直线与圆单元测试题(一)

合集下载

直线和圆的方程单元测试

直线和圆的方程单元测试
故答案为:
17.
(1)
(2) , 或
【分析】
(1)根据两条直线垂直的条件列方程,化简求得 .
(2)根据两条直线平行以及距离列方程,化简求得 .
(1)
由于 ,所以 .
(2)
依题意 ,则 ,
此时 ,即 ,故 .
由于两条直线的距离为 ,
所以 或 .
18.
(1) ;
(2) .
【分析】
(1)设出圆的标准方程,根据其过的点的坐标满足圆方程,列出等量关系,求解即可;
【详解】
解:由题知 , ,半径分别为 ,
根据两圆相交,可得圆心距大于两圆的半径之差而小于半径之和,
即 .
又 ,所以有 ,

再根据 ,
求得 ,
故选:B.
4.A
【分析】
设出直线的截距式方程,根据题意求出待定系数,可得结论.
【详解】
解:设直线 的方程为 ,则 的面积为 ①.
因为直线 过点 ,所以 ②.
联立①②,解得 , ,
(2)根据过 的圆的切线的斜率是否存在进行分类讨论,结合点到直线的距离公式求得切线方程.
(1)
由题意,设圆 的标准方程为: ,
圆 关于直线 对称,
圆 与 轴相切: …①
点 到 的距离为: ,
圆 被直线 截得的弦长为 , ,
结合①有: , ,
又 , , ,
圆 的标准方程为: .
(2)
当直线 的斜率不存在时, 满足题意
所以切线 的方程为 .
19.
(1)
(2) 或
【分析】
(1)将圆的一般方程化为标准方程,求出圆心,代入直线方程即可求解.
(2)设直线 的方程为: ,利用圆心到直线的距离即可求解.

人教版高中数学选修一第二单元《直线和圆的方程》测试题(答案解析)(1)

人教版高中数学选修一第二单元《直线和圆的方程》测试题(答案解析)(1)

一、选择题1.下列命题中,正确的是( )A .若直线的倾斜角越大,则直线的斜率就越大B .若直线的倾斜角为α,则直线的斜率为tan αC .若直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率k的取值范围是(,[1,)-∞⋃+∞ D .当直线的倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦时,直线的斜率在这个区间上单调递增. 2.1m =-是直线(21)10mx m y +-+=和直线390x my ++=垂直的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 3.已知(,0)A a ,(3,0)B a +,直线1x =上存在唯一一点P ,使得||2||PB PA =,则a 的值为( )A .6-B .2-或6C .2或6-D .2-4.光线从(3,4)A -点射出,到x 轴上的B 点后,被x 轴反射到y 轴上的C 点,又被y 轴反射,这时反射线恰好过点(1,6)D -,则BC 所在直线的方程是( )A .5270x y -+=B .310x y +-=C .3240x y -+=D .230x y --= 5.已知直线1:210l ax y +-=2:820l x ay a ++-=,若12l l //,则a 的值为( ) A .4± B .-4C .4D .2± 6.已知圆C :()()22232++-=x y ,从点()1,3P 发出的光线,经直线1y x =+反射后,光线恰好平分圆C 的周长,则入射光线所在直线的斜率为( )A .2-B .12-C .4-D .14- 7.过点P (1,2)引直线使两点A (2,3)、B (4,-5)到它的距离相等,则直线方程是( ) A .4x +y -6=0B .x +4y -6=0C .2x +3y -7=0或x +4y -6=0D .4x +y -6=0或3x +2y -7=08.111222(,),(,)P a b P a b 是直线1y kx =+(k 为常数)上两个不同的点,则关于x 和y 的方程组112211a x b y a x b y +=⎧⎨+=⎩的解的情况是( ) A .无论12,,k P P 如何,总是无解B .无论12,,k P P 如何,总有唯一解C .存在12,,k P P ,使12x y =⎧⎨=⎩是方程组的一组解 D .存在12,,k P P ,使之有无穷多解9.直线l :230kx y --=与圆C :()()22124x y -++=交于A 、B 两点,若ABC的周长为4+k 的值为( )A .32B .32-C .32±D .12± 10.曲线214y x 与直线(2)4y k x =-+有两个相异交点,则k 的取值范围是( )A .50,12⎛⎫ ⎪⎝⎭B .13,34⎛⎤⎥⎝⎦ C .53,124 D .5,12⎛⎫+∞⎪⎝⎭ 11.唐代诗人李颀的诗《古从军行》开头两句说:“白日登山望烽火,黄昏饮马傍交河.”诗中隐含着一个有趣的数学问题——“将军饮马”问题,即将军在观望烽火之后从山脚下某处出发,先到河边饮马后再回到军营,怎样走才能使总路程最短?在平面直角坐标系中,设军营所在区域为221x y +≤,若将军从点()20A ,处出发,河岸线所在直线方程为4x y +=,并假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程为( )A 1B .1C .D 12.若圆()2220x y rr +=>上仅有4个点到直线20x y --=的距离为1,则实数r 的取值范围为( )A .)1,+∞B.)1-C .()1-D .()1 二、填空题13.设圆222:()0O x y r r +=>,定点(3,4)A -,若圆O 上存在两点到A 的距离为2,则r 的取值范围是___________.14.设()11,M x y 、()22,N x y 为不同的两点,直线:0l ax by c ++=,1122ax by c ax by cδ++=++,以下命题中正确的序号为__________. (1)存在实数δ,使得点N 在直线l 上;(2)若1δ=,则过M 、N 的直线与直线l 平行;(3)若1δ=-,则直线l 经过MN 的中点;(4)若1δ>,则点M 、N 在直线l 的同侧且直线l 与线段MN 的延长线相交; 15.已知直线l经过点(2,1),且和直线30x --=的夹角等于30,则直线l 的方程是_________.16.已知点P 是直线:3120l x y +-=上的一点,过P 作圆22(2)1x y -+=的切线,切点为A ,则切线长||PA 的最小值为__________.17.以(1,3)N 为圆心,并且与直线3470x y --=相切的圆的方程为__________. 18.已知圆C 1:x 2+y 2+4ax +4a 2-4=0和圆C 2:x 2+y 2-2by +b 2-1=0只有一条公切线,若a ,b ∈R 且ab≠0,则2211a b +的最小值为___________ 19.在平面直角坐标系xOy 中,点()0,3A -,若圆()()22:21C x a y a -+-+=上存在一点M 满足2=MA MO ,则实数a 的取值范围是__________.20.已知圆C :222x y +=,点P 为直线136x y +=上的一个动点,过点P 向圆C 作切线,切点分别为A 、B ,则原点O 到直线AB 距离的最大值是______. 三、解答题21.已知直线方程为()()221340m x m y m -++++=,其中m R ∈.(1)当m 变化时,求点()3,4Q 到直线的距离的最大值;(2)若直线分别与x 轴、y 轴的负半轴交于A ,B 两点,求AOB 面积的最小值及此时的直线方程.22.已知圆22:(1)5C x y +-=,直线:10l mx y m -+-=.(1)求证:对任意的m R ∈,直线l 与圆 C 恒有两个交点;(2)设l 与圆 C 相交于,A B 两点,求线段AB 的中点M 的轨迹方程.23.设函数()f z 对一切实数m ,n 都有()()(21)f m n f n m m n +-=++成立,且(1)0f =,(0)f c =,圆C 的方程是22(1)()9x y c +++=.(1)求实数c 的值和()f z 的解析式;(2)若直线220ax by -+=(0a >,0b >)被圆C 截得的弦长为6,求4a b ab +的最小值.24.已知直线l :43100x y ++=,半径为2的圆C 与l 相切,圆心C 在x 轴上且在直线l 的右上方.(1)求圆C 的方程;(2)直线4y kx =-与圆C 交于不同的M ,N 两点,且120MCN ∠=︒,求直线l 的斜率;(3)过点()1,0M 的直线与圆C 交于A ,B 两点(A 在x 轴上方),问在x 轴正半轴上是否存在定点N ,使得x 轴平分ANB ∠?若存在,请求出点N 的坐标;若不存在,请说明理由.25.根据所给条件求直线的方程:(1)直线过点()3,4-,且在两坐标轴上的截距之和为12;(2)直线m :3260x y --=关于直线l :2310x y -+=的对称直线m '的方程. 26.若过点P 的两直线1l ,2l 斜率之积为()0λλ≠,则称直线1l ,2l 是一组“P λ共轭线对”. (1)若直线1l ,2l 是一组“3O -共轭线对”,当两直线夹角最小时,求两直线倾斜角; (2)若点()0,1A ,()1,0B -,()1,0C 分别是直线PQ ,QR ,RP 上的点(A ,B ,C ,P ,Q ,R 均不重合),且直线PR ,PQ 是一组“1P 共轭线对”,直线QP ,QR 是一组“4Q 共轭线对”,直线RP ,RQ 是一组“9R 共轭线对”,求点P 的坐标;(3)若直线1l ,2l 是一组“2M -共轭线对”,其中点(1,M -,当两直线旋转时,求原点到两直线距离之积的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据直线斜率与倾斜角存在的关系tan k α=对每个选项逐一分析,需要注意直线有倾斜角但不一定有斜率.【详解】 倾斜角的范围为0,2π⎛⎫ ⎪⎝⎭时,直线斜率0k >,倾斜角的范围为,2ππ⎛⎫ ⎪⎝⎭时,直线斜率0k <,故A 错误;直线的倾斜角=2πα时,直线斜率不存在,故B 错误;直线倾斜角2,43ππα⎡⎤∈⎢⎥⎣⎦,则斜率tan k α=的范围为(,[1,)-∞⋃+∞,故C 正确;斜率tan k α=在,42ππ⎡⎫⎪⎢⎣⎭和2,23ππ⎡⎫⎪⎢⎣⎭上单调递增,故D 错误. 故选:C.【点睛】 关于直线的倾斜角与直线斜率之间的关系需要注意:(1)当直线倾斜角为=2πα时,直线的斜率不存在;(2)倾斜角的范围为0,2π⎛⎫ ⎪⎝⎭时,直线斜率0k >,直线斜率随着倾斜角增大而增大;倾斜角的范围为,2ππ⎛⎫ ⎪⎝⎭时,直线斜率0k <,直线斜率随着倾斜角增大而增大; (3)利用倾斜角的范围研究斜率的范围,或者利用斜率的范围研究倾斜角的范围,需要利用函数tan k α=分析定义域与值域的关系.2.A解析:A【分析】因为直线(21)10mx m y +-+=和直线390x my ++=垂直,所以0m =或1m =-,再根据充分必要条件的定义判断得解.【详解】因为直线(21)10mx m y +-+=和直线390x my ++=垂直,所以23(21)0,220,0m m m m m m ⨯+-⨯=∴+=∴=或1m =-.当1m =-时,直线(21)10mx m y +-+=和直线390x my ++=垂直;当直线(21)10mx m y +-+=和直线390x my ++=垂直时,1m =-不一定成立. 所以1m =-是直线()2110mx m y +-+=和直线390x my ++=垂直的充分不必要条件,故选:A .【点睛】方法点睛:充分必要条件的常用的判断方法有:(1)定义法;(2)集合法;(3)转化法.要根据已知条件选择合适的方法求解.3.B解析:B【分析】设(),P x y ,由||2||PB PA =可得()2214x a y -++=,则本题等价于直线1x =与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径即可求解.【详解】设(),P x y ,由||2||PB PA =可得()()2222344x a y x a y --+=-+, 整理可得()2214x a y -++=,则直线1x +=上存在唯一一点P ,使得||2||PB PA =,等价于直线1x =与圆()2214x a y -++=相切,2=,解得2a =-或6. 故选:B.【点睛】 关键点睛:解决本题的关键是将题转化为直线31x y +=与圆()2214x a y -++=相切,利用圆心到直线的距离等于半径求解. 4.A解析:A【分析】根据题意做出光线传播路径,求()3,4A -关于x 轴的对称点()'3,4A --,点(1,6)D -关于x 轴的对称点()'1,6D ,进而得BC 所在直线的方程即为''A D 直线方程,再根据两点式求方程即可.【详解】解:根据题意,做出如图的光线路径,则点()3,4A -关于x 轴的对称点()'3,4A --,点(1,6)D -关于y 轴的对称点()'1,6D ,则BC 所在直线的方程即为''A D 直线方程,由两点是方程得''A D 直线方程为:436413y x ++=++,整理得:5270x y -+= 故选:A.【点睛】本题解题的关键在于做出光线传播路径,将问题转化为求A 关于x 轴的对称点'A 与D 关于y 轴的对称点'D 所在直线''A D 的方程,考查运算求解能力,是中档题.5.B解析:B【分析】由12l l //可得280,a a ⨯-⨯=解得4a =±,然后再检验,得出答案.【详解】因为12l l //,所以280,4a a a ⨯-⨯=∴=±.当4a =时,两直线重合,所以4a =舍去.当4a =-时,符合题意.所以4a =-.故选:B【点睛】易错点睛:已知直线1110a x b y c ++=和直线2220a x b y c ++=平行求参数的值时,除了要计算12210a b a b -=,还一定要把求出的参数值代入原直线方程进行检验,看直线是否重合.本题就是典型例子,否则容易出现错解,属于中档题6.C解析:C【分析】根据光路可逆,易知圆心()2,3C -关于直线1y x =+的对称点M ,在入射光线上,由此可求得结果.【详解】圆C :()()22232++-=x y ,圆心为()2,3C -, 由已知,反射光线经过()2,3C -,故C 点关于直线1y x =+的对称点M 在入射光线上.设(),M a b ,则31232122b a b a -⎧=-⎪⎪+⎨+-⎪=+⎪⎩,解得21a b =⎧⎨=-⎩,即()2,1M -, 且光源()1,3P ,所以入射光线的斜率13421k --==--, 故选:C.【点睛】关键点点睛:(1)由光线恰好平分圆C 的周长,得出所在直线经过圆心;(2)入(反)射光线关于反射面的对称直线即为反(入)射光线. 7.D解析:D当直线l 的斜率不存在时,直线l 的方程为x =1,不成立;当直线l 的斜率存在时,设直线l 的方程为20kx y k --+=,由此利用点到直线的距离公式能求出直线方程.【详解】当直线l 的斜率不存在时,直线l 的方程为x =1,不成立;当直线l 的斜率存在时,设直线l 的方程为2(1)y k x -=-,即20kx y k --+=,∵直线l 与两点A (2,3), B (4,-5)的距离相等,=解得4k =-或32k =- .:.直线l 的方程为4420x y --++=或332022x y --++= 整理,得:460x y +-=或3270x y +-= 故选:D【点睛】解决本题要注意设直线方程时,分直线的斜率存在、不存在两种情况讨论,然后根据点到直线的距离相等即可求解.8.B解析:B【分析】由点在直线上,点的坐标代入直线方程,确定1221a b a b -是否为0,不为0,方程组有唯一解,为0时,再讨论是否有无数解.【详解】由题意112211b ka b ka =+⎧⎨=+⎩,则1221122112(1)(1)a b a b a ka a ka a a -=+-+=-, ∵直线1y kx =+的斜率存在,∴12a a ≠,120a a -≠,∴方程组112211a x b y a x b y +=⎧⎨+=⎩总有唯一解.A ,D 错误,B 正确; 若12x y =⎧⎨=⎩是方程组的一组解,则11222121a b a b +=⎧⎨+=⎩,则点1122(,),(,)a b a b 在直线21x y +=,即1122y x =-+上,但已知这两个在直线1y kx =+上,这两条直线不是同一条直线,∴12x y =⎧⎨=⎩不可能是方程组的一组解,C 错误. 故选:B .本题考查直线方程,考查方程组解的个数的判断.掌握直线方程是解题关键.9.A解析:A【分析】先根据半径和周长计算弦长AB =即可.【详解】圆C :()()22124x y -++=中,圆心是()1,2C -,半径是2r ,故ABC的周长为4+24r AB +=+AB =又直线与圆相交后的弦心距d ==, 故由2222AB r d ⎛⎫=+ ⎪⎝⎭得()221434k k +=++,解得32k . 故选:A.【点睛】本题考查了直线与圆的综合应用,考查了点到直线的距离公式,属于中档题.10.C解析:C【分析】 曲线214y x 表示半圆,作出半圆,直线过定点(2,4),由直线与圆的位置关系,通过图形可得结论. 【详解】 曲线214y x 是半圆,圆心是(0,1)C ,圆半径为2,直线(2)4y k x =-+过定点(2,4)P ,作出半圆与过P 的点直线,如图,PD2=,解得512k =,即512PD k =, (2,1)A -,4132(2)4PA k -==--, ∴53,124k ⎛⎤∈ ⎥⎝⎦. 故选:C .【点睛】本题考查直线与圆的位置关系,数形结合思想是解题关键,由于题中曲线是半圆,因此作出图形,便于观察得出结论.11.B解析:B【分析】先求出点A 关于直线4x y +=的对称点'A ,点'A 到圆心的距离减去半径即为最短.【详解】解:设点A 关于直线4x y +=的对称点(,)A a b ','2AA b k a =-,AA '的中点为2,22a b +⎛⎫ ⎪⎝⎭,故122422b a a b ⎧=⎪⎪-⎨+⎪+=⎪⎩解得4a =,2b =, 要使从点A 到军营总路程最短,即为点f A 到军营最短的距离,即为点'A 和圆上的点连线的最小值,为点'A 和圆心的距离减半径,“将军饮马”的最短总路程为4161251+-=-,故选:B 【点睛】本题考查了数学文化问题、点关于直线的对称问题、点与圆的位置关系等等,解决问题的关键是将实际问题转化为数学问题,建立出数学模型,从而解决问题.12.A解析:A 【分析】到已知直线的距离为1的点的轨迹,是与已知直线平行且到它的距离等于1的两条直线,根据题意可得这两条平行线与222x y r +=有4个公共点,由此利用点到直线的距离公式加以计算,可得r 的取值范围. 【详解】解:作出到直线20x y --=的距离为1的点的轨迹,得到与直线20x y --=平行, 且到直线20x y --=的距离等于1的两条直线, 圆222x y r +=的圆心为原点, 原点到直线20x y --=的距离为22d ==,∴两条平行线中与圆心O 距离较远的一条到原点的距离为21d '=+,又圆222(0)x y r r +=>上有4个点到直线20x y --=的距离为1,∴两条平行线与圆222x y r +=有4个公共点,即它们都与圆222x y r +=相交.由此可得圆的半径r d '>, 即21r >+,实数r 的取值范围是()21,++∞.故选:A .【点睛】本题给出已知圆上有四点到直线的距离等于半径,求参数的取值范围.着重考查了圆的标准方程、直线与圆的位置关系等知识,属于中档题.二、填空题13.【分析】将问题转化为以为圆心2为半径的圆为圆与圆相交问题再根据圆与圆的位置关系求解即可【详解】解:根据题意设以为圆心2为半径的圆为圆所以圆圆心为半径为则两圆圆心距为:因为圆上存在两点到的距离为2所以 解析:(3,7)【分析】将问题转化为以(3,4)A -为圆心,2为半径的圆为圆A 与圆O 相交问题,再根据圆与圆的位置关系求解即可. 【详解】解:根据题意设以(3,4)A -为圆心,2为半径的圆为圆A , 所以圆222:(0),O x y r r +=> 圆心为(0,0),O 半径为r , 则两圆圆心距为 : ||5OA = , 因为圆O 上存在两点到A 的距离为2, 所以圆O 与圆A 相交,所以252,r r -<<+ 解得 :37.r << 所以的取值范围是:(3,7). 故答案为:(3,7). 【点睛】圆与圆位置关系问题的解题策略:(1)判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法;(2)若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去22,x y 项得到.14.②③④【分析】①点在直线上则点的坐标满足直线方程从而得到进而可判断①不正确②若则进而得到根据两直线斜率的关系即可判断②③若即可得到即可判断③④若则或根据点与直线的位置关系即可判定④【详解】解:若点在解析:②③④ 【分析】①点在直线上,则点的坐标满足直线方程,从而得到220ax bx c ++=,进而可判断①不正确.②若1δ=,则1122ax by c ax by c ++=++,进而得到1221y y ax x b-=--,根据两直线斜率的关系即可判断②.③若1δ=-,即可得到1212()()022x x y y a b c ++++=,即可判断③. ④若1δ>,则11220ax by c ax by c ++>++>,或11220ax by c ax by c ++<++<,根据点与直线的位置关系即可判定④. 【详解】解:若点N 在直线l 上则220ax bx c ++=,∴不存在实数δ,使点N 在直线l 上,故①不正确;若1δ=,则1122ax by c ax by c ++=++, 即1221y y ax x b-=--, MN l k k ∴=, 即过M 、N 两点的直线与直线l 平行,故②正确; 若1δ=-,则11220ax by c ax by c +++++= 即,1212()()022x x y y a b c ++++=, ∴直线l 经过线段MN 的中点,即③正确;若1δ>,则11220ax by c ax by c ++>++>,或12220ax by c ax by c ++<++<, 即点M 、N 在直线l 的同侧,且直线l 与线段MN 不平行.故④正确. 故答案为:②③④. 【点睛】本题考查两直线的位置关系,点与直线的位置关系,直线的一般式方程等知识的综合应用,若两直线平行则两直线的斜率相等.15.或【分析】分析可得已知直线的倾斜角为则直线的倾斜角为或分类讨论并利用点斜式方程求解即可【详解】由已知可得直线的斜率所以倾斜角为因为直线与的夹角为所以直线的倾斜角为或当倾斜角为时直线为即为;当倾斜角为解析:1y =10y --= 【分析】分析可得已知直线的倾斜角为30,则直线l 的倾斜角为0或60,分类讨论并利用点斜式方程求解即可. 【详解】由已知可得直线y x =k =30, 因为直线l与y x =30,所以直线l 的倾斜角为0或60, 当倾斜角为60时,直线l为)12y x -=-10y -+-=; 当倾斜角为0︒时,直线l 为1y =, 故答案为:1y =10y -+-=. 【点睛】本题考查直线与直线的夹角,关键点是求出直线30x --=的倾斜角得到l 的倾斜角,考查求直线方程,考查分类讨论思想.16.【分析】利用切线长最短时取最小值找点:即过圆心作直线的垂线求出垂足点就切线的斜率是否存在分类讨论结合圆心到切线的距离等于半径得出切线的方程【详解】设切线长为则所以当切线长取最小值时取最小值过圆心作直 解析:3利用切线长最短时,PC 取最小值找点P :即过圆心C 作直线l 的垂线,求出垂足点()3,3P .就切线的斜率是否存在分类讨论,结合圆心到切线的距离等于半径得出切线的方程. 【详解】设切线长为L ,则21L PC =-,所以当切线长L 取最小值时,PC 取最小值,过圆心()2,0C 作直线l 的垂线,则点P 为垂足点,此时,直线PC 的方程为360x y --=,联立3120360x y x y +-=⎧⎨--=⎩,得33x y =⎧⎨=⎩,点P 的坐标为()3,3.此时22(32)(30)10PC =-+-=,此时,213L PC =-=故答案为:3 【点睛】关键点睛:解题的关键是利用过点的圆的切线方程的求解,在过点引圆的切线问题时, 将直线与圆相切转化为圆心到直线的距离等于半径长,即设切线长为L ,则21L PC =-,问题转变为求PC 的最小值,主要考查学生分析问题与解决问题的能力,属于中等题.17.【解析】试题分析:由题意得圆心到直线的距离即为半径此题只要求出半径即可试题解析:22256(1)(3)25x y -+-=【解析】试题分析:由题意得,圆心到直线的距离即为半径,此题只要求出半径即可. 试题 因为点到直线的距离由题意得圆的半径则所求的圆的方程为考点:1.直线与圆的相切的应用;2.圆的方程;18.9【分析】圆C1C2只有一条公切线则两圆的位置关系为内切由此可以得到ab 的等量关系然后利用均值不等式求的最小值【详解】圆C1:x2+y2+4ax +4a2-4=0标准方程:圆C2:x2+y2-2by +【分析】圆C 1、C 2只有一条公切线,则两圆的位置关系为内切,由此可以得到a 、b 的等量关系,然后利用均值不等式求2211a b +的最小值 【详解】圆C 1:x 2+y 2+4ax +4a 2-4=0 标准方程:22x 2a y 4++=() 圆C 2:x 2+y 2-2by +b 2-1=0标准方程:22x y b 1+-=()因为圆C 1 、C 2内切,1=, 即224a b 1+=, (2211a b +)=2222114a b a b++()() =2222b 4a 59a b++≥()当且仅当224a b =时等号成立. 【点睛】本题考查了两圆的位置关系和均值不等式求最值;两圆位置关系有:内含、内切、相交、外切、外离,圆与圆的位置关系也决定了切线的条数,两圆相内切只有一条切线,圆心距和两圆半径的关系是解题的关键,利用该关系可以构造出均值不等式所需要的等式;均值不等式求最值要注意:一正二定三相等.19.【分析】设点的坐标为根据可得点的轨迹方程为然后将问题转化为两圆有公共点的问题解决根据圆心距和半径的关系可得结果【详解】由题意得圆的圆心为半径为1设点的坐标为∵∴整理得故点的轨迹是以为圆心2为半径的圆 解析:[0,3]【分析】设点M 的坐标为(),x y ,根据2MA MO =可得点M 的轨迹方程为()2214x y +-=,然后将问题转化为两圆有公共点的问题解决,根据圆心距和半径的关系可得结果. 【详解】由题意得圆()()22:21C x a y a -+-+=的圆心为(),2a a -,半径为1.设点M 的坐标为(),x y , ∵2MA MO =,∴=整理得()2214x y +-=,故点M 的轨迹是以()0,1为圆心,2为半径的圆. 由题意得圆C 和点M 的轨迹有公共点, ∴13≤≤,解得03a ≤≤.∴实数a 的取值范围是[]0,3. 【点睛】本题考查两圆位置关系的判断和利用,解题的关键是根据题意得到点M 的轨迹方程,然后将问题转化为两圆有公共点的问题出处理,再利用代数法求解可得所求的结果.20.【分析】为使原点到直线距离的最大则应当最小于是应当最小进而得到应当最小然后利用点到直线的距离公式求得的最小值利用直角三角形相似求得原点到直线距离的最大值【详解】为使原点到直线距离的最大则应当最小于是【分析】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,进而得到OP 应当最小,然后利用点到直线的距离公式求得OP 的最小值,利用直角三角形相似求得原点O 到直线AB 距离的最大值. 【详解】为使原点O 到直线AB 距离的最大,则AOB ∠应当最小,于是AOP ∠应当最小,∴OA OP应当最大,∴OP 应当最小,当且仅当OP 与直线136x y+=垂直时OP 最小,OP 的最小值为O 到直线136x y +=,即260x y +-=的距离5d ==,设OP 与AB 交于点,Q 则2~,||Rt OQA Rt OAP OQ OP OA ∴⨯=,∴max ||,3OQ ==故答案为:53. 【点睛】本题考查与圆有关的最值问题,属中等难度的题目,关键在于转化为OP 最小,同时注意利用三角形相似进行计算.三、解答题21.(1)2132)4,240x y ++= 【分析】(1)求出动直线所过定点(1,2)P --,当m 变化时,PQ ⊥直线l 时,点()3,4Q 到直线l 的距离的最大.(2)直线l 的斜率k 存在且0k ≠,因此可设直线l 的方程为2(1)y k x +=+,求出直线在x 轴、y 轴的截距.可得AOB 的面积,利用基本不等式的性质即可得出结果. 【详解】(1)直线方程为(2) (21) 340m x m y m -++++=, 可化为(24)(23)0x y m x y +++-++=对任意m 都成立, 所以230240x y x y -++=⎧⎨++=⎩,解得12x y =-⎧⎨=-⎩,所以直线恒过定点(1,2)--.设定点为(1,2)P --,当m 变化时,PQ ⊥直线l 时,点(3,4)Q 到直线的距离最大,可知点Q 与定点(1,2)P --的连线的距离就是所求最大值, 22(31)(42)213+++=(2)由于直线l 经过定点(1,2)P --.直线l 的斜率k 存在且0k ≠, 因此可设直线方程为2(1)y k x +=+可得与x 轴、y 轴的负半轴交于21,0A k ⎛⎫- ⎪⎝⎭,(0,2)B k -两点 ∴20kk-<,20k -<,解得0k <. ∴121221|2|1(2)2224222AOBkS k k k k k -⎛⎫=--=--=++≥+= ⎪-⎝⎭当且仅当2k =-时取等号,面积的最小值为4此时直线l 的方程为:22(1)y x +=-+,化为:240x y ++=. 【点睛】关键点点睛:求三角形面积最小时,一般首先表示出三角形的面积,本题利用直线在坐标轴的截距表示可得222k S k -=++-,再根据均值不等式或利用函数求最值,确定最值取得的条件,求解即可.22.(1)证明见解析;(2)2211()(1)(1)24x y x -+-=≠.【分析】(1)确定直线过定点()1,1,计算定点在圆内,得到证明.(2)由已知得点M 在以CP 为直径的圆上,求得圆心和半径可得到答案. 【详解】(1)由已知可得直线 :(1)10l x m y --+=,所以直线l 恒过定点(1,1)P .又()2211115,+-=<所以点P 在圆内,所以对任意的m R ∈,直线l 与圆 C 恒有两个交点.(2)由(1)知,知直线l 恒过定点(1,1)P ,且直线l 的斜率存在. 又M 是AB 的中点,CM MP ∴⊥,所以点M 在以CP 为直径的圆上.又()()0,1,1,1,C P 所以以CP 为直径的圆的方程为2211()(1)24x y -+-=,又直线l 的斜率存在,1x ∴≠,所以点M 的轨迹方程为2211()(1)(1)24x y x -+-=≠.【点睛】方法点睛:求直线恒过点的方法:方法一(换元法):根据直线方程的点斜式直线的方程变成()y k x a b =-+,将x a =带入原方程之后,所以直线过定点()a b ,;方法二(特殊引路法):因为直线的中的m 是取不同值变化而变化,但是一定是围绕一个点进行旋转,需要将两条直线相交就能得到一个定点.取两个m 的值带入原方程得到两个方程,对两个方程求解可得定点.23.(1)2c =-;2()2f z z z =+-;(2)9. 【分析】(1)令1m =,0n =代入等式中可求得c .再令m n =-代入得()f z 的解析式;(2)由已知求得直线过圆心()12-,,有1a b +=.由均值不等式得4144()5a b a b a b ab a b b a +⎛⎫=++=++ ⎪⎝⎭,可求和4a bab +的最小值. 【详解】(1)令1m =,0n =代入等式中可得,(0)2f =-,即2c =-.再令m n =-得,(0)()(21)f f n n n n -=--++,2()2f n n n =+-, 所以2()2f z z z =+-.(2)因为直线被圆22(1)(2)9x y ++-=截得的弦长为6,所以直线过圆心()12-,,有1a b +=.于是由均值不等式得,414144()559a b a b a b ab a b a b b a +⎛⎫=+=++=++≥+= ⎪⎝⎭,当且仅当4a b b a =,即13a =,23b =时等号成立.故4a b ab +的最小值是9.【点睛】利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.24.(1)224x y +=;(2)k =;(3)(4,0). 【分析】(1)设出圆心(,0)C a ,根据直线与圆C 相切,得到圆心到直线的距离等于4,确定圆心坐标,即可得圆C 的方程.(2)根据垂径定理及勾股定理,由过点(1,1)P 的直线1l 被圆C 截得的弦长等于斜率存在与不存在两种情况讨论,即可求出直线1l 的方程.(3)当AB x ⊥轴时,则x 轴平分ANB ∠,当直线AB 的斜率存在时,设出方程与圆的方程联立,结合AN BN k k =-,即可求出点N 的坐标. 【详解】(1)设圆心5(,0)2C a a ⎛⎫>-⎪⎝⎭,则|410|25a , 解得0a =或5a =-(舍). 故圆C 的方程为224x y +=.(2)由题意可知圆心C 到直线1l 的距离为2sin301.1,解得k =.(3)当直线AB x ⊥轴时,对x 轴正半轴上任意一点,N x 轴平分ANB ∠; 当直线AB 的斜率存在时,设直线AB 的方程为()()1122(1)(0),(,0),,,,y k x k N t A x y B x y =-≠, 由224,(1)x y y k x ⎧+=⎨=-⎩得()22221240k x k x k +-+-=, 2212122224,11k k x x x x k k -∴+==++ 若x 轴平分ANB ∠,则AN BN k k =-,即12120y yx t x t+=--, 即()()1212110k x k x x tx t--+=--,即()12122(1)20x x t x x t -+++=,即()2222242(1)2011k k t t k k -+-+=++,解得4t =. 综上,当点N 的坐标为(4,0)时,x 轴平分ANB ∠.【点睛】关键点点睛:本题第二问解题的关键是得到圆心到直线的距离为1,第三问解题的关键是由x 轴平分ANB ∠,得AN BN k k =-,进而利用坐标表示斜率求解. 25.(1)4160x y -+=或390x y +-=;(2)9461020x y -+= 【分析】(1)设出截距式方程,由条件列出式子即可求出;(2)在直线m 上取一点,如()2,0M ,求出()2,0M 关于直线l 的对称点M ',求出m 与l 的交点,即可求出直线方程. 【详解】(1)由已知得直线不过原点,设直线方程为1x y a b+=, 则可得34112a b a b -⎧+=⎪⎨⎪+=⎩,解得416a b =-⎧⎨=⎩或93a b =⎧⎨=⎩, 则直线方程为1416x y +=-或193x y +=, 整理可得4160x y -+=或390x y +-=; (2)在直线m 上取一点,如()2,0M ,则()2,0M 关于直线l 的对称点M '必在直线m '上,设(),M a b ',则2023102202123a b b a ++⎧⨯-⨯+=⎪⎪⎨-⎪⨯=-⎪-⎩,解得630,1313M '⎛⎫ ⎪⎝⎭, 设直线m 与l 的交点为N ,则联立方程32602310x y x y --=⎧⎨-+=⎩可解得()4,3N , 则m '的方程为34306341313y x --=--,即9461020x y -+=. 【点睛】方法点睛:关于轴对称问题:(1)点(),A a b 关于直线0Ax By C ++=的对称点(),A m n ',则有1022n b A m a B a m b n A B C ⎧-⎛⎫⨯-=- ⎪⎪⎪-⎝⎭⎨++⎪⋅+⋅+=⎪⎩;(2)直线关于直线的对称可转化为点关于直线的对称问题来解决.26.(1)2,33ππ;(2)()3,3或33,55⎛⎫ ⎪⎝⎭;(3)⎡⎣ 【分析】(1)设1l 的斜率为tan k α=,则2l 的斜率为3tan kβ-=,两直线的夹角为γ, 不妨设0k >,利用两角差的正切公式计算,利用基本不等式求得最值;(2)设直线RP ,PQ ,QR 的斜率分别为123,,k k k ,可得122313149k k k k k k =⎧⎪=⎨⎪=⎩,可解出123,,k k k 的值,进一步求得直线RP 和直线PQ 的方程,联立得点P 的坐标;(3)设()()122:1,:1l y k x l y x k=++=-+,,设原点到两直线距离分别为12,d d ,求出12d d ,然后变形利用基本不等式求解.【详解】解:(1)设1l 的斜率为tan k α=,则2l 的斜率为3tan kβ-=,两直线的夹角为γ, 不妨设0k >, 则()()313tan tan 132k k k k γβα--⎛⎫=-==+≥ ⎪+-⎝⎭k = 此时3πα=,23πβ=, 即两直线倾斜角分别为2,33ππ; (2)设直线RP ,PQ ,QR 的斜率分别为123,,k k k ,则122313149k k k k k k =⎧⎪=⎨⎪=⎩,解得12332,,623k k k ===或12332,,623k k k =-=-=-, 当12332,,623k k k ===时, 直线RP 的方程为()312y x =-,直线PQ 的方程为213y x =+, 联立得()3,3P , 当12332,,623k k k =-=-=-时, 直线RP 的方程为()312y x =--,直线PQ 的方程为213y x =-+, 联立得33,55P ⎛⎫⎪⎝⎭, 故所求为()3,3P 或33,55P ⎛⎫ ⎪⎝⎭;(3)设()()122:1,:1l y k x l y x k=++=-+, 设原点到两直线距离分别为12,d d ,则12d d =====,由于22459kk++≥,当且仅当22k=时等号成立,故[)22910,145kk-∈++,12d d⎡∈⎣,即原点到两直线距离之积的取值范围为⎡⎣.【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解。

《直线和圆》单元测试题

《直线和圆》单元测试题

《直线和圆》单元测试题一、选择题(每题2分,共40分)1.下面哪个选项是直线的性质? A. 无限延伸 B. 有一个起点和一个终点 C.由无数个点组成 D. 由两个点确定2.下面哪个选项是圆的性质? A. 无限延伸 B. 有一个起点和一个终点 C. 由无数个点组成 D. 由两个点确定3.下列直线中,哪一条与直线A平行? A. 直线B B. 直线C C. 直线D D.直线E4.下列直线中,哪一条与直线A垂直? A. 直线B B. 直线C C. 直线D D.直线E5.下列直线中,哪一条与直线A既不平行也不垂直? A. 直线B B. 直线C C.直线D D. 直线E6.在一个圆中,半径是r,直径是d,下列哪个等式成立? A. d = 2r B. r =d/2 C. d = r/2 D. r = d7.在一个圆中,半径是5cm,直径是10cm,周长是多少? A. 5cm B. 10cm C.15cm D. 20cm8.在一个圆中,半径是8cm,周长是多少? A. 4cm B. 8cm C. 16cm D. 32cm9.在一个圆中,半径是3cm,面积是多少? A. 3cm² B. 6cm² C. 9cm² D.12cm²10.在一个圆中,直径是6cm,面积是多少? A. 3cm² B. 6cm² C. 9cm² D.12cm²二、填空题(每题3分,共30分)11.直线的两个特点是________和________。

12.圆的两个特点是________和________。

13.直线A与直线B平行,则直线B与直线A________。

14.直线A与直线B垂直,则直线B与直线A________。

15.直径是半径的________。

16.圆心到圆上任一点的距离叫做________。

17.直线与圆的交点可能有________个。

18.圆的周长等于________。

浙教新版九年级下册数学《第2章 直线与圆的位置关系》单元测试卷(有答案)

浙教新版九年级下册数学《第2章 直线与圆的位置关系》单元测试卷(有答案)

浙教新版九年级下册数学《第2章直线与圆的位置关系》单元测试卷一.选择题(共8小题,满分24分)1.如图,⊙O内切于四边形ABCD,AB=10,BC=7,CD=8,则AD的长度为()A.8B.9C.10D.112.如图,若⊙O的直径为6,点O到某条直线的距离为6,则这条直线可能是()A.l1B.l2C.l3D.l43.如图所示,直线l与半径为5cm的⊙O相交于A、B两点,且与半径OC垂直,垂足为H,AB =8cm,若要使直线l与⊙O相切,则l应沿OC方向向下平移()A.1cm B.2cm C.3cm D.4cm4.如图,△ABC内接于⊙O,BD切⊙O于点B,AB=AC,若∠CBD=40°,则∠ABC等于()A.40°B.50°C.60°D.70°5.如图,四边形ABCD是圆的内接四边形,AB、DC的延长线交于点P,若C是PD的中点,且PD=6,PB=2,那么AB的长为()A.9B.7C.3D.6.如图,PA、PB是圆O的切线,切点分别为A、B,若OA=2,∠P=60°,则的长为()A.B.πC.D.7.如图,⊙O的半径为2,弦AB向上平移得到CD(AB与CD位于点O两侧),且CD与⊙O 相切于点E.若的度数为120°,则AD的长为()A.4B.2C.D.38.如图,⊙O内切于△ABC,若∠AOC=110°,则∠B的度数为()A.40°B.60°C.80°D.100°二.填空题(共8小题,满分24分)9.如图,P是圆O外的一点,点B、D在圆上,PB、PD分别交圆O于点A、C,如果AP=4,AB=2,PC=CD,那么PD=.10.如图,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O的切线长为8cm,那么△PDE的周长为.11.已知:如图,在⊙O中,AB是直径,四边形ABCD内接于⊙O,∠BCD=130°,过D点的切线PD与直线AB交于点P,则∠ADP的度数为.12.如图,已知⊙P的半径是1,圆心P在抛物线y=x2﹣x﹣上运动,当⊙P与x轴相切时,圆心P的坐标为.13.如图,在△ABC中,∠A=60°,BC=6,△ABC的周长为19.若⊙O与BC,AC,AB三边分别相切于点E,F,D,则DF的长为.14.Rt△ABC的斜边为13,其内切圆的半径等于2,则Rt△ABC的周长等于.15.在下图中,AB是⊙O的直径,要使得直线AT是⊙O的切线,需要添加的一个条件是.(写一个条件即可)16.如图,在Rt△ABC中,∠C=90°,AC=5,BC=12,⊙O的半径为3,当圆心O与点C重合时,⊙O与直线AB的位置关系为;若⊙O从点C开始沿直线CA移动,当OC=时,⊙O与直线AB相切?三.解答题(共7小题,满分72分)17.已知AB是⊙O的直径,BD为⊙O的切线,切点为B.过⊙O上的点C作CD∥AB,交BD 点D.连接AC,BC.(Ⅰ)如图①,若DC为⊙O的切线,切点为C.求∠BCD和∠DBC的大小;(Ⅱ)如图②,当CD与⊙O交于点E时,连接BE.若∠EBD=30°,求∠BCD和∠DBC的大小.18.如图,AB是⊙O的直径,点M是△ABC的内心,连接BM并延长交AC于点F交⊙O于点E,连接OE与AC相交于点D.(1)求证:OD=BC;(2)求证:EM=EA.19.如图,PA,PB分别与⊙O相切于点A,B,AC为弦,BC为⊙O的直径,若∠P=60°,PB=2cm.(1)求证:△PAB是等边三角形;(2)求AC的长.20.如图,在△ABC中,AB=BC,D是AC中点,BE平分∠ABD交AC于点E,点O是AB上一点,⊙O过B、E两点,交BD于点G,交AB于点F.(1)判断直线AC与⊙O的位置关系,并说明理由;(2)若EB⊥BC,ED=3,求BG的长.21.已知:AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使AB=AC,连结AC,过点D作DE⊥AC,垂足为E.求证:DE为⊙O的切线.22.如图,AB是⊙O的直径,点C、点D在⊙O上,AC=CD,AD与BC相交于点E,点F在BC 的延长线上,且∠FAC=∠D.(1)求证:AF是⊙O的切线;(2)若EF=12,sin D=,求⊙O的半径.23.如图,给定锐角三角形ABC,BC<CA,AD,BE是它的两条高,过点C作△ABC的外接圆的切线l,过点D,E分别作l的垂线,垂足分别为F,G.试比较线段DF和EG的大小,并证明你的结论.参考答案与试题解析一.选择题(共8小题,满分24分)1.解:∵⊙O内切于四边形ABCD,∴AD+BC=AB+CD,∵AB=10,BC=7,CD=8,∴AD+7=10+8,解得:AD=11.故选:D.2.解:∵若⊙O的直径为6,∴圆O的半径为3,∵点O到某条直线的距离为6,∴这条直线与圆相离,故选:A.3.解:连接OB,∴OB=5cm,∵直线l⊙O相交于A、B两点,且与AB⊥OC,AB=8cm,∴HB=4cm,∴OH=3cm,∴HC=2cm.故选:B.4.解:∵BD切⊙O于点B,∴∠DBC=∠A=40°,∵AB=AC,∴∠ABC=∠C,∴∠ABC=(180°﹣40°)÷2=70°.故选:D.5.解:∵C是PD的中点,PD=6,∴PC=CD=PD=3,由切割线定理得,PC•PD=PB•PA,即3×6=2×PB,解得,PB=9,∴AB=PA﹣PB=7,故选:B.6.解:连接AB,∵PA、PB是圆O的切线,∴OB⊥BP,OA⊥PA,∵∠P=60°,∴∠AOB=360°﹣90°﹣90°﹣60°=120°,∴的长==,故选:C.7.解:∵的度数为120°,∴∠AOB=120°,连接OE,OE的反向延长线交AB于F,连接OA,OB,如图,∵CD与⊙O相切于点E,∴EF⊥CD,由平移的性质得:CD∥AB,CD=AB,∴EF⊥AB,∵OA=OB,∴∠AOF=∠BOF=∠AOB=60°,AF=BF=AB=DE,∴∠OAF=30°,四边形BDEF是矩形,∴OF=OA=×2=1,BD=EF,∴EF=2+1=3,∴BD=3,在Rt△AOF中,OA=2,OF=1,∴AF===,∴AB=2,∴AD===,故选:C.8.解:∵⊙O内切于△ABC,∴AO,CO分别平分∠BAC,∠BCA,∠AOC=110°,∴∠BAC+∠BCA=2(∠OAC+∠OCA)=2(180°﹣∠AOC)=140°,∴∠B=180°﹣(∠BAC+∠BCA)=40°.故选:A.二.填空题(共8小题,满分24分)9.解:如图,∵AP=4,AB=2,PC=CD,∴PB=AP+AB=6,PC=PD.又∵PA•PB=PC•PD,∴4×6=PD2,则PD=4.故答案是:4.10.解:∵PA、PB、DE分别切⊙O于A、B、C,∴PA=PB,DA=DC,EC=EB;∴C=PD+DE+PE=PD+DA+EB+PE=PA+PB=8+8=16cm;△PDE∴△PDE的周长为16cm.故答案为16cm.11.解:连接BD,则∠ADB=90°,又∠BCD=130°,故∠DAB=50°,所以∠DBA=40°;又因为PD为切线,故∠PDA=∠ABD=40°,即∠PDA=40°.12.解:设点P(x,y),∵⊙P与x轴相切,∴|y|=1,∴y=±1,当y=1时,1=x2﹣x﹣,解得:x1=3,x2=﹣1,∴点P(3,1),(﹣1,1),当y=﹣1时,﹣1=x2﹣x﹣,解得:x1=x2=1,∴点P(1,﹣1),故答案为:(3,1)或(﹣1,1)或(1,﹣1).13.解:∵⊙O与BC,AC,AB三边分别相切于点E,F,D,∴AD=AF,BD=BE,CE=CF,∵△ABC的周长为19.∴AD+BD+BE+CE+CF+AF=19,即2AD+2BE+2CE=19,∴AD+BC=9.5,而BC=6,∴AD=9.5﹣6=3.5,∵∠A=60°,AD=AF,∴△ADF为等边三角形,∴DF=AD=3.5.故答案为:3.5.14.解:如图,Rt△ABC三边分别切圆O于点D,E,F,得四边形ODBE是正方形,∴BE=BD=OD=OE,∴AF=AD=AB﹣2,CF=CE=BC﹣2,∴AC=AF+CF=AB﹣2+BC﹣2=AB+BC﹣4,∴AB+BC=AC+4=13+4=17,∴AB+BC+AC=17+13=30.∴Rt△ABC的周长等于30.故答案为:30.15.解:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠BAC=90°,当∠TAC=∠B时,∠TAC+∠BAC=90°,即∠OAT=90°,∵OA是圆O的半径,∴直线AT是⊙O的切线,故答案为:∠TAC=∠B(答案不唯一).16.解:如图1,过O作OD⊥AB于D,由勾股定理得:AB===13,由三角形的面积公式得:AC×BC=AB×CD,∴5×12=13×CD,∴CD=>3,∴⊙O与AB的位置关系是相离.①如图2,过O作OD⊥AB于D,当OD=3时,⊙O与AB相切,∵OD⊥AB,∠C=90°,∴∠ODA=∠C=90°,∵∠A=∠A,∴△ADO∽△ACB,∴=,即=,∴AO=,∴OC=5﹣=,②如图3,过O作OD⊥BA交BA延长线于D,则∠C=∠ODA=90°,∠BAC=∠OAD,∴△BCA∽△ODA,∴,∴,∴OA=,∴OC=5+=,答:若点O沿射线CA移动,当OC等于或时,⊙O与AB相切.故答案为:相离,或.三.解答题(共7小题,满分72分)17.解:(Ⅰ)∵AB是⊙O的直径,DB为⊙O的切线,切点为B,∴DB⊥AB,∴∠DBA=90°,∵DC为⊙O的切线,切点为C,∴DC=DB,∵CD∥AB,∴∠D+∠DBA=180°,∴∠D=90°,∴∠BCD=∠DBC=45°;(Ⅱ)∵AB是⊙O的直径,DB为⊙O的切线,切点为B,∴DB⊥AB,∴∠DBA=90°,∵CD∥AB,∴∠D+∠DBA=180°,∴∠D=90°,∴∠DEB=∠EBA,∵∠EBD=30°,∴∠DEB=60°,∴∠EBA=60°,∴∠ACE=120°,∵AB是⊙O的直径,∴∠BCA=90°,∴∠BCD=30°,∴∠DBC=60°.18.(1)证明:∵点M是△ABC的内心,∴∠ABE=∠CBE,∴,∴CD=DA,又∵OA=OB,∴OD=BC;(2)证明:连接AM,∵M是△ABC的内心,∴∠BAM=∠CAM,∠ABE=∠CBE,∵∠EMA=∠ABE+∠BAM,∠EAM=∠CAE+∠CAM,∠CBE=∠CAE,∴∠EMA=∠EAM.∴EM=EA.19.解:(1)∵PA,PB分别与⊙O相切于点A,B,∴PA=PB,且∠P=60°,∴△PAB是等边三角形;(2)∵△PAB是等边三角形;∴PB=AB=2cm,∠PBA=60°,∵BC是直径,PB是⊙O切线,∴∠CAB=90°,∠PBC=90°,∴∠ABC=30°,∴tan∠ABC==,∴AC=2×=cm.20.解:(1)AC与⊙O相切.理由如下:连接OE,如图,∵AB=BC,D是AC中点,∴BD⊥AC,∵BE平分∠ABD,∴∠OBE=∠DBE,∵OB=OE,∴∠OBE=∠OEB,∴∠OEB=∠DBE,∴OE∥BD,∴OE⊥AC,而OE为⊙O的半径,∴AC为⊙O的切线;(2)过O作OM⊥BD于M,则四边形OBEM是矩形,∴OM=ED=3,BM=BG,∵EB⊥BC,∴∠C+∠CEB=90°,同理∠2+∠CEB=90°,∴∠2=∠C,∵AB=BC,∴∠2=∠A,∴∠1=∠2=∠A=30°,在Rt△OBM中,tan∠OBM=,∴=,∴BM=,∴BG=2BM=2.21.证明:如图,连接OD.∵AB是⊙O的直径,∴∠ADB=90°,∵AB=AC,∴CD=BD,∵OA=OB,∴OD∥AC.∴∠ODE=∠CED.∵DE⊥AC,∴∠CED=90°.∴∠ODE=90°,∴OD⊥DE,∵OD是⊙O的半径,∴DE是⊙O的切线.22.(1)证明:∵AB是⊙O的直径,∴∠ACB=90°,∴∠B+∠CAB=90°,∵∠FAC=∠D.∵∠D=∠B,∴∠FAC=∠B,∴∠FAC+∠CAB=90°∴AF是⊙O的切线;(2)解:∵AC=CD,∴∠D=∠CAD,∴∠FAC=∠CAD,又∵∠ACB=90°,∴FC=CE,∵EF=12,∴CE=6,∴,∴AE=10,AC=8,∵在Rt△ACB中,,∴,∴,∴⊙O的半径长为.23.解:结论是DF=EG.∵∠FCD=∠EAB,∠DFC=∠BEA=90°,∴Rt△FCD∽Rt△EAB,∴=,∴,同理可得,又∵,∴BE•CD=AD•CE,∴DF=EG.。

(完整版)高二数学-直线和圆的方程-单元测试(含答案).doc

(完整版)高二数学-直线和圆的方程-单元测试(含答案).doc

高二直线和圆的方程单元测试卷班级: 姓名:一、选择题: 本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线 l 经过 A (2, 1)、B ( 1,m 2) (m ∈ R)两点,那么直线 l 的倾斜角的取值范围是A . [0, )B . [ 0, ] [3 C . [0, ], )444D . [0, ](, ) 422. 如果直线 (2a+5) x+( a - 2)y+4=0 与直线 (2- a)x+(a+3)y - 1=0 互相垂直,则 a 的值等于 A . 2 B .- 2C . 2,- 2D .2,0,- 2 3.已知圆 O 的方程为 x 2+ y 2= r 2,点 P ( a ,b )( ab ≠ 0)是圆 O 内一点,以P为中点的弦所在的直线为 m ,直线 n 的方程为 ax +by = r 2,则A .m ∥n ,且 n 与圆 O 相交B . m ∥ n ,且 n 与圆 O 相 离C . m 与 n 重合,且 n 与圆 O 相离D .m ⊥ n ,且 n 与圆 O 相离4. 若直线 ax2by 2 0( a,b 0) 始终平分圆 x 2y 2 4x 2 y8 0 的周长,则12a b的最小值为A .1B . 5 C.4 2D . 3 225. M (x 0 , y 0 ) 为 圆 x 2 y 2a 2 ( a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x 0 x y 0 y a 2 与该圆的位置关系为A .相切 B.相交C.相离 D .相切或相交6. 已知两点 M ( 2,- 3), N (- 3,- 2),直线 L 过点 P ( 1, 1)且与线段 MN 相交,则直线 L 的斜率 k 的取值范围是A .3≤k ≤ 4B . k ≥ 3或 k ≤- 4C . 3≤ k ≤ 4D .-34444≤ k ≤45) 2 1)27. 过直线 y x 上的一点作圆 (x ( y 2 的两条切线 l 1, l 2 ,当直 线 l 1, l 2 关于 yx 对称时,它们之间的夹角为A . 30oB . 45oC . 60oD . 90ox y 1 01x 、yy1 0,那么 xy8满足条件4()的最大值为.如果实数2xy 1 0A . 2B. 1C.1D.19 (0, a),1x 2 y224其斜率为 ,且与圆2相切,则 a 的值为.设直线过点A.4B. 2 2C.2D.210.如图, l 1 、 l 2 、 l 3 是同一平面内的三条平行直线,l 1 与 l 2 间的距离是 1,l 2 与 l 3 间的距离是 2,正三角形 ABC 的三顶点分别在 l 1 、l 2 、l 3 上,则⊿ ABC的边长是A. 23 4 63 172 21B.3 C.4D.3一、选择题答案123 45 678910二、填空题: 本大题共 5 小题,每小题 5 分,共 25 分.答案填在题中横线上.11.已知直线 l 1 : x y sin 1 0 , l 2 : 2x siny 1 0 ,若 l 1 // l 2 ,则.12.有下列命题:①若两条直线平行,则其斜率必相等;②若两条直线的斜率乘积为- 1, 则其必互相垂直;③过点(- 1,1),且斜率为 2 的直线方程是y 1 2 ;x1④同垂直于 x 轴的两条直线一定都和 y 轴平行 ;⑤若直线的倾斜角为 ,则 0 .其中为真命题的有 _____________( 填写序号 ).13.直线 Ax + By +C = 0 与圆 x 2+ y 2= 4 相交于两点 M 、 N ,若满足 C 2= A 2+ uuuuruuurB 2,则 OM · ON ( O 为坐标原点)等于 _ .14.已知函数 f ( x) x 22x 3 ,集合 Mx, y f ( x) f ( y) 0 , 集 合 N x, y f ( x) f ( y) 0 , 则 集 合 MN 的 面 积是;15.集合P ( x, y) | x y 5 0,x N*,y N*},Q ( x, y) | 2x y m 0 ,M x, y) | z x y , ( x, y) ( P Q),若z 取最大值时,M(3,1) ,则实数m的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12 分)已知ABC 的顶点A为(3,-1),AB边上的中线所在直线方程为6x 10 y 59 0, B 的平分线所在直线方程为x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分12 分)某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元, 2 千元。

高中数学选修一直线与圆单元测试卷

高中数学选修一直线与圆单元测试卷

高中数学选修一直线与圆单元测试卷题目一:(选择题)1. 设直线L过点A(3,2),斜率为3/2,则直线L的解析式为:A. y = 3/2x + 1B. y = 2/3x + 1C. y = 3/2x - 1D. y = 2/3x - 12. 设直线L过点A(2,1)和点B(-3,5),则直线L的斜率为:A. 3/7B. -7/3C. -4/5D. 5/43. 设直线L过点A(4,1)且垂直于直线y = 2x - 3,则直线L的解析式为:A. y = -1/2x + 3B. y = -1/2x - 5C. y = 2x - 7D. y = -2x + 7题目二:(填空题)1. 设直线L过点A(2,3)和点B(-1,-4),则直线L的斜率为__________。

2. 设直线L过点A(5,2)且平行于直线y = 3x - 5,则直线L的解析式为__________。

3. 设直线L过点A(-2,3)且垂直于直线y = -2x + 4,则直线L 的解析式为__________。

题目三:(解答题)1. 两条直线分别为L1:2x - 3y + 4 = 0和L2:x + 5y - 7 = 0,求直线L1和直线L2的交点坐标。

2. 圆C的圆心为(2,-1),半径为3。

求证直线y = 2x + 1与圆C 有且仅有一个交点,并求出该交点坐标。

3. 直线L过点A(1,2)且垂直于直线y = -3x + 5,求直线L的解析式。

参考答案:题目一:1. A2. C3. B题目二:1. -7/32. y = 3x - 133. y = 1/2x + 4题目三:1. 直线L1和直线L2的交点坐标为(-11/13, -1/13)。

2. a) 将直线代入圆的方程,得到4x^2 + y^2 - 8x + 2y + 3 = 0b) 解该方程得到唯一解为(2,3)。

3. 直线L的解析式为 y = 1/3x + 5/3。

高中试卷-专题10 直线和圆的方程(单元测试卷)(含答案)

高中试卷-专题10 直线和圆的方程(单元测试卷)(含答案)

专题10 《直线和圆的方程》单元测试卷一、单选题1.(2019·全国高二月考(文))直线:的倾斜角为( )A .B .C .D .【答案】D 【解析】直线的斜率,设直线的倾斜角为,则,所以.故选:D.2.(2019·浙江省高二期中)圆心为,且过原点的圆的方程是( )A .B .C .D .【答案】A 【解析】根据题意.故选:.3.(2020·南京市江宁高级中学高一月考)如果直线(2a+5)x+(a -2)y+4=0与直线(2-a)x+(a+3)y -1=0互相垂直,则a 的值等于( )A .2B .-2C .2,-2D .2,0,-2【答案】C 【解析】(2a +5)(2-a )+(a -2)(a +3)=0,所以a =2或a =-2.4.(2019·山东省高一期中)圆与直线的位置关系( )A .相切B .相离C .相交D .不能确定【答案】Cx y +-0=30°45°60°135°0x y +=1k =-0x y +=1(080)a a °£<°tan 1a =-135a =°()2,2()()22228x y -+-=()()22222x y -+-=()()22228x y +++=()()22222x y +++=r ==()()22228x y -+-=A 22(1)5x y +-=120mx y m -+-=直线即即直线过点,把点代入圆的方程有,所以点在圆的内部,过点的直线一定和圆相交.故选:C.5.(2019·山东省高一期中)从点向圆引切线,则切线长的最小值( )A .B .5CD .【答案】A【解析】设切线长为,则,故选:A.6.(2020·南京市江宁高级中学高一月考)已知直线在两坐标轴上的截距相等,则实数A .1B .C .或1D .2或1【答案】D 【解析】由题意,当,即时,直线化为,此时直线在两坐标轴上的截距都为0,满足题意;当,即时,直线化为,由直线在两坐标轴上的截距相等,可得,解得;综上所述,实数或.故选:D .7.(2019·山东省高一期中)若点为圆的弦的中点,则弦所在直线的方程为( )A .B .C .D .120mx y m -+-=()12y m x -=-()21,()21,405+<()21,()21,(,3)P m 22(2)(2)1x y +++=4+d 2222(2)51(2)24d m m =++-=++min d \=20ax y a +-+=(a =)1-2-2a 0-+=a 2=ax y 2a 0+-+=2x y 0+=2a 0-+¹a 2¹ax y 2a 0+-+=122x ya a a+=--2a2a a-=-a 1=a 2=a 1=(1,1)P 2240x y x +-=AB AB 20x y +-=0x y -=20x y -+=22(1)5x y +-=【解析】化为标准方程为.∵为圆的弦的中点,∴圆心与点确定的直线斜率为,∴弦所在直线的斜率为1,∴弦所在直线的方程为,即.故选:B.8.(2020·武威第六中学高三二模(文))过点且倾斜角为的直线被圆所截得的弦长为( )AB .1CD .【答案】C 【解析】根据题意,设过点且倾斜角为的直线为 ,其方程为,即,变形可得,圆 的圆心为,半径 ,设直线与圆交于点,圆心到直线的距离,则,故选C.9.(2020·南京市江宁高级中学高一月考)已知直线和以,为端点的线段相交,则实数k 的取值范围为( )A .B.2240x y x +-=()22-24x y +=()1,1P ()22-24x y +=AB P 01121k -==--AB AB 11y x -=-0x y -=()1,030o ()2221x y -+=()1,030o l ()tan 301y x =-o)1y x =-10x -=()2221x y -+=()2,01r =l AB 12d 2AB ==20kx y -+=()3,2M -()2,5N 32k £32k ³C .D .或【答案】C 【解析】因为直线恒过定点,又因为,,所以直线的斜率k 的范围为.故选:C .10.(2020·四川省宜宾市第四中学校高二月考(理))已知圆,圆,、分别是圆、上动点,是轴上动点,则的最大值是( )A .BC .D【答案】D 【解析】如下图所示:4332k -££43k £-32k ³20kx y -+=()0,2A 43AM k =-32AN k =4332k -££()()221:231C x y -+-=()()222:349C x y -+-=M N 1C 2C P x PN PM -4+4+圆的圆心,半径为,圆的圆心,半径为,,由圆的几何性质可得,,,当且仅当、、三点共线时,取到最大值.故选:D.二、多选题11.(2019·辽宁省高二月考)在同一直角坐标系中,直线与圆的位置不可能是( )A .B .C .D .【答案】ABD 【解析】直线经过圆的圆心,且斜率为.故选项满足题意.故选:.12.(2020·山东省高三期末)已知点是直线上一定点,点、是圆上1C ()12,3C 11r =2C ()23,4C 23r =12C C ==2223PN PC r PC £+=+1111PM PC r PC ³-=-2112444PN PM PC PC C C -£-+£+=1C P 2C PN PM -4+2y ax a =+222()x a y a ++=2y ax a =+222()x a y a ++=(),0a -a ,,A B D ABD A :0l x y +=P Q 221x y +=的动点,若的最大值为,则点的坐标可以是( )A .B .C .D .【答案】AC 【解析】如下图所示:原点到直线的距离为,则直线与圆相切,由图可知,当、均为圆的切线时,取得最大值,连接、,由于的最大值为,且,,则四边形为正方形,所以由两点间的距离公式得整理得,解得,因此,点的坐标为或.故选:AC.13.(2020·广东省高二期末)瑞士数学家欧拉(LeonhardEuler )1765年在其所著的《三角形的几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知的顶点,,其欧拉线方程为,则顶点的坐标可以是( )A .B .C .D .PAQ Ð90o A (()1))1,1-l 1d ==l 221x y +=AP AQ 221x y +=PAQ ÐOP OQ PAQ Ð90o 90APO AQO Ð=Ð=o 1OP OQ ==APOQ OA =OA ==220t -=0t =A ()ABC D ()4,0-A ()0,4B 20x y -+=C ()2,0()0,2()2,0-()0,2-【答案】AD 【解析】设的垂直平分线为,的外心为欧拉线方程为与直线的交点为,,①由,,重心为,代入欧拉线方程,得,②由 ①②可得或 .故选:AD 三、填空题14.(2019·浙江省高二期中)直线过定点______;若与直线平行,则______.【答案】 【解析】(1),故.即定点为(2) 若与直线平行,则,故或.当时与直线重合不满足.故.故答案为:(1) ; (2)15.(2018·江苏省高二月考)已知以为圆心的圆与圆相内切,则圆C 的方程是________.【答案】(x -4)2+(y +3)2=36.(,),C x y AB y x =-ABC D 20x y -+=y x =-(1,1)M-22||||(1)(1)10MC MA x y \==\++-=()4,0A -()0,4B ABC D 44(,33x y -+20x y -+=20x y --=2,0x y ==0,2x y ==-()1:20l m x y m +--=()m R Î1l 2:310l x my --=m =()1,23-()1:20(1)20l m x y m m x x y +--=Þ-+-=101202x x x y y -==ììÞíí-==îî()1,21l 2:310l x my --=()()()()()2310130m m m m +---=Þ-+=1m =3m =-1m =1l 2l 3m =-()1,23-()4,3C -22:1O x y +=【解析】,设所求圆的半径为,由两圆内切的充分必要条件可得:,据此可得:,圆C 的方程是(x -4)2+(y +3)2=36.16.(2020·河南省高三二模(文))圆关于直线的对称圆的标准方程为__________.【答案】【解析】,圆心为,半径为,设圆心关于直线的对称点为,对称圆的标准方程为.故答案为:.17.(2020·四川省高三二模(文))已知、为正实数,直线截圆所得的弦长为,则的最大值为__________.【答案】【解析】因为直线截圆所得的弦长为,且圆的半径为2.故圆心到直线的距离.,因为、为正实数,故,所以.当且仅当时取等号.5=()0r r >15r -=6r =22230x y y ++-=10x y +-=22(2)(1)4x y -+-=Q 2222230(41)x y y x y ++-=Þ+=+\(0,1)-210x y +-=(,)x y \1(1)1,2,1.110,22y x xy x y +ì´-=-ï=ìïÞíí=-îï+-=ïî\22(2)(1)4x y -+-=22(2)(1)4x y -+-=a b 10x y ++=()()224x a y b -+-=ab 1410x y ++=(224x (),a b d ==a b 1a b +=2124a b ab +æö£=ç÷èø12a b ==故答案为:四、解答题18.(2020·吴江汾湖高级中学高一月考)求圆上与直线的距离最小的点的坐标.【答案】【解析】过圆心且与直线垂直的直线方程为,联立圆方程得交点坐标为,,又因为与直线的距离最小,所以.19.(2019·全国高二月考(文))已知直线过点.(1)若原点到直线的距离为,求直线的方程;(2)当原点到直线的距离最大时,求直线的方程.【答案】(1)或;(2)【解析】(1)①当直线的斜率不存在时,方程符合题意;14224x y +=43120x y +-=86,55P æöç÷èø43120x y +-=340x y -=224340x y x y ì+=í-=î86,55æöç÷èø86,55æö--ç÷èø43120x y +-=86,55P æöç÷èøl (2,1)P -O l 2l O l l 20x -=34100x y --=250.x y --=l 2x =②当直线的斜率存在时,设斜率为,则方程为,即,解得,则直线的方程为故直线的方程为或(2)当原点到直线的距离最大时,直线因为,所以直线的斜率所以其方程为,即20.(2020·吴江汾湖高级中学高一月考)在中,,边上的高所在的直线方程为,边上中线所在的直线方程为.(1)求点坐标;(2)求直线的方程.【答案】(1)(2)【解析】(1)边上的高为,故的斜率为, 所以的方程为,即,因为的方程为解得所以.l k ()12y k x +=-210.kx y k ---=234k =l 34100.x y --=l 20x -=34100.x y --=O l .l OP ^011022OP k +==--l 2,k =()122y x +=-250.x y --=ABC D (1,2)A -AC BE 74460x y +-=AB CM 211540x y -+=C BC ()66C ,2180x y +-=AC 74460x y +-=AC 47AC ()4217y x -=+47180x y -+=CM 211540x y -+=21154047180x y x y -+=ìí-+=î,,66x y =ìí=î()66C ,(2)设,为中点,则的坐标为, 解得, 所以, 又因为,所以的方程为即的方程为.21.(2019·浙江省高二期中)如图,圆,点为直线上一动点,过点引圆的两条切线,切点分别为(1)求证:直线恒过定点,并求出该定点的坐标;(2)若两条切线于轴分别交于两点,求面积的最小值.【答案】(1)见解析,(2【解析】(1)设,则以 为直径的圆的方程: ,与圆,两式相减得:,()00,B x y M AB M 0012,22x y -+æöç÷èø0000122115402274460x y x y -+ì-+=ïíï+-=î0028x y =ìí=î()2,8B ()6,6C BC ()866626y x --=--BC 2180x y +-=22:(2)1C x y -+=P :4l x =P C ,A BAB Q ,PA PB y ,M N QMN V 5,02Q æöç÷èø(4,)P t CP ()22232t x y æö-+-=ç÷èø22:(2)1C x y -+=:2(2)1AB l x ty -+=所以直线恒过定点.(2)设直线与的斜率分别为,与圆,即.所以,,22.(2020·江西省新余一中高一月考)已知点,,直线:,设圆的半径为,圆心在直线上.(1)若圆心也在直线上,过点作圆的切线,求切线的方程;(2)若圆上存在点,使,为坐标原点,求圆心的横坐标的取值范围.【答案】(1)或.(2)【解析】(1)由得:,所以圆C:..当切线的斜率存在时,设切线方程为,由,解得:当切线的斜率不存在时,即也满足所以切线方程为:或.5,02Qæöç÷èøAP BP12,k k(4)y t k x-=-C1=223410k tk t-+-=2121241,33-+=×=t tk k k k14My t k=-24Ny t k=-12||44=-==³MN k k()min1522MNQSD==(4,4)A(0,3)B l1y x=-C1C lC37y x=-A CC M2MB MO=O C a4x=3440x y-+=a££a££137y xy x=-ìí=-î()3,2C22(3)(2)1x y-+-=4(4)y k x-=-1d==34k=4x=4x=3440x y-+=(2)由圆心在直线l :上,设设点,由化简得:,所以点M在以为圆心,2为半径的圆上. 又点M 在圆C 上,所以圆C 与圆D 有交点,则即,解得:23.(2019·山东省高一期中)已知点,点在圆上运动.(1)求过点且被圆截得的弦长为的直线方程;(2)求的最值.【答案】(1)或;(2)最大值为88,最小值为72.【解析】(1)依题意,直线的斜率存在,因为过点且被圆截得的弦长为,,设直线方程为,即,解得或所以直线方程为或.(2)设点坐标为则.因为,所以,即的最大值为88,最小值为72.C 1y x =-(,1)C a a -(,)M x y ||2||MB MO ==22(1)4x y ++=(0,1)D -1||3CD ££13££a ££a ££(2,2),(2,6),(4,2)A B C ----P 22:4E x y +=C E 222||||||PA PB PC ++7100x y ++=20x y +-=C E 2(4)y k x +=-420kx y k ---==17k =-1k =-7100x y ++=20x y +-=P (),x y 224x y +=222222222||||||(2)(2)(2)(6)(4)(2)PA PB PC x y x y x y ++=++++++-+-++()223468804x y y y=+-+=-22y -≤≤7280488y £-£222||||||PA PB PC ++。

浙教版九年级数学下册 第二章 直线与圆的位置关系 单元综合测试【含答案】

浙教版九年级数学下册 第二章 直线与圆的位置关系 单元综合测试【含答案】

浙教版九年级数学下册第二章直线与圆的位置关系单元综合测试一.选择题1.在平面直角坐标系中,以点P(1,2)为圆心,以P为圆心,以1为半径的圆必与x轴有多少个公共点()A.0B.1C.2D.32.如图,以点O为圆心作圆,所得的圆与直线a相切的是()A.以OA为半径的圆B.以OB为半径的圆C.以OC为半径的圆D.以OD为半径的圆3.如图,四边形ABCD内接于⊙O,AB=BC.AT是⊙O的切线,∠BAT=55°,则∠D等于()A.110°B.115°C.120°D.125°4.如图,A、B、C、D为⊙O上的点,直线BA与DC相交于点P,PA=2,PC=CD=3,则PB=()A.6B.7C.8D.95.如图所示,在4×4的网格中,A,B,C,D,O均在格点上,则点O是()A.△ACD的外心B.△ACD的内心C.△ABC的内心D.△ABC的外心6.如图,直线l与⊙O相切于点A,M是⊙O上的一个动点,MH⊥l,垂足为H.若⊙O的半径为2,则MA﹣MH的最大值为()A.B.C.1D.27.如图,∠MPN=60°,点O是∠MPN的角平分线上的一点,半径为4的⊙O经过点P,将⊙O向左平移,当⊙O与射线PM相切时,⊙O平移的距离是()A.2B.C.D.28.如图,PA,P B与⊙O分别相切于点A,B,PA=2,∠P=60°,则AB=()A.B.2C.D.3二.填空题9.如图,在△ABC中,∠ABC=50°,∠ACB=70°,点O是△ABC的内心,则∠BOC=度.10.如图,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,已知△PCD的周长等于10cm,则PA=cm.11.如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,BA=PC=2,则PD 的长是.12.已知,如图,AC切⊙O于点A,∠BAC=60°,则∠AOB=度.13.如图,△ABC中,∠ACB=90°,AB=5,AC=3,BC为半圆O的直径,将△ABC沿射线CB方向平移得到△A1B1C1.当A1B1与半圆O相切于点D时,平移的距离的长为.14.如图,△ABC中,∠ACB=90°,sin A=,AC=8,将△ABC绕点C顺时针旋转90°得到△A′B′C,P为线段A′B′上的动点,以点P为圆心,PA′长为半径作⊙P,当⊙P与△ABC的边相切时,⊙P 的半径为.15.如图,在Rt△ABC中,∠ACB=90°,AB=5,BC=3,点P在边AC上,⊙P的半径为1.如果⊙P 与边B C和边AB都没有公共点,那么线段PC长的取值范围是.16.如图,在矩形ABCD中,CD是⊙O直径,E是BC的中点,P是直线AE上任意一点,AB=4,BC=6,PM、PN相切于点M、N,当∠MPN最大时,PM的长为.三.解答题17.如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于E,过B作⊙O的切线,交AC的延长线于D.求证:∠CBD=∠CAB.18.如图,AB是⊙O的一条弦,点C是⊙O外一点,OC⊥OA,OC交AB于点P、交⊙O于点Q,且CP =CB=2.(1)求证:BC是⊙O的切线;(2)若∠A=22.5°,求图中阴影部分的面积.19.如图,点P在⊙O外,M为OP的中点,以点M为圆心,以MO为半径画弧,交⊙O于点A,B,连接PA;(1)判断P A与⊙O的位置关系,并说明理由;(2)连接AB,若OP=9,⊙O的半径为3,求AB的长.20.如图,A B为⊙O直径,PA、PC分别与⊙O相切于点A、C,PQ⊥PA,PQ交OC的延长线于点Q.(1)求证:OQ=PQ;(2)连BC并延长交PQ于点D,PA=AB,且CQ=6,求BD的长.21.已知:如图,在△ABC中,∠ACB=90°,AC=3,BC=4,I1为△ABC内切圆的圆心,⊙I2与BA,BC的延长线及AC边都相切(旁切圆).(1)求⊙I2的半径;(2)求线段I1I2的长.22.如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.(1)求证:AE=AB;(2)若AB=20,BC=16,求CD的长.23.如图,在Rt△ABC中,∠ACB=90°,点D在边AC上,∠DBC=∠BAC,⊙O经过A、B、D三点,连接DO并延长交⊙O于点E,连接AE,DE与AB交于点F.(1)求证:CB是⊙O的切线;(2)求证:AB=EB;(3)若DF=3,EF=7,求BC的长.答案一.选择题1.解:∵P(1,2),即2>1,∴以P为圆心,以1为半径的圆与x轴的位置关系是相离,∴该圆与x轴的交点有0个.故选:A.2.解:∵OD⊥a于D,∴以点O为圆心,OD为半径的圆与直线a相切.故选:D.3.解:如图,连接AC,由弦切角定理知∠ACB=∠BAT=55°,∵AB=BC,∴∠ACB=∠CAB=55°,∴∠B=180°﹣2∠ACB=70°,∴∠D=180°﹣∠B=110°.故选:A.4.解:∵PB,PD是⊙O的割线,∴PA•PB=PC•PD,∵PA=2,PC=CD=3,∴2PB=3×6解得:PB=9.故选:D.5.解:由勾股定理可知:OA=OD=OC==,所以点O是△ACD的外心,故选:A.6.解:如图,连接AO并延长交圆O于点C,连接CM,设BH=b,MA=a,∵直线l与⊙O相切于点A,∴连接OA交圆O于点C,则∠CAH=90°,又∵∠MHA=90°,∴AC∥HM,∴∠HMA=∠MAC,∵AC为直径,∴∠CMA=90°.∴△AMH∽△CAM,∴=,CA=4,∴=,∴a2=4b,b=,∴a﹣b=a﹣=﹣(a﹣2)2+1,∴当a=2时,a﹣b的最大值为1.则MA﹣MH的最大值为1.故选:C.7.解:设⊙O'为⊙O向左平移后与PM相切的圆,切点为B,连接O'B交PO于D,过O作OA⊥PM于A,OC⊥O'B于C,如图所示:则OO'即为⊙O平移的距离,O'B=OP=4,O'B⊥PM,∵∠MPN=60°,PO是∠MPN的平分线,∴∠MPO=∠OPN=∠MPN=30°,∵OA⊥OM,∴OA=OP=2,∵OA⊥PM,OC⊥O'B,O'B⊥PM,∴四边形OABC是矩形,∴BC=OA=2,∴O'C=O'B﹣BC=2,由平移的性质得:OO'∥PN,∴∠DOO'=∠OPN=30°,∵O'B⊥PM,∴∠O'BP=90°,∴∠BDP=90°﹣∠MPO=60°,∵∠BDP=∠DOO'+∠DO'O,∴∠DO'O=∠BDP﹣∠DOO'=30°,∴OC=O'C=,OO'=2OC=,即⊙O平移的距离为,故选:B.8.解:∵PA,PB与⊙O分别相切于点A,B,∴PA=PB,∵∠APB=60°,∴△PAB是等边三角形,∴AB=AP=2.故选:B.二.填空题9.解:∵点O是△ABC的内心,∴OB平分∠ABC,OC平分∠ACB,∴∠OBC=∠ABC=×50°=25°,∠OCB=∠ACB=×70°=35°,∴∠BOC=180°﹣∠OBC﹣∠OCB=180°﹣25°﹣35°=120°.故答案为120.10.解:如图,设D C与⊙O的切点为E;∵PA、PB分别是⊙O的切线,且切点为A、B;∴PA=PB;同理,可得:DE=DA,CE=CB;则△PCD的周长=PD+DE+CE+PC=PD+DA+PC+CB=PA+PB=10(cm);∴PA=PB=5cm,故答案为:5.11.解:∵PAB,PCD是圆的两条割线,∴PA•PB=PC•PD,∵PA=3,BA=PC=2,∴3×5=2PD,∴PD=7.5.故答案为7.5.12.解:∵AC切⊙O于点A,∴∠AOB=2∠BAC=120°.13.解:连接OG,如图,∵∠BAC=90°,AB=5,AC=3,∴BC==4,∵Rt△ABC沿射线CB方向平移,当A1B1与半圆O相切于点D,得△A1B1C1,∴CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,∵A1B1与半圆O相切于点D,∴OD⊥A1B1,∵BC=4,线段BC为半圆O的直径,∴OB=OC=2,∵∠B1=∠B1,∴Rt△B1OD∽Rt△B1A1C1,∴=,即=,解得OB1=,∴BB1=OB1﹣OB=﹣2=;故答案为:.14.解:∵,∴设BC=3x,则AB=5x,在Rt△ABC中,由勾股定理得,AB2=AC2+BC2,即:(5x)2=(3x)2+82,∴x=2,∴AB=10,BC=6,∴,①若⊙P与AC相切,如图1,设切点为M,连接PM,则PM⊥AC,且PM⊥PA′,∵PM⊥AC,A′C⊥AC,∴∠B′PM=∠A′,由旋转性质可知∠A′=∠A,∴∠B′PM=∠A,∴,设PM=4x,则PA′=PM=4x,B′P=5x,又∵A′B′=AB,即:4x+5x=10,解得,∴;②若⊙P与AB相切,延长PB′交AB于点N,如图2,∵∠A′+∠B=∠A+∠B=90°,∵∠A′NB=90°,即N为AB与⊙O切点,又∴A′B=BC+AC′=BC+AC=14,∴A′N=A′B•cos∠A′=A′B•cos A,即,∴.综上,⊙P的半径为或,故答案为:或.15.解:在Rt△ABC中,∠ACB=90°,AB=5,BC=3,∴AC=4,当⊙P与A B相切时,设切点为D,如图,连接PD,则PD⊥AB,∴∠C=∠ADP=90°,∵∠A=∠A,∴△ADP∽△ACB,∴,∴=,∴PA=,∴PC=AC﹣PA=,∴线段PC长的取值范围是1<CP<,故答案为:1<CP<.16.解:如图1,∵四边形ABCD是矩形,∴CD=AB=4,连接OP,OM,∵PM,PN是⊙O的切线,∴∠OPM=∠MPN,要∠MPN最大,则∠OPM最大,∵PM是⊙O的切线,∴∠OMP=90°,在Rt△PMO中,OM=OD=CD=2,∴sin∠OPM==,∴要∠OPM最大,则OP最短,即OP⊥AE,如图2,延长DC交直线AE于G,∵四边形ABCD是矩形,∴∠B=90°=∠ECG,AB∥CD,∴∠BAE=∠G,∵点E是BC的中点,∴BE=BC=3,∴△ABE≌△GCE(AAS),∴CG=AB=4,∵CD是⊙O的直径,∴OC=CD=2,∴OG=OC+CE=6,在Rt△ABE中,AB=4,BE=3,∴AE=5,∵∠OPG=90°=∠B,∠G=∠BAE,∴△ABE∽△GPO,∴,∴,∴OP=,在Rt△PMO中,PM===,故答案为:.三.解答题17.证明:连接AE,∵AB是圆的直径,∴AE⊥BC,∵AB=AC,∴AE平分∠BAC,∴∠BAE=∠CAE=∠CAB,∵BD是⊙O的切线,∴∠CBD=∠BAE,∴∠CBD=∠CAB.18.(1)证明:连接OB,∵OA=OB,∴∠OAB=∠OBA,∵CP=CB,∴∠CPB=∠CBP,∵∠CPB=∠APO,∴∠CBP=∠APO,在Rt△AOP中,∵∠A+∠APO=90°,∴∠OBA+∠CBP=90°,即:∠OBC=90°,∴OB⊥CB,又∵OB是半径,∴CB与⊙O相切;(2)解:∵∠A=22.5°,∠AOP=90°,∴∠APO=67.5°,∴∠BPC=∠APO=67.5°,∵PC=CB,∴∠CBP=67.5°,∴∠PCB=180°﹣2∠CBP=45°,∴∠OCB=∠POB=45°,∴OB=BC=2,∴图中阴影部分的面积=S△OBC ﹣S扇形OBD=×2×2﹣=2﹣.19.解:(1)P A是⊙O的切线,理由如下:如图,连接OA,∴OP是⊙M的直径,点A是⊙M上一点,∴∠OAP=90°,即OA⊥PA,∴PA是⊙O的切线;(2)设⊙O与OP的交点为N,AB与OP的交点为E,连接AN,AM,BM,∵MA=MB,OA=OB,∴OP是线段AB的垂直平分线,∴AB⊥OP,AE=BE,∵OP=9,OA=3,∴AP==6,∴S△OAP=OA•AP=AE•OP,∴OA•AP=AE•OP,∴3×6=9AE,∴AE=2,∴AB=4.20.(1)证明:连接OP.∵PA、PC分别与⊙O相切于点A,C,∴PA=PC,OA⊥PA,∵OA=OC,OP=OP,∴△OPA≌△OPC(SSS),∴∠AOP=∠POC,∵QP⊥PA,∴QP∥BA,∴∠QPO=∠AOP,∴∠QOP=∠QPO,∴OQ=PQ.(2)设OA=r.∵OB=OC,∴∠OBC=∠OCB,∵OB∥QD,∴∠QDC=∠B,∵∠OCB=∠QCD,∴∠QCD=∠QDC,∴QC=QD=6,∵QO=QP,∴OC=DP=r,∵PC是⊙O的切线,∴OC⊥PC,∴∠OCP=∠PCQ=90°,在Rt△PCQ中,∵PQ2=PC2+QC2,∴(6+r)2=62+(2r)2,r=4或0(舍弃),∴OP==4,∵OB=PD,OB∥PD,∴四边形OBDP是平行四边形,∴BD=OP=4.21.解:(1)如图,过点I2作I2Q⊥AC于点Q,连接I2S,过点I1作I1M⊥BC于点M,I1N⊥AC于点N,交I2S于点H,可得四边形QCSl2,I1MCN均为正方形,I1HSM为矩形,设⊙I2的半径为R,则AQ=AP=3﹣R,CS=CQ=R,又因为BP=BS,所以5+3﹣R=4+R,解得R=2.(2)∵∠ACB=90°,AC=3,BC=4,∴AB==5,∵I1为△ABC内切圆的圆心,∴I1M=I1N=,∴I1H=3,∴I1l2==.22.(1)证明:连接OC,∵DC切⊙O于C,∴OC⊥CD,∵AE⊥CD,∴AE∥OC,∵AO=BO,∴EC=BC,∴OC=AE,∵OC=OA=OB=AB,∴AE=AB;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∴∠ACE=90°,AC⊥BE,∵由(1)知:AB=AE,∴EC=BC,∵BC=16,∴EC=16,在RtACB中,由勾股定理得:AC===15,==,在Rt△ACE中,S△ACE∵AE=BC=20,∴=CD,解得:CD=12,23.(1)证明:在⊙O中,OB=OD,∠BAC=∠BED,∴∠ODB=∠OBD,∵∠DBC=∠BAC,∴∠DBC=∠BED,∵D E是⊙O的直径,∴∠DBE=90°,∴∠ODB+∠BED=90°,∴∠OBD+∠DBC=90°,∴OB⊥BC,∵OB是⊙O的半径,∴CB是⊙O的切线;(2)证明:在⊙O中,∠ABD=∠AED,由(1)得:∠DBC=∠BED,∴∠ABD+∠DBC=∠AED+∠BED,∴∠ABC=∠BEA,∵DE是⊙O的直径,∴∠EAC=90°,∵∠ACB=90°,∴∠EAC+∠ACB=180°,∴AE∥BC,∴∠ABC=∠BAE,∴∠BEA=∠BAE,∴AB=EB;(3)解:延长BO交AE于H,由∠HAC=∠ACB=∠OBC=90°,得四边形ACBH是矩形,∴OH⊥AE,∴BC=AH=AE,∵DF=3,EF=7,∴直径DE=10,即半径DO=EO=5,∴OF=2,∵OB∥AC,∴=,∴AD=,在Rt△ADE中,AE==,∴BC=AH=AE=.。

(完整版)高二数学-直线和圆的方程-单元测试(含答案)

(完整版)高二数学-直线和圆的方程-单元测试(含答案)

高二直线和圆的方程单元测试卷班级:姓名:一、选择题:本大题共 10 小题,每小题 5 分,共 50 分,在每小题给出的四 个选项中,只有一项是符合题目要求的.1.直线 l 经过 A(2,1)、B(1,m2)(m∈R)两点,那么直线 l 的倾斜角的取 值范围是A.[0, )B.[0, ] [ 3 , ) 44C.[0, ] 4D.[0, ] ( , ) 422. 如果直线(2a+5)x+(a-2)y+4=0与直线(2-a)x+(a+3)y-1=0互相垂直,则a 的值等于A. 2B.-2C.2,-2D.2,0,-23.已知圆 O 的方程为 x2+y2=r2,点 P(a,b)(ab≠0)是圆 O 内一点,以 P为中点的弦所在的直线为 m,直线 n 的方程为 ax+by=r2,则A.m∥n,且 n 与圆 O 相交 离B.m∥n,且 n 与圆 O 相C.m 与 n 重合,且 n 与圆 O 相离D.m⊥n,且 n 与圆 O 相离4. 若直线 ax 2by 2 0(a,b 0) 始终平分圆 x2 y2 4x 2 y 8 0 的周长,则 1 2 ab的最小值为A.1B.5C.42D. 3 2 25. M (x0 , y0 ) 为 圆 x2 y2 a2 (a 0) 内 异 于 圆 心 的 一 点 , 则 直 线x0 x y0 y a 2 与该圆的位置关系为A.相切B.相交C.相离D.相切或相交6. 已知两点 M(2,-3),N(-3,-2),直线 L 过点 P(1,1)且与线段MN 相交,则直线 L 的斜率 k 的取值范围是A. 3 ≤k≤4 4B.k≥ 3 或 k≤-4 4C. 3 ≤k≤4 4D.-4≤k≤ 3 47. 过直线 y x 上的一点作圆 (x 5)2 ( y 1)2 2 的两条切线 l1,l2 ,当直线 l1,l2 关于 y x 对称时,它们之间的夹角为A. 30B. 45C. 60D. 90x y 1 08.如果实数x、y满足条件 y 1 0x y 1 0,那么 4x (1)y 的最大值为 2A. 2B.1C. 1 2D. 1 49.设直线过点 (0, a), 其斜率为 1,且与圆 x2 y2 2 相切,则 a 的值为15 . 集 合 P (x, y) | x y 5 0 , x N* , y N* } ,Q (x, y) | 2x y m 0,M x, y) | z x y , (x, y) (P Q) , 若 z 取 最 大 值 时 ,M (3,1),则实数 m 的取值范围是;三、解答题:本大题共 6 小题,共 75 分.解答应写出文字说明,证明过程或 演算步骤.16.(本小题满分 12 分)已知 ABC 的顶点 A 为(3,-1),AB 边上的中线所在直线方程为 6x 10y 59 0 , B 的平分线所在直线方程为 x 4y 10 0 ,求BC 边所在直线的方程.17.(本小题满分 12 分) 某厂准备生产甲、乙两种适销产品,每件销售收入分别为 3 千元,2 千 元。

直线与圆试题及答案

直线与圆试题及答案

A.0<r<2 2 B.0<r<
2 C.0<r<2 D.0<r<4
8. 由曲线 y=| x| 与 x2+y2=4 所围成的图形的最小面积是 ( )
A.
B. π
3 C.
3 D.
4
4
2
2 9. 过点 (2 ,- 3) 且与直线 x- 2y+4=0 的夹角为 arctan 的直线 l 的方程是
3
( ).
A. x +8y+22=0或 7x-4y-26=0
,那么 b 的取值范围是
.
15. 圆( x-3) 2+( y+1) 2=1 关于直线 x+2y-3=0 对称的圆的方程是 _____.
16. 直线 x- 2y-2k=0 与 2x- 3y-k=0 的交点在圆 x2+y2=25 上,则 k 的值是
_____.
三、解答题
17. 求过 A(1 ,2) 与 B(3 ,4) 两点,且在 x 轴上截得的弦长等于 6 的圆的方程.
6. 解析 : 有内切、外切两种情况 . 答案 D 7. 解析 : 曲线 |x|+|y|=4 是顶点为(± 4,0)、(0,±4)的正方形,其中一
11. 圆 x2+y2- 2x+4y-20=0 截直线 5x-12y+c=0 所得的弦长为 8,则 c 的值
是( )
A.10
B. 10 或- 68
C.5 或- 34
D.- 68
12. 过点 (2 ,1) 并与两坐标轴都相切的圆的方程是 ( )
A.( x-1) 2+( y- 1) 2=1
B.(
x-1) 2+( y- 1) 2=1 或( x-5) 2+( y-5) 2=5

高中数学-《直线与圆的位置关系》单元测试题

高中数学-《直线与圆的位置关系》单元测试题

高中数学-《直线与圆的位置关系》单元测试题高中数学-《直线与圆的位置关系》单元测试题班级:__________姓名:__________成绩:__________ 一.选择题(每题5分,共12题,共60分)1.直线3x + 4y + 12 = 0 与圆(x + 1)^2 + (y + 1)^2 = 9的位置关系是A。

过圆心 B。

相切 C。

相离 D。

相交2.直线l将圆x^2 + y^2 - 2x - 4y = 0 平分,且与直线x + 2y = 0 垂直,则直线l的方程为A。

y = 2x B。

y = 2x - 2 C。

y = x + 1 D。

y = x - 13.若圆C半径为1,圆心在第一象限,且与直线4x - 3y = 0 和x轴都相切,则该圆的标准方程是A。

(x - 2)^2 + (y - 1)^2 = 1 B。

(x - 2)^2 + (y + 1)^2 = 1 C。

(x + 2)^2 + (y - 1)^2 = 1 D。

(x - 3)^2 + (y - 1)^2 = 14.若直线ax + by = 1与圆x^2 + y^2 = 1相交,则点P(a,b)的位置是A。

在圆上 B。

在圆外 C。

在圆内 D。

都有可能5.由直线y = x + 1上的一点向圆(x - 3)^2 + y^2 = 1引切线,则切线长的最小值为A。

1 B。

2 C。

3 D。

46.圆x^2 + y^2 + 2x + 4y - 3 = 0 上到直线l:x + y + 1 = 0的距离为2的点有A。

1个 B。

2个 C。

3个 D。

4个7.两圆x^2 + y^2 - 6x = 0 和x^2 + y^2 + 8y + 12 = 0 的位置关系是A。

相离 B。

外切 C。

相交 D。

内切8.两圆x + y = r,(x-3)+(y+1)=r外切,则正实数r的值是A。

10 B。

5 C。

2 D。

229.半径为6的圆与x轴相切,且与圆x+(y-3)^2=1内切,则此圆的方程是A。

直线与圆的方程单元测试题含答案

直线与圆的方程单元测试题含答案
在判断直线与圆的位置关系时,需要注意直线的斜率是否存在以及圆心和半径的取值是否合 理。
掌握直线与圆的位置关系判断是解决直线与圆相关问题的基础,对于提高解题能力和数学思 维能力有很大的帮助。
定义:直线方程的基本形式是y=kx+b,其中k是斜率,b是截距。
斜率:表示直线与x轴的夹角,当k>0时,夹角为锐角;当k<0时,夹角为钝角。 截距:表示直线与y轴的交点,当b>0时,交点在正半轴上;当b<0时,交点在负半轴 上。
圆的一般方程:x^2+y^2+Dx+Ey+F=0,其中D、E、F为常数
圆的参数方程:x=a+r*cosθ,y=b+r*sinθ,其中(a,b)为圆心,r为半径,θ为参数
圆的切线方程:在已知圆x^2+y^2+Dx+Ey+F=0上,切线的方程可表示为:D*x*x0+E*y*y0+F*x+E*y+C=0, 其中(x0,y0)为切点
单击此处添加标题
圆的直径的方程:$(x-\frac{x1+x2}{2})^2+(y\frac{y1+y2}{2})^2=(\frac{\sqrt{(x1-x2)^2+(y1-y2)^2}}{2})^2$,其中 $(x1,y1)$和$(x2,y2)$为直径的两个端点
联立方程法:通过将直线方程与圆方程联立,消元求解交点坐标
添加文档副标题
目录
01.
02.
03.
定义:表示直线上的点与固定点之间的距离始终等于一个常数 形式:Ax + By + C = 0,其中A、B、C为常数,且A和B不同时为0 分类:一般式、点斜式、斜截式、两点式和截距式 适用范围:适用于所有直线方程,是直线方程的基本形式

(完整版)中职直线与圆的方程单元测试题

(完整版)中职直线与圆的方程单元测试题

A. 4,4 5
B. 5 ,- 5 4
C. 4,- 2 5
D. - 5 ,5 4
6. 若直线ax by 1 0经过第一、二、三象限,则有
A. a 0,b 0 B. a 0,b 0 C. a 0,b 0 D. a 0,b 0
7.已知直线y 3 k(x 5)过点(- 2,- 2),则k的值为
1. 已知A(5,2),B(0, 3),则直线AB的斜率为
A.-1
B.1
C. 2
D.2
3
2.
已知直线l的一个方向向量为
AB
(2,- 1),则它的斜率为
A. 1 2
B. 1
C. 2
D.-2
2
3. 过点P(2,1),且与向量 v
(3,- 4)平行的直线方程为
A. x 3y 14 0
B. x 3y 14 0
A. A l,l B. A l,l C. A l,l D. A l,l
16.空间中可以确定一个平面的条件是
A. 两条直线 B.一点和一直线 C. 一个三角形 D. 三个点
17. 如果a b,那么a与b
A. 一定相交 B. 一定异面 C. 一定共面 D. 一定不平行
18.“a, b是异面直线”是指:
A. 4
B. 5
C. 7
D. 7
7
7
4
5
8. 直线x ay 2a 2与ax y a 1平行的条件是
A. a 1 2
B. a 1 2
C. a 1
D. a 1
9. 直线2x y C 0与直线2x y 2 0的距离为 5,则C等于
A. 7
B. -3
C. -3 或 7
D. -7 或 3

第二十九章 直线与圆的位置关系 单元测试 (含答案)冀教版九年级数学下册

第二十九章 直线与圆的位置关系 单元测试 (含答案)冀教版九年级数学下册

第二十九章 直线与圆的位置关系综合素质评价卷一、选择题(本大题共10小题,每小题4分,共40分.在每小题所给出的四个选项中,只有一项是符合题目要求的)1.已知⊙O 的半径为3,当OP =5时,点P 与⊙O 的位置关系为( )A. 点P 在⊙O 内B. 点P 在⊙O 外C. 点P 在⊙O 上D. 不能确定2.已知,⊙O 的半径OE =3,若OF =2,则直线EF 与⊙O 位置关系的图形可能为( )A. B.C. D.3.如图,正六边形ABCDEF 内接于⊙O ,G 是⌢BC 上一点,则∠EGD 的度数为( )(第3题)A. 60∘B. 50∘C. 45∘D. 30∘4.如图,∠BAC =40∘ ,⊙O 的圆心O 在AB 上,且与边AC 相切于点D ,与AB 交于点E ,F ,连接FD ,则∠AFD =( )(第4题)A. 15∘B. 20∘C. 25∘D. 30∘5.如图,⊙O与直线l1相离,圆心O到直线l1的距离OB=2 3,OA=4,将直线l1绕点A逆时针旋转30∘后得到的直线l2刚好与⊙O相切于点C,则OC=()(第5题)A. 1B. 2C. 3D. 46.嘉淇用一些完全相同的△ABC纸片拼接图案,已知用六个△ABC纸片按照图①所示的方法拼接可得外轮廓是正六边形的图案,若用n个△ABC纸片按图②所示的方法拼接,那么得到图案的外轮廓是()(第6题)A. 正十二边形B. 正十边形C. 正九边形D. 正八边形7.如图,EA,ED是⊙O的切线,切点为A,D,点B,C在⊙O上,若∠BAE +∠BCD=236∘,则∠E=()(第7题)A. 56∘B. 60∘C. 68∘D. 70∘8.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只用圆规和三角尺这两种工具),以下是甲、乙两名同学的作业:第 3 页(第8题)甲:①连接OP ,作OP 的垂直平分线l ,交OP 于点A ;②以点A 为圆心,OA 的长为半径画弧,交⊙O 于点M ;③作直线PM ,则直线PM 即为所求(如图①).乙:①让三角尺的一条直角边始终经过点P ;②调整三角尺的位置,让它的另一条直角边过圆心O ,直角顶点落在⊙O 上,记这时直角顶点的位置为点M ;③作直线PM ,则直线PM 即为所求(如图②).对于两人的作业,下列说法正确的是( )A. 甲、乙都对B. 甲、乙都不对C. 甲对,乙不对D. 甲不对,乙对9.如图,在四边形ABCD 中,AB //CD ,AD ⊥AB ,以点D 为圆心,AD 的长为半径的弧恰好与BC 相切,切点为E ,若AB CD =13,则sin C 的值是( )(第9题)A. 23B. 53C. 34D. 7410.发动机的曲柄连杆将直线运动转化为圆周运动,如图是其示意图.点A 在直线l 上往复运动,推动点B 做圆周运动形成⊙O ,AB 与BO 表示曲柄连杆的两直杆,点C ,D 是直线l 与⊙O 的交点.当点A 运动到点E 时,点B 到点C ;当点A 运动到点F 时,点B 到点D .若AB =12,OB =5,则下列结论正确的是( )(第10题)A. FC =3B. EF=12C. 当AB与⊙O相切时,EA=4D. 当OB⊥CD时,EA=AF二、填空题(本大题共3小题,每空4分,共16分.把答案填写在横线上)11.如图,△ABC的内切圆⊙O与AB,BC,CA分别相切于点D,E,F,且AD =2,△ABC的周长为14,则BC的长为________.(第11题)12.已知⊙O的半径r=5,直线l1//l2,且l1与⊙O相切,圆心O到l2的距离为7,则l1与l2的距离为______________.13.如图①的螺丝钉由头部(直六棱柱)和螺纹(圆柱)组合而成,其俯视图如图②所示.小明将刻度尺紧靠螺纹放置,经过点A且交CD于点P,量得PC的长为1 mm,六边形ABCDEF的边长为4 mm.(1)AP长为________mm;(2)Q为圆上一点,则AQ的最小值为______________mm.三、解答题(本大题共4小题,共44分.解答时应写出文字说明、证明过程或验算步骤)14.(9分)如图,在△ABC中,AB=AC=5,D是BC的中点,以D为圆心,DC长为半径作⊙D,求:第 5 页(1) 当BC =8时,点A 与⊙D 的位置关系;(2) 当BC =6时,点A 与⊙D 的位置关系;(3) 当BC =5 2时,点A 与⊙D 的位置关系.15.(9分)如图,在正六边形ABCDEF 中,AM =BN ,连接MF ,AN 交于点P .(1) 求证:△AMF≌△BNA ;(2) 求∠FPN 的度数.16.(10分)如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,过点C 的切线交AB 的延长线于点F ,连接DF ,OC.(1)求证:DF是⊙O的切线;(2)连接BC,若∠BCF=30∘,BF=2,求CD的长.17.(16分)如图,在四边形ABCD中,AB//DC,∠B=90∘,∠BAD=60∘,BC=4 cm,对角线AC平分∠BAD.点P是BA边上一动点,它从点B出发,向点A 移动,移动速度为1 cm/s;点Q是AC上一动点,它从点A出发,向点C移动,移动速度为1 cm/s.设点P,Q同时出发,移动时间为t s(0≤t≤6).连接PQ,以PQ 为直径作⊙O.(1)求DC的长.(2)当t为何值时,⊙O与AC相切?(3)当t为何值时,线段AC被⊙O截得的线段长恰好等于⊙O的半径?(4)当t为________时,圆心O到直线DC的距离最短,最短距离为____________.第 7 页【答案】一、1. B 2. A 3. D 4. C 5. B 6. C 7.C 8. A 9. B 10.C二、11. 512. 2或1213.(1) 7(2) (4−637)三、14.解:连接AD .(1) ∵ 在△ABC 中,AB =AC =5,BC =8,D 是BC 的中点,∴AD ⊥BC ,CD =4,∴AD =AC 2−CD 2=3.∵3<4,∴ 点A 在⊙D 内.(2) ∵ 在△ABC 中,AB =AC =5,BC =6,D 是BC 的中点,∴AD ⊥BC ,CD =3,∴AD =AC 2−CD 2=4.∵4>3,∴ 点A 在⊙D 外.(3) ∵ 在△ABC 中,AB =AC =5,BC =5 2,D 是BC 的中点,∴AD ⊥BC ,CD =5 22,∴AD =AC 2−CD 2=5 22.∵5 22=5 22,∴ 点A 在⊙D 上.15.(1) 证明:∵ 六边形ABCDEF 是正六边形,∴AF =AB ,∠FAM =∠ABN =120∘ .在△AMF 和△BNA 中,{AF =BA ,∠FAM =∠ABN ,AM =BN ,∴△AMF≌△BNA (SAS).(2) 解:∵△AMF≌△BNA ,∴∠AFM =∠BAN .∴∠APF =∠AMF +∠BAN =∠AMF +∠AFM =180∘−∠FAM =180∘−120∘=60∘ .∴∠FPN =180∘−60∘=120∘ .16.(1) 证明:如图,连接OD .∵CF 是⊙O 的切线,∴∠OCF =90∘ ,∴∠OCD +∠DCF =90∘ .∵AB ⊥CD ,∴CE =ED ,∴OF 为CD 的垂直平分线,∴CF =DF ,∴∠CDF =∠DCF .∵OC =OD ,∴∠CDO =∠OCD ,∴∠CDO +∠CDF =∠OCD +∠DCF =90∘ ,∴OD ⊥DF .∵OD 为⊙O 的半径,∴DF 是⊙O 的切线.(2) 解:如图.∵∠OCF =90∘ ,∠BCF =30∘ ,∴∠OCB =60∘ .∵OC =OB ,∴△OCB 为等边三角形,∴∠COB =60∘ ,∴∠CFO =30∘ ,∴FO =2OC =2OB ,∴FB =OB =OC =2.∵∠COE =60∘ ,∴CE =3,∴CD =2CE =2 3.17.(1) 解:如图①,过点D 作DM ⊥AB 于点M ,则∠DMB =90∘ .∵AB //DC ,∠B =90∘ ,∴∠DCB =90∘=∠B =∠DMB ,∴ 四边形DCBM 是矩形,∴DM =BC =4 cm .∵∠BAD =60∘ ,∠DMA =90∘ ,∴∠ADM =30∘ ,∴AD =2AM ,∴(2AM )2=42+AM 2,∴AM =4 33 cm .∵AC 平分∠BAD ,AB //DC ,∴∠CAD =∠CAB =∠ACD ,∴DC =AD =2AM =8 33cm .(2) 如图②,当⊙O 与AC 相切时,QP ⊥AC .由题意,得AQ =BP =t cm .∵∠BAC =12∠BAD =30∘ ,BC =4 cm ,∴AC =8 cm ,AB =4 3 cm ,∴AP =(4 3−t )cm .∵AQ =32AP ,∴t =32(4 3−t ),解得t =24−12 3,∴ 当t 为24−12 3时,⊙O 与AC 相切.第 9 页(3) 第一种情况:如图③,当∠OQM =60∘ 时满足条件,则∠AQP =120∘ .∵∠QAP =30∘ ,∴ 易得AP =2×32t =3t (cm),由(2)知AB =4 3 cm ,∴4 3−t =3t ,解得t =6−2 3;第二种情况:如图④,当∠OQM =60∘ 时满足条件.∵∠QAP =30∘ .∴∠APQ =90∘ ,∴AP =32t cm ,即4 3−t =32t ,解得t =16 3−24.综上所述,当t 为6−2 3或16 3−24时,线段AC 被⊙O 截得的线段长恰好等于⊙O 的半径.(4) 6 ;52cm。

直线与圆单元测试题(含答案)

直线与圆单元测试题(含答案)

《直线与圆》单元测试题(1)班级 学号 姓名一、选择题:1. 直线20x y --=的倾斜角为( )A .30︒B .45︒ C. 60︒ D. 90︒2.将直线3y x =绕原点逆时针旋转90︒,再向右平移1个单位,所取得的直线为( ) A.1133y x =-+ B. 113y x =-+ C.33y x =- D.31y x =+30y m -+=与圆22220x y x +--=相切,那么实数m 等于( )A .-B .- D .或4.过点(0,1)的直线与圆224x y +=相交于A ,B 两点,那么AB 的最小值为( )A .2B .C .3D .5.假设圆C 的半径为1,圆心在第一象限,且与直线034=-y x 和x 轴都相切,那么该圆的标准 方程是( )A. 1)37()3(22=-+-y x B. 1)1()2(22=-+-y x C. 1)3()1(22=-+-y x D. 1)1()23(22=-+-y x6.已知圆1C :2(1)x ++2(1)y -=1,圆2C 与圆1C 关于直线10x y --=对称,那么圆2C 的方程为( )A.2(2)x ++2(2)y -=1 B.2(2)x -+2(2)y +=1 C.2(2)x ++2(2)y +=1 D.2(2)x -+2(2)y -=17.已知圆C 与直线0=-y x 及04=--y x 都相切,圆心在直线0=+y x 上,那么圆C 的方程为( )A.22(1)(1)2x y ++-= B. 22(1)(1)2x y -++= C. 22(1)(1)2x y -+-= D. 22(1)(1)2x y +++=8.设A 在x 轴上,它到点P 的距离等于到点(0,1,1)Q -的距离的两倍,那么A 点的坐标是( )A.(1,0,0)和( -1,0,0)B.(2,0,0)和(-2,0,0)C.(12,0,0)和(12-,0,0) D.(,0,00,0)9.直线012=--y x 被圆2)1(22=+-y x 所截得的弦长为( )B D10.假设直线y x b =+与曲线3y =有公共点,那么b 的取值范围是( )A.[1-1+1-,3] C.[-1,1+1-3] 二、填空题:11.设假设圆422=+y x 与圆)0(06222>=-++a ay y x 的公共弦长为32,那么a =______.12.已知圆C 过点(1,0),且圆心在x 轴的正半轴上,直线1:-=x y l 被该圆所截得的弦长为C 的标准方程为_________ ___.13.已知圆C 的圆心与点(21)P -,关于直线1y x =+对称.直线34110x y +-=与圆C 相交于A B ,两点,且6AB =,那么圆C 的方程为 . 14.已知直线2310x y +-=与直线40x ay += 平行,那么a = .15.直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,那么m 的 倾斜角能够是①15;②30;③45;④60;⑤75. 其中正确答案的序号是 .三、解答题:16(1).已知圆C 通过A (5,1),B (1,3)两点,圆心在x 轴上,求圆C 的方程..(2)求与圆014222=++-+y x y x 同心,且与直线012=+-y x 相切的圆的方程.17.已知圆22:(3)(4)4C x y -+-=,(Ⅰ)假设直线1l 过定点A (1,0),且与圆C 相切,求1l 的方程;(Ⅱ) 假设圆D 的半径为3,圆心在直线2l :20x y +-=上,且与圆C 外切,求圆D 的方程.18.在平面直角坐标系xOy 中,已知圆C 1:(x +3)2+(y -1)2=4和圆C 2:(x -4)2+(y -5)2=9. (1)判定两圆的位置关系;(2)求直线m 的方程,使直线m 被圆C 1截得的弦长为4,与圆C 2截得的弦长是6.19.已知圆C :,25)2()1(22=-+-y x 直线)(47)1()12(:R m m y m x m l ∈+=+++ (1)证明:不论m 取何实数,直线l 与圆C 恒相交;(2)求直线l 被圆C 所截得的弦长的最小值及现在直线l 的方程;20.已知以点C ⎝⎛⎭⎪⎫t ,2t (t ∈R,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1)求证:△AOB 的面积为定值;(2)设直线2x +y -4=0与圆C 交于点M 、N ,假设OM =ON ,求圆C 的方程;21.在平面直角坐标系xOy 中,已知圆2212320x y x +-+= 的圆心为Q ,过点(02)P ,且斜率为k 的直线与圆Q 相交于不同的两点A B ,.(Ⅰ)求k 的取值范围;(Ⅱ)以OA,OB 为邻边作平行四边形OADB,是不是存在常数k ,使得直线OD 与PQ 平行若是存在,求k 值;若是不存在,请说明理由.参考答案:一、选择题: 题号 1 2 3 4 5 6 7 8 9 10 答案 B AABBBBADD二、填空题11. _1__. 12.4)3(22=+-y x . 13.18)1(22=++y x . 14. 6 15. ①⑤ .三、解答题(本大题共6小题,共70分,解许诺写出文字说明.证明进程或演算步骤) 16.解:(1)(x -2)2+y 2=10 ;(2)5)2()1(22=++-y x ;17.(Ⅰ)①假设直线1l 的斜率不存在,即直线是1x =,符合题意.②若直线1l 斜率存在,设直线1l 为(1)y k x =-,即0kx y k --=. 由题意知,圆心(3,4)到已知直线1l 的距离等于半径2,即2= 解之得 34k =.所求直线方程是1x =,3430x y --=. (Ⅱ)依题意设(,2)D a a -,又已知圆的圆心(3,4),2C r =, 由两圆外切,可知5CD =∴可知5, 解得 2,3-==a a 或, ∴ (3,1)D -或(2,4)D -, ∴ 所求圆的方程为 9)4()29)1()32222=-++=++-y x y x 或((. 18.解 (1)圆C 1的圆心C 1(-3,1),半径r 1=2;圆C 2的圆心C 2(4,5),半径r 2=2.∴C 1C 2=72+42=65>r 1+r 2, ∴两圆相离;(2)由题意得,所求的直线过两圆的圆心,即为连心线所在直线,易患连心线所在直线方程为:4x -7y +19=0.19.解:(1)证明:直线)(47)1()12(:R m m y m x m l ∈+=+++可化为:04)72(=-++-+y x y x m ,由此明白直线必通过直线072=-+y x 与04=-+y x 的交点,解得:⎩⎨⎧==13y x ,那么两直线的交点为A (3,1),而此点在圆的内部,故不论m 为任何实数,直线l 与圆C 恒相交。

直线与圆单元测试题及答案

直线与圆单元测试题及答案

直线与圆单元测试题及答案一、选择题(每题2分,共10分)1. 直线与圆相切时,直线与圆心的距离等于()。

A. 圆的半径B. 圆的直径C. 圆的周长D. 圆的面积2. 圆的方程为 \( (x-a)^2 + (y-b)^2 = r^2 \),其中 \( a \) 和\( b \) 分别代表()。

A. 圆的半径和直径B. 圆的中心坐标C. 圆的周长和面积D. 圆的直径和面积3. 如果直线 \( y = mx + c \) 与圆 \( (x-a)^2 + (y-b)^2 = r^2 \) 相切,则直线到圆心的距离是()。

A. \( \sqrt{m^2 + 1} \cdot r \)B. \( \frac{|ma - mb + c|}{\sqrt{m^2 + 1}} \)C. \( \frac{|ma + mb + c|}{\sqrt{m^2 + 1}} \)D. \( \frac{|ma - mb - c|}{\sqrt{m^2 + 1}} \)4. 直线 \( x = 3 \) 与圆 \( (x-2)^2 + (y-1)^2 = 5 \) 的位置关系是()。

A. 相切B. 相交C. 相离D. 无法确定5. 圆心在原点,半径为 \( \sqrt{5} \) 的圆的方程是()。

A. \( x^2 + y^2 = 5 \)B. \( x^2 + y^2 = 3 \)C. \( x^2 + y^2 = 4 \)D. \( x^2 + y^2 = 2 \)二、填空题(每题3分,共15分)6. 若直线 \( y = kx + 1 \) 与圆 \( x^2 + y^2 = 9 \) 相切,则\( k \) 的值为________。

7. 圆 \( x^2 + y^2 - 6x - 8y + 16 = 0 \) 的圆心坐标是________。

8. 若直线 \( x - 2y + 3 = 0 \) 与圆 \( x^2 + y^2 = 25 \) 相切,则圆心到直线的距离是________。

直线和圆测试题含答案

直线和圆测试题含答案

直线和圆单元测试题一、选择题1.方程04422=+-+y x y x 表示的曲线是(A)两个圆 (B)不表示图形 (C)一个圆 (D) 一个点2.把直线x y 33=绕原点按逆时针方向旋转,使它与圆0323222=+-++y x y x 相切,则直线旋转的最小正角是( )A .3πC .32πD .65π 3.若两直线y=x+2k 与y=2x+k+1的交点P 在圆x 2+y 2=4的内部,则k 的范围是( )A.- 51<k <-1 31<k <1 D.-2<k <24.若直线3x -4y +12A 、B ,则以线段AB 为直径的圆的方程为A .x 2+y 2+4x -3y -4=0B .x 2+y 2-4x -3y -4=0C .x 2+y 2-4x -3y =0D .x 2+y 2+4x -3y =0 5、如果实数y x ,满足等式22(2)3x y -+=,那么y x的最大值是( )A 、12B 、3C 、2 6、方程0322222=++-++a a ay ax y x 表示的图形是半径为r (0>r )的圆,则该圆圆心在 ( )(A )第一象限 (B )第二象限(C )第三象限 (D )第四象限7.直线0234=--y x 与圆01242222=-++-+a y ax y x 总有两个交点,则a 应满足(A)73<<-a (B)46<<-a (C)37<<-a (D)1921<<-a8.圆(x-3)2+(y+4)2=2关于直线x+y=0的对称圆的标准方程是( )A.(x+3)2+(y-4)2=2B.(x-4)2+(y+3)2=2C.(x+4)2+(y-3)=2D.(x-3)2+(y-4)2=29.若动点),a (b P 在曲线221y x =+上移动,则P 与点(0,-1)Q 连线 中点的轨迹方程为A .22y x = B .24 y x = C .26y x = D . 28y x =二、填空题10、过点M (0,4)、被圆4)1(22=+-y x 截得的线段长为32的直线方程为15x+8y-32=0或x=011.圆022=++++F Ey Dx y x 与y 轴切于原点,则D 、E 、F 应满足的条件是 E=F=0,D ≠0_.三、解答题12.自点A(-3,3)发出的光线l 射到x 轴上,被x 轴反射,其反射光线m 所在直线与圆x 2+y 2-4x-4y+7=0相切,求光线l 与m 所在直线方程.13.已知圆C :(x+4)2+y 2=4和点A(-23,0),圆D 的圆心在y 轴上移动,且恒与圆C 外切,设圆D 与y 轴交于点M 、N ,求证:∠MAN 为定值.14.(选做).已知圆O :122=+y x 和抛物线22-=x y 上三个不同的点A 、B 、C ,如果直线AB 和AC 都与圆O 相切,求证:直线BC 也与圆O 相切.参考答案12.l 的方程为:3x+4y-3=0或4x+3y+3=0 M 的方程为3x-4y-3=0或4x-3y+3=0 13.60°14.设A )2,(2-a a ,B )2,(2-b b ,C )2,(2-c c ,则直线AB 、AC 、BC 的方程分别为02)(=---+ab y x b a 02)(,02)(=---+=---+bc y x c b ac y x c a ……3分,由于AB 是圆O 的切线,则11)(|2|2=+++b a ab ,整理得032)1(222=-++-a ab b a ,同理032)1(222=-++-a ac c a ∴b 、c 是方程032)1(222=-++-a ax x a 的两根,22213,12a a bc a a c b --=-=+,于是圆心O 到直线BC 的距离11)1(4|213|1)(|2|222222=+-+--=+++=a a a a c b bc d ,故BC 也与圆O 相切20.M 的轨迹方程为(λ2-1)(x 2+y 2)-4λ2x+(1+4x 2)=0,当λ=1时,方程为直线x=45.当λ≠1时,方程为(x-1222-λλ)2+y 2=222)1(31-+λλ它表示圆, 该圆圆心坐标为(1222-λλ,0)半径为13122-+λλ。

第2章 直线与圆的位置关系 单元测试卷 2021-2022学年浙教版数学九年级下册( 含答案)

第2章 直线与圆的位置关系 单元测试卷   2021-2022学年浙教版数学九年级下册( 含答案)

2021-2022学年浙教新版九年级下册数学《第2章直线与圆的位置关系》单元测试卷一.选择题(共10小题,满分30分)1.已知⊙O的半径为3,圆心O到直线l的距离为2,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.不能确定2.在Rt△ABC中,∠C=90°,AC=3cm,BC=4cm,以C为圆心,2.4cm长为半径的圆与AB的位置关系是()A.相切B.相交C.相离D.不能确定3.如图,在平面直角坐标系xOy中,直线AB过点A(﹣3,0),B(0,3),⊙O 的半径为1(O为坐标原点),点P在直线AB上,过点P作⊙O的一条切线PQ,Q为切点,则切线长PQ的最小值为()A.B.2C.3D.4.如图,已知AB、AC分别为⊙O的直径和弦,D为弧BC的中点,DE垂直于AC,交AC 的延长线于E,连接BC,若DE=6cm,CE=2cm,下列结论正确的是()①DE是⊙O的切线;②直径AB长为20cm;③弦AC长为15cm;④C为弧AD的中点.A.①②④B.①③④C.①②D.②③5.如图,AB为⊙O的直径,C、D为⊙O上的点,直线MN切⊙O于C点,图中与∠BCN 互余的角有()A.1个B.2个C.3个D.4个6.如图,PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D.若△PCD 的周长等于3,则PA的值是()A.B.C.D.7.如图,PA、PB切⊙O于点A、B,直线FG切⊙O于点E,交PA于F,交PB于点G,若PA=8cm,则△PFG的周长是()A.8cm B.12cm C.16cm D.20cm8.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.其中正确的个数为()A.4个B.3个C.2个D.1个9.如图,已知AB、AC分别为⊙O的直径和弦,D为的中点,DE垂直于AC的延长线于E,连接BC,若DE=6cm,CE=2cm,下列结论一定错误的是()A.DE是⊙O的切线B.直径AB长为20cmC.弦AC长为16cm D.C为的中点10.已知⊙O的半径为5cm,点O到同一平面内直线l的距离为6cm,则直线l与⊙O的位置关系是()A.相交B.相切C.相离D.无法判断二.填空题(共10小题,满分30分)11.已知⊙O半径为5,点O到直线l的距离为3,则直线l与⊙O的位置关系为.12.⊙O的直径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是.13.如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连接BC,若∠ABC=120°,OC=3,则弧BC的长为(结果保留π).14.如图,点A、B、D在⊙O上,∠A=25°,OD的延长线交直线BC于点C,且∠OCB =40°,直线BC与⊙O的位置关系为.15.如图,已知半径为1的⊙M经过直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为(,0),⊙M的切线OC与直线AB交于点C.则∠ACO=度.16.如图,小明同学测量一个光盘的直径,他只有一把直尺和一块三角板,他将直尺、光盘和三角板如图放置于桌面上,并量出AB=3cm,则此光盘的直径是cm.17.如图,半圆O的直径AB=10cm,PO=8cm,DC=2PC,则PC=cm.18.如图,在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为.19.如图,PA,PB是⊙O的切线,A,B为切点,∠OAB=38°,则∠P=°.20.如图,在平面直角坐标系xOy中,一次函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,点P在线段AB上,⊙P与x轴交于A、C两点,当⊙P与y轴相切时,AC的长度是.三.解答题(共7小题,满分60分)21.AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数.22.如图,△ABC内接于⊙O,∠B=60°,点E在直径CD的延长线上,且AE=AC.(1)试判断AE与⊙O的位置关系,并说明理由;(2)若AC=6,求阴影部分的面积.23.如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的直线互相垂直,垂足为D,且AC平分∠DAB(1)求证:DC为⊙O的切线;(2)若∠DAB=60°,⊙O的半径为3,求线段AC的长24.如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC,垂足为点E.(1)求证:△ABD≌△ACD;(2)判断直线DE与⊙O的位置关系,并说明理由.25.如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径,∠BAC=25°.求∠P的度数.26.如图,OA和OB是⊙O的半径,并且OA⊥OB,P是OA上任一点,BP的延长线交⊙O 于点Q,过点Q的⊙O的切线交OA延长线于点R.(Ⅰ)求证:RP=RQ;(Ⅱ)若OP=PA=1,试求PQ的长.27.如图,已知△ABC,以AB为直径的⊙O交AC于点D,连接BD,∠CBD的平分线交⊙O于点E,交AC于点F,且AF=AB.(1)判断BC所在直线与⊙O的位置关系,并说明理由;(2)若tan∠FBC=,DF=2,求⊙O的半径.参考答案与试题解析一.选择题(共10小题,满分30分)1.解:∵⊙O的半径为3,圆心O到直线l的距离为2,∵3>2,即:d<r,∴直线l与⊙O的位置关系是相交.故选:A.2.解:过C作CD⊥AB于D,在Rt△ACB中,由勾股定理得:AB==5,由三角形面积公式得:×3×4=×5×CD,CD=2.4,即C到AB的距离等于⊙C的半径长,∴⊙C和AB的位置关系是相切,故选:A.3.解:连接OP、OQ.∵PQ是⊙O的切线,∴OQ⊥PQ;根据勾股定理知PQ2=OP2﹣OQ2,∵当PO⊥AB时,线段PQ最短;又∵A(﹣3,0),B(0,3),∴OA=OB=3,∴AB==6,∴OP=AB=3,∴PQ==2.故选:B.4.解:如图,连接OD,交BC于点F,连接OC,∵D为弧BC的中点,∴OD⊥BC,且CF=BF,又∵AB为⊙O的直径,DE⊥AE,∴∠BCE=∠DEC=∠CFD=90°,∴四边形CEDF为矩形,∴OD⊥DE,∴DE为⊙O的切线,故①正确;∴DF=CE=2cm,CF=DE=6cm,∴BC=2CF=12cm,设半径为rcm,则OF=(r﹣2)cm,在Rt△OCF中,由勾股定理可得OC2=OF2+CF2,即r2=(r﹣2)2+62,解得r=10cm,∴AB=20cm,故②正确;在Rt△ABC中,BC=12cm,AB=20cm,∴AC===16(cm),故③不正确;若C为弧AD的中点,则AC=CD,在Rt△CDE中,CE=2cm,DE=6cm,由勾股定理可求得CD=2cm≠AC,故④不正确;综上可知正确的为①②,故选:C.5.解:∵直线MN切⊙O于C点,∴∠BCN=∠BAC,∠ACM=∠D=∠B,∵AB为⊙O的直径,∴∠ACB=90°,∴∠BCN+∠ACM=90°,∠B+∠BCN=90°,∠D+∠BCN=90°.故选:C.6.解:∵PA,PB切⊙O于A、B两点,CD切⊙O于点E,交PA,PB于C,D,∴AC=EC,DE=DB,PA=PB∵△PCD的周长等于3,∴PA+PB=3,∴PA=.故选:A.7.解:根据切线长定理可得:PA=PB,FA=FE,GE=GB;所以△PFG的周长=PF+FG+PG,=PF+FE+EG+PG,=PF+FA+GB+PG,=PA+PB=16cm,故选:C.8.解:(1)连接CO,DO,∵PC与⊙O相切,切点为C,∴∠PCO=90°,在△PCO和△PDO中,,∴△PCO≌△PDO(SSS),∴∠PCO=∠PDO=90°,∴PD与⊙O相切,故(1)正确;(2)由(1)得:∠CPB=∠BPD,在△CPB和△DPB中,,∴△CPB≌△DPB(SAS),∴BC=BD,∴PC=PD=BC=BD,∴四边形PCBD是菱形,故(2)正确;(3)连接AC,∵PC=CB,∴∠CPB=∠CBP,∵AB是⊙O直径,∴∠ACB=90°,在△PCO和△BCA中,,∴△PCO≌△BCA(ASA),∴PO=AB,故(3)正确;(4)∵四边形PCBD是菱形,∠CPO=30°,∴DP=DB,则∠DPB=∠DBP=30°,∴∠PDB=120°,故(4)正确;正确个数有4个,故选:A.9.解:连接OD,OC∵D是弧BC的中点,则OD⊥BC,∴DE是圆的切线.故A正确;∴DE2=CE•AE(连接CD,AD,延长DO交⊙O于T,连接CT,先证明∠EDC=∠T,再证明∠EAD=∠T,可得∠EDC=∠EAD,由∠E=∠E,∠EDC=∠EAD,可得△EDC ∽△EAD,可得结论),即:36=2AE,∴AE=18,则AC=AE﹣CE=18﹣2=16cm.故C正确;∵AB是圆的直径.∴∠ACB=90°,∵DE垂直于AC的延长线于E.D是弧BC的中点,则OD⊥BC,∴四边形CFDE是矩形.∴CF=DE=6cm.BC=2CF=12cm.在直角△ABC中,根据勾股定理可得:AB===20cm.故B正确;在直角△ABC中,AC=16,AB=20,则∠ABC≠30°,而D是弧BC的中点.∴弧AC≠弧CD.故D错误.故选:D.10.解:设圆的半径为r,点O到直线l的距离为d,∵d=6,r=5,∴d>r,∴直线l与圆相离.故选:C.二.填空题(共10小题,满分30分)11.解:∵⊙O的半径为5,圆心O到直线L的距离为3,∵5>3,即:d<r,∴直线L与⊙O的位置关系是相交.故答案为:相交.12.解:∵⊙O的直径为8,∴半径=4,∵圆心O到直线l的距离为4,∴圆心O到直线l的距离=半径∴直线l与⊙O相切.故答案为:相切.13.解:连接OB,∵AB与⊙O相切于点B,∴∠OBA=90°,∴∠OBC=∠ABC﹣∠ABO=30°,∵OB=OC,∴∠C=∠B=30°,∴∠BOC=120°,∴弧BC的长==2π,故答案为:2π.14.解:∵∠BOC=2∠A=50°,∠OCB=40°,∴在△OBC中,∠OBC=180°﹣50°﹣40°=90度.∴直线BC与⊙O相切.15.解:∵AB=2,OA=,∴cos∠BAO==,∴∠OAB=30°,∠OBA=60°;∵OC是⊙M的切线,∴∠BOC=∠BAO=30°,∴∠ACO=∠OBA﹣∠BOC=30°.故答案为:30.16.解:∵∠CAD=60°,∴∠CAB=120°,∵AB和AC与⊙O相切,∴∠OAB=∠OAC,∴∠OAB=∠CAB=60°∵AB=3cm,∴OA=6cm,∴由勾股定理得OB=3cm,∴光盘的直径是6cm.故答案为:6.17.解:∵AB=10cm,∴OA=5cm,∴PA=PO﹣OA=3cm;设PC=x,则DC=2x,PD=3x;根据割线定理得PC•PD=PA•PB,即x•3x=39,x=cm;故PC=cm.18.解:如图,连接OM,作OH⊥AB于H,CK⊥AB于K.∵OH⊥MN,∴MH=HN,∴MN=2MH=2,∵∠DCE=90°,OD=OE,∴OC=OD=OE=OM=,∴欲求MN的最大值,只要求出OH的最小值即可,∵OC=,∴点O的运动轨迹是以C为圆心为半径的圆,在Rt△ACB中,∵BC=3,AC=4,∴AB=5,∵•AB•CK=•AC•BC,∴CK=,当C,O,H共线,且与CK重合时,OH的值最小,∴OH的最小值为﹣=,∴MN的最大值=2=,故答案为.19.解:∵PA,PB是⊙O的切线,∴PA=PB,PA⊥OA,∴∠PAB=∠PBA,∠OAP=90°,∴∠PBA=∠PAB=90°﹣∠OAB=90°﹣38°=52°,∴∠P=180°﹣52°﹣52°=76°;故答案为:76.20.解:∵一次函数y=﹣2x+4的图象与x轴、y轴分别交于A、B两点,∴A(2,0),B(0,4),∴OA=2,OB=4,如图,设⊙P与y轴相切于点D,连接PD,∴PD⊥OB,∵OA⊥OB,∴PD∥OA,∴==,设PD=PC=x,则BD=2x,∴OD=OB﹣BD=4﹣2x,作PE⊥OA于点E,∴四边形OEPD是矩形,∴PD=OE=x,PE=OD=4﹣2x,∴AE=CE=OA﹣OE=2﹣x,∴PC2=PE2+CE2,∴x2=(4﹣2x)2+(2﹣x)2,解得x=,∵>2,不符合题意舍去,∴x=,∵PE⊥AC,根据垂径定理,得AC=2AE=2(2﹣x)=4﹣(5﹣)=﹣1.故答案为:﹣1.三.解答题(共7小题,满分60分)21.(1)证明:连接OB∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC又∵CD⊥OA∴∠A+∠AED=∠A+∠CEB=90°∴∠OBA+∠ABC=90°∴OB⊥BC∴BC是⊙O的切线.(2)解:连接OF,AF,BF,∵DA=DO,CD⊥OA,∴AF=OF,∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°∴∠ABF=∠AOF=30°22.(1)证明:连接OA、AD,如图,∵CD为⊙O的直径,∴∠DAC=90°,又∵∠ADC=∠B=60°,∴∠ACE=30°,又∵AE=AC,OA=OD,∴△ADO为等边三角形,∴∠AEC=30°,∠ADO=∠DAO=60°,∴∠EAD=30°,∴∠EAD+∠DAO=90°,∴∠EAO=90°,即OA⊥AE,∴AE为⊙O的切线;(2)解:由(1)可知△AEO为直角三角形,且∠E=30°,∴OA=2,AE=6,∴阴影部分的面积为×6×2﹣=6﹣2π.故阴影部分的面积为6﹣2π.23.(1)证明:连接CO,∵AO=CO,∴∠OAC=∠OCA,∵AC平分∠DAB,∴∠OAC=∠DAC,∴∠DAC=∠OCA,∴CO∥AD,AD⊥CD,∴CO⊥CD,∴DC为⊙O的切线;(2)连接BC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠DAB=60°,AC平分∠DAB,∴∠BAC=∠DAB=30°,∵⊙O的半径为3,∴AB=6,∴AC=AB=3.24.(1)证明:∵AB为⊙O的直径,∴AD⊥BC,在Rt△ADB和Rt△ADC中,∴Rt△ABD≌Rt△ACD(HL);(2)直线DE与⊙O相切,理由如下:连接OD,如图所示:由△ABD≌△ACD知:BD=DC,又∵OA=OB,∴OD为△ABC的中位线,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∵OD为⊙O的半径,∴DE与⊙O相切.25.解:∵PA、PB是⊙O的切线,∴PA=PB,∴∠PAB=∠PBA,∵AC是⊙O的直径,PA是⊙O的切线,∴AC⊥AP,∴∠CAP=90°,∵∠BAC=25°,∴∠PBA=∠PAB=90°﹣25°=65°,∴∠P=180°﹣∠PAB﹣∠PBA=180°﹣65°﹣65°=50°.26.(Ⅰ)证法一:连接OQ;∵RQ是⊙O的切线,∴∠OQB+∠BQR=90°.∵OA⊥OB,∴∠OPB+∠B=90°.又∵OB=OQ,∴∠OQB=∠B.∴∠PQR=∠BPO=∠RPQ.∴RP=RQ.证法二:作直径BC,连接CQ;∵BC是⊙O的直径,∴∠B+∠C=90°.∵OA⊥OB,∴∠B+∠BPO=90°.∴∠C=∠BPO.又∠BPO=∠RPQ,∴∠C=∠RPQ.又∵RQ为⊙O的切线,∴∠PQR=∠C.∴∠PQR=∠RPQ.∴RP=RQ.(Ⅱ)解法一:作直径AC,∵OP=PA=1,∴PC=3.由勾股定理,得BP==由相交弦定理,得PQ•PB=PA•PC.即PQ×=1×3,∴PQ=.解法二:作直径AE,过R作RF⊥BQ,垂足为F,设RQ=RP=x;由切割线定理,得:x2=(x﹣1),(x+3)解得:x=,又由△BPO∽△RPF得:,∴PF=,由等腰三角形性质得:PQ=2PF=.27.解:(1)BC所在直线与⊙O相切;理由:∵AB为⊙O的直径,∴∠ADB=90°,∵AB=AF,∴∠ABF=∠AFB,∵BF平分∠DBC,∴∠DBF=∠CBF,∴∠ABD+∠DBF=∠CBF+∠C,∴∠ABD=∠C,∵∠A+∠ABD=90°,∴∠A+∠C=90°,∴∠ABC=90°,∴AB⊥BC,∴BC是⊙O的切线;(2)∵BF平分∠DBC,∴∠DBF=∠CBF,∴tan∠FBC=tan∠DBF==,∵DF=2,∴BD=6,设AB=AF=x,∴AD=x﹣2,∵AB2=AD2+BD2,∴x2=(x﹣2)2+62,解得:x=10,∴AB=10,∴⊙O的半径为5.。

第一章 直线与圆 单元测试 2024-2025学年高二上学期数学北师大版(2019)选择性必修第一册

第一章 直线与圆 单元测试 2024-2025学年高二上学期数学北师大版(2019)选择性必修第一册

第一章 直线与圆 单元测试一、单选题1.若直线l 斜率为k ,向量在直线l 上,且向量在方向上的投影的模是其在方向上投影的模的2倍,则该直线的斜率k 的值为( )A .2B .C .D .2.已知圆:与圆:关于直线对称,则的方程为( )A .B .C .D .3.已知直线与圆:()交于A ,两点,且线段关于圆心对称,则( )A .1B .2C .4D .54.已知点,,,点是直线上的动点,若恒成立,则最小正整数( )A .1B .2C .3D .45.已知定点和直线,则点到直线的距离的最大值为( )A .BC .D .6.若点P 在直线上,点Q 在圆上,则线段PQ 长度的最小值为( )A .B .C .D .7.莱莫恩定理指出:过的三个顶点作它的外接圆的切线,分别和所在直线交于点,则三点在同一条直线上,这条直线被称为三角形的线.在平面直角坐标系中,若三角形的三个顶点坐标分别为,则该三角形的线的方程为( )A .B .C .D .8.直线l 过点,则直线l 的方程为( )A .B .C .D .二、多选题9.已知直线与圆交于,两点,点为线段的中点,且点的坐标为.当)A .B .的最小值为C .存在点,使D.存在,使10.下列说法正确的是( )A .已知直线过点,且在轴上截距等于轴上截距2倍,则直线的方程为B .直线没有倾斜角C .,,“直线与直线垂直”是“”的必要不充分条件D .已知直线的斜率满足,则它的倾斜角的取值范围是或11.已知直线l ∶x +y -2-a =0在x 轴和y 轴上的截距相等,则a 的值可以是( )A .0B .1C .-1D .-2.三、填空题12.已知斜率均为负的直线与直线平行,则两条直线之间的距离为 .13.已知圆和圆,M 、N 分别是圆C 、D 上的动点,P 为x 轴上的动点,则的最小值是 .14.过点,且与直线垂直的直线方程是.四、解答题15.圆内有一点,AB 为过点P 且倾斜角为的弦.(1)当时,求AB 的长;(2)当弦AB 被点P 平分时,写出直线AB 的方程.16.圆过、两点,且圆心在直线上.(1)求圆的方程;(2)若直线在轴上的截距是轴上的截距的2倍,且被圆截得的弦长为6,求直线的方程.17.已知动点与点的距离是它与原点的距离的2倍.m m ()1,0i =()0,1j = 122±12±M ()2211x y ++=N ()()22231x y -+-=l l 210x y --=210x y -+=230x y +-=230x y +-=20x y r -+=C ()()22213x y r ++-=0r >B AB r =()0,1A ()10B ,(),0C t M AC 2MA MB ≤t =()2,0P -()():34330l m x y m m ++-+=∈R P l d 34120x y +-=221x y +=12575175225()Lemoine ABC V ,,A B C BC,CA,AB ,,P Q R ,,P Q R Lemoine xOy ()()()0,1,2,0,0,4A B C -Lemoine 2320x y --=2380x y +-=32220x y +-=23320x y --=(1,1),(2,4)A B -2y x =-2y x =--2y x =-+2y x =+:0(R)l mx y m m --=∈222:()0O x y r r +=>A B Q AB T (3,0)1m =2r =AB A 45ATO ∠=︒m 54QO QT ⋅=-l ()2,1P x y l 240x y +-=10x +=R a ∈R b ∈210ax y +-=()1210a x ay +-+=3a =l k 11k -≤<α045α≤< 135180α≤< :0l bx ay +=:20m ax by a ++=()22:21C x y +-=22:610300D x y x y +--+=PM PN +()1,5-126x y+=228x y +=()1,2P -α3π4α=C ()0,3()4,5C 80-+=x y C l x y C l (,)M x y (3,0)P O(1)求动点的轨迹的方程;(2)求的最小值;(3)经过原点的两条互相垂直的直线分别与轨迹相交于,两点和,两点,求四边形ACBD 的面积的最大值.M E x y O E A B C D S参考答案1.D【分析】设出,求出向量在和方向上的投影的模,从而得到,求出直线斜率.【详解】设,则向量在方向上的投影的模为,向量在方向上的投影的模为,则,故该直线的斜率.故选:D 2.C【分析】根据两点的坐标,求其中点坐标以及斜率,根据对称轴与两对称点连接线段的关系,可得答案.【详解】由题意得,,则的中点的坐标为,直线的斜率.由圆与圆关于对称,得的斜率.因为的中点在上,所以,即.故选:C.3.D【分析】先求得圆心的坐标,进而列出关于的方程,解之即可求得的值.【详解】圆:的圆心,由圆心在直线上,可得,解之得.故选:D 4.D【分析】先设出,得到的方程为:,由得到圆的方程,结合点到直线的距离公式,求出的最小值即可.【详解】设,由在上,得:,即,由得:,化简得,依题意,线段与圆,至多有一个公共点,故(),m a b = m()1,0i =()0,1j = 2a b=(),m a b =m()1,0i =m ia i⋅=m ()0,1j =m jb j⋅= 2ab =12b k a ==±()0,1M -()2,3N MN ()1,1MN 31220MNk +==-M N l l 112l MN k k -==-MN l ()1112y x -=--230x y +-=C r r C ()()22213x y r ++-=(1,3)C -(1,3)C -20x y r -+=230r --+==5r (,)M x y AM 0x ty t +-=2MA MB ≤t (,)M x y M AC 1xy t+=0x ty t +-=2MA MB ≤()2222(1)41x y x y ⎡⎤+-≤-+⎣⎦22418((339x y -++≥AM 22418()()339x y -++=41,33⎛⎫- ⎪⎝⎭解得:,是使恒成立的最小正整数,由于,故选:D5.B【分析】先求得直线所过定点,然后根据两点间的距离公式求得正确答案.【详解】直线,即,由解得,所以直线过定点,所以的最大值为故选:B 6.B【分析】求出圆的圆心和半径,判断直线与圆的位置关系,则线段PQ 长度的最小值为圆心到直线的距离减去半径即可.【详解】圆的圆心为,半径,因为圆心到直线的距离为,所以线段PQ长度的最小值为.故选:B 7.B【分析】待定系数法求出外接圆方程,从而得到外接圆在处的切线方程,进而求出的坐标,得到答案.【详解】的外接圆设为,,解得,外接圆方程为,即,易知外接圆在处切线方程为,又,令得,,,在处切线方程为,又,令得,,则三角形的线的方程为,即故选:B.8.D2t ≥2t ≤t 2MA MB ≤324<<4t ∴=l ()():34330l m x y m m ++-+=∈R ()33430m x x y +++-=303430x x y +=⎧⎨+-=⎩33x y =-⎧⎨=⎩l ()3,3Q -d =221x y +=(0,0)O 1r =34120x y +-=1215d ==>127155-=,A C ,P R ABC V 220x y Dx Ey F ++++=104201640E F D F E F ++=⎧⎪∴++=⎨⎪-+=⎩034D E F =⎧⎪=⎨⎪=-⎩∴22340x y y ++-=2232524x y ⎛⎫++=⎪⎝⎭A 1y =:124x y BC +=-1y =52x =,152P ⎛⎫∴ ⎪⎝⎭()0,4C -4y =-:12xAB y +=4y =-10x =()10,4R ∴-Lemoine 410514102y x +-=+-2380x y +-=【分析】根据直线的两点式方程运算求解.【详解】因为,则线l 的方程为,整理得,所以直线l 的方程为.故选:D.9.AD【分析】利用圆的弦长公式判断A 、B ;假设存在点,求出直线方程,判断与圆的位置关系,判断C ,求出点的轨迹方程,可判断D.【详解】当时,直线,圆心到直线的距离,又,解得,A 正确;由上可知圆,圆心到直线的距离,则,B 错误;若,则直线斜率为,从而直线:,此时圆心到直线的距离,则直线与圆相离,即不存在点,使,C 错误;设点,因为直线过定点,则,即,化简为,为点的轨迹方程,若,则,即,得,故存在存在,使,D 正确.故选:AD.10.CD【分析】根据截距的概念可判定A ,根据倾斜角的定义可判定B ,利用两直线垂直的位置关系可判定C ,根据倾斜角与斜率的关系可判定D.【详解】对于A ,当直线在两个坐标轴的截距都是0时,显然直线方程为,故A 错误;B ,直线倾斜角是,故B错误;对于C ,若直线与直线垂直,则有或,所以不满足充分性,反之时,此时两直线垂直,满足必要性,故C 正确;对于D ,由直线的斜率与倾斜角的关系知:12,14-≠≠()()114121x y ---=---2y x =+2y x =+A AT Q 1m =:10l x y --=O d AB ===2r =22:4O x y +=O d ==AB ===>45ATO ∠=︒AT 1-AT 30x y +-=O 2d r >=AT O A 45ATO ∠=︒(),Q x y ():1(R)l y m x m =-∈()1,0C 222OQ QC OC +=()2222211x y x y ++-+=221124x y ⎛⎫-+= ⎪⎝⎭Q 54QO QT ⋅=- ()2534x x y -⋅-+=-()2534x x x x -⋅-+-=-[]50,18x =∈m 54QO QT ⋅=- 12y x =10x +=90 210ax y +-=()1210a x ay +-+=()1400a a a a +-=⇒=3a =3a =k满足的直线,则它的倾斜角的取值范围是或,故D 正确.故选:CD 11.ABCD【分析】求出两坐标轴上的截距,进而判断的可能取值.【详解】令y =0,得到直线在x 轴上的截距是,令x =0,得到直线在y 轴上的截距为2+a ,∴不论a 为何值,直线l 在x 轴和y 轴上的截距总相等.故选:ABCD.12.33/133【分析】利用斜率为负的两直线平行,找到,表示出直线,利用两平行线间的距离公式计算即可.【详解】因为斜率均为负的直线与直线平行,所以同号,且,解得:,所以直线与直线,所以这两条直线之间的距离为.13【分析】先得到,当且仅当三点共线,且三点共线时,等号成立,设C 关于x 轴的对称点,求出的最小值,进而得到的最小值.【详解】的圆心为,半径为1,,圆心为,半径为2,结合两圆位置可得,,当且仅当三点共线,且三点共线时,等号成立,设C 关于x 轴的对称点,连接,与轴交于点,此点即为所求,此时,即为的最小值,故的最小值为11k -≤<α045α≤< 135180α≤< a 2a +a =:0l bx ay +=:20m ax by a ++=,a b 02b a a b a=≠a =:0l x +=:10m x +=d ==3-3PM PN PC PD +≥+-,,P M C ,,P N D ()0,2C '-PC PD +PM PN +()22:21C x y +-=()0,2C ()()2222:610300354D x y x y x y +--+=⇒-+-=()3,5D 3PM PN PC CM PD DN PC PD +≥-+-=+-,,P M C ,,P N D ()0,2C '-CD'x P C D =='PC PD +PM PN +3314.【分析】根据垂直求出斜率,再由点斜式方程可得答案.【详解】直线的斜截式为,故斜率是,所以所求直线的斜率是,所以所求直线方程是,即.故答案为:.15.(2)【分析】(1)根据倾斜角以及求解出直线的方程,再根据半径、圆心到直线的距离、半弦长构成的直角三角形求解出;(2)根据条件判断出,结合和点坐标可求直线的方程.【详解】(1)圆的圆心,半径因为,所以直线的斜率,所以,即,所以圆心到的距离所以(2)因为弦被平分,所以,又因为,所以,所以,即.16.(1),,【分析】(1)先求得两点,的中垂线方程,再与联立,求得圆心即可;(2)先由直线且被圆截得的弦长为6,求得圆到直线的距离,再分截距为零和不为零求解.【详解】(1)解:两点,的中垂线方程为:,联立,解得圆心,则,故圆的方程为:;(2)由直线且被圆截得的弦长为6,故圆心到直线的距离为,3160x y -+=126x y+=36y x =-+3-13()1513y x -=+3160x y -+=3160x y -+=250x y -+=()1,2P -AB AB OP AB ⊥AB k P AB 228x y +=()0,0O r =3π4α=AB 3πtan14AB k ==-()()():211AB y x -=-⨯--:10AB x y +-=O AB d AB ===AB P OP AB ⊥20210OP k -==---12AB k =()()1:212AB y x -=--:250AB x y -+=()22825x y +-=0y ±=2160x y +--=2160x y +-+=()0,3()4,580-+=x y l C C l ()0,3()4,5280x y +-=80-+=x y ()0,8C =5r C ()22825x y +-=l C C l 4d =A .若直线过原点,可知直线的斜率存在,设直线为:,此时直线的方A .若直线不过原点,设直线为:,此时直线的方程为:,综上:直线,,.17.(1)(2)(3)7【分析】(1),根据两点间的距离公式化简可得方程;(2),法一:换元后与圆的方程联立,利用判别式法求解最小值;法二:几何法,利用直线与圆的位置关系列不等式求出最小值;法三:三角换元,结合辅助角公式利用余弦函数的性质求解最小值;(3),根据直线是否存在斜率进行分类讨论,当直线存在斜率时,利用点斜式写出两直线的方程,分别求出弦长,将四边形的面积用弦长表示,即可求出最大值.【详解】(1)由已知得化简得,即,所以动点的轨迹的方程为:;(2)法一:设,得,代入轨迹的方程消去并整理得,∴,即,解得故的最小值为;法二:设,即,由(1)的结论可知,轨迹是以点为圆心,半径长为2的圆,由题意可知,直线和圆有公共点,所以圆心到直线的距离不大于半径,即,解得故的最小值为;法三:由(1)可设,,则,因为,所以当时,y kx =4d k ==⇒=l 0y ±=12202x yx y a a a+=⇒+-=48d a ⇒=±l 2160x y +--=2160x y +-+=l 0y ±=2160x y +--=2160x y +-+=22(1)4x y ++=1--=22230x y x ++-=22(1)4x y ++=M E 22(1)4x y ++=x y t -=y x t =-E y ()2222(1)30x t x t +-+-=()22Δ4(1)830t t =---≥2270t t +-≤11t --≤≤-+x y -1--x y t -=0x y t --=E (1,0)-0x y t --=22(1)4x y ++=2≤11t --≤≤-+x y -1--12cos 2sin x y θθ=-+⎧⎨=⎩(02π)θ≤<π12cos 2sin 14x y θθθ⎛⎫-=-+-=-++ ⎪⎝⎭πcos 14θ⎛⎫+≥- ⎪⎝⎭3π4θ=的最小值为;(3)i )若两直线都有斜率,可设直线AB 的方程为,则直线CD 的方程为,由(1)的结论可知,轨迹是以点为圆心,半径长为2的圆.到直线AB 的距离同理,所以,ⅱ)若AB 、CD 两直线中有一条没有斜率,则另一条的斜率为0,此时线段AB 、CD 的长分别为4(或4、,所以.综上所述,当且仅当,即时,四边形ACBD 的面积取得最大值,最大值为7.x y -1--(0)y kx k =≠1=-y x kE 1(1,0)O -1O d =||AB ==CD ==11||||22S AB CD ==⨯==7=≤1||||72S AB CD ==<21112k =+1k =±S。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线与圆单元测试题(一)
一、选择题
1.从点P (1,-2)引圆(x +1)2+(y -1)2
=4的切线,则切线长是( ) A.4 B.3 C.2 D.1
2.以M (-4,3)为圆心的圆与直线2x +y -5=0相离,那么圆M 的半径r 的取值范围是( ) A .0<r <2 B .0<r <5 C .0<r <25
D .0<r <10
3.圆(x +
21)2+(y +1)2=168与圆(x -sin θ)2+(y -1)2
=16
1 (θ为锐角)的位置关系是( ) A.相离 B.外切 C.内切 D.相交
4.若m ≠0,则过(1,-1)的直线ax+3my+2a=0的斜率为( ) A.1 B.-3 C.3
1 D.-3
1
5.使圆x 2
+y 2
=r 2
与x 2
+y 2
+2x -4y +4=0有公共点的充要条件是( ) A.r <
5+1 B.r >5+1
C.|r -
5|<1 D.|r -5|≤1
6.已知半径为1的动圆与圆(x -5)2
+(y +7)2
=16相切,则动圆圆心的轨迹方程是( )
A .(x -5)2+(y +7)2=25
B .(x -5)2+(y +7)2=17或(x -5)2+(y +7)2
=15
C .(x -5)2+(y +7)2=9
D .(x -5)2+(y +7)2=25或(x -5)2+(y +7)2
=9
7.已知圆x 2+y 2=r 2
在曲线|x|+|y|=4的内部,则半径r 的范围是( ) A.0<r<22 B.0<r<2 C.0<r<2 D.0<r<4 8.由曲线y =|x |与x 2
+y 2
=4所围成的图形的最小面积是( ) A.4
π
B.π
C.4

D.2

9.过点(2,-3)且与直线x -2y +4=0的夹角为正切值为
3
2
的直线l 的方程是( ). A. x +8y +22=0或7x -4y -26=0 B. x +8y +22=0 C. x -8y +22=0或7x +4y -26=0 D.7x -4y -26=0 10.已知二元二次方程Ax 2
+Cy 2
+Dx+Ey+F=0,则⎩⎨⎧>-+≠=0
4,02
2F E D C
A 是方程表示圆的( )
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既非充分又非必要条件
11.圆x 2+y 2
-2x +4y -20=0截直线5x -12y +c =0所得的弦长为8,则c 的值是( ) A .10 B .10或-68 C .5或-34 D .-68
12.过点(2,1)并与两坐标轴都相切的圆的方程是( )
A.(x -1)2+(y -1)2=1
B.(x -1)2+(y -1)2=1或(x -5)2+(y -5)2
=5
C.(x -1)2+(y -1)2=1或(x -5)2+(y -5)2=25
D.(x -5)2+(y -5)2
=5 二、填空题
13.曲线y=|x-2|-3与x 轴围成的面积是 .
14.已知M={(x,y)|x 2+y 2
=1,0<y ≤1},N={(x,y)|y=x+b,b ∈R},并且M ∩N ≠∅,那么b 的取值 范围是 .
15.圆(x -3)2+(y +1)2
=1关于直线x +2y -3=0对称的圆的方程是___ __.
16.直线x -2y -2k =0与2x -3y -k =0的交点在圆x 2+y 2
=25上,则k 的值是_____. 三、解答题
17.求过A (1,2)与B (3,4)两点,且在x 轴上截得的弦长等于6的圆的方程.
18.已知圆x 2+y 2
+8x-4y=0与以原点为圆心的某圆关于直线y=kx+b 对称, (1)求k 、b 的值;
(2)若这时两圆的交点为A 、B ,求∠AOB 的度数.
19..若动圆C 与圆(x-2)2+y 2
=1外切,且和直线x+1=0相切.求动圆圆心C 的轨迹E 的方程.
22.设圆满足(1)y 轴截圆所得弦长为2.(2)被x 轴分成两段弧,其弧长之比为3∶1,在满足(1)、(2)的所有圆中,求圆心到直线l :x -2y =0的距离最小的圆的方程.。

相关文档
最新文档