Injectable alginate hydrogels for cell delivery in tissue engineering
剪切变稀水凝胶应用于内镜下胃黏膜下注射及剥离术的实验研究

论㊀㊀著(基础研究)剪切变稀水凝胶应用于内镜下胃黏膜下注射及剥离术的实验研究王㊀兰ꎬ王㊀敏ꎬ赵黎黎ꎬ范志宁ꎬ王㊀翔㊀㊀[摘要]㊀目的㊀目前临床上使用的黏膜下注射剂品种繁多但各有优劣ꎬ使用何种黏膜下注射剂效果更佳仍待探索ꎮ文章旨在研究一种新型可注射剪切变稀水凝胶ꎬ并评估其用于内镜胃部黏膜下注射和辅助电刀剥离的可行性㊁有效性ꎬ为临床应用提供实验依据ꎮ㊀方法㊀通过将不同体积的laponite粉末加入0.2%海藻酸钠水溶液中合成不同浓度的水凝胶ꎬ观察其可注射性及流变性能ꎮ对新鲜离体猪胃(离体时间<12h)进行黏膜下注射ꎬ观察对比注射2mL不同浓度水凝胶㊁等渗盐水和0.4%透明质酸钠的黏膜隆起高度和随时间变化情况ꎻ新鲜离体猪胃ꎬ用等渗盐水㊁0.4%透明质酸钠及水凝胶隆起相同面积(3cm)的黏膜ꎬ随后用高频电刀模拟内镜下黏膜下剥离术(ESD)进行隆起黏膜完整剥离ꎬ比较分析操作时间ꎮ㊀结果㊀流变性实验证明ꎬ合成了稳定的水凝胶ꎮ该水凝胶具有较好的剪切变稀性ꎬ且通过改变laponite的浓度ꎬ可以方便地调节其流变行为ꎮ不同浓度的水凝胶均可顺利通过23G内镜下注射针注射ꎮ离体猪胃黏膜下注射2mL不同黏膜下注射剂ꎬ2%~5%浓度水凝胶的隆起高度[(8.70ʃ0.57)㊁(9.60ʃ0.89)㊁(10.10ʃ0.74)㊁(9.50ʃ1.41)mm]均大于等渗盐水[(5.20ʃ0.76)mm]和透明质酸钠[(7.40ʃ0.74)mm]ꎬ差异有统计学意义(P<0.05)ꎮ注射水凝胶黏膜隆起高度随时间变化最为稳定㊁缓慢ꎮ在60min时ꎬ等渗盐水处理的隆起高度维持率不足25%ꎬ透明质酸钠处理的隆起高度维持率约为46%ꎬ而不同浓度水凝胶(2%~5%)的隆起维持率高达72%~83%ꎮ注射4%水凝胶后隆起的平均剥离时间最短为[(3.09ʃ0.70)min]ꎬ明显低于等渗盐水组[(7.97ʃ0.42)min]和透明质酸钠处理[(6.92ʃ0.39)min]ꎬ差异有统计学意义(P<0.01)ꎮ㊀结论㊀该水凝胶具有良好的流变性及可注射性ꎬ可有效且持久稳定地维持胃黏膜下隆起高度ꎬ降低电刀剥离操作时间ꎬ有望成为一种新型的黏膜下注射剂ꎮ㊀㊀[关键词]㊀可注射水凝胶ꎻ剪切变稀ꎻ胃黏膜下注射ꎻ内镜黏膜下剥离术㊀㊀[中图分类号]㊀R552㊀㊀㊀[文献标志码]㊀A㊀㊀㊀[文章编号]㊀1008 ̄8199(2021)03 ̄0232 ̄06㊀㊀[DOI]㊀10.16571/j.cnki.1008 ̄8199.2021.03.002基金项目:国家自然科学基金(8200034251)作者单位:210029南京ꎬ南京医科大学第一附属医院消化内镜科[王㊀兰(医学硕士)㊁王㊀敏㊁赵黎黎㊁范志宁㊁王㊀翔]通信作者:王㊀翔ꎬE-mail:njmuwangxiang@163.comTheexperimentalresearchofshear ̄thinninghydrogelsasgastricsubmucosalinjectionagentsforendoscopicsubmucosaldissectionWANGLanꎬWANGMinꎬZHAOLi ̄liꎬFANZhi ̄ningꎬWANGXiang(DepartmentofDigestiveEndoscopyꎬtheFirstAffiliatedHospitalofNanjingMedicalUniversityꎬNanjing210029ꎬJiangsuꎬChina)㊀㊀[Abstract]㊀Objective㊀Currentlyꎬthereareawiderangeofsubmucosalinjectionagentsusedinclinicalpractice.Howeverꎬthebestsubmucosalinjectionisstillunknown.Thisarticleaimstostudyanovelinjectablehydrogelandevaluateitsfeasibilityandef ̄fectivenessforgastricendoscopicsubmucosalinjectionanddissection.Thisstudywillprovideexperimentalevidenceforclinicalappli ̄cation.㊀Methods㊀Byaddingdifferentvolumesoflaponitepowderinto0.2%sodiumalginatesolutionꎬwesynthesizeddifferentcon ̄centrationsofhydrogelandthenobserveditsinjectabilityandrheologicalproperties.Submucosalinjectionwasperformedonthefreshlyinvitropigstomach(exvivotime<12h)with2mLdifferentconcentrationsofhydrogelꎬnormalsalineand0.4%sodiumhyaluronate.Weevaluatedandcomparedtheupliftheightandchangesovertime.A3cmdiameterofmucousupliftwasraisedbyinjectingdifferentconcentrationsofhydrogelꎬnormalsalineand0.4%sodiumhyaluronateonfreshlyinvitropigstomachandthenanelectricknifewasusedtosimulateendoscopicmucosaldissection(ESD)forcom ̄pletedissectionoftheraisedmucosa.Theoperationtimewasevaluated.㊀Results㊀Therheologicalexperimentdemonstratedthatasta ̄blehydrogelwassynthesized.Thehydrogelhadgoodshear ̄thinningpropertiesꎬanditsrheologicalbehaviorwaseasilyadjustedbychan ̄gingtheconcentrationoflaponite.Hydrogelsofdifferentconcentrationsweresuccessfullyinjectedthroughthe23Gendoscopicinjectionneedle.Whentheconcentrationoflaponitewasincreasedꎬtheinjectionresistancewasgraduallyincreased.Theaverageupliftheightofthehydrogelswasgreaterthanthatofnormalsaline[(5.20ʃ0.76)mm]andsodiumhyaluronate[(7.40ʃ0.74)mm](P<0.05).Theheightofmucosalupliftraisedbyhydrogelchangesmoresteadilyandslowlyovertime.At60minutesꎬtheupliftheightmaintenancerateofthesalinegroupandsodiumhyaluronategroupwaslessthan25%andabout46%ꎬrespectively.Thehydrogelofdifferentcon ̄centrations(2%-5%)wasashighas72%-83%.Theaveragedissectiontimewasshorterinthehydrogelgroupwiththeconcentrationof4%laponite[(3.09ʃ0.70)min]ꎬcomparedwithnormalsalinegroup[(7.97ʃ0.42)min]andthesodiumhyaluronategroup[(6.92ʃ0.39)min](P<0.01).㊀Conclusion㊀Theinjectableshear ̄thinninghydrogelcaneffectivelyandstablymaintainthemucosalupliftheightꎬwhichcanreducetheoperationtimeofmucosaldissection.Itisexpectedtobecomeanovelsubmucosalinjectionagent.㊀㊀[Keywords]㊀injectablehydrogelꎻshear ̄thinningꎻgastricsubmucosalinjectionꎻendoscopicsubmucosaldissection0㊀引㊀㊀言㊀㊀内镜下黏膜切除术(endoscopicmucosalresec ̄tionꎬEMR)㊁内镜下黏膜下剥离术(endoscopicsub ̄mucosaldissectionꎬESD)已被广泛应用于消化道息肉㊁腺瘤及早癌的治疗[1-3]ꎮ随之衍生出的经黏膜下隧道内镜肿瘤切除术(submucosaltunnelingendo ̄scopicresectionꎬSTER)能够更微创㊁有效地切除黏膜下肿瘤[4]ꎮ与外科手术不同ꎬ内镜下操作从黏膜层出发寻找手术入路ꎮ由于消化道黏膜较薄ꎬ内镜操作时间长ꎬ因此内镜治疗中存在穿孔㊁出血㊁热损伤等风险[5]ꎮ良好的黏膜下注射液形成黏膜下液体垫ꎬ充分抬举病灶ꎬ可有效预防和减少内镜手术的并发症[6]ꎮ海藻酸钠是一种天然高分子多糖ꎬ具有良好的增稠性㊁稳定性和生物相容性[7]ꎮ锂镁硅酸盐(la ̄ponite)是一种人工合成的来源于无机物的片状硅酸盐ꎬ它在搅拌下很容易分散于水中ꎬ形成透明无色的高黏度胶体分散液ꎮLaponite具有良好的流变性能ꎬ即快速的剪切变稀ꎬ因此通常被用作流变学改性剂及增加剂[8-9]ꎮPang等[10]以这两种处理分合成了一种新型的剪切变稀水凝胶ꎬ并与等渗盐水进行对比ꎬ证明其可形成良好的黏膜下隆起ꎬ有希望成为辅助内镜下肠道息肉精准切除的新型材料ꎮ在此基础上ꎬ本研究应用这两种组分进行浓度优化ꎬ以透明质酸钠作为对照ꎬ探索其用于胃部黏膜下注射的可行性及有效性ꎬ并进一步研究其辅助电刀黏膜下剥离术的有效性ꎮ1㊀材料与方法1.1㊀实验材料与试剂㊀海藻酸钠(上海国药集团)ꎬLaponite ̄XLG(BYK公司)ꎬ靛胭脂(上海麦克林公司)ꎬ透明质酸钠(上海麦克林公司)ꎬ等渗盐水(上海百特医疗用品有限公司)㊁新鲜离体猪胃ꎬ离体时间距实验时间不超过12hꎮ1.2㊀实验器械㊀加热磁力搅拌器(IKA C ̄MAGHS7)㊁旋转流变仪(MCR302)㊁ZG30型高频电刀(威海众恒医疗设备有限公司)㊁扫描电镜(S ̄3400N)㊁Olympus公司23G镜下注射针㊁玻璃搅拌棒㊁注射器㊁常规手术器械㊁泡沫板㊁直尺㊁游标卡尺㊁计时器ꎮ1.3㊀实验方法1.3.1㊀水凝胶的制备㊀海藻酸钠粉剂中加入去离子水ꎬ置于加热磁力搅拌器40ħꎬ1000r/min搅拌1hꎬ直至白色固体消失ꎬ配置成0.2%的海藻酸钠水溶液作为原液ꎮ将不同剂量的laponite粉末加入原液中ꎬ滴入少量0.04%靛胭脂作为染色剂ꎬ用玻璃棒充分搅拌ꎬ得到laponite浓度为1%㊁2%㊁3%㊁4%㊁5%的水凝胶ꎮ用5mL注射器对凝胶进行分装备用ꎮ1.3.2㊀水凝胶的扫描电镜㊀将适量水凝胶置于-80ħ冰箱冷冻过夜后ꎬ置于冷冻干燥机中ꎬ冷冻干燥24hꎬ取出后涂金ꎬ扫描电镜放大观察ꎮ1.3.3㊀水凝胶注射性及流变性能的测定㊀用2mL注射器抽取不同浓度的水凝胶ꎬ通过23G内镜下注射针注射ꎬ评估水凝胶的内镜下可注射性ꎮ使用旋转流变仪进行黏度测定㊁振荡时间扫描㊁振荡频率扫描及振荡应变扫描ꎮ将水凝胶置于流变仪上下两块板之间ꎬ将顶板降低至25mm的间隙距离ꎬ并刮掉多余的凝胶ꎬ注意使凝胶在顶板和底板之间均匀ꎮ在不同应变力下测定了凝胶的黏度ꎮ在频率分别为6.3rad/s和0.5%的应变下进行振荡时间扫描ꎮ在固定应变力为0.5%的条件下行振荡频率扫描ꎮ以6.3rad/s为固定频率进行了振荡应变扫描ꎮ储能模量Gᶄꎬ又称为弹性模量ꎬ是指材料在发生形变时ꎬ由于弹性(可逆)形变而储存能量的大小ꎬ反映材料弹性大小ꎻ损耗模量Gᵡꎬ又称黏性模量ꎬ是指材料在发生形变时ꎬ由于黏性形变(不可逆)而损耗的能量大小ꎬ反映材料黏性大小ꎮ储能模量远大于损耗模量时ꎬ材料主要发生弹性形变ꎬ所以材料呈固态ꎻ损耗模量远大于储能模量时ꎬ材料主要发生黏性形变ꎬ所以材料呈液态ꎻ储能模量和损耗模量相当时ꎬ材料为半固态ꎬ凝胶即是一种典型半固态物质ꎮ1.3.4㊀离体猪胃黏膜下注射实验㊀取新鲜离体猪胃ꎬ用大头针固定在泡沫板上ꎬ黏膜下分别注射2mL的2%㊁3%㊁4%㊁5%的水凝胶ꎬ0.4%透明质酸钠和等渗盐水ꎬ重复5次操作ꎮ记录初始隆起高度ꎮ于注射后5㊁10㊁15㊁30㊁45㊁60㊁90㊁120min分别测量黏膜隆起高度ꎬ并观察黏膜隆起随时间变化情况ꎮ所有实验均由同一人操作ꎮ㊀㊀维持率=测量高度ː初始隆起高度ˑ100%1.3.5㊀离体猪胃黏膜隆起 ̄剥离实验㊀取新鲜离体猪胃ꎬ用大头针固定在泡沫板上ꎬ贴上电极片ꎬ用游标卡尺标记直径为3cm的范围ꎬ并用高频电刀在圆周标记至少8个点ꎬ在标记范围内黏膜下注射2%㊁3%㊁4%水凝胶ꎬ0.4%透明质酸钠和等渗盐水ꎬ至标记范围全部隆起后ꎬ利用高频电刀模拟ESD操作ꎬ将标记范围内黏膜完整剥离ꎬ记录剥离时间ꎬ每组重复3次ꎮ所有实验均有同一人操作ꎮ1.4㊀统计学分析㊀所有数据采用SPSS23.0统计软件包进行统计分析ꎮ采用GraphPadPrism8进行图形绘制ꎮ计数资料采用均数ʃ标准差(xʃs)表示ꎬ符合正态分布且满足方差齐性的两组比较采用Studentᶄst检验进行分析ꎬ不满足方差齐性的数据采用校正t检验进行分析ꎻ不符合正态分布的数据采用非参数检验进行分析ꎬ多组数据总体比较采取One ̄WayANOVAꎬ组间比较采用LSD检验ꎮ隆起高度面积等重复测量数据采用重复数据方差分析ꎮ以Pɤ0.05认为差异具有统计学意义ꎮ2㊀结㊀㊀果2.1㊀水凝胶的制备与性能2.1.1㊀水凝胶的合成及电镜㊀1%浓度laponiteꎬ可得到透明㊁无色的胶体分散液ꎮ当浓度达到2%时ꎬ搅拌后静置片刻即成为凝胶ꎮ随着浓度的增高ꎬ在5%浓度时ꎬ搅拌后即刻形成高黏度凝胶ꎮ电镜图像显示水凝胶形成片层堆叠样结构ꎮ见图1ꎮ2.1.2㊀水凝胶的可注射性㊀不同浓度的水凝胶均可通过1㊁2㊁5mL的注射针头注射ꎬ且可顺利通过23G内镜下注射针注射ꎬ注射后立刻转化为固态凝胶ꎮ但是ꎬ随着laponite浓度的增加ꎬ注射阻力逐渐增大ꎮ图1㊀水凝胶的扫描电镜图Figure1㊀TheSEMimageofthehydrogel2.1.3㊀水凝胶的流变性能㊀在laponite浓度2%~5%范围内ꎬ黏度测量显示凝胶的黏度随着浓度的增加而增加ꎻ随着剪切速率的增加ꎬ黏度逐渐下降ꎮ振荡测试表明ꎬ水凝胶的储存模量(Gᶄ)和损耗模量(Gᵡ)随浓度增加而增加ꎮ频率扫描显示ꎬ在频率0.1~100rad/s扫描过程中ꎬ水凝胶的Gᶄ值和Gᵡ值较为稳定ꎬ且Gᶄ大约是Gᵡ的10~20倍ꎮ上述结果说明形成了稳定的水凝胶ꎮ进一步进行了应变相关的振荡流变学实验ꎬ结果显示ꎬ在0.01~10左右的应变力下水凝胶表现为线性粘弹性ꎬ当超过临界应变力时ꎬ凝胶的Gᶄ随着应力的增加而减小ꎬ表明凝胶发生了凝胶 ̄溶胶转变ꎬ而呈现液体状态ꎮGᶄ和GGᵡ的交点则是由凝胶向液态的转变点ꎮ见图2ꎮ2.2㊀离体猪胃黏膜隆起效果评价2.2.1㊀初始隆起高度㊀在离体猪胃注射相同剂量的黏膜下注射剂(2mL)ꎬ2%~5%浓度水凝胶的初始隆起高度分别为[(8.70ʃ0.57)㊁(9.60ʃ0.89)㊁(10.10ʃ0.74)㊁(9.50ʃ1.41)mm]ꎬ均大于等渗盐水[(5.20ʃ0.76)mm]和透明质酸钠[(7.40ʃ0.74)mm]ꎬ差异有统计学意义(P<0.05)ꎮ随着laponite浓度的增高ꎬ其平均隆起高度逐渐增加ꎬ当浓度增加至4%时ꎬ其平均隆起高度达到最大值ꎬ与2%浓度的隆起高度相比ꎬ差异有统计学意义(P<0.05)ꎮ2.2.2㊀离体猪胃黏膜隆起高度变化㊀等渗盐水处理后黏膜隆起高度随时间变化最快ꎬ透明质酸钠次之ꎬ水凝胶最为缓慢㊁稳定ꎮ在60min时ꎬ等渗盐水处理的隆起高度维持率不足25%ꎬ透明质酸组的隆起高度维持率约为46%ꎬ而不同浓度水凝胶(2%~5%)的隆起维持率高达72%~83%ꎮ即使在2h后ꎬ最低浓度(2%)水凝胶组的隆起维持率仍然维持在70%以上ꎮ在5㊁10㊁15㊁30㊁45㊁60min时ꎬ2%~5%水凝胶的黏膜隆起高度均明显高于同时间点等渗盐水和透明质酸钠(P<0.05)ꎮ不同浓度水凝胶相比较ꎬ注射2%水凝胶黏膜2h隆起高度[(6.20ʃ0.84)mm]低于3%㊁4%和5%水凝胶[(7.70ʃ0.45)㊁(8.40ʃ0.84)㊁(7.80ʃ1.30)mm]ꎬ但差异无统计学意义(P>0.05)ꎮ见表1ꎮ2.3㊀离体猪胃黏膜隆起后电刀剥离效果评价㊀注射2%㊁3%㊁4%水凝胶后隆起的平均剥离时间[(6.12ʃ0.16)㊁(4.50ʃ0.51)㊁(3.09ʃ0.70)min]两两比较ꎬ差异有统计学意义(P<0.01)ꎬ且均较等渗盐水[(7.97ʃ0.42)min]和透明质酸钠[(6.92ʃ0.39)min]明显减少(P<0.05)ꎮ㊀㊀㊀a:不同剪切速率下水凝胶的黏度值ꎻb:水凝胶的振荡频率扫描ꎬ以0.5%应力扫描ꎻc:水凝胶的振荡应变扫描ꎬ以6.3rad/s扫描ꎻd:水凝胶的振荡时间扫描ꎬ以0.5%应力和6.3rad/s扫描图2㊀水凝胶的流变学Figure2㊀Rheologyofhydrogel表1㊀不同黏膜下注射剂黏膜隆起高度随时间的变化情况(xʃs)Table1㊀Chronologicalchangesofheightamongdifferentsubmucosalinjections(xʃs)处理方式不同时间点黏膜下隆起高度(mm)0min5min10min15min30min45min60min90min120min等渗盐水5.20ʃ0.764.15ʃ0.783.40ʃ0.422.90ʃ0.422.35ʃ0.551.90ʃ0.651.20ʃ0.45--透明质酸钠7.40ʃ0.74∗6.32ʃ0.77∗5.60ʃ0.65∗4.80ʃ0.91∗4.30ʃ0.67∗4.10ʃ0.74∗3.40ʃ0.55∗3.10ʃ0.422.70ʃ0.572%laponite8.70ʃ0.57∗#8.20ʃ0.57∗##7.60ʃ0.42∗##7.24ʃ0.56∗##6.86ʃ0.61∗##6.60ʃ0.55∗##6.30ʃ0.84∗##6.30ʃ0.84##6.20ʃ0.84##3%laponite9.60ʃ0.89∗##8.90ʃ0.65∗##8.54ʃ0.68∗##8.40ʃ0.55∗##ә8.20ʃ0.45∗##ә7.90ʃ0.42∗##ә7.84ʃ0.32∗##әә7.74ʃ0.49##ә7.70ʃ0.45##ә4%laponite10.10ʃ0.74∗##ә9.56ʃ0.63∗##ә9.36ʃ0.55∗##әә9.00ʃ0.71∗##әә8.90ʃ0.89∗##әә8.56ʃ0.82∗##әә8.40ʃ0.82∗##әә8.30ʃ0.84##әә8.20ʃ0.84##әә5%laponite9.50ʃ1.41∗##8.90ʃ1.14∗##8.80ʃ1.25∗##ә8.70ʃ1.40∗##ә8.20ʃ1.35∗##ә8.14ʃ1.45∗##әә7.90ʃ1.24∗##әә7.80ʃ1.30##ә7.8ʃ1.3##әә㊀㊀与等渗盐水处理比较ꎬ∗P<0.05ꎻ与透明质酸钠比较ꎬ#P<0.05ꎬ##P<0.01ꎻ与2%浓度laponite比较ꎬәP<0.05ꎬәәP<0.013㊀讨㊀㊀论㊀㊀EMR㊁ESD等内镜下切除术可早期㊁微创地治疗消化道息肉㊁癌前病变及早癌ꎬ阻断其进一步发展成为消化道肿瘤ꎮ与EMR相比ꎬESD可应用于更大的黏膜病灶ꎬ将病变黏膜整块剥除ꎬ获得更完整的病理组织ꎬ其治疗效果与外科手术相当[11-13]ꎮ但是ꎬ在内镜操作中也存在出血㊁穿孔㊁热损伤等并发症[5]ꎮ因此各种类型的黏膜下注射液被提出且应用于临床实践ꎮ注射黏膜下注射液抬高病变将其与肌层分离ꎬ形成一个液体缓冲垫ꎬ从而减少热损伤㊁出血㊁穿孔等并发症ꎻ同时提高技术可行性ꎬ促进整块剥离[14-15]ꎮ黏膜下注射液对于大部分内镜切除术是必不可少的ꎬ尤其是分片EMR和ESD治疗ꎬ常常需要维持时间更久的黏膜下注射液[14-16]ꎮESGE指南指出ꎬ对于直径10mm以上的息肉冷切除也建议黏膜下注射等渗盐水[17]ꎮ但是目前临床上使用何种黏膜下注射液效果更佳尚未达成一致共识ꎮ理想的黏膜下注射液应可提供较厚且维持时间久的黏膜下液体垫ꎬ易于注射ꎬ价格低廉ꎬ具有良好的生物相容性[6ꎬ15]ꎮ等渗盐水是目前临床上应用最为广泛地黏膜下注射液ꎬ其优点在于价格低廉ꎬ等渗无毒ꎻ缺点是可迅速被周围组织吸收ꎬ黏膜下液体垫薄且维持时间短ꎬ在手术操作过程中需反复大量注射[15]ꎮ其他黏膜下注射剂如高渗盐水㊁高渗葡萄糖㊁羟丙基甲基纤维素㊁透明质酸钠㊁自体血液㊁纤维蛋白原等均被临床应用研究ꎬ但是这些注射液依然存在生物相容性㊁安全性㊁维持时间的限制[18-22]ꎮ具体来说ꎬ高渗盐水㊁高渗葡萄糖的黏膜下液体垫在30min内维持率不到50%[19]ꎻ注射羟丙基甲基纤维素存在抗原反应风险ꎬ而且由于其高黏度ꎬ通过内镜下注射针阻力较大[19]ꎻ透明质酸钠可刺激残留肿瘤细胞的生长[20]ꎻ自体血液及纤维蛋白原可增加感染风险[21]ꎮ在本研究中ꎬ我们以临床应用较为广泛且效果优于等渗盐水的透明质酸钠作为对照组ꎮ与等渗盐水相比ꎬ渗透压和黏度是其他液体溶液的关键缺点ꎬ高渗透压可能导致组织脱水和损伤ꎬ而黏度是通过长内镜通道给药困难的原因ꎮ水凝胶是一种具有较好吸水性及硬度的材料ꎬ可形成持久的黏膜下液体垫而不向周围组织扩散[23]ꎮ但是ꎬ传统的水凝胶通过化学键或物理作用力形成ꎬ通常不可通过内镜下注射针[24]ꎮ一些原位合成的水凝胶已被广泛应用于临床研究ꎬ但是由于需同时注射多种组分ꎬ对于内镜下注射仍然存在挑战ꎮ研究发现ꎬlaponite单晶体是一种表面带负电荷ꎬ周围带正电荷的八面体结构ꎻ因此将laponite在阴离子海藻酸盐溶液中分散时ꎬ由于正负电荷作用ꎬ形成了具有剪切变稀作用的凝胶ꎬ即在高剪切力作用下凝胶成为流体ꎬ剪切后快速恢复凝胶结构[9ꎬ25]ꎮ这种剪切变稀性能ꎬ可辅助水凝胶经长内镜通道给药ꎬ且黏膜下注射后仍可形成持久的黏膜下垫ꎮPang等[10]已利用该特性ꎬ合成了浓度为2~4mg/mL的水凝胶ꎬ并与等渗盐水进行对比ꎬ应用于离体猪肠道黏膜下注射ꎬ结果表明其隆起效果及维持时间明显优于等渗盐水ꎬ可用于辅助肠道息肉的精准切除ꎮ但是ꎬ胃黏膜的厚度明显大于肠道黏膜ꎬ而且对于胃部>2cm的病变ꎬ需要形成更持久稳定的黏膜下液体垫ꎮ因此ꎬ本研究利用这一特性ꎬ合成了浓度为20~50mg/mL的水凝胶ꎬ通过对离体猪胃黏膜下注射不同浓度的水凝胶ꎬ观察黏膜下隆起的高度及随时间的变化发现ꎬ在60min时ꎬ等渗盐水组的隆起高度维持率不足25%ꎬ透明质酸组的隆起高度维持率约为46%ꎬ而不同浓度水凝胶(2%~5%)的隆起维持率高达72%~83%ꎮ证明该水凝胶具有持久有效地隆起效果ꎻ且注射相同剂量的水凝胶与等渗盐水㊁透明质酸钠相比ꎬ隆起高度有明显优势ꎬ表明我们可能仅仅需要很少量的水凝胶即可获得持久有效的黏膜下液体垫ꎬ避免多次重复注射ꎬ也弥补了水凝胶价格高于等渗盐水的不足ꎮ此外ꎬ我们认为内镜黏膜下注射材料一方面要具备良好的黏膜下隆起效果ꎬ另一方面需辅助电刀切割效率ꎬ只有同时满足这两方面因素ꎬ才可最终应用于实际临床内镜下治疗ꎮ目前临床上ESD常规使用的是单极刀ꎬ其原理是高频电流从电刀刀头导出ꎬ通过人体组织及粘液ꎬ再到达体表的接地垫ꎬ返回电流发生器ꎮ因此黏膜下注射剂需要有一定的导电率ꎬ从而不影响电刀切割效率ꎮ电导率测定发现等渗盐水的电导率约为6030μs/cmꎬ0.4%透明质酸钠为724μs/cmꎬ2%~5%水凝胶电导率分为为2242㊁3186㊁3656㊁4128μs/cmꎮ最后ꎬ我们使用单极电刀在离体猪胃上模拟ESD操作ꎬ我们发现注射水凝胶后形成的黏膜下垫可充分地将黏膜层及肌层分离ꎬ且不影响切割效率ꎬ明显缩短了ESD的操作时间ꎮ本研究通过离体猪胃黏膜下注射及模拟ESD剥离术验证了剪切变稀水凝胶应用于胃部黏膜下注射的可行性及有效性ꎮ但是ꎬ本研究也存在一些不足之处:①随着laponite浓度的提高ꎬ水凝胶的黏度逐渐增大ꎬ注射阻力也会相应增大ꎬ因此ꎬ需要进一步阻力评估来确定合适的内镜下注射浓度ꎻ②本文中采用新鲜离体猪胃来进行实验研究ꎬ由于条件限制ꎬ未进行活体猪胃ESD术ꎻ③虽然laponite和海藻酸盐均具有良好的安全性及生物相容性ꎬ但是由于水凝胶的三维立体结构ꎬ可能会促进肿瘤细胞生长扩散ꎬ因此需要进一步动物实验长期观察其安全性和生物相容性ꎮ我们下一步将进行家兔以及活体猪实验ꎬ以进一步确定合适的水凝胶浓度ꎬ评估其在活体的黏膜下隆起效果及对ESD操作的影响ꎬ以及是否具有止血促愈合作用ꎬ观察其安全性及生物相容性ꎮʌ参考文献ɔ[1]㊀董㊀弢ꎬ范志宁.内镜下切除技术的延伸与发展[J].医学研究生学报ꎬ2020ꎬ33(6):561 ̄566.[2]㊀KoWJꎬSongGWꎬKimWHꎬetal.Endoscopicresectionofearlygastriccancer:currentstatusandnewapproaches[J].TranslGastroenterolHepatolꎬ2016ꎬ1:24.[3]㊀马丽梅ꎬ张㊀银ꎬ范志宁.多光子显微镜诊断早期消化系统肿瘤的研究进展[J]医学研究生学报ꎬ2014ꎬ27(7):743 ̄745.[4]㊀ChenHꎬLiBꎬLiLꎬetal.CurrentStatusofEndoscopicResec ̄tionofGastricSubepithelialTumors[J].AmJGastroenterolꎬ2019ꎬ114(5):718 ̄725.[5]㊀OdagiriHꎬYasunagaH.Complicationsfollowingendoscopicsub ̄mucosaldissectionforgastricꎬesophagealꎬandcolorectalcancer:areviewofstudiesbasedonnationwidelarge ̄scaledatabases[J].AnnTranslMedꎬ2017ꎬ5(8):189.[6]㊀FerreiraAOꎬMoleiroJꎬTorresJꎬetal.Solutionsforsubmucosalinjectioninendoscopicresection:asystematicreviewandmeta ̄a ̄nalysis[J].EndoscIntOpenꎬ2016ꎬ4(1):E1 ̄E16. [7]㊀AkagiTꎬYasudaKꎬTajimaMꎬetal.Sodiumalginateasanide ̄alsubmucosalinjectionmaterialforendoscopicsubmucosalresec ̄tion:preliminaryexperimentalandclinicalstudy[J].GastrointestEndoscꎬ2011ꎬ74(5):1026 ̄1032.[8]㊀ZhaoLZꎬZhouCHꎬWangJꎬetal.Recentadvancesinclaymineral ̄containingnanocompositehydrogels[J].Softmatterꎬ2015ꎬ11(48):9229 ̄9246.[9]㊀WangQꎬMynarJLꎬYoshidaMꎬetal.High ̄water ̄contentmouldablehydrogelsbymixingclayandadendriticmolecularbinder[J].Natureꎬ2010ꎬ463(7279):339 ̄343.[10]㊀PangYꎬLiuJꎬMoussaZLꎬetal.EndoscopicallyInjectableShear ̄ThinningHydrogelsFacilitatingPolypRemoval[J].AdvSci(Weinh)ꎬ2019ꎬ6(19):1901041.[11]㊀KantsevoySVꎬAdlerDGꎬConwayJDꎬetal.Endoscopicmucosalresectionandendoscopicsubmucosaldissection[J].GastrointestEndoscꎬ2008ꎬ68(1):11 ̄18.[12]㊀NishizawaTꎬYahagiN.Long ̄TermOutcomesofUsingEndoscop ̄icSubmucosalDissectiontoTreatEarlyGastricCancer[J].GutLiverꎬ2018ꎬ12(2):119 ̄124.[13]㊀MengYꎬLiWꎬHanLꎬetal.Long ̄termoutcomesofendoscopicsubmucosaldissectionversuslaparoscopicresectionforgastricstromaltumorslessthan2cm[J].JGastroenterolHepatolꎬ2017ꎬ32(10):1693 ̄1697.[14]㊀CastroRꎬLibânioDꎬPitaIꎬetal.Solutionsforsubmucosalin ̄jection:Whattochooseandhowtodoit[J].WorldJGastroen ̄terolꎬ2019ꎬ25(7):777 ̄788.[15]㊀YandrapuHꎬDesaiMꎬSiddiqueSꎬetal.Normalsalinesolutionversusotherviscoussolutionsforsubmucosalinjectionduringen ̄doscopicmucosalresection:asystematicreviewandmeta ̄analy ̄sis[J].GastrointestEndoscꎬ2017ꎬ85(4):693 ̄699. [16]㊀HorikiNꎬOmataFꎬUemuraMꎬetal.Riskforlocalrecurrenceofearlygastriccancertreatedwithpiecemealendoscopicmucosalresectionduringa10 ̄yearfollow ̄upperiod[J].SurgEndoscꎬ2012ꎬ26(1):72 ̄78.[17]㊀FerlitschMꎬMossAꎬHassanCꎬetal.Colorectalpolypectomyandendoscopicmucosalresection(EMR):EuropeanSocietyofGastrointestinalEndoscopy(ESGE)ClinicalGuideline[J].En ̄doscopyꎬ2017ꎬ49(3):270 ̄297.[18]㊀KatsinelosPꎬKountourasJꎬParoutoglouGꎬetal.Acomparativestudyof50%dextroseandnormalsalinesolutionontheirabilitytocreatesubmucosalfluidcushionsforendoscopicresectionofsessilerectosigmoidpolyps[J].GastrointestEndoscꎬ2008ꎬ68(4):692 ̄698.[19]㊀FeitozaABꎬGostoutCJꎬBurgartLJꎬetal.Hydroxypropylmeth ̄ylcellulose:Abettersubmucosalfluidcushionforendoscopicmu ̄cosalresection[J].GastrointestEndoscꎬ2003ꎬ57(1):41 ̄47. [20]㊀YamamotoHꎬYahagiNꎬOyamaTꎬetal.Usefulnessandsafetyof0.4%sodiumhyaluronatesolutionasasubmucosalfluid"cushion"inendoscopicresectionforgastricneoplasms:apro ̄spectivemulticentertrial[J].GastrointestEndoscꎬ2008ꎬ67(6):830 ̄839.[21]㊀WenWꎬShiCꎬShiYꎬetal.Apilotanimalandclinicalstudyofautologousbloodsolutioncomparedwithnormalsalineforuseasanendoscopicsubmucosalcushion[J].ExpTherMedꎬ2012ꎬ4(3):419 ̄424.[22]㊀Al ̄TaieOHꎬBauerYꎬDietrichCGꎬetal.Efficacyofsubmuco ̄salinjectionofdifferentsolutionsinclusivebloodcomponentsonmucosaelevationforendoscopicresection[J].ClinExpGastroen ̄terolꎬ2012ꎬ5:43 ̄48.[23]㊀ChandrasekharaVꎬSigmonJCꎬJrSurtiVCꎬetal.Anovelgelprovidesdurablesubmucosalcushionforendoscopicmucosalre ̄sectionandendoscopicsubmucosaldissection[J].SurgEndoscꎬ2013ꎬ27(8):3039 ̄3042.[24]㊀HoffmanAS.Stimuli ̄responsivepolymers:biomedicalapplica ̄tionsandchallengesforclinicaltranslation[J].AdvDrugDelivRevꎬ2013ꎬ65(1):10 ̄16.[25]㊀DávilaJLꎬDᶄávilaMA.Laponiteasarheologymodifierofalgi ̄natesolutions:Physicalgelationandagingevolution[J].Carbo ̄hydrPolymꎬ2017ꎬ157:1 ̄8.(收稿日期:2020 ̄12 ̄03ꎻ㊀修回日期:2021 ̄02 ̄08)(责任编辑:缪㊀琴ꎻ㊀英文编辑:朱一超)。
用于软骨修复的水凝胶 - 浙江大学高分子科学与工程学系

骨移植 。虽然这些方法成功地减轻了患者的痛苦 、 提高了软骨的功能 ,但是上述方法存在供体来源不 足 、手术过程复杂 、排异 、修复的软骨缺乏天然软骨 结构等缺点 。这些缺陷甚至可能阻碍这些治疗方法 在临床上的长期应用[3] 。
随着组织工程和再生医学技术的出现和逐步完 善 ,软骨修复技术出现了新的选择 。事实上 ,软骨修 复也是组织工程技术的最成功范例之一 。采用组织 工程技术修复软骨的过程一般是 :将体外分离扩增 的软骨细胞和生长因子或生物活性物质复合 ,然后 导入某种支架 ,再通过手术或微创注射的方法修复 缺损的软骨[4] 。除了种子细胞和活性因子外 ,支架 材料对于修复的软骨的质量起到至关重要的作用 。 除具有良好的机械物理性能外 ,更重要的是支架需 提供适于软骨组织再生的微环境[4] 。目前 ,已有包 括多孔支架 、纤维支架 、水凝胶和微载体在内的多种 结构的支架被用于软骨修复的研究和应用 。不同种 类的支架对软骨细胞的功能产生不同的影响 。由于 软骨细胞属于锚着依赖型细胞 ,它们在多孔支架和 微米纤维支架中需黏附在这些材料的表面才能生 长 ,通常呈现出铺展的扁平样形态[5] 。然而 ,软骨细 胞在纳米纤维支架和水凝胶支架中则成圆形或椭圆 形形态[5] ,这与其在天然软骨基质中更为接近 ,因而 更有利于维持软骨细胞的正常表型 。有研究表明 , 生长状态呈圆形或椭圆形的干细胞更倾向于向软骨 细胞分化[5] 。此外 ,水凝胶支架的水溶液环境更有 利于保护细胞以及易失活的药物如多肽 、蛋白质 、寡 聚核苷酸和 DNA 等 ,也有利于运输营养和细胞分泌 产物等 。由于水凝胶可以在一定条件下保持流动状 态而在外部物理或化学刺激下形成具有一定形状和 强度的体型材料 ,因此可以利用这种智能性来制备 注射型支架 ,发而 ,水凝胶也有机械强度 低 、消毒比较困难等缺点[6] 。近年来在水凝胶及其 复合物修复软骨方面已经取得了较大进展 ,并显示 出了良好的应用前景 。
壳聚糖温敏凝胶的研究进展

壳聚糖温敏凝胶的研究进展辛宝萍;李晓娟;郭亚可【摘要】壳聚糖温敏凝胶是一种pH中性,在室温或者低于室温时能够保持液体状态,当温度升高至生理温度(37℃)后,能够形成半固体凝胶,因其独特的特性被广泛应用于各个领域,尤其在医药方面成为研究的热点.本文主要介绍了目前常见的壳聚糖温敏凝胶及其在药物缓释体系和组织工程中的研究进展,为其在医药领域中应用提供一定的参考.【期刊名称】《广州化工》【年(卷),期】2017(045)024【总页数】4页(P47-49,78)【关键词】壳聚糖;温敏凝胶;药物缓释载体;组织工程【作者】辛宝萍;李晓娟;郭亚可【作者单位】石河子大学医学院第一附属医院药剂科,新疆石河子 832000;石河子大学,新疆石河子 832000;石河子大学医学院第一附属医院药剂科,新疆石河子832000【正文语种】中文【中图分类】R917智能水凝胶是一种在水或者生物体液中能够溶胀且保持大量水分、不能溶解的交联高分子聚合物,其是智能高分子材料的一个重要分支。
智能水凝胶具有轻度化学交联与分子链间相互缠绕的三维网络结构,使得亲水的小分子能够在水凝胶中扩散。
原位凝胶又称在位凝胶,其形成机制是通过pH、温度或离子强度等刺激聚合物,使聚合物在生理条件下发生分散状态或者空间构象的改变,从而由液态转变成半固体凝胶状态。
根据响应条件的不同,原位凝胶可以分为温度敏感型、离子敏感型、pH敏感型、光敏感型等,其中研究最广泛和成熟的是温度敏感型原位凝胶。
温敏凝胶(Thermosensitive hydrogel)是指以液体给药后,在用药部位因生理温度(37.0 ℃)变化刺激产生相应的物理结构或化学性质变化而形成非化学交联的半固体制剂,温敏凝胶在室温或者低于室温时能够保持液体状态,当温度升高至生理温度(37 ℃)后,能够形成半固体凝胶,因而被广泛用于体内药物缓释和生物组织工程等方面的研究[1-2]。
温敏凝胶不仅可以有效减少药物损失,延长药物作用时间,改善药物的生物利用度[3],还可以填充组织缺损[4-5],实现响应环境温度变化的智能化给药。
自愈合水凝胶的应用研究进展

图1水凝胶的形态自愈合材料是一种“有生命”的材料,具有自动愈合损———————————————————————作者简介:庞相琛(2002-),女,陕西西安人,研究方向为化学。
图2希夫碱反应示意图酰腙键也是一种动态可逆的化学键,由酰肼和醛基反应生成。
酰腙键在动态共价键中属于结合较稳定的一类,具有明显的pH依赖性。
陈咏梅研制了基于酰腙键和亚胺键两种动态共价化学键的多糖基自愈合水凝胶,通过己二酰肼交联氧化海藻酸钠生成可逆酰腙键,同时通过氧化海藻酸钠交联水溶性壳聚糖得到可逆亚胺键。
该水凝胶在生理条件下具有较高的自愈合效率,该水凝胶还有可注射性和降解性能[6]。
1.1.2Diels-Alder反应Diels-Alder反应,又名双烯加成,由共轭双烯与烯形成的一类化学键。
金属配位键具有动态可逆的性质,是制备剪切变稀和自愈合水凝胶的一种有效分子设计策略。
通过在高分子骨架上共价结合配体分子,并向其中引入金属离子,即可形成基于配体-金属配位键的交联点,从而制备出具有自愈合性能的水凝胶。
通过选择不同的配体和金属离子,可制备出具有一系列不同力学强度的水凝胶,用以满足不同生物医学应用中的力学需求。
基于以上特点,wei等开发出了一种简单的自愈合水凝胶制备方法:在丙烯酸水溶液中加入Fe3+,通过聚合反应形成聚丙烯酸大分子骨架的同时,Fe3+与-COOH发生配位作用形成交联点,从而制备了金属配位交联的自愈合水凝胶(图4所示)。
图4基于铁离子配位作用的自愈合水凝胶结构示意图及水凝胶在室温下的自修复过程湖南大学施李杨等利用双膦酸根和金属之间形成的动态配位键开发了一类具有自愈合特性的水凝胶,这种具有动态可逆网络结构的双膦酸-金属配位水凝胶可实现“凝胶-溶胶-凝胶”的转化,注射时间点无窗口期限制[7]。
将开发的双膦酸和金属离子交联的水凝胶用作3D打印墨水、组织修复支架以及药物缓释载体[8],并取得了良好的体内外生物学效果。
由此可见动态配位键是开发动态可逆性能的水凝胶生物材料的一种重要的化学策略,有着开阔的发展前景。
壳聚糖智能水凝胶

封面壳聚糖智能水凝胶作者:吴雪辰罗育阳摘要:壳聚糖智能水凝胶作为一种天然高分子材料,由于其来源于自然而具有的生物可降解性、无毒、来源广泛等优良的性能,近些年已经成为研究的热点。
而智能水凝胶本身对温度、PH、电磁性能等外界刺激能做出迅速的反应同时也收到广泛关注。
结合两者的优点合成的壳聚糖智能水凝胶更是具有了更加突出的优势。
下面从定义、制备以及应用等方面简单的对壳聚糖智能水凝胶最近几年的发展进行浅析。
关键词:壳聚糖,智能水凝胶,壳聚糖智能水凝胶,药物缓释。
1.定义甲壳素是由N-乙酰-2-氨基-D-葡萄糖以β-1,4糖苷键形式联接而成的多糖,是一种天然高分子化合物。
壳聚糖是其乙酰化产物。
壳聚糖与甲壳素结构的差别在于C2位的取代基不同,壳聚糖是氨基(—NH2),而甲壳素是乙酰氨基(—NHCOCH3)。
Fig.1是甲壳素与壳聚糖的化学结构式。
[1]脱乙酰基Fig.1水凝胶或称含水凝胶为亲水性但不溶于水的聚合物, 它们在水中可溶胀至一平衡体积仍能保持其形状。
[2]智能水凝胶一般是有机高分子水凝胶材料,其上的功能基团使水凝胶的吸水量对周围环境敏感如温度、pH、电、光或离子强度等,所以称作“智能”。
[3]壳聚糖分子由于主链或侧链上带有大量的亲水基团和有适当的交联网络结构,所以可形成智能水凝胶。
[4]2.制备(1)壳聚糖壳聚糖可通过天然的甲壳素支链水解直接制得。
(2)智能水凝胶智能水凝胶的制备方法比较复杂,可通过以下方法制得:Ⅰ.水溶性高分子的交联法[5]Ⅱ.接枝共聚法(3)壳聚糖智能水凝胶的制备翟延飞[6]研究认为壳聚糖主链上含有大量的亲水集团,尤其是2位上的氨基常作为交联点,能与甲醛、戊二醛等双官能团交联剂反应,使线性壳聚糖链间由碳氧双键交联成水凝胶。
常用的交联剂有:戊二醛,甲醛,亚甲基二丙烯酰胺,京尼平等,这种方法是化学交联法。
化学交联法制备的凝胶具有以下特点:交联均匀;通过不同的交联剂可以制备不同性质的水凝胶;制备薄膜纤维等形状;适合多糖类、蛋白质等生物天然高分子等。
水凝胶简介知识讲解

水凝胶简介水凝胶是一种具有亲水性的三维网状交联结构的高分子网络体系。
水凝胶性质柔软,能保持一定的形状,能吸收大量的水,具有良好的生物相容性和生物降解性。
自从20世纪50年代由Wichterle等首次报道后,就被广泛地应用于组织工程、药物输送、3D细胞培养等医药学领域。
[1]水凝胶根据交联方式不同,分为物理交联水凝胶和化学交联水凝胶。
物理凝胶是指通过静电力、氢键、疏水相互作用等分子间作用力交联形成的水凝胶。
这种水凝胶力学强度低,温度升高会转变成溶胶。
化学交联水凝胶是指通过共价键将聚合物交联成网络的凝胶。
其中,共价键通过“点击”反应生成,比如硫醇-烯/炔加成、硫醇-环氧反应、叠氮-炔环加成、席夫碱反应、环氧-胺反应、硫醇-二硫化物交换反应等。
Gao Lilong等在生理条件下将N,N-二甲基丙烯酰胺、甲基丙烯酸缩水甘油酯和聚低聚乙二醇巯基丁二酸通过巯基-环氧“点击”反应制备得到可注射水凝胶。
[2]和物理凝胶相比,化学交联水凝胶稳定性较好,力学性能优异。
根据来源不同,水凝胶又可分为天然水凝胶和合成水凝胶。
天然水凝胶包括琼脂、壳聚糖、胶原、明胶等,它们大都通过氢键交联形成。
合成水凝胶包括聚乙二醇、丙烯酸及其衍生物类(聚丙烯酸,聚甲基丙烯酸,聚丙烯酰胺,聚N-聚代丙烯酰胺等)。
和合成水凝胶相比,天然水凝胶生物相容性较好,环境敏感性好,价格低廉,但稳定性较差。
目前,有学者将天然高分子和合成高分子交联制备杂化水凝胶。
比如,Lei Wang等将壳聚糖和聚异丙基丙烯酰胺交联得到热敏性杂化水凝胶用于体内药物输送,并利用近红外光引发药物释放。
[3]水凝胶凭借良好的生物相容性广泛地应用于药物输送、组织再生等医药学领域。
药物可以通过化学接枝和包埋等方式实现负载。
负载药物的水凝胶通过移植或注射进入生物体内,然后在体内逐渐降解实现药物的缓慢释放。
为了更好地实现药物的输送和释放,智能水凝胶应运而生,所谓智能水凝胶,是指能够对外界环境的变化,比如pH、温度等做出反应的水凝胶,从而实现药物的可控释放。
环境友好高分子材料——海藻酸钠的性质与应用

摘要海藻酸钠是一种从海藻中提取出的多糖钠盐,具有良好的生物相容性和生物可降解性。
海藻酸钠与钙离子交联形成凝胶的特性,也使得海藻酸钠有着比一般环境友好高分子更多的应用环境。
海藻酸钠在生物医药、食品和日用化工方面都有着广泛的应用,是一种良好的环境友好高分子材料。
关键词:海藻酸钠;凝胶;环境友好高分子1前言近几年,随着世界的发展,人们对于石油资源的需求越来越大,随之而来的资源短缺和环境污染等问题也凸显出来。
自然而然的,人们开始将目光转向了地球上巨大的宝库——海洋。
海洋占了地球71%的面积,人类还远远没有开发出其中巨大的价值,但就现有的一些发现,就给人们带来了极大的帮助。
海藻酸盐就是其中之一。
海藻酸是从海带或海藻中提取的一种天然多糖类化合物,是β-D-甘露糖醛酸(M)和α-L-古罗糖醛酸(G)通过糖苷键连接形成的一类线性无规链状阴离子聚合物[1],结构式如图1所示。
海藻酸中羧基上的氢易被Na+、a2+等金属阳离子所取代,形成相应的海藻酸钠、海藻酸钙等等。
其中海藻酸钠(Sodium alginate,SA)由于其良好的生物相容性和可加工性能,在海藻酸盐中的应用最为广泛。
图1 海藻酸结构式2海藻酸钠的性质及制备工艺2.1 海藻酸钠的理化性质海藻酸钠溶液是一种典型的高分子电解质溶液,在纯水中,低浓度的海藻酸钠Nsp/C值将随海藻酸钠浓度的降低而升高,所以在测定其特性粘数[η]时需要加入无机盐类保持一定的离子强度,国内不同厂家生产的海藻酸钠[η]值从4.386~6.865不等,平均相对分子质量从(2.19~3.43)x105不等,G/M值从0.2~1.0不等,动力黏度从35±0.7到103±12(n=4)不等,海藻酸钠溶液的浓度和黏度没有线性关系,而黏度取对数后与浓度作线性回归,线性关系较好[2]。
钙离子浓度对海藻酸钠溶液的特性粘数有影响,高分子电解质溶液的黏度特性与非电解质高分子溶液的黏度也有所不同,浓度较小时,电离度大,大分子链上电荷密度增大,链段间的斥力增加,电离度下降,斥力减小,分子链蜷曲,黏度也就下降。
胰岛素新剂型的研究进展论述

胰岛素新剂型的研究进展论述摘要:胰岛素作为治疗糖尿病的主要药物之一,在既往临床使用中,主要以皮下注射给药方式为主,但该种方式药效维持时间较短,为提高患者用药顺应性,胰岛素非注射递药方式的开发成为近年来热门的研究课题。
故文章以下汇总了注射剂、肺部吸入、口服、植入剂等多种给药途径,并结合胰岛素生物利用和实际效果作一系统综述。
关键词:胰岛素;新剂型;肺部吸入;植入剂胰岛素是由胰脏内胰岛β细胞分泌的一种蛋白质激素,是人体内唯一可调节血糖值的激素,可用于治疗糖尿病。
1921年由加拿大学者首先发现,1922年开始应用于临床,迄今为止仍然是用于治疗糖尿病疾病的首选药物[1]。
近几十年来,为了提高胰岛素的应用疗效,科研工作者不断改进胰岛素剂型,由于胃肠道酶的破坏作用以及不同患者肝脏首过效应,使得口服途径效果无法达到既定目标。
其他如鼻腔、直肠等也有相关研究,但其受制于吸收不完全和不确定,使得该种给药方式至今仍然未能取得较大突破。
故此当下仍然以腹部皮下注射方式为主,其虽然能够最大程度模拟人体生理规律,但药物维持时间较短,重症患者每日需注射2-4次,且长期注射还容易诱发浮肿、超重等不良反应,加重患者痛苦与不便[2]。
鉴于以上情况,研制使用效果良好、安全性可靠的胰岛素新剂型已然成为国内外医药界共同关注的课题。
一.超速效胰岛素制剂超速效胰岛素制剂主要通过改变人胰岛素氨基酸一级结构,减弱单体之间的自联和聚合,使其具备吸收更高、起效更快的作用。
1996年赖脯胰岛素在欧洲批准使用,其由Lilly公司生产,主要将正常人体胰岛素B链分子中的脯氨酸和赖氨酸位置进行互换,生理浓度以单体形式存在,减少结合和聚合特性,经过实验研究表明,赖脯胰岛素皮下注射15min即可起效,1h达到高峰作用时间,维持时间为2-4h,且出现低血糖等不良事件发生率更低。
胰岛素Aspart同样为超速效胰岛素制剂,其将人胰岛素分子中天冬氨酸替代第28位的脯氨酸,药代动力学与赖脯胰岛素相似,其安全性更好[3]。
新型胰岛素传递系统研究进展

新型胰岛素传递系统研究进展摘要:糖尿病是一种以高血糖和多种并发症并存为特征的慢性内分泌代谢疾病。
目前广泛应用于糖尿病临床治疗的药物主要有胰岛素、胰岛素类似物、非胰岛素口服降糖药和遗传药物。
药物传递系统被认为可以提高胰岛素类药物的稳定性、提高生物利用度及进行智能化给药。
本文综述了近年来药用高分子纳米体系作为胰岛素给药系统的研究进展。
关键词:糖尿病,药物传递,胰岛素,纳米粒子1 引言近几十年来,糖尿病的患病率在全球范围内呈上升趋势。
目前,糖尿病已成为仅次于心血管病和恶性肿瘤的一种严重的非传染性疾病。
糖尿病是一种以高血糖和多种并发症为特征的内分泌代谢疾病,是最常见的慢性疾病之一,已成为当今一个紧迫的健康问题。
[1]糖尿病的发病机制比较复杂。
目前,广泛应用于糖尿病临床治疗的药物主要有胰岛素、胰岛素类似物、非胰岛素口服降糖药和遗传药物。
胰岛素及其类似物的主要生理功能是调节体内糖、脂肪和蛋白质的代谢,将血糖维持在正常范围内。
[2]其中,反复常规皮下注射胰岛素是胰岛素依赖性糖尿病患者的标准治疗方法。
但患者的注射依从性差,往往无法达到稳定的血糖浓度。
胰岛素作为一种蛋白质药物,其口服生物利用度较低、人体胰岛素稳定性差、体内代谢快等缺点限制了其在临床中的应用。
[3]长期皮下注射和口服造成的酶促降解、化学不稳定和胃肠道吸收功能较低等不良反应仍没有良好的解决方法。
药物传递系统在许多方面具有潜在益处,如提高药物的稳定性、提高生物利用度及实现智能化胰岛素给药过程。
因此,根据药物和糖尿病的特点,开发合适的给药系统是十分必要的。
本文就近年来胰岛素给药系统进行综述,以期为在糖尿病治疗领域的应用提供参考。
2 给药系统在胰岛素给药中的应用药物传递系统的载体主要包括脂质体、聚合物基纳米粒子(NPs)和无机NPs。
这些纳米载体在保护药物不被酶降解、提高药物稳定性、克服体内不同的生物屏障、提高药物的生物利用度等方面都有潜在的应用价值。
同时可以作为一种智能化系统,模拟内源性胰岛素输送,对外界信号具有非线性响应,从而降低低血糖的风险,获得更好的患者依从性。
阳离子对注射填充用结冷胶胶凝的影响

阳离子对注射填充用结冷胶胶凝的影响陈勉3朱希强1·8刘飞3张天娇8李海军6李尚宾“凌沛学6 (a.山东省生物药物研究院山东省生物药物重点实验室,济南市,250101 b.山东省药学科学院山东省多糖类药物工程实验室,济南市,250101)摘要:目的:探索组织填充用结冷胶的使用条件。
方法:通过系列高/低酰基结冷胶浓度、Ca2+、M92+、Na+、K+添加等试验,观察结冷胶胶凝状况。
结果:(1)结冷胶自胶凝浓度分别是高酰基结冷胶(HJLJ)>/0.4%,低酰基结冷胶(LJLJ)i>3.2%,HJLJ+LJLJ组合物/>0.8%。
(2)灭菌处理后可流动HJLJ对1mol/L的Ca2+、Mg外、Na+、K+阳离子不敏感,无明显胶凝;同法处理的HJLJ+LJLJ组合物发生阳离子胶凝,敏感性Ca2+>M92+>K+>Na+;LJLJ也发生阳离子胶凝,敏感性M92+>Ca2+>K+>Na+。
结论:调节结冷胶浓度、高/低酰基结冷胶配比可获得阳离子胶凝敏感度不同的胶液,通过机体内、外源的阳离子补给,可能将结冷胶用于不同填充需要的注射美容。
关键词:结冷胶;水凝胶:阳离子:注射美容Cation Influence on Inj ectable Gellan Gum Gelling Used for Dermal o r Tissue FillerM Chen8,XQ Zhu l’。
,F L iu3,TJ Zhanga,I-U Li6,SB Li6,PX Lingb(4 Shandong Provincial Key Laboratory OfBiopharmaceuticals,Inst#ute ofBiophar maceu tical s ofShanDong Province,Ji'nan,250101b Shandong Provincial Engineer ing Lab o r at o r y ofPolysaccharide Drugs,ShandongAcademy ofPharmaceutical Science,d i'na n,250101)2Abstract Objective:To explore application conditions for using gel la n gum as dermal or tissue filler.Methods:Through a series of high/l ow acy l g el la n gum concentration,adding c a2+,M92+,gum self-gell ing Na+,o r K+,to observe gel la n gum gelling status.Results:(1)The g el la nconcentrations were high acyl gell an gum(HJLJ)>一0.4%,low acyl gell an gum(LJLJ)>一3.2%,HJLJ+LJL J composition一>0.8%,respectively.(2)After the sterilization,the flowable HJLJ W asn ot s ens it ive t o l mol/L of ca2+,M92+,Na+,or K+,a nd no gelling;HJL J+LJ LJ comp osit ionocc ure d cationi c gelling,with sensitivity order ca2+>M92+>K+>Na+;L几J also occurred cationi c gelling.with sensitivity order M92+>ca2+>K+>Na+.Conclusion:Adjusting the concentration of gella n gum,and the ratio of hig h/lo w acy l gellan gum compos itio n,w e may1通讯作者:朱希强,E-m ai l:xi s tr on g@s i na.t omprepare differe nt g el la n gum glue with different cati omc gelling sensiti vi ty.The n by endogenous or exogenous cationic supply,the gel la n gum may be used for different cosmetic filling injections.Key words:gel lan gum;hydrogel;cation;cosmetic filling injection结冷胶是微生物发酵所得天然产物,是由四糖单位——夕(1—3)一D一葡萄糖∥(1—4)-D-葡萄糖醛酸夕(1—4)-D-葡萄糖a(1—4)-L-鼠李糖相互连接构成的多糖。
新型聚乙二醇水凝胶制备及性能分析

新型聚乙二醇水凝胶制备及性能分析全宸良;刘建恒;张里程;补亚忠;杨飞;高远;唐佩福【摘要】目的构建具有良好机械性能、止血性能且快速成胶的新型聚乙二醇水凝胶。
方法以聚乙二醇为基本结构,通过调控四臂聚乙二醇氨基聚合物、四臂聚乙二醇琥珀酰亚胺碳酸酯聚合物、四臂聚乙二醇苯甲醛比例,制备新型基于聚乙二醇的水凝胶。
通过静态秒表-样本瓶倾斜法、扫描电子显微镜、溶胀性能试验和力学性能试验测试其基本理化性质,通过与小鼠成纤维细胞共培养及新西兰白兔肝穿刺止血试验研究其生物安全性和止血性能。
结果制备的新型聚乙二醇水凝胶成胶时间短且可控。
扫描电镜显示基于聚乙二醇新型水凝胶具有蜂窝状多孔结构,孔孔相连且均匀分布,孔径可以调控。
溶胀性能测试显示,GEL-1、GEL-2、GEL-3平均溶胀率分别为1 540%、1 620%和1 780%。
力学性能测试显示,随着CHO比例的增多,水凝胶的抗压能力减弱,但是当CHO占0.3份时,断裂压强仍然能够达到27 MPa。
体外与小鼠成纤维细胞共培养显示,新型水凝胶对细胞生长无明显抑制作用,细胞毒性低。
新西兰白兔肝穿刺止血试验显示,空白对照组的血量是实验组的3~8倍。
结论新型水凝胶作为止血剂具有一定的临床应用前景,其在载药缓释、组织工程等领域的应用尚需进一步评价。
【期刊名称】《解放军医学院学报》【年(卷),期】2017(000)004【总页数】5页(P337-341)【关键词】聚乙二醇;水凝胶;止血【作者】全宸良;刘建恒;张里程;补亚忠;杨飞;高远;唐佩福【作者单位】解放军总医院骨科;中国科学院化学所高分子物理与化学国家重点实验室【正文语种】中文【中图分类】R318.08水凝胶是一种能在水中溶胀,吸收并保持大量水分且又不溶解于水的网状亲水性高分子聚合物[1]。
其具有良好的生物组织相容性及药物释放(drug delivery systems,DDS)功能,一直受到生物医学界的广泛关注[2]。
早期对水凝胶的研究大多集中于合成与制备方法。
双重动态共价键交联纳米纤维素导电水凝胶及其柔性传感器

化工进展Chemical Industry and Engineering Progress2022年第41卷第8期双重动态共价键交联纳米纤维素导电水凝胶及其柔性传感器邱艺娟1,林佳伟1,秦济锐1,吴嘉茵1,林凤采2,卢贝丽1,唐丽荣3,黄彪1(1福建农林大学材料工程学院,福建福州350108;2闽江学院材料与化学工程学院,福建福州350108;3福建农林大学金山学院,福建福州350108)摘要:自愈合导电水凝胶因其良好的自愈合性能与导电性能,在柔性可穿戴设备中具有巨大的应用前景。
以4-甲酰基苯硼酸(Bn )交联聚乙烯醇(PVA )和聚乙烯亚胺(PEI )构建基于硼酸酯键和亚胺键的双重动态交联水凝胶网络,引入聚吡咯修饰的纤维素纳米纤维(PPy@CNF )构建了具有良好自愈合和导电性的PBP-PPy@CNF 纳米复合水凝胶。
结果表明,当PPy@CNF 的质量分数为0.8%时,水凝胶的力学性能最佳,其最大应力可达6.65kPa ,断裂拉伸应变可达2080%,电导率为2174μS/m 。
基于该水凝胶的电阻式传感器具有良好的稳定性和重复性,在应变检测范围0~800%内,灵敏因子GF 可分为三个线性响应区域,分别是0~200%(GF 1=2.82)、200%~600%(GF 2=7.15)和600%~800%(GF 3=12.85),该传感器能有效检测人体不同部位的运动,可应用于可穿戴传感设备。
关键词:纳米纤维素;动态共价键;自愈合;水凝胶;传感器中图分类号:TQ325.9文献标志码:A文章编号:1000-6613(2022)08-4406-11Double dynamic covalent bond crosslinked nano-cellulose conductivehydrogel for a flexible sensorQIU Yijuan 1,LIN Jiawei 1,QIN Jirui 1,WU Jiayin 1,LIN Fengcai 2,LU Beili 1,TANG Lirong 3,HUANG Biao 1(1College of Material Engineering,Fujian Agriculture and Forestry University,Fuzhou 350108,Fujian,China;2College of Material and Chemical Engineering,Minjiang University,Fuzhou 350108,Fujian,China;3Jinshan College,FujianAgriculture and Forestry University,Fuzhou 350108,Fujian,China)Abstract:Self-healing conductive hydrogels have great potential applications in flexible wearabledevices because of their good self-healing properties and electrical conductivity.A double dynamic cross-linked hydrogel network based on borate ester bond and imine bond was synthesized via cross-linking polyvinyl alcohol (PVA)and polyethylenimine (PEI)with 4-formylbenzoboric acid (Bn).Then,PPy@CNF (grafted polypyrrole (PPy)on the surface of CNF)was incorporated to construct PBP-PPy@CNFnanocomposite hydrogels with good self-healing and electrical conductivity.The results indicated thatwhen the content of PPy@CNF was 0.8wt%,the mechanical properties of the hydrogel were the best.The maximum stress and the fracture tensile strain can be up to 6.65kPa and 2080%,respectively with研究开发DOI :10.16085/j.issn.1000-6613.2021-2052收稿日期:2021-09-30;修改稿日期:2021-11-19。
高分子材料水凝胶在医药领域的主要应用

水凝胶在医药领域的主要应用李熊(云南大学化学科学与工程·药学院,制药工程)摘要:水凝胶是一类具有亲水基团,能被水溶胀但不溶于水的具有三维网络结构的聚合物。
由于水凝胶具备高亲水性、渗透性、生物相容性和低摩擦系数,因此水凝胶在医药领域具有广泛的应用前景。
本文介绍了水凝胶在医药领域的一些主要应用及前景。
关键词:水凝胶、医药、应用、制备一、前言水凝胶是以水为分散介质的凝胶。
具有交联结构的水溶性高分子中引入一部分疏水基团而形成能遇水膨胀的交联聚合物,是一种轻度交联的三维空间高分子网络体系,性质柔软,能保持一定的形状,吸收大量的水而不溶于水。
凡是水溶性或亲水性的高分子,通过一定的化学交联或物理交联,都可以形成水凝胶。
水凝胶除了具备上述优良的应用特性外水凝胶还具备其特殊的环境响应性。
近年来,许多研究表明,水凝胶在一些环境因素,如离子、电场、介质、温度、pH值、光、应力、磁场等变化时,水凝胶的形状、光学、渗透速率等理化性质会随环境因素的变化发生突跃型可逆性的响应。
这一特性,特别是水凝胶在温度及PH影响下发生的响应性变化,已然成为医药领域功能性高分子的一大研究热点。
二、水凝胶在医药领域主要应用2.1药物控释领域水凝胶具备传递药物分子的孔道,并且在不同的生理环境会有不同的响应,适合作为水溶性药物及不抗胃肠道蛋白酶分解药物的载体。
温度敏感型水凝胶是一种随环境温度变化而发生可逆性收缩-膨胀的智能水凝胶,当温度比温度敏感型水凝胶的体积相变温度高或者低时,水凝胶处于收缩或者膨胀状态,在低温时将浸入药物溶液中,水凝胶吸收药物溶液膨胀,在高温时,水凝胶收缩向外挤出药物溶液,使得药物得以定点释放。
为避免药物服用后通过水凝胶的孔道扩散,并且在升温后药物释放速度极快,Hoffman等[1]在水凝胶原料聚合物链上引入疏水基团,温度高于水凝胶的体积相变温度的时候,水凝胶表面收缩形成一层薄而致密的疏水层阻止药物向外释放,当温度低于体积相变温度时,水凝胶膨胀,疏水层也随水凝胶的体积膨胀而消失,药物从而以自由扩散的形式向外恒速释放。
水凝胶的主要组成 英文

水凝胶的主要组成英文The Main Constituents of HydrogelsHydrogels are a class of materials that have gained significant attention in various fields, including biomedical, pharmaceutical, and environmental applications. These materials are characterized by their ability to absorb and retain large amounts of water or other aqueous solutions within their three-dimensional polymeric networks. The main constituents that contribute to the unique properties of hydrogels are the polymer backbone, crosslinking agents, and water molecules.The polymer backbone is the foundation of the hydrogel structure and plays a crucial role in determining its physical and chemical properties. Commonly used polymers in the fabrication of hydrogels include natural polymers, such as cellulose, chitosan, alginate, and collagen, as well as synthetic polymers, such as polyacrylamide, polyvinyl alcohol, and polyethylene glycol. The choice of polymer depends on the intended application of the hydrogel and the desired characteristics, such as biocompatibility, biodegradability, and mechanical strength.Crosslinking agents are the molecules or compounds that connect the polymer chains, forming the three-dimensional network structure of the hydrogel. These crosslinking agents can be physical, such as hydrogen bonding or ionic interactions, or chemical, such as covalent bonds. The type and degree of crosslinking significantly influence the swelling behavior, mechanical properties, and stability of the hydrogel. For example, a higher degree of crosslinking can result in a more rigid and less swollen hydrogel, while a lower degree of crosslinking can lead to a more flexible and highly swollen structure.Water molecules are the primary component of hydrogels, accounting for a significant portion of their overall composition. The water molecules are held within the polymeric network through various interactions, such as hydrogen bonding, van der Waals forces, and electrostatic interactions. The ability of hydrogels to absorb and retain water is a crucial characteristic that enables them to mimic the properties of natural tissues and facilitate various applications.The interplay between the polymer backbone, crosslinking agents, and water molecules determines the overall structure and properties of the hydrogel. The degree of swelling, mechanical strength, permeability, and responsiveness to environmental stimuli, such as pH, temperature, or the presence of specific molecules, can be tailored by adjusting the composition and structure of the hydrogel.One of the unique properties of hydrogels is their ability to respond to changes in their environment. Stimuli-responsive hydrogels, also known as "smart" hydrogels, can undergo reversible volume phase transitions or changes in their physical and chemical properties in response to external stimuli, such as temperature, pH, ionic strength, or the presence of specific molecules. This responsiveness is achieved through the incorporation of functional groups or moieties within the polymer backbone or the crosslinking agents.For example, temperature-responsive hydrogels can undergo a volume phase transition in response to changes in temperature. Poly(N-isopropylacrylamide) (PNIPAAm) is a widely studied temperature-responsive polymer that exhibits a lower critical solution temperature (LCST) around 32°C, which is close to the human body temperature. Below the LCST, the PNIPAAm-based hydrogel is swollen and hydrophilic, while above the LCST, the hydrogel undergoes a phase transition, becoming more hydrophobic and contracting in volume.pH-responsive hydrogels, on the other hand, can change their swelling behavior and properties in response to changes in the pH of the surrounding environment. These hydrogels typically contain ionizable functional groups, such as carboxyl or amine groups, that can undergo protonation or deprotonation depending on the pH. At certain pH values, the ionized groups can repel each other, leadingto swelling of the hydrogel, while at other pH values, the groups can become neutralized, resulting in a more collapsed and deswollen state.The versatility of hydrogels extends beyond their responsiveness to environmental stimuli. Hydrogels can also be designed to incorporate various functional molecules, such as drugs, proteins, enzymes, or cells, within their polymeric network. This allows for the controlled release of these active agents or the encapsulation and protection of sensitive biomolecules. Additionally, the high water content and soft, tissue-like properties of hydrogels make them particularly suitable for biomedical applications, such as wound dressings, tissue engineering scaffolds, and drug delivery systems.In conclusion, the main constituents of hydrogels, namely the polymer backbone, crosslinking agents, and water molecules, work together to create a unique and versatile class of materials with a wide range of applications. The careful selection and manipulation of these components allow for the development of hydrogels with tailored properties, enabling their use in diverse fields, from biomedical and pharmaceutical to environmental and industrial applications.。
用于软骨缺损修复的壳聚糖水凝胶降解性能的表征

用于软骨缺损修复的壳聚糖水凝胶降解性能的表征朱飞燕;朱天飞;梁仟;谭回;熊建义【摘要】背景:壳聚糖水凝胶修复软骨缺损生物相容性好,但目前尚不明确壳聚糖水凝胶在软骨缺损修复过程中的降解性能变化。
目的:探讨壳聚糖水凝胶在软骨缺损修复过程中的降解性能变化。
方法:采用羟乙基脱乙酰壳多糖(glycolchitosan,GC)与二醛基聚乙二醇(OHC-PEG-CHO)通过席夫碱反应交联,形成可注射水凝胶。
考察不同浓度的水凝胶(GC/OHC-PEG-CHO:2 wt%/2 wt%和2 wt%/1 wt%)在体外降解中的pH值、质量和体积变化。
结果:水凝胶在降解过程中,pH值基本维持在7左右;水凝胶(GC/OHC-PEG-CHO:2 wt%/1 wt%)在6周时全部降解,而水凝胶(GC/OHC-PEG-CHO:2 wt%/2 wt%)在8周时质量为初始质量的44.30%±5.51%,体积为初始体积的50.64%±9.81%,该降解速度与软骨修复速率一致。
选取水凝胶(GC/OHC-PEG-CHO:2 wt%/2 wt%)植入新西兰大白兔皮下,组织学切片分析结果表明,3周时水凝胶明显变小,但无明显的炎症反应。
结论:初步降解实验表明GC/OHC-PEG-CHO水凝胶可用于软骨缺损修复。
【期刊名称】《中华骨与关节外科杂志》【年(卷),期】2018(011)011【总页数】4页(P854-857)【关键词】水凝胶;体内外降解;软骨组织工程【作者】朱飞燕;朱天飞;梁仟;谭回;熊建义【作者单位】[1]中山大学材料科学与工程学院,广州510275;[2]深圳市第二人民医院组织工程重点实验室,广东深圳518035;[2]深圳市第二人民医院组织工程重点实验室,广东深圳518035;[2]深圳市第二人民医院组织工程重点实验室,广东深圳518035;[3]深圳市第二人民医院深圳神经外科学重点实验室转化医学研究院,广东深圳518035;[2]深圳市第二人民医院组织工程重点实验室,广东深圳518035;【正文语种】中文【中图分类】R542.22目前,创伤和关节炎等引起的关节软骨缺损及骨组织损伤患者日益增多,特别是关节炎引起的关节软骨缺损占很大比例[1]。
注射用磷酸特地唑胺应用于MRSE植入物相关性骨髓炎的价值探讨

注射用磷酸特地唑胺应用于MRSE植入物相关性骨髓炎的价值探讨【摘要】目的:探讨注射用磷酸特地唑胺在MRSE植入物相关性骨髓炎治疗中的应用价值。
方法:选取2023年1月至2023年7月我院的30例MRSE植入物相关性骨髓炎患者,均分成了对照组和观察组,各15例。
对照组进行常规治疗,观察组采用注射用磷酸特地唑胺治疗。
对两组病人的疗效和不良反应展开比较。
结果:治疗后观察组的临床疗效总有效率高于对照组,不良反应发生率低于对照组(P<0.05)。
结论:注射用磷酸特地唑胺在MRSE植入物相关性骨髓炎治疗中具有显著疗效,值得临床推广应用。
关键词:注射用磷酸特地唑胺;MRSE植入物相关性骨髓炎;价值随着医学技术的不断发展,植入物在临床上的应用越来越广泛。
然而,植入物也面临着感染等难题,其中骨髓炎是一种常见的感染类型。
目前,临床上常用的抗MRSE植入物骨髓炎的药物是头孢吡肟和万古霉素,但它们存在一些局限性。
因此,寻找一种更有效的药物成为了当前的研究热点。
注射用磷酸特地唑胺是一种新型的抗MRSE的药物,它具有抗菌谱广、抗菌活性强、安全性高等优点[1]。
本文旨在探讨注射用磷酸特地唑胺应用于MRSE植入物相关性骨髓炎的价值,为临床治疗提供参考。
通过文献综述,我们发现目前对于注射用磷酸特地唑胺应用于MRSE植入物相关性骨髓炎的研究相对较少,但其对于多种细菌感染具有良好的抗菌活性。
同时,磷酸特地唑胺在临床上的应用已经比较广泛,安全性得到了充分的验证。
注射用磷酸特地唑胺作为一种新型的抗MRSE植入物骨髓炎的药物,具有独特的优势。
首先,它具有广谱抗菌活性,可以有效地抑制MRSE等细菌的生长[2-3]。
其次,磷酸特地唑胺的抗菌活性强于头孢吡肟和万古霉素等传统药物,可以更快速地缓解患者的感染症状。
最后,磷酸特地唑胺的安全性高等优点也使其成为一种具有潜力的药物。
1.一般资料与方法1.1一般资料选取2023年1月至2023年7月我院的30例MRSE植入物相关性骨髓炎患者,均分成了对照组和观察组,各15例。
医用壳聚糖与透明质酸钠关节腔内注射治疗膝骨关节炎的疗效比较

医用壳聚糖与透明质酸钠关节腔内注射治疗膝骨关节炎的疗效比较白真龙;何耀华【摘要】目的研究医用壳聚糖对比透明质酸钠关节腔注射治疗膝骨关节炎病人的疗效和安全性.方法选择2015年1月至2015年4月,在上海交通大学附属第六人民医院骨科门诊就诊的34例膝骨关节炎患者,其中男11例,女23例,侧别:单侧8例,双侧26例.平均年龄60岁.根据随机、双盲、平行对照、非劣性比较临床试验的原则,受试患者分别随机分入壳聚糖注射组和透明质酸钠注射组.在治疗结束后6周,及治疗结束后12周基于VAS评分;WOMAC评分:包括WOMAC疼痛、关节僵硬、关节生理功能评分;受试者总体评分来评估对于研究侧膝关节疗效,以及壳聚糖和透明质酸钠注射液的安全性.观察治疗后关节疼痛、关节腔积液及肿胀与关节功能改善程度.结果患者膝关节腔注射壳聚糖或透明质酸钠后,在访视时研究侧膝关节在平地行走时的疼痛程度减轻,上述相关评分均升高,壳聚糖注射组疗效相比透明质酸注射组无明显差异.结论关节内注射壳聚糖对膝骨关节炎有良好疗效,与透明质酸对比无明显差异,但是注射次数减少,安全性增高.【期刊名称】《外科研究与新技术》【年(卷),期】2015(004)003【总页数】6页(P163-168)【关键词】壳聚糖;透明质酸;骨关节炎【作者】白真龙;何耀华【作者单位】上海交通大学附属第六人民医院,上海200233;上海交通大学附属第六人民医院,上海200233【正文语种】中文【中图分类】R684.3骨关节炎(osteoarthritis,OA)是临床上常见的退行性关节病变,该病发展缓慢,通常的病变特点为关节软骨的破坏以及反应性骨质增生,多见于中老年人,女性多于男性,好发于负重较大的膝关节。
临床表现为关节活动受限,关节畸形,炎症反应以及剧烈的疼痛[1],严重影响患者日常生活。
目前对于骨关节炎采用多样化的治疗措施以减轻疼痛,改善功能,在疾病前期倾向于采取保守治疗,如包括口服药物以及休息和康复理疗在内的保守治疗均无效,则可采用透明质酸钠或壳聚糖行关节腔内注射。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ReviewInjectable alginate hydrogels for cell delivery in tissue engineeringqSílvia J.Bidarra a ,⇑,Cristina C.Barrias a ,Pedro L.Granja a ,b ,caINEB –Instituto de Engenharia Biomédica,Universidade do Porto,Rua do Campo Alegre,823,4150-180Porto,PortugalbFEUP –Faculdade de Engenharia da Universidade do Porto,Departamento de Engenharia Metalúrgica e de Materiais,Rua Dr.Roberto Frias,s/n,4200-465Porto,Portugal cICBAS –Instituto de Ciências Biomédicas Abel Salazar,Universidade do Porto,Rua de Jorge Viterbo Ferreira,228,4050-313Porto,Portugala r t i c l e i n f o Article history:Available online 12December 2013Keywords:Tissue engineering Regeneration Cell delivery Injectable Alginatea b s t r a c tAlginate hydrogels are extremely versatile and adaptable biomaterials,with great potential for use in bio-medical applications.Their extracellular matrix-like features have been key factors for their choice as vehicles for cell delivery strategies aimed at tissue regeneration.A variety of strategies to decorate them with biofunctional moieties and to modulate their biophysical properties have been developed recently,which further allow their tailoring to the desired application.Additionally,their potential use as inject-able materials offers several advantages over preformed scaffold-based approaches,namely:easy incor-poration of therapeutic agents,such as cells,under mild conditions;minimally invasive local delivery;and high contourability,which is essential for filling in irregular defects.Alginate hydrogels have already been explored as cell delivery systems to enhance regeneration in different tissues and organs.Here,the in vitro and in vivo potential of injectable alginate hydrogels to deliver cells in a targeted fashion is reviewed.In each example,the selected crosslinking approach,the cell type,the target tissue and the main findings of the study are highlighted.Ó2013Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.1.Injectable cell delivery systemsIn many clinical scenarios,where normal physiological condi-tions or homeostasis are compromised,there is a need for tissue transplantation or implantation.The ideal paradigm in tissue engi-neering consists in introducing cells or tissues grafts,native to the injured area,to foster the regenerative process.In this context,cell-based therapeutic approaches can thus be considered a vital tool in regenerative medicine strategies.They rely on the successful deliv-ery of living cells to the target location,where they can produce a desired therapeutic effect by paracrine delivery of biomolecules (growth factors,cytokines,hormones,etc.)or replace lost cells with donor cells that can integrate and regenerate the damaged tissues [1,2].Cells used for cellular therapies can be previously manipulated to produce a missing substance,such as a specific protein that is absent in a metabolic disease [3].To ensure that an adequate number of cells reach the target tis-sue,cell-based approaches have usually been based on the delivery of high-density single-cell suspensions to the site of injury through injection.However,such direct cell injection often has a poor out-come due to large and rapid loss of cell viability (thus requiringhigh cell densities,which makes it technically complex and also extremely expensive),reduced engraftment of delivered cells and limited control over cell fate,in terms of both site-specificity (with cells eventually migrating and affecting other sites)and cell differ-entiation [4–6].Therefore,more effective cell transplantation methods,capable of sustaining the survival of implanted cells while maintaining their function and enhancing their incorpora-tion into the host,are mandatory.One strategy to achieve this goal relies on the delivery of transplanted cells via a temporary support made of biocompatible materials that can be further biochemically and physically modified to improve cell delivery [7,8].This strategy will provide cell protection,prolonged retention at the injury site and a more physiological three-dimensional (3-D)environment.Moreover,many studies have pointed to the importance of strate-gies that promote cell–cell and cell–matrix interactions,which im-pact considerably on cell morphology,viability and function [5,9].For instance,for anchorage-dependent cells,these interactions de-fine cell shape and organization,which in turn will regulate cell behavior,namely survival,differentiation,proliferation and migra-tion [10].Hydrogels are candidates of choice to mediate cell deliv-ery and accommodate cells in a 3-D microenvironment due to their natural similarities to the extracellular matrix (ECM).One paradig-matic example is alginate,a tunable and versatile natural inject-able hydrogel with huge potential as an artificial 3-D cellular matrix,which has already been explored in a myriad of studies as an injectable cell delivery system for a broad variety of biomed-ical applications [11].1742-7061/$-see front matter Ó2013Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved./10.1016/j.actbio.2013.12.006qPart of the Special Issue on Biological Materials,edited by Professors Thomas H.Barker and Sarah C.Heilshorn⇑Corresponding author.Tel.:+351226074900;fax:+351226094567.E-mail addresses:sbidarra@ineb.up.pt (S.J.Bidarra),ccbarrias@ineb.up.pt (C.C.Barrias),pgranja@ineb.up.pt (P.L.Granja).For clinical applications,cell delivery through injectable materi-als may be a desirable method,since these systems offer specific advantages over preformed scaffold-based approaches.On the one hand,they can be applied using minimally invasive tech-niques,improving patient compliance and comfort,and eventually leading to faster recovery and hence lower healthcare costs.On the other hand,they present several additional appealing features, namely:(i)easy incorporation of therapeutic agents,such as pro-teins or cells,and their subsequent localized delivery;(ii)simplic-ity of implantation by injection;(iii)high contourability,providing adaptablefilling of defects with irregular shapes and sizes;and(iv) site specificity as well as confined delivery[12–22].A key requisite of cell delivery vehicles is the maintenance of cell viability throughout the injection procedure.For instance,whenflowing through a syringe needle,cells can experience three types of mechanical forces that can lead to cell disruption:(i)a pressure drop across the cell;(ii)shearing forces due to linear shearflow; and(iii)stretching forces due to extensionalflow[23].Therefore, an injectable matrix is also required to exhibit adequate mechani-cal properties to protect injected cells and thereby ensure their survival[23,24].Injectable cell-based systems can be prepared with different configurations,depending on the type of application.Distinct and often conflicting terms exist to designate these systems.In the present review,we propose a classification(Fig.1)in which sys-using a hydrogel-based vehicle[5].Although alginate hydrogels have been employed in all of these types of systems,this review will mainly focus on applications belonging to category3,thus the term‘‘entrapment’’will be used throughout the text.The main purpose of this review is to demonstrate the alginate´s potential as an adequate3-D microenvironment for cell delivery,in which cells are kept in direct contact with this synthetic ECM and,after trans-plantation,might become incorporated in the host tissue and ac-tively participate in the regeneration process.Therefore, categories1,2and4above will be described no further in this re-view.In strategy1,cells are actually in a2-D rather than a true3-D environment;strategy2aims at isolating cells from the host envi-ronment that will most likely not be incorporated in the host;and in strategy4the3-D environment is a result of the natural cellular aggregation and is not necessarily provided by the matrix.The present review focuses mainly on strategies where cell-la-den alginate-based systems were designed to be delivered in a minimally invasive way and,after injection,allow the transplanted cells to be integrated in the host’s damaged tissue and actively par-ticipate in the regeneration process.2.Hydrogels in tissue engineeringHydrogels are3-D hydrophilic,cross-linked polymeric net-immobilization strategies for injectable cell-based therapies.Several strategies and carrier materials can be used for cell immobilization.These caninjectable cell-based therapies.Here,the different approaches were divided into four major categories:(1)surface immobilization;(2)microencapsulation;and(4)multicellular aggregation.The bottom images correspond to injectable alginate-based systems incorporating cells.(A)Bone marrowdays on the surface of calcium titanium phosphate microspheres,under standard osteoinductive conditions.Cells were stained with Alexa-fluorcounterstained with propidium iodide(DNA).(B)Human mesenchymal stem cells(hMSCs)entrapped and cultured for21days inside2wt.%in basal conditions.(C)hMSCs entrapped and cultured for8days inside2wt.%PVGLIG/RGD–alginate hydrogels under basal conditions.Cells were488-phalloidin(F-actin)and counterstained with DAPI(DNA).(D)Mouse mammary epithelial cell line(EpH-4)within2wt.%RGD–alginate afterfor E-cadherin(red)and counterstained with DAPI(DNA).Adapted from Refs.[25,26].S.J.Bidarra et al./Acta Biomaterialia10(2014)1646–16621647compounds[14,24,34–40].Furthermore,many hydrogels can be formed under mild conditions,creating the adequate conditions for cytocompatible cell entrapment.In situ forming hydrogels present the added benefit of injecta-bility,and have been widely studied as cell carriers for in vivo tis-sue engineering[41].As previously pointed out,injectable hydrogels offer several advantages for cell entrapment and subse-quent delivery,for which purpose they should ideally combine a number of requisites,such as:(i)be in a sufficientlyfluid state dur-ing administration,like a low-viscosity solution,or undergo shear thinning before administration;(ii)gelation should start or be completed shortly after injection;(iii)be biocompatible and biode-gradable,and their products bioresorbable;and(iv)fulfill specific requirements according to the application envisaged(e.g.cell-adhesive capability for entrapment of anchorage-dependent cells).Injectable hydrogels can be obtained from either natural or syn-thetic polymers[42,43].Naturally derived polymers are frequently selected since these hydrogels either include components of the extracellular matrix(e.g.collagen,fribronectin,fribrinogen)or present a chemical structure similar to natural glycosaminoglycans (e.g.alginate,hyaluronic acid,chitosan),offering an intrinsic advantage over synthetic hydrogels[33].Since they are derived from natural sources,many of them contain cellular binding do-mains,thus allowing cell adhesion and/or present soluble signaling factors to become intrinsically bioactive and capable of regulate cellular behavior.However,they may exhibit batch-to-batch vari-ations and,in some cases,it is difficult to modulate their usually poor mechanical properties[33,44].Additionally,natural hydro-gels may be inherently immunogenic or give rise to some immuno-genicity due to the presence of contaminates,like proteins and endotoxins.In contrast with natural polymers,synthetic polymers allow better control over and reproducibility of their mechanical properties and chemistry[45].On the other hand,they may pres-ent a low degradation rate in physiological conditions and,in some cases,their preparation involves the use of toxic chemicals.Among these,polyethylene glycol(PEG)-based polymers are widely used as injectable hydrogels for cell delivery,and considerable efforts have been made in order to improve their features,including incor-poration of cell adhesion ligands or biodegradable units suscepti-ble to cell proteolytic activity,making them viable alternatives [38–40].3.Alginate hydrogelsAlginates are natural anionic biopolymers typically extracted from brown seaweeds.They are unbranched polysaccharides con-sisting of1,4-linked b-D mannuronic acid(M)and a-L-guluronic acid(G)units,which are covalently linked together in different number and sequence distributions along the polymer chain, depending on the alginate source[46].The functional properties of alginate depend on its monomer composition(M/G)ratio and sequence[47].For example,MG blocks(MGMGMGM)form the mostflexible chains and G blocks(GGGGGGG)form stiff chains. Moreover,alginate can be prepared with a wide range of molecular weights(typically101–103kDa)[24,47].Alginates are already used in several clinical applications,e.g. for treatment of heartburn and acid reflux(GavisconÒ,BisodolÒ, Asilone™),as wound dressing materials(AlgicellÒ,AlgiSite M™, ComfeelÒPlus,KaltostatÒ,SorbsanÒand Tegagen™)and as an appetite suppressant for long-term weight loss[48–50].Alginate is further being currently assessed in several clinical trials,namely as an agent for weight control,in the treatment of type I diabetes and as temporary acellular scaffolds to attenuate adverse cardiac remodeling[51].Additionally,tissue engineering alginate products are commercially available for3-D cell culture,such as AlgiMatrix from Invitrogen and NOVATACH peptide-coupled alginates from FMC Biopolymers.Alginate is considered to be non-immunogenic and has shown great potential as a cell delivery vehicle[46,50,52–54].In Fig.2 several examples of alginate as a cell delivery system are depicted. It is possible to visualize that alginate matrices allow the outward migration of different cell types,in this case human umbilical vein endothelial cells(HUVECs)(Fig.2A and B)and human mesenchy-mal stem cells(hMSCs)(Fig.2C and D),in different scenarios in vitro(Fig.2A),ex vivo(Fig.2B)and in vivo(Fig.2C and D).Cell migration from the matrix is a vital process when a cell delivery strategy is envisaged.As previously pointed out,an adequate vehicle must provide cell protection during injection.Alginate has been shown to have a shielding effect on cells during ejection from a syringe needle. Aguado et al.[23]tested1wt.%alginate with three different molec-ular weights on four different cell types(HUVECs,rat MSCs,human adipose stem cells and mouse neural progenitor cells),and have demonstrated the protective effect of alginate hydrogels with opti-mized mechanical properties(G0$30Pa).The authors showed that HUVECs in phosphate-buffered saline(PBS)or in non-crosslinked alginate have a significantly lower cell viability compared to in crosslinked alginates.Moreover,for all the studied cells,there was a significantly higher viability in alginate with G0$30Pa than in PBS or in alginate with a higher modulus.In an earlier study by Kong and colleagues[24],the authors showed that it is possible to maintain the alginate’s gel-forming ability by adjusting its molec-ular weight,while decreasing its viscosity and thus better preserv-ing cell viability(cell viability$80%within2and3.5wt.%alginate hydrogels).To obtain different molecular weights,the alginate was irradiated,resulting in solutions with different viscosities and deg-radation rates[47].Alginate presents a number of benefits for general use in bio-medical applications,coupled with a set of unique advantages for cell encapsulation and entrapment.Alginate allows the formation of hydrogels(with water)in situ,and the gelling process can be carried out using non-toxic solvents and under physiological con-ditions(namely in terms of pH and temperature),which provide easy cell encapsulation and entrapment.These hydrogels possess a soft nature,making them physically similar to most native tis-sues.Additionally,alginate mechanical properties can be tuned in order to encompass a range of stiffnesses that cover a variety of tissues.For example,the compression modulus of alginate hydrogels can range from1to1000kPa and the shear modulus from0.02to40kPa[55].Alginate mechanical properties can be controlled by changing different parameters,such as the polymer source,molecular weight,concentration and chemical modifica-tions,and/or the type and density of the crosslinking[46].Because they are transparent,alginate hydrogels allow the routine analysis of entrapped cells using standard microscopical techniques and they further enable easy cell recovery without cell damage. Regarding batch-to-batch variation and immunogenic response, both can be avoided through the use of highly purified and well-characterized alginates(concerning the molecular weight and the G/C ratio)that are currently commercially available.For instance, highly purified or ultrapure alginate contains low levels of residual endotoxin,lower than100EU gÀ1,and has been shown not to in-duce any severe foreign body reaction when implanted into ani-mals[53].As major drawbacks for these applications,alginate is slowly biodegradable and is not cell-interactive.However,these can be easily overcome by a number of chemical and biochemical modifications[14,15,35,56].Although alginate chains cannot be cleaved by mammalian en-zymes,ionically crosslinked alginate hydrogels disintegrate pro-gressively in vivo due to the exchange between monovalent cations,such as Na+,present in the surrounding milieu and the1648S.J.Bidarra et al./Acta Biomaterialia10(2014)1646–1662divalent cations that crosslink the hydrogel.Additionally,alginate can be modified to become degradable in physiological conditions by partial oxidation of alginate chains using sodium periodate [56].The periodate oxidation cleaves the carbon–carbon bond of the cis -diol group in the uronate residue and alters the chain conforma-tion to an upon-chain adduct,which behaves similar to an acetal group susceptible to hydrolysis.The degradation rate can be fur-ther regulated by adjusting the molecular weight distribution of oxidized alginates without varying the number of oxidized uronic acids,chain inflexibility and gel-forming ability [35].The molecu-lar weight can be modified by c -irradiation,which breaks the algi-nate chain [47].The oxidized binary hydrogels improved the formation of bone tissue compared to non-modified alginate,since a faster degradation occurs that facilitates the formation of new bone tissues [35].Additionally,alginates are chemically versatile,allowing the easy incorporation of biochemical cues to engineer specific cell responses.For example,as cells have no specific recep-tors for binding to alginate,several methods to promote cell attachment to alginate matrices have been developed.These in-clude the coupling of ECM proteins such as laminin,collagen and fibronectin [57–59].However,since the coupling of an entire pro-tein is difficult to control,can lead to non-specific interactions,may elicit an immune response and proteins are subject to proteolytic degradation [60],the decoration of biomaterials with cell recogni-tion motifs,such as small immobilized peptides,has become popular.The arginine–glycine–aspartic acid (RGD)sequence was one of the first peptides to be used to promote cell adhesion on a biomaterial and is still one of the most widely employed.This tri-peptide motif corresponds to the minimal essential cell adhesion peptide sequence identified in many ECM proteins,such as fibro-nectin,collagen,laminin,osteopontin and vitronectin,which are associated with integrins in cell surface membranes [60].To promote cell adhesion,alginate can be functionalized with this peptide using the aqueous carbodiimide chemistry,as demon-strated by Rowley et al.[34].In this case,RGD peptides are linked via a stable covalent amide bond and this reaction occurs between the carboxyl group of the alginate and the N-terminus of the peptide.Several other combined modifications have been investigated to improve alginate properties.For instance,the same chemical ap-proach was used to further tailor alginate hydrogels to a more sophisticated ECM-like 3-D cellular microenvironment.Alginate was grafted not only with RGD but also with a protease-labile crosslinking peptide (proline–valine–glycine–leucine–isoleucine–glycine,PVGLIG)that is cleavable by metalloproteinases (MMPs)produced by cells [14,15].The resultant MMP-sensitive hydrogels can be partially remodeled by cell-driven proteolytic mechanisms,leading to increased cellular evasion/invasion,and are particularly appealing vehicles for cell-delivery strategies.In another example,alginate was chemically functionalized with cell signaling moieties such as galactose to improve hepatocyte cell recognition [61,62].Since hepatocytes have a specific receptor that recognizes this li-gand,cells entrapped within alginate bearing galactose residues present higher functionality and survival rate.Also,to mimic the rheological behavior of the nucleus pulposus in the intervertebral disk,Leone et al.[63]have covalently crosslinked alginate by amide bond formation,after activation of the carboxylic groups and their conversion into amide moieties.They were able to attain a rheological behavior very similar to the one of the human nucleus pulposus and,when chondrocytes were added,they were able to proliferate and produce ECM proteins.According to the aim of the strategy,several other alginate modifications have been proposed to improve its behavior.Several alginate derivatives,their properties and possible applications are described in detail in a recent review by Pawar and Edgar [64].One of the greatest potentials of alginate is its mild and diverse gel-forming capacity.As described below,alginate hydrogels can be prepared by various crosslinking methods,which give rise to different delivery strategies with equally differentoutcomes.from alginate hydrogels.In vitro:HUVECs migrating out from an alginate–RGD hydrogel disk and (A)adhering tubular-like structures that sprout into Matrigel.In vivo:an hMSC-laden alginate–RGD–PVGLIG hydrogel after immunodeficiency (SCID)mice,showing (C)a paraffin section stained with safranin/light green (alginate stains in orange transplanted hMSC (arrows)can be observed within the disk,and (D)a paraffin section immunolabelled with an inside the hydrogel (dashed arrow)and another one at the hydrogel periphery (solid arrow),in close (⁄alginate;orange line –alginate matrix boundary).3.1.Formation of alginate hydrogelsAlginate hydrogels can be formed using chemical or physical crosslinking strategies,ionic methods being the most widely used. An overview of some of the crosslinking strategies that have been reported is presented in the following sections,and in Fig.3some of these strategies are represented schematically.3.1.1.Ionic crosslinkingThe most common method to achieve alginate gelation and crosslinking is through the exchange of sodium ions from guluron-ic acid units with divalent cations such as calcium(Ca2+),strontium (Sr2+)and barium(Ba2+)[67](Fig.3A).As alginates present differ-ent affinities towards the different divalent ions,they give rise to gels with different stability,permeability and strength,depending on the cation used[68].The stability of these hydrogels depends on the exchange between monovalent cations from the surrounding environment and the divalent cations from the hydrogel,resulting in diminished mechanical properties,which can limit their use for cell studies over long periods of time[48].This process depends on several alginate features,such as concentration,source,degree and type of crosslinking,and molecular weight[69].Moreover,the type of physiological conditions(in vitro or in vivo)will have an effect on hydrogel stability.Alginate stability is also variable in vitro. For instance,calcium-crosslinked alginate hydrogels rapidly lose stability in0.9wt.%sodium chloride,due to the exchange of cal-cium by non-gelling monovalent sodium ions[69],as well as in solutions containing chelators such as citrate or phosphate[70], which act as de-crosslinking agents by removing calcium ions.Cal-cium alginate hydrogels can nevertheless remain stable for weeks in cell culture medium,which generally contains sufficiently high calcium concentrations to counteract such effects[71].Ionic cross-linking of alginate can be further obtained by external or internal gelation.3.1.1.1.External gelation.External gelation of alginate hydrogels using soluble salts of divalent cations,such as calcium chloride (CaCl2),as ionic crosslinker agents is one of the most frequently used procedures,as it is a very simple process that provides imme-[17,19,20,73–95].These microbeads are generally produced by coaxial airflow,which controls the size of the droplets by blowing them from a needle tip into a CaCl2bath before they fall due to gravity.For a given alginate solution(concentration,type and vis-cosity),the size of the beads depends on the airflow,the needle diameter and solutionflow rate[48].To attain smaller beads ($150l m),other techniques must be used,such as electrostatic bead generation.In this case,a voltage is applied between the nee-dle and the electroconductive solution underneath[96].Therefore, it is possible to change the droplet size by adjusting the voltage. Nowadays,different types of microbead generators are commer-cially available.In a recent work,a novel methodology involving the use of superhydrophobic substrates was reported to efficiently produce spherical hydrogels entrapping rat MSCs isolated from bone mar-row andfibronectin without the need of a precipitation bath [97].Alginate beads were formed by applying microdrops of low-viscosity alginate onto superhydrophobic surfaces,then adding drops of CaCl2on top of each of them to crosslink the alginate.This methodology has a number of advantages over the conventional techniques,such as reduced mechanical forces and particle aggre-gation,which are coupled with decreased cell loss.Overall,alginate beads for tissue engineering should allow good permeability for nutrients and oxygen while providing optimal cell survival conditions for several days.Moreover,these beads allow thefixation of cells in the damaged tissue site,thus preventing cell removal via the bloodstream[97].Several examples in which alginate beads were used for tissue regeneration are discussed below.Although clearly demonstrating the enormous potential of alginate microbeads for cell entrapment, these works report the use of different conditions.Thus,the differ-ent alginate concentrations,molecular weights and even cell con-centrations used are highlighted.3.1.1.2.Internal gelation.Internal gelation strategies are being widely investigated with a view to promoting in situ hydrogel for-mation.This way,a polymeric solution combined with cells can be injected in a liquid state and will then form a hydrogel at the site of interest.Although these strategies have not been as extensively ex-alginate hydrogel formation.(A)Ionic crosslinking with calcium-induced chain–chain association of(egg-box model)[65].(B)Covalent crosslinking with PEG-diamines by carbodiimide chemistry.The hydrogelproperties:PEG chains provide some elasticity,while the alginate chains provide mechanical strength 1650S.J.Bidarra et al./Acta Biomaterialia10(2014)1646–1662ate(CaCO3)and calcium sulfate(CaSO4)have been widely used for this purpose.They have low solubility in pure water at neutral pH, but are soluble under acidic conditions,allowing its uniform distri-bution in the alginate solution before gelation occurs[72,100].Free calcium ions can later be released from these salts by slightly decreasing the pH with glucone-d-lactone(GDL),thereby allowing gradual gelation.In the case of CaCO3,the CaCO3/GDL molar ratio can be set at0.5to yield a neutral pH[14,72].It is notable that, although there is a slight decrease in pH,the cell viability is not af-fected[14,18].As an alternative to GDL,a photoacid generator(PAG)has been proposed that dissociates under UV light,releasing H+ions,which will react with CaCO3to create Ca2+[101].Despite the great poten-tial of these light-derived hydrogels as cell delivery systems for several biomedical applications,their cytocompatibility needs to be investigated further.Another way to promote photoactivated internal gelation consists in the use of water-soluble Ca2+chelators (‘‘cages’’),which can be mixed with alginate solutions and,upon light exposure,will undergo an irreversible molecular change that decreases their affinity to Ca2+.This will result in the release of Ca2+,which will subsequently trigger crosslinking[102].In con-trast to the use of insoluble calcium salts,this methodology allows homogeneous alginate hydrogels to be obtained even in concen-trated alginate solutions(e.g.10wt.%).Using this method, improvements in mechanical properties and homogeneity have been observed over comparable alginate concentrations.3.1.2.Covalent crosslinkingCovalent crosslinking of alginate hydrogels can be achieved by a variety of different methods,and usually provides more stable and mechanically stronger gels than ionic crosslinking.It is beyond the scope of the present article to review them all;instead,we focus on the strategies used for cell entrapment and delivery.Generally, once a material is covalently crosslinked,it no longer meets the injectability criteria.There are,however,a few exceptions,such as photocrosslinking alginates[103]and shape-memory alginate scaffolds[104],which will be explained later on.The major disad-vantages of these methods are their increased complexity and the eventual toxicity of the reagents used.Covalently crosslinked alginate hydrogels can be synthesized with a wide range of mechanical properties using,for example, PEG-diamine molecules with different molecular weights as cross-linkers[66](Fig.3B).The elastic modulus of the crosslinked algi-nate changes according to the molecular weight of the PEG molecules.The hydrogel properties can be further regulated by multifunctional crosslinking molecules,which provide a wider range and tighter control over degradation rates and mechanical stiffness,as demonstrated by Lee et al.[105].In their work,PAG hydrogels were formed with either poly(acrylamide-co-hydrazide) as a multifunctional crosslinking molecule or adipic acid dihydra-zide(AAD)as a bifunctional crosslinking molecule.This multi-crosslinking strategy led to the formation of stronger hydrogels.3.1.2.1.Photocrosslinking.Injectable photocrosslinkable alginates have been proposed for tissue engineering applications and have been designed to allow better control over mechanical properties, swelling ratios and degradation rates than ionically crosslinked alginates[50,103,106,107].Their cell-signaling ability can also be tailored by incorporating biochemical signals such as growth fac-tors and cell adhesive peptides[108,109].Photocrosslinkable alginate can be delivered in a minimally invasive way and then rapidly crosslinked in physiological condi-tions in situ following a brief exposure to ultraviolet(UV)light [110].This process occurs under mild conditions and therefore can be performed in direct contact with cells.For that purpose, alginate was modified with2-aminoethyl methacrylate using carbodiimide chemistry and these methacrylated alginates were subsequently photocrosslinked using UV light with a photoiniti-ator[103].Photocrosslinkable alginate with controlled degradation and cell adhesive properties have attracted great interest with re-gard ton tissue engineering applications[103,109,111,112], although they are still relatively new and seem to require further studies to assess their effectiveness.3.1.2.2.Shape-memory alginate scaffolds.A novel type of covalently crosslinked alginate,capable of retaining its shape and forming a macroporous structure,has been developed.The concept involves a hydrogel that allows control over its size and shape.Basically,a hydrogel is formed into the desired shape,then is collapsed in vitro for storage and handling purposes and,finally,is reformed in its original shape in vivo by rehydration[6,104].It is noteworthy that,although these covalently cross-linked alginate hydrogels present great potential as injectable bulking agents,they exhibit less contourability than other alginate hydrogels.On the other hand,they display greater shape definition,with a wider range of physical and mechanical properties.To obtain these shape-memory scaffolds,alginate was cova-lently crosslinked with AAD and the hydrogels were formed by standard carbodiimide chemistry using1-ethyl-(dimethyl amino-propyl)carbodiimide,1-hydroxybenzotriazole and AAD [104,113].Thornton et al.[104]were able to produce macroporous alginate hydrogel scaffolds with a predefined geometry,which were then dehydrated and compressed into small,temporary forms.The compressed scaffolds were then minimally invasively delivered to the dorsal subcutaneous space of a mouse through a catheter.Next,they were successfully rehydrated in situ by the injection of PBS.Overall,this work demonstrated the potential of these covalently crosslinked hydrogels as an injectable delivery system.More recently,Wang and colleagues[6]showed that these shape-memory scaffolds have the potential to serve as a synthetic matrix for skeletal muscle cell survival,proliferation and migra-tion.These results confirm the potential of these shape-memory alginate scaffolds as cell delivery systems for tissue regeneration, although this strategy needs further exploration.4.Alginate-based injectable cell delivery systems4.1.Bone regenerationIn thefields of orthopedics and oral and maxillofacial surgery, bone regeneration remains a clinical challenge,despite the intro-duction of various bone augmentation techniques and bone graft materials.The current standard treatment is based on the use of bone graft materials that are divided into two major groups:natu-ral and synthetic bone grafts[114].Natural bone grafts include auto-,allo-(human donors)and xenografts(other species).Autol-ogous bone graft is considered the‘‘gold standard’’for bone repair and regeneration by many surgeons,mainly due to lack of immu-nogenic reaction and optimal biological performance in terms of osteogenicity,osteoinductivity and osteoconductivity[115].How-ever,such bone grafts present several limitations,namely limited availability,the risks associated with harvesting,the additional surgical procedure required,donor site morbidity,post-operative pain and infection.On the other hand,allografts and xenografts are widely available and there is no need for additional surgery. However,with both types of graft there is the risk of immunoreac-tion and,since they undergo several processing techniques,their osteoinductive and osteoconductive potentials are reduced[115–117].To overcome the above-mentioned limitations of natural grafting,a large number of synthetic grafts have been designedS.J.Bidarra et al./Acta Biomaterialia10(2014)1646–16621651。