个实数, b 是从区间
[0,2] 任取的一个实数,求上述方程有实根的概率.
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
面积型概率(建系法)
3.设有关于 x 的一元二次方程 x2 2ax b2 0 . (Ⅰ)若 a 是从区间[0,3] 任取的一个整数, b 是从区间
面积型概率上半圆(圆
中阴影部分)中的概率是( )
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

几何概型典型例题

几何概型典型例题

几何概型1.(2009年高考福建卷)点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧的长度小于1的概率为________.答案:23解析:设事件M 为“劣弧的长度小于1”,则满足事件M 的点B 可以在定点A 的两侧与定点A 构成的弧长小于1的弧上随机取一点,由几何概型的概率公式得:P (M )=23.2.(2010年苏、锡、常、镇四市调研)已知如图所示的矩形,长为12,宽为5,在矩形内随机地投掷1000粒黄豆,数得落在阴影部分的黄豆数为600粒,则可以估计出阴影部分的面积约为________.答案:36解析:设所求的面积为S ,由题意得6001000=S5×12,∴S =36.3.在棱长为a 的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a 的概率为________.解析:P =18×43πa 3a 3=π6.答案:π64.(2010年扬州调研)已知集合A {x |-1<x <5},B ={x |x -23-x>0},在集合A 中任取一个元素x ,则事件“x ∈A ∩B ”的概率是________.解析:由题意得A ={x |-1<x <5},B ={x |2<x <3},由几何概型知:在集合A 中任取一个元素x ,则x ∈A ∩B 的概率为P =16.答案:165.某公共汽车站每隔10分钟就有一趟车经过,小王随机赶到车站,则小王等车时间不超过4分钟的概率是________.答案:256.如图,M 是半径为R 的圆周上一个定点,在圆周上等可能地任取一点N ,连结MN ,则弦MN 的长度超过2R的概率是________.答案:12解析:连结圆心O 与M 点,作弦MN 使∠MON =90°,这样的点有两个,分别记为N 1,N 2,仅当点N 在不包含点M 的半圆弧上取值时,满足MN >2R ,此时∠N 1ON 2=180°,故所求的概率为180°360°=12. 7.已知Ω={(x ,y )|x +y ≤6,x ≥0,y ≥0},E ={(x ,y )|x -2y ≥0,x ≤4,y ≥0},若向区域Ω内随机投一点P ,则点P 落入区域E 的概率为________.解析:如图,区域Ω表示的平面区域为△AOB 边界及其内部的部分,区域E 表示的平面区域为△COD 边界及其内部的部分,所以点P 落入区域E 的概率为S △CODS △AOB=12×2×412×6×6=29.答案:298.已知函数f (x )=-x 2+ax -b .若a 、b 都是从区间[0,4]任取的一个数,则f (1)>0成立的概率是________.解析:f (1)=-1+a -b >0,即a -b >1,如图:A (1,0),B (4,0),C (4,3),S △ABC =92,P =S △ABC S 矩=924×4=932.答案:9329.在区间[0,1]上任意取两个实数a ,b ,则函数f (x )=12x 3+ax -b 在区间[-1,1]上有且仅有一个零点的概率为________.解析:f ′(x )=32x 2+a ,故f (x )在x ∈[-1,1]上单调递增,又因为函数f (x )=12x 3+ax -b 在[-1,1]上有且仅有一个零点,即有f (-1)·f (1)<0成立,即(-12-a -b )(12+a -b )<0,则(12+a+b )(12+a -b )>0,可化为⎩⎪⎨⎪⎧ 0≤a ≤10≤b ≤112+a -b >012+a +b >0或⎩⎪⎨⎪⎧0≤a ≤1≤b ≤112+a -b <0,12+a +b <0由线性规划知识在平面直角坐标系aOb 中画出这两个不等式组所表示的可行域,再由几何概型可以知道,函数f (x )=12x 3+ax -b 在[-1,1]上有且仅有一个零点的概率为可行域的面积除以直线a =0,a =1,b =0,b =1围成的正方形的面积,计算可得面积之比为78.答案:7810.设不等式组⎩⎪⎨⎪⎧ 0≤x ≤60≤y ≤6表示的区域为A ,不等式组⎩⎪⎨⎪⎧0≤x ≤6x -y ≥0表示的区域为B .(1)在区域A 中任取一点(x ,y ),求点(x ,y )∈B 的概率;(2)若x ,y 分别表示甲、乙两人各掷一次骰子所得的点数,求点(x ,y )在区域B 中的概率. 解:(1)设集合A 中的点(x ,y )∈B 为事件M ,区域A 的面积为S 1=36,区域B 的面积为S 2=18,∴P (M )=S 2S 1=1836=12.(2)设点(x ,y )在区域B 为事件N ,甲、乙两人各掷一次骰子所得的点(x ,y )的个数为36个,其中在区域B 中的点(x ,y )有21个,故P (N )=2136=712.11.(2010年江苏南通模拟)已知集合A ={x |-1≤x ≤0},集合B ={x |ax +b ·2x -1<0,0≤a ≤2,1≤b ≤3}.(1)若a ,b ∈N ,求A ∩B ≠∅的概率; (2)若a ,b ∈R ,求A ∩B =∅的概率.解:(1)因为a ,b ∈N ,(a ,b )可取(0,1),(0,2),(0,3),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)共9组.令函数f (x )=ax +b ·2x -1,x ∈[-1,0], 则f ′(x )=a +b ln2·2x .因为a ∈[0,2],b ∈[1,3],所以f ′(x )>0, 即f (x )在[-1,0]上是单调递增函数.f (x )在[-1,0]上的最小值为-a +b2-1.要使A ∩B ≠∅,只需-a +b2-1<0,即2a -b +2>0.所以(a ,b )只能取(0,1),(1,1),(1,2),(1,3),(2,1),(2,2),(2,3)7组.所以A ∩B ≠∅的概率为79.(2)因为a ∈[0,2],b ∈[1,3],所以(a ,b )对应的区域为边长为2的正方形(如图),面积为4.由(1)可知,要使A ∩B =∅,只需f (x )min =-a +b2-1≥0⇒2a -b +2≤0,所以满足A ∩B =∅的(a ,b )对应的区域是如图阴影部分.所以S 阴影=12×1×12=14,所以A ∩B =∅的概率为P =144=116.12.将长为1的棒任意地折成三段,求:三段的长度都不超过a (13≤a ≤1)的概率.解:设第一段的长度为x ,第二段的长度为y , 第三段的长度为1-x -y ,则基本事件组所对应的几何区域可表示为Ω={(x ,y )|0<x <1,0<y <1,0<x +y <1},此区域面积为12.事件“三段的长度都不超过a (13≤a ≤1)”所对应的几何区域可表示为A ={(x ,y )|(x ,y )∈Ω,x <a ,y <a,1-x -y <a }.即图中六边形区域,此区域面积:当13≤a ≤12时,为(3a -1)2/2,此时事件“三段的长度都不超过a (13≤a ≤1)”的概率为P=(3a -1)2/21/2=(3a -1)2;当12≤a ≤1时,为12-3(1-a )22.此时事件“三段的长度都不超过a (13≤a ≤1)”的概率为P =1-3(1-a )2.。

几何概型大题

几何概型大题

1.某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,依此类推,统计结果如表:3 456停靠时间12121720151383-轮船数量(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为a小时,求a的值;((Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠a小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.2.假设小明家订了一份报纸,送报人可能在早上6:30﹣7:30之间把报纸送到小明家,小明父亲离开家去工作的时间在早上7:00﹣8:00之间,问小明父亲在离开家前能得到报纸(称为事件A)的概率是多少--3.空气质量按照空气质量指数大小分为七档(五级),相对应空气质量的七个类别,指数越大,说明污染的情况越严重,对人体危害越大.指数 级别类别 户外活动建议 0~50Ⅰ 优 可正常活动 51~100 :Ⅱ良 101~150Ⅲ 轻微污染 易感人群症状有轻度加剧,健康人群出现刺激症状,心脏病和呼吸系统疾病患者应减少体积消耗和户外活动.151~200 轻度污染 201~250Ⅳ 中度污染 心脏病和肺病患者症状显著加剧,运动耐受力降低,健康人群中普遍出现症状,老年人和心脏病、肺病患者应减少体力活动. 251~300 中度重污染301~500 《 Ⅴ重污染 健康人运动耐受力降低,由明显强烈症状,提前出现某些疾病,老年人和病人应当留在室内,避免体力消耗,一般人群应尽量减少户外活动. 现统计邵阳市市区2016年10月至11月连续60天的空气质量指数,制成如图所示的频率分布直方图.(1)求这60天中属轻度污染的天数;(2)求这60天空气质量指数的平均值;(3)将频率分布直方图中的五组从左到右依次命名为第一组,第二组,…,第五组.从第一组和第五组中的所有天数中抽出两天,记它们的空气质量指数分别为x ,y ,求事件|x ﹣y|≤150的概率.'(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.}5.(1)已知关于x的二次函数f(x)=ax2﹣4bx+1.设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)在区间[1,5]和[2,4]上分别取一个数,记为a,b,求方程+=1表示焦点在x轴上且离心率小于的椭圆的概率.·当a∈[0,3],b∈[0,2]时,方程①有实数根的概率为p1;当a∈[0,3],b∈[0,2]并且a∈N,b∈N时,方程①有实数根的概率为p2,求p1,p2的值.)7.已知关于x的一元二次方程:9x2+6mx=n2﹣4(m,n∈R).(1)若m∈{x|0≤x≤3,x∈N*},n∈{x|0≤x≤2,x∈Z},求方程有两个不相等实根的概率;(2)若m∈{x|0≤x≤3,x∈R},n∈{x|0≤x≤2,x∈R},求方程有实数根的概率.)8.假设小明家订了一份报纸,送报人可能在早上x(6≤x≤8)点把报纸送到小明家,小明每天离家去工作的时间是在早上y(7≤y≤9)点,记小明离家前不能看到报纸为事件M.(1)若送报人在早上的整点把报纸送到小明家,而小明又是早上整点离家去工作,求事件M的概率;(2)若送报人在早上的任意时刻把报纸送到小明家,而小明也是早上任意时刻离家去工作,求事件M的概率.》9.在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.(1)若抽奖规则是从一个装有2个红球和4个白球的袋中无放回地取出2个球,当两个球同色时则中奖,求中奖概率;(2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.(素(x,y).(1)求以(x,y)为坐标的点落在圆x2+y2=4内的概率;(2)求以(x,y)为坐标的点到直线x+y=0的距离不大于的概率.(提示:可以考虑采用数形结合法)】11.已知关于x的一元二次函数f(x)=ax2﹣bx+1,分别从集合P和Q中随机取一个数a和b得到数对(a,b).,(1)若P={x|1≤x≤3,x∈Z},Q={x|﹣1≤x≤4,x∈Z},求函数y=f(x)在x∈R内是偶函数的概率;(2)若P={x|1≤x≤3,x∈Z},Q={x|﹣1≤x≤4,x∈Z},求函数y=f(x)有零点的概率;(3)若P={x|1≤x≤3,x∈R},Q={x|﹣1≤x≤4,x∈R},求函数y=f(x)在区间[1,+∞)上是增函数的概率..(1)求甲、乙两个旅游团所选旅游线路不同的概率;(2)某天上午9时至10时,甲,乙两个旅游团都到同一个著名景点游览,20分钟后游览结束即离去.求两个旅游团在该著名景点相遇的概率.—13.如图,在圆心角为直角的扇形OAB中,分别以OA、OB为直径作两个半圆,在扇形OAB内随机取一点,求此点取自阴影部分的概率.!50分;第二组,成绩大于等于50分且小于60分;…第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中.(1)求成绩在区间[80,90)内的学生人数及成绩在区间[60,100]内平均成绩;(2)从成绩大于等于80分的学生中随机选3名学生,求至少有1名学生成绩在区间[90,100]内的概率.\15.甲、乙两人约定晚上6点到7点之间在某地见面,并约定先到者要等候另一人一刻钟,过时即可离开,求甲、乙能见面的概率.~(1)若甲预计在元月1日、3日、5日中的一天到达该港口,乙预计在元月1日、2日、3日中的一天到达该港口,且甲、乙在预计日期到达该码头均是等可能的,求甲、乙在同一天到该港口的概率.(2)若甲、乙均预计在元月1日00:00点﹣﹣﹣01:00点的任意时刻到达该港口,假设两船到达的时刻相差不超过20分钟,则后到的船必须要等待,求甲、乙中有船要等待的概率.参考答案与试题解析一.解答题(共16小题)1.某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,依此类推,统计结果如表:停靠时间`3456轮船数量1212}1720151383(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为a小时,求a的值;(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠a小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.【解答】解:(Ⅰ)a=(×12+3×12+×17+4×20+×15+5×13+×8+6×3)=4,(Ⅱ)设甲船到达的时间为x,乙船到达的时间为y,则`若这两艘轮船在停靠该泊位时至少有一艘船需要等待,则|y﹣x|<4,所以必须等待的概率为P=1﹣=,答:这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率为.2.假设小明家订了一份报纸,送报人可能在早上6:30﹣7:30之间把报纸送到小明家,小明父亲离开家去工作的时间在早上7:00﹣8:00之间,问小明父亲在离开家前能得到报纸(称为事件A)以横坐标表示报纸送到时间,以纵坐标表示父亲离家时间,建立平面直角坐标系,父亲在离开家前能得到报纸的事件构成区域是下图:由于随机试验落在方形区域内任何一点是等可能的,所以符合几何概型的条件.根据题意,只要点落到阴影部分,就表示父亲在离开家前能得到报纸,即事件A发生,所以P(A)==.|3.空气质量按照空气质量指数大小分为七档(五级),相对应空气质量的七个类别,指数越大,说明污染的情况越严重,对人体危害越大.指数级别类别户外活动建议~5Ⅰ优可正常活动、51~1Ⅱ良1 0 1~1 5Ⅲ轻微污染易感人群症状有轻度加剧,健康人群出现刺激症状,心脏病和呼吸系统疾病患者应减少体积消耗和户外活动.1 5 1~2 0 0¥轻度污染2 0 1~2 5 0Ⅳ中度污染心脏病和肺病患者症状显著加剧,运动耐受力降低,健康人群中普遍出现症状,老年人和心脏病、肺病患者应减少体力活动.2 5 1~3 0 0中度重污染)3 0 1~5 0 0Ⅴ重污染健康人运动耐受力降低,由明显强烈症状,提前出现某些疾病,老年人和病人应当留在室内,避免体力消耗,一般人群应尽量减少户外活动.现统计邵阳市市区2016年10月至11月连续60天的空气质量指数,制成如图所示的频率分布直方图.(1)求这60天中属轻度污染的天数;(2)求这60天空气质量指数的平均值;(3)将频率分布直方图中的五组从左到右依次命名为第一组,第二组,…,第五组.从第一组和第五组中的所有天数中抽出两天,记它们的空气质量指数分别为x,y,求事件|x﹣y|≤150的概率.】【解答】解:(1)依题意知,轻度污染即空气质量指数在151~200之间,共有×50×60=9天.(2)由直方图知60天空气质量指数的平均值为.(3)第一组和第五组的天数分别为60×=6天,60×=3天,则从9天中抽出2天的一切可能结果的基本事件有36种,由|x﹣y|≤150知两天只能在同一组中,而两天在同一组中的基本事件有18种,用M表示|x﹣y|≤150这一事件,则概率.4.设有关于x的一元二次方程x2+ax+b2=0.~(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a是从区间[0,3]任取的一个数,b是从区间[0,2]任取的一个数,求上述方程有实根的概率.【解答】解:(1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,则基本事件共12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).设事件A为“方程x2+ax+b2=0有实根”.则判别式△=a2﹣4b2≥0,即a≥2b,若a=0,则b=0,若a=1,则b=0,若a=2,则b=0或b=1,-若a=3,则b=0或b=1共有6个,则对应的概率P=.(2)记事件B=“方程x2+ax+b2=0有实根”.由△=a2﹣4b2≥0,得:a≥2b全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2},其面积为S=3×2=6.构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥2b},则D(3,)其面积为S′=×3×=,对应的概率P==.@5.(1)已知关于x的二次函数f(x)=ax2﹣4bx+1.设集合P={1,2,3}和Q={﹣1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)在区间[1,5]和[2,4]上分别取一个数,记为a,b,求方程+=1表示焦点在x轴上且离心率小于的椭圆的概率.【解答】解:(1)∵函数f(x)=ax2﹣4bx+1的图象的对称轴为直线x=,要使f(x)=ax2﹣4bx+1在区间[1,+∞)上为增函数,当且仅当a>0且≤1,即2b≤a.…(2分)若a=1,则b=﹣1;若a=2,则b=﹣1或1;若a=3,则b=﹣1或1.∴事件包含基本事件的个数是1+2+2=5.…(4分)而满足条件的数对(a,b)共有3×5=15个∴所求事件的概率为=.…(6分)`(2)方程+=1表示焦点在x轴上且离心率小于的椭圆,故…(8分)化简得又a∈[1,5],b∈[2,4],画出满足不等式组的平面区域,如图阴影部分所示,…(10分)阴影部分的面积为,故所求的概率P=.…(12分)6.设关于x的一元二次方程x2+2ax+b2=0①,当a∈[0,3],b∈[0,2]时,方程①有实数根的概率为p1;当a∈[0,3],b∈[0,2]并且a∈N,b∈N时,方程①有实数根的概率为p2,求p1,p2的值.【解答】解:(1)如图所示,试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}(图中矩形所示);其面积为S=3×2=6;;而构成事件“关于x的一元二次方程x2+2ax+b2=0有实根”的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}(如图阴影所示);故所求的概率为P1==;(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2,且a∈N,b∈N}如图中矩形中的点,共12个;而构成事件“关于x的一元二次方程x2+2ax+b2=0有实根”的区域为{(a,b)|0≤a≤3,0≤b≤2,且a≥b,a∈N,b∈N},如图阴影部分中的点,共9个;故所求的概率为P2==.(7.已知关于x的一元二次方程:9x2+6mx=n2﹣4(m,n∈R).(1)若m∈{x|0≤x≤3,x∈N*},n∈{x|0≤x≤2,x∈Z},求方程有两个不相等实根的概率;(2)若m∈{x|0≤x≤3,x∈R},n∈{x|0≤x≤2,x∈R},求方程有实数根的概率.【解答】解:方程的△=36m2+36(n2﹣4).(1)m∈{x|0≤x≤3,x∈N*}={1,2,3},n∈{x|0≤x≤2,x∈Z}={0,1,2},基本事件总数为9△>0,m2+n2>4,满足条件的(m,n)为(1,2),(2,1),(2,2),(3,0),(3,1),(3,2),共6个,∴方程有两个不相等实根的概率为=;(2)m∈{x|0≤x≤3,x∈R},n∈{x|0≤x≤2,x∈R},对应区域的面积为6,△≥0,m2+n2≥4,对应区域的面积为6﹣=6﹣π,∴方程有实数根的概率为=1﹣.—8.假设小明家订了一份报纸,送报人可能在早上x(6≤x≤8)点把报纸送到小明家,小明每天离家去工作的时间是在早上y(7≤y≤9)点,记小明离家前不能看到报纸为事件M.(1)若送报人在早上的整点把报纸送到小明家,而小明又是早上整点离家去工作,求事件M的概率;(2)若送报人在早上的任意时刻把报纸送到小明家,而小明也是早上任意时刻离家去工作,求事件M的概率.【解答】解:(1)设送报人到达的时间为X,小王离家去工作的时间为Y,记小王离家前不能看到报纸为事件M;则(X,Y)可以看成平面中的整点,试验的全部结果所构成的区域为Ω={(X,Y)|6≤X≤8,7≤Y≤9},整点共有3×3=9个,事件M所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X≥Y}整点有3个.是一个古典几何概型,所以P(M)=(2)如图,设送报人到达的时间为X,小王离家去工作的时间为Y,记小王离家前不能看到报纸为事件M;则(X,Y)可以看成平面中的点,试验的全部结果所构成的区域为Ω={(X,Y)|6≤X≤8,7≤Y≤9}一个正方形区域,面积为SΩ=4,】事件M所构成的区域为A={(X,Y)|6≤X≤8,7≤Y≤9,X≥Y}即图中的阴影部分,面积为S A=.这是一个几何概型,所以P(M)==.9.在一次商贸交易会上,商家在柜台开展促销抽奖活动,甲、乙两人相约同一天上午去该柜台参与抽奖.(1)若抽奖规则是从一个装有2个红球和4个白球的袋中无放回地取出2个球,当两个球同色时则中奖,求中奖概率;(2)若甲计划在9:00~9:40之间赶到,乙计划在9:20~10:00之间赶到,求甲比乙提前到达的概率.【解答】解:(1)从袋中6个球中无放回的摸出2个,试验的结果共有6×5=30种,中奖的情况分为两种:(i)2个球都是红色,包含的基本事件数为2×1=2;(ii)2个球都是白色,包含的基本事件数为4×3=12.:所以,中奖这个事件包含的基本事件数为14.因此,中奖概率为.…(6分)(2)设两人到达的时间分别为9点到10点之间的x分钟、y分钟.用(x,y)表示每次试验的结果,则所有可能结果为Ω={(x,y)|0≤x≤40,20≤y≤60};记甲比乙提前到达为事件A,则事件A的可能结果为A={(x,y)|x<y,0≤x≤40,20≤y≤60}.如图所示,试验全部结果构成区域Ω为正方形ABCD.而事件A所构成区域是正方形内的阴影部分.根据几何概型公式,得到P(A)==.所以,甲比乙提前到达的概率为.…(12分):10.已知集合A=[﹣3,3],B=[﹣2,2],设M={(x,y)|x∈A,y∈B},在集合M内随机取出一个元素(x,y).(1)求以(x,y)为坐标的点落在圆x2+y2=4内的概率;(2)求以(x,y)为坐标的点到直线x+y=0的距离不大于的概率.(提示:可以考虑采用数形结合法)【解答】解:(1)A=[﹣3,3],B=[﹣2,2],设M={(x,y)|x∈A,y∈B},表示的区域的面积为6×4=24.圆x2+y2=4的面积为4π,∴以(x,y)为坐标的点落在圆x2+y2=4内的概率为P1==,(2)由题意,到直线x+y=0的距离不大于的点为夹在两条平行直线x+y﹣2=0与x+y+2=0之间的范围内,如图所示,故所求事件的概率为.>11.已知关于x的一元二次函数f(x)=ax2﹣bx+1,分别从集合P和Q中随机取一个数a和b得到数对(a,b).(1)若P={x|1≤x≤3,x∈Z},Q={x|﹣1≤x≤4,x∈Z},求函数y=f(x)在x∈R内是偶函数的概率;(2)若P={x|1≤x≤3,x∈Z},Q={x|﹣1≤x≤4,x∈Z},求函数y=f(x)有零点的概率;(3)若P={x|1≤x≤3,x∈R},Q={x|﹣1≤x≤4,x∈R},求函数y=f(x)在区间[1,+∞)上是增函数的概率.【解答】解:(1)由已知得,P={1,2,3},Q={﹣1,0,1,2,3,4}.所有的有序数对有(1,﹣1),(1,0),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,0),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,0),(3,1),(3,2),(3,3),(3,4),共有18对,要使f(x)是偶函数,须有b=0,满足条件的有序数对有(1,0),(2,0),(3,0)共有3对,∴;{(2)由已知得,P={1,2,3},Q={﹣1,0,1,2,3,4},所有的有序数对有(1,﹣1),(1,0),(1,1),(1,2),(1,3),(1,4),(2,﹣1),(2,0),(2,1),(2,2),(2,3),(2,4),(3,﹣1),(3,0),(3,1),(3,2),(3,3),(3,4),共有18对,要使f(x)有零点,则b2﹣4a≥0,满足条件的有序数对有(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)共有6对,∴;(3)要使y=f(x)单调递增,则,即2a≥b,(a,b)可看成是平面区域Ω={(a,b)|1≤a≤3,﹣1≤b≤4}中的所有点,而满足条件是在平面区域A={(a,b)|2a≥b,1≤a≤3,﹣1≤b≤4}中的所有点,∴.[12.某旅游公司为甲,乙两个旅游团提供四条不同的旅游线路,每个旅游团可任选其中一条旅游线路.(1)求甲、乙两个旅游团所选旅游线路不同的概率;(2)某天上午9时至10时,甲,乙两个旅游团都到同一个著名景点游览,20分钟后游览结束即离去.求两个旅游团在该著名景点相遇的概率.【解答】解:(1)某旅游公司为甲,乙两个旅游团提供四条不同的旅游线路,每个旅游团可任选其中一条旅游线路,基本事件总数n=42=16,甲、乙两个旅游团所选旅游线路不同包含的基本事件个数m==4×3=12,∴甲、乙两个旅游团所选旅游线路不同的概率:p=.(2)设甲、乙两个旅游团到达著名景点的时刻分别为x,y,—依题意得,即,作出不等式表示的区域,如图:记“两个旅游团在著名景点相遇”为事件B,P(B)==.∴两个旅游团在该著名景点相遇的概率为.13.如图,在圆心角为直角的扇形OAB中,分别以OA、OB为直径作两个半圆,在扇形OAB内随机取一点,求此点取自阴影部分的概率.【解答】解:如图,设两个半圆的交点为C,且以AO为直径的半圆以D为圆心,连结OC、CD…设OA=OB=2,则弓形OMC的面积为S弓形OMC=S扇形OCD﹣S Rt△DCO=•π•12﹣×1×1=﹣可得空白部分面积为S空白=2(S半圆AO﹣2S弓形OMC)=2[•π•12﹣(﹣1)]=2因此,两块阴影部分面积之和为S阴影=S扇形OAB﹣S空白=π•22﹣2=π﹣2可得在扇形OAB内随机取一点,此点取自阴影部分的概率为P===1﹣答:在扇形OAB内随机取一点,则此点取自阴影部分的概率为1﹣.14.在参加市里主办的科技知识竞赛的学生中随机选取了40名学生的成绩作为样本,这40名学生的成绩全部在40分至100分之间,现将成绩按如下方式分成6组:第一组,成绩大于等于40分且小于50分;第二组,成绩大于等于50分且小于60分;…第六组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.在选取的40名学生中.(1)求成绩在区间[80,90)内的学生人数及成绩在区间[60,100]内平均成绩;(2)从成绩大于等于80分的学生中随机选3名学生,求至少有1名学生成绩在区间[90,100]内的概率.【解答】解:(1)∵各组的频率之和为1,∴成绩在区间[80,90)的频率为1﹣(×2+++)×10=,∴40名学生中成绩在区间[80,90)的学生人数为40×=4,成绩在区间[60,70),[70,80),[80,90),[90,100]内的人数分别为18,8,4,2,∴成绩在区间[60,100]内的平均成绩为;(2)设A表示事件“在成绩大于等于80分的学生中随机选2名学生,至少有1名学生成绩在区间[90,100]内”,由已知(1)的结果可知成绩在区间[80,90)内的学生有4人,记这四个人分别为a,b,c,d.成绩在区间[90,100]内的学生有2人,记这两个人分别为e,f,则选取学生的所有可能结果为:,事件总数为20.事件“至少有1名学生成绩在区间[90,100]之间”的可能结果为,基本事件为数16,∴.15.甲、乙两人约定晚上6点到7点之间在某地见面,并约定先到者要等候另一人一刻钟,过时即可离开,求甲、乙能见面的概率.【解答】解:如图所示,以x轴和y轴分别表示甲、乙两人到达约定地点和时间,则两人能够会面的等价条件是|x﹣y|<15.在平面直角坐标系内,(x,y)的所有可能结果是边长为60的正方形,而事件A“两人能够见面”的可能结果是阴影部分所表示的平面区域.由几何概型的概率公式得:=.所以两人能会面的概率是.16.甲、乙两艘货轮均要到某深入港停靠.(1)若甲预计在元月1日、3日、5日中的一天到达该港口,乙预计在元月1日、2日、3日中的一天到达该港口,且甲、乙在预计日期到达该码头均是等可能的,求甲、乙在同一天到该港口的概率.(2)若甲、乙均预计在元月1日00:00点﹣﹣﹣01:00点的任意时刻到达该港口,假设两船到达的时刻相差不超过20分钟,则后到的船必须要等待,求甲、乙中有船要等待的概率.【解答】解:(1)甲乙到达港口的时间有以下情况(1,1),(1,2),(1,3),(3,1),(3,2),(3,3),(5,1),(5,2),(5,3)共有9种,其中甲、乙在同一天到该港口的有(1,1),(3,3)共有2种,故甲、乙在同一天到该港口的概率P=;(2)甲、乙均预计在元月1日00:00点﹣﹣﹣01:00点的任意时刻到达该港口,假设两船到达的时刻相差不超过20分钟,则后到的船必须要等待,则满足x﹣y≤20或y﹣x≤20.设在上述条件时“甲、乙中有船要等待”为事件B,则S阴影=60×60﹣2××40×40=2000,S正方形=60×60=3600,故P(B)==.。

cxy几何概型经典例题

cxy几何概型经典例题

几何概率训练题
1.一艘轮船只有在涨潮的时候才能驶入港口,已知该港口每天涨潮的时间为早晨5:00至7:00和下午5:00至6:00,则该船在一昼夜内可以进港的概率是()
A.1
4
B.
1
8
C.
1
10
D.
1
12
2.在区间中任意取一个数,则它与之和大于的概率是()
A.B.C.D.
3.取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大?
4.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则求两人会面的概率为多少?
5.假设你家订了一份报纸,送报人可能在早上6点-8点之间把报纸送到你家,你每天离家去工作的时间在早上7点-9点之间,求你离家前不能看到报纸(称事件A)的概率是多少?
6.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达码头的时刻是等可能的,如果甲
船停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.
7.已知|x|≤2,|y|≤2,点P 的坐标为(x ,y ).
(I )求当x ,y ∈R 时,P 满足(x-2)2+(y-2)2≤4的概率;
(II )求当x ,y ∈Z 时,P 满足(x-2)2+(y-2)2≤4的概率.
8.将长为1的棒任意地折成三段,求:三段的长度都不超过a )131
(≤≤a 的概率.。

几何概型典型例题

几何概型典型例题

几何概型例1、取一根长为3m 的绳子,拉直后在任意位置剪断,那么剪得两段的长度都不小于1m 的概率是多少?例2、等腰Rt △ABC 中,过直角顶点C 在∠ACB 内部作一条射线CM ,与线段AB 交于点M ,求AM<AC 的概率。

例3、甲、乙两人约定在6点到7点之间在某处会面,并约定先到者应等候另一人15分钟,过时即可离去。

求两人能会面的概率。

例4、将长为1的棒任意折成三段,求:三段的长度都不超过a (1132a ≤≤)的概率。

1、(2009,山东)在区间[-1,1]上随机取一个数x ,cos2x π的值介于0到12之间的概率是( )A 、13 B 、2π C 、12 D 、23 2、(2009,辽宁)四边形ABCD 为长方形,AB=2,BC=1,O 为AB 的中点,在长方形ABCD 内随机取一点,取到的点到O 点的距离大于1的概率为( )A 、4πB 、14π-C 、8π D 、18π- 3、(2009,福建)点A 为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B ,则劣弧AB 的长度小于1的概率为__________4、(2008,江苏)在平面直角坐标系xOy 中,若D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随机投一点,则所投的点落在E 中的概率是_____________5、(2007,海南)设有关于x 的一元二次方程 2220x ax b ++=.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]任取的一个数,求上述方程有实根的概率。

6、(2010,青岛)若区域M 为{(,)x y |||||2x y +≤},在区域M 内的点的坐标为(,)x y ,则220x y -≥的概率是( )A 、14B 、13C 、12D 、347(2010,海口)点D 为正三角形ABC 的边BC 的中点,从点D 发出的光线到AC 边上每一点的概率相同,则由点D 发出的光线,先后经过AC 边、AB 边反射后仍落在BC 边上的概率为( )A 、12B 、13C 、14D 、158、(2010,深圳模拟题)一只蚂蚁在三边长分别为3,4,5的三角形内爬行,某时刻次蚂蚁距离三角形三个顶点的距离均超过1的概率为( )A 、16π- B 、112π- C 、6π D 、12π 9、(2010,银川)设圆上的点是等可能分布的,作圆内接△ABC ,求△ABC 是锐角三角形的概率。

几何概型的经典题型及答案

几何概型的经典题型及答案

几何概型的经典题型及答案(总23页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--2几何概型的常见题型及典例分析一.几何概型的定义1.定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称几何概型. 2.特点:(1)无限性,即一次试验中,所有可能出现的结果(基本事件)有无限多个;(2)等可能性,即每个基本事件发生的可能性均相等. 3.计算公式:.)(积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P说明:用几何概率公式计算概率时,关键是构造出随机事件所对应的几何图形,并对几何图形进行度量. 4.古典概型和几何概型的区别和联系: (1)联系:每个基本事件发生的都是等可能的.(2)区别:①古典概型的基本事件是有限的,几何概型的基本事件是无限的;②两种概型的概率计算公式的含义不同.二.常见题型(一)、与长度有关的几何概型3例1、在区间]1,1[-上随机取一个数x ,2cos xπ的值介于0到21之间的概率为( ).A.31B.π2C.21D.32 分析:在区间]1,1[-上随机取任何一个数都是一个基本事件.所取的数是区间]1,1[-的任意一个数,基本事件是无限多个,而且每一个基本事件的发生都是等可能的,因此事件的发生的概率只与自变量x 的取值范围的区间长度有关,符合几何概型的条件.解:在区间]1,1[-上随机取一个数x ,即[1,1]x ∈-时,要使cos2xπ的值介于0到21之间,需使223x πππ-≤≤-或322x πππ≤≤ ∴213x -≤≤-或213x ≤≤,区间长度为32,由几何概型知使cos 2x π的值介于0到21之间的概率为31232===度所有结果构成的区间长符合条件的区间长度P . 故选A.例2、 如图,A,B 两盏路灯之间长度是30米,由于光线较暗,想在其间再随意安装两盏路灯C,D,问A 与C,B 与D 之间的距离都不小于10米的概率是多少思路点拨 从每一个位置安装都是一个基本事件,基本事件有无限多个,但在每一处安装的可能性相等,故是几何概型.4解 记 E :“A 与C,B 与D 之间的距离都不小于10米”,把AB 三等分,由于中间长度为30×31=10米,∴313010)(==E P . 方法技巧 我们将每个事件理解为从某个特定的几何区域内随机地取一点,该区域中每一点被取到的机会都一样,而一个随机事件的发生则理解为恰好取到上述区域内的某个指定区域中的点,这样的概率模型就可以用几何概型来求解.例3、在半径为R 的圆内画平行弦,如果这些弦与垂直于弦的直径的交点在该直径上的位置是等可能的,求任意画的弦的长度不小于R 的概率。

几何概型经典练习题

几何概型经典练习题

几何概型题目选讲的长,则该矩形面积CB,AC现作一矩形,邻边长分别等于线段.C上任取一点AB的线段cm12 .在长为142112 D. C. 32 cmB.A. ) 小于 (的概率为53368-12+0-42 . ==P,所求事件的概率12<x<8或4<x<0⇒32<)x-(12x,由题意知x=AC设解析:31222l:求A的事件为2的距离小于到直线P设点P,在圆上任取一点C.已知圆2 的值。

1 P(A)=解:的概2内随机取一个点,则此点到坐标原点的距离大于D在区域 D.表示的平面区域为.设不等式组率是,表示的区域为半径的圆内及圆上,2的点在以原点为圆心,2坐标系中到原点距离不大于解析:-44π-4 . =的正方形及其内部,所以所求的概率为2为边长为44 .__________的概率为2≤xlog≤1满足不等式x,则该实数x上随机取一实数[0,9].在区间422 . ,根据区间长度关系,得所求概率为4≤x≤2,得2≤xlog≤1由解析:2926,9]-[在.5 .__________轴有公共点的概率等于x的图像与f(x)则函数,m+mx+x=-f(x)设,m内任取一个实数2=Δ轴有公共点应满足x 的图像与f(x)函数解析:≤m≤6故-,6,9]-[∈m又,0≥m或4≤-m解得,0≥4m+m29+11 . ==P,因此所求概率9≤m≤0或4-1515 .甲、乙两艘轮船驶向一个不能同时停泊两艘轮船的码头,它们在一昼夜内任何时刻到达是等可能的.6如果甲船的(2)小时,求它们中的任何一条船不需要等待码头空出的概率;4如果甲船和乙船的停泊时间都是(1) 小时,求它们中的任何一条船不需要等待码头空出的概率.2小时,乙船的停泊时间为4停泊时间为或4≥x -y且24<y≤24,0<x≤0,则y、x设甲、乙两船到达时间分别为(1)解析:4. ≤-x-y,24<,24<y≤0=P(A),则A设“两船无需等待码头空出”为事件作出区域或4>x-y4.<-x-y120×20××2225 . =3624×24 乙船的停泊时间为小时,4当甲船的停泊时间为(2)4. ≥x-y或2≥y-x则满足两船不需等待码头空出,小时,2 ,画出区域B设在上述条件时“两船不需等待码头空出”为事件11,24<x≤022×22×+20×2022221442,24<y≤0 . ===P(B)28857624×24y-x或4>x-y2.>22-kx+y+x可以作两条直线与圆A(1,1)的值使得过k,则]2,2∈[-k知.70=k错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

几何概率训练题
1.一艘轮船只有在涨潮的时候才能驶入港口,已知该港口每天涨潮的时间为早晨5:00至7:00和下午5:00至6:00,则该船在一昼夜内可以进港的概率是()
A.1
4
B.
1
8
C.
1
10
D.
1
12
2.在区间中任意取一个数,则它与之和大于的概率是()
A.B.C.D.
3.取一根长度为3m的绳子,拉直后在任意位置剪断,那么剪得两段的长都不小于1m的概率有多大?4.两人相约7点到8点在某地会面,先到者等候另一人20分钟,过时离去.则求两人会面的概率为多少?
5.假设你家订了一份报纸,送报人可能在早上6点-8点之间把报纸送到你家,你每天离家去工作的时间在早上7点-9点之间,求你离家前不能看到报纸(称事件A)的概率是多少?
6.甲、乙两船驶向一个不能同时停泊两艘船的码头,它们在一昼夜内到达码头的时刻是等可能的,如果甲船
停泊时间为1h,乙船停泊时间为2h,求它们中的任意一艘都不需要等待码头空出的概率.
7.已知|x|≤2,|y|≤2,点P 的坐标为(x ,y ).
(I )求当x ,y ∈R 时,P 满足(x-2)2+(y-2)2≤4的概率;
(II )求当x ,y ∈Z 时,P 满足(x-2)2+(y-2)2≤4的概率.
8.将长为1的棒任意地折成三段,求:三段的长度都不超过a )13
1
(≤≤a 的概率.。

相关文档
最新文档