西南交通大学大学物理CH10-1
西南交大大物作业答案
《大学物理》作业 N0.1 运动的描述班级 ________________ 学号 __________ 姓名 _________ 日期 _______ 成绩 ________一、选择题:B D DC B B二、填空题:1. 8 m ,10 m2. m r s 042.023201.0=⨯⨯==πθ , s m vs r t r v po/0041.0/3==∆∆=3.s m l l r v v t /8.69cos sin sin sin sin 2=====θωθωθθωθ 或θωθθ22cos d d cos 1d d l t l t x v =⋅==4. 切向加速度的大小为 260cos g g a t -=-=法向加速度的大小为g g v a n 2330cos 2===ρ所以轨道的曲率半径gv a v n 33222==ρ5. 以地球为参考系,()⎪⎩⎪⎨⎧=+=2021gt y tv v x 消去t ,得炮弹的轨迹方程 ()202x v v gy +=同理,以飞机为参考系 222x vg y = 6. ()2s m 15.05.03.0-⋅=⨯==βr a t飞轮转过 240时的角速度为ω,由0,20202==-ωβθωω,得βθω22= 此时飞轮边缘一点的法向加速度大小为()22s m 26.123602405.023.02-⋅=⨯⨯⨯⨯===πβθωr r a n三、计算题:1.一个人自原点出发,25 s 内向东走30 m ,又10 s 内向南走10 m ,再15 s 内向正西北走18 m 。
求在这50 s 内,(1)平均速度的大小和方向,(2)平均速率的大小。
解:建立如图坐标系。
(1) 50 s 内人的位移为r ++=∆(ji j i j i73.227.1745cos 181030+=+-+-=平均速度的大小为)s m (35.05073.227.17122-⋅=+=∆∆=t r v与x 轴的夹角为)98.8(98.827.1773.2tg tg 11东偏北==∆∆=--x y ϕ(2) 50 s 内人走的路程为S =30+10+18=58 (m),所以平均速率为)s m (16.150581-⋅==∆=t S v2.如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动。
西南交通大学《大学物理》安培环路定律 磁力 磁介质
L2
�
mv 2 ) (洛仑兹力为 qB
选B
om
(b)
L1
I1⊙⊙ I2 P 1 I1⊙⊙ I2 L2
P 2⊙ I3
�
选C
选B
4.如图所示,在磁感应强度为 B 的均匀磁场中,有一圆形载流 导线,a、b、c 是其上三个长度相等的电流元,则它们所受安培 力大小的关系为: [ ] (A) Fa > Fb > Fc (C) Fb > Fc > Fa (B) Fa < Fb < Fc
ww w. z
µ0 I ,R 增大, B0 减小。 2R µ 0 IR 2 (2) 圆线圈轴线上: B = 3 2( R 2 + x 2 ) 2
dB µ 0 I 2 R ( R 2 + x 2 ) 2 − 3R 3 ( R 2 + x 2 ) = ⋅ dR 2 (R 2 + x2 )3 µ I 2Rx 2 − R 3 = 0 ⋅ 2 (R 2 + x2 ) 5 2 2 Rx 2 − R 3 = 0 ∴x=
�
∫
L
� � B ⋅ dl = µ0 ∑ I 可得:
导线 1 和导线 2 在 P 点产生的磁感应强度大小分别为:
方向如图所示。由二者叠加,可得:
ww w. z
[ sin 3 x d x = − cos x +
∫
解:(1) 设金属球壳面电荷密度为σ ,则球面角宽度为 dθ 的一个 带状面元(阴影)上的电荷
�
�
� � � f = qv × B 知其运动轨道所围的面积为圆面积 S = π R
= π(
2 2 � � 圆运动向心力) ,磁通量 B ⋅ d S = BS = Bπ ( mv ) 2 = π m v ∫ 2
西南交通大学(已有09试题)
西南交通大学土木工程学院德语〔一外〕2021法语〔一外〕2021材料力学1996——1998,2000——2021〔2000——2006有答案〕土力学2001——2006,2021〔2001——2006有答案〕水力学2002——2004钢筋混凝土结构2001——2006结构力学1998,2001——2021环境化学2002——2021岩体力学2021工程地质学2002——2021遥感原理2021测量学2002——2021地理信息系统原理2021地理信息系统2002——2004,2006自然地理学2021理论力学1997——1998,2000——2003,2007——2021机械工程学院德语〔一外〕2021材料力学1996——1998,2000——2021〔2000——2006有答案〕理论力学1997——1998,2000——2003,2007——2021工程图学〔画法几何及机械制图〕2002——2007机械原理2000,2002——2021信号分析与处理2002——2006,2021工程流体力学2002——2021工程热力学及传热学2021计量学根底2002——2006自动控制原理A 2000电力电子技术1999——2000电力系统分析1999计量学根底2021地理信息系统原理2021地理信息系统2002——2004,2006电气工程学院德语〔一外〕2021法语〔一外〕2021电路分析1996——2021〔2000——2006有答案〕自动控制原理A 2000电力电子技术1999——2000电力系统分析1999地理信息系统原理2021地理信息系统2002——2004,2006信息科学与技术学院电子技术根底1999——2002,2004——2021信号与系统2000——2021〔2002——2006有答案〕程序设计1999——2003程序设计与数据结构2005——2021数据结构1999——2004数字通信原理2000——2021密码学2021离散数学1999——2000高等代数2001,2004——2021经济管理学院微观经济学1999,2001——2021宏观经济学1999技术经济学1999,2001生产管理1999,2001运筹学1999,2002——2021会计学2004——2006,2021人文社会科学学院德语〔一外〕2021法语〔一外〕2021经济学根底2021西方经济学2021经济法学2021法理学2021法学综合2021政治学原理2021比较政治制度2021马克思主义根本原理2021中国化马克思主义2021历史学专业根底〔全国统考试卷〕2007——2021交通运输学院德语〔一外〕2021法语〔一外〕2021管理运筹学1996——2021铁路行车平安理论及应用技术2021交通运输系统分析2021、2021建筑学院建筑历史与建筑技术2002,2005——2006,2021城市规划原理与城市建筑史2004——2006,2021南方某城市住区规划设计〔6小时〕2021建筑快题设计〔6小时〕2021建筑历史2021建筑物理2021建筑构造2021材料科学与工程学院生命科学根底2021生物化学根底2021生物医学工程2021材料科学根底2003,2021有机化学2002材料力学1996——1998,2000——2021〔2000——2006有答案〕机械工程材料2021工程材料2003生物工程学院生物化学2005,2021细胞生物学2005,2021〔注:2005年试卷共4页,缺第3-4页〕理学院高等数学2021高等代数2001,2004——2021数学分析2000——2002,2004——2021近世代数2000,2002量子力学2001——2021电路分析1996——2021〔2000——2006有答案〕光电检测技术2021电磁场与波2021应用力学与工程系材料力学1996——1998,2000——2021〔2000——2006有答案〕理论力学1997——1998,2000——2003,2007——2021外国语学院二外日语2002——2021二外法语2002——2005,2007——2021二外德语2002——2021二外俄语2002——2006,2021综合英语2001——2021语言学导论〔英〕2001——2021〔注:2001年试卷共5页,缺第5页〕英汉互译2001二外英语2007——2021根底德语2005——2021德汉互译2005——2021日汉互译2007汉日互译2021综合日语2005,2007——2021环境科学与工程学院德语〔一外〕2021工程流体力学2002——2021 环境化学2002——2021环境工程2002——2021环境生态学2021环境科学2005消防燃烧学2021水力学2002——2004体育部体育学根底综合2021药学院中药学根底综合2021旅游学院生物化学及植物生理学2021 旅游管理学2005,2021艺术与传播学院德语〔一外〕2021法语〔一外〕2021中国古代文学2021中外文学史2021语言学理论与现代汉语2021 古代汉语2021文学概论2021新闻写作与评论2021中外传播史2021中外美术史2021中外电影史2021中外音乐史2021艺术概论2021平面设计〔6小时〕2007室内设计〔6小时〕2007公共管理学院德语〔一外〕2021法语〔一外〕2021西方哲学史2021中国哲学史2021公共经济学2021公共管理学2021管理学2002——2004政策学2006运筹学1999,2002——2021微观经济学1999,2001——2021综合〔逻辑、数学〕2006工程科学研究院材料力学1996——1998,2000——2021〔2000——2006有答案〕机械原理2000,2002——2021材料科学根底2003,2021牵引动力国家重点实验室材料力学1996——1998,2000——2021〔2000——2006有答案〕机械原理2000,2002——2021信号分析与处理2002——2006,2021电子技术根底1999——2002,2004——2021信号与系统2000——2021〔2002——2006有答案〕CAD工程中心材料力学1996——1998,2000——2021〔2000——2006有答案〕超导研究开发工程中心超导物理根底2021量子力学2001——2021电路分析1996——2021〔2000——2006有答案〕材料科学根底2003,2021智能控制与仿真工程研究中心电路分析1996——2021〔2000——2006有答案〕电子技术根底1999——2002,2004——2021自动控制原理A 2000电力电子技术1999——2000电力系统分析1999软件学院教育学专业根底综合〔全国统考试卷〕2007——2021数学系高等代数2001,2004——2021数学分析2000——2002,2004——2021 近世代数2000,2002物流学院管理运筹学1996——2021物流与运筹学2021。
西安交通大学第一届大学生物理学术竞赛介绍
附件一:西安交通大学第一届大学生物理学术竞赛介绍为了活跃我校大学学习大学物理及实验的兴趣,激发创新意识,培养和提高学生应用物理学基础知识的能力、数学能力、逻辑能力、创新能力、协作精神和实践能力;借鉴中国大学生物理学术竞赛(简称CUPT,该赛事是教育部支持的全国重要大学生创新竞赛活动之一)和国际青年物理学家竞赛(IYPT)的模式,举办“西安交通大学第一届大学生物理学术竞赛”,该竞赛采用团队答辩竞赛形式,要求学生根据给定的开放性物理问题进行研究并设计实验解决方案。
现将校内赛相关事宜公布如下:一、目的1. 培养创新意识和开放式思维,注重基础知识与实践紧密结合,提高以所学知识解决实际问题的能力和应变能力,为全校同学提供展示物理研究才能的舞台。
2. 通过校内选拔赛,最终决出8—10名优秀选手组成校队,代表我校参加2015年中国大学生物理学术竞赛。
二、竞赛内容在力、热、光、电等物理分支下,指定17个研究项目(具体题目与要求详见附件),每位参赛同学在其中自由择题,自主设计实验研究方案,独立完成实验研究,用物理学原理解释实验现象。
理学院指定教师进行指导,大学物理实验教学中心将给予实验方面的协助。
三、参赛对象与时间安排选拨赛面向全体1~3年级本科生。
报名时间:2014年10月15日—10月30日1)2014.10.23(周四)赛题分析研讨会。
2)2014.10-2014.11 准备,撰写实验设计方案(题目理解,设计原理、测量方法、实验仪器、测量数据、结果和理论分析)。
3)2014.11.17—2014.11.18 提交参赛材料。
4)2014.11.20 公布参赛名单。
5)2014.11.22(周六)学生准备答辩材料,并进行答辩。
(初赛)6)2014.11.23(周日)公布复赛名单,指定相应的指导教师。
7)2014.12.27—2014.12.28 复赛。
8)2014.12.29 公布决赛名单,进行表演对抗赛及比赛说明。
西南交通大学2016大物作业09
©西南交大物理系_2016_02《大学物理AI 》作业No. 09 磁感应强度班级 ________ 学号 ________ 姓名 _________ 成绩 _______一、判断题:(用“T ”和“F ”表示)[ F ] 1.穿过一个封闭面的磁感应强度的通量与面内包围的电流有关。
解:穿过一个封闭面的磁感应强度的通量为0。
[ F ] 2.载流闭合线圈在磁场中只能转动,不会平动。
解:载流线圈在均匀磁场中只能转动,不会平动。
但在非均匀磁场中,除了转动,还会平动。
[T] 3. 做圆周运动的电荷的磁场可以等效为一个载流圆线圈的磁场。
解:做圆周运动的电荷可以等效为一个圆电流,所以其产生的磁场可以等效为圆线圈产生的磁场。
[ F ] 4.无限长载流螺线管内磁感应强度的大小由导线中电流的大小决定。
解:无限长载流螺线管内磁感应强度的大小为:nI B 0μ=,除了与电流的大小有关,还与单位上的匝数有关。
[ T ] 5.在外磁场中,载流线圈受到的磁力矩总是使其磁矩转向外场方向。
解:根据B P M m⨯=,可知上述叙述正确。
二、选择题:1.载流的圆形线圈(半径a 1)与正方形线圈(边长a 2)通有相同电流I 。
若两个线圈的中心O 1 、O 2处的磁感应强度大小相同,则半径a 1与边长a 2之比a 1∶a 2为 [D](A) 11:(B) 12:π (C)42:π(D)82:π解:圆电流在其中心产生的磁感应强度1012a I B μ=正方形线圈在其中心产生的磁感应强度2020222)135cos 45(cos 244a I a IB πμπμ=-⨯⨯=磁感强度的大小相等,8:2:22221201021ππμμ=⇒=⇒=a a a I a IB B所以选D 。
2.在一平面内,有两条垂直交叉但相互绝缘的导线,流过每条导线的电流i 的大小相等,其方向如图所示.问哪些区域中有某些点的磁感强度B 可能为零?(A) 仅在象限Ⅰ.(B) 仅在象限Ⅱ. (C) 仅在象限Ⅰ,Ⅲ. (D) 仅在象限Ⅰ,Ⅳ. (E) 仅在象限Ⅱ,Ⅳ. [ E ] 解:根据电流流向与磁场方向成右手螺旋,可以判定答案为E 。
2022级西南交大大物答案10
2022级西南交大大物答案10西南交大物理系_2022_02《大学物理AI》作业No.10安培环路定律磁力磁介质班级________学号________姓名_________成绩_______一、判断题:(用“T”和“F”表示)[F]1.在稳恒电流的磁场中,任意选取的闭合积分回路,安培环路定理HdlIiL都能成立,因此利用安培环路定理可以求出任何电流回路在空间任一处产生的磁场强度。
解:安培环路定理的成立条件是:稳恒磁场,即稳恒电流产生的磁场。
但是想用它来求解磁场,必须是磁场分布具有某种对称性,这样才能找到合适的安培环路,才能将HdlIi中的积分简单地积出来。
才能算出磁场强度矢量的分布。
L[F]2.通有电流的线圈在磁场中受磁力矩作用,但不受磁力作用。
解:也要受到磁场力的作用,如果是均匀磁场,那么闭合线圈所受的合力为零,如果是非均匀场,那么合力不为零。
[F]3.带电粒子匀速穿过某空间而不偏转,则该区域内无磁场。
解:根据fqvB,如果带电粒子的运动方向与磁场方向平行,那么它受力为0,一样不偏转,做匀速直线运动。
[F]4.真空中电流元I1dl1与电流元I2dl2之间的相互作用是直接进行的,且服从牛顿第三定律。
解:两个电流之间的相互作用是通过磁场进行的,不服从牛顿第三定律。
[T]5.在右图中,小磁针位于环形电流的中心。
当小磁针的N极指向纸内时,则环形电流的方向是顺时针方向。
解:当小磁针的N极指向纸内时,说明环形电流所产生的磁场是指向纸内,根据右手螺旋定则判断出电流的方向是顺时针的。
二、选择题:1.如图,在一圆形电流I所在的平面内,选取一个同心圆形闭合回路L,则由安培环路定理可知:L[B](A)Bdl0,且环路上任意一点B0LO(B)Bdl0,且环路上任意一点B0IL(C)Bdl0,且环路上任意一点B0L解:根据安培环路定理知,B的环流只与穿过回路的电流有关,但是B却是与空间所有L(D)Bdl0,且环路上任意一点B=常量=0的电流有关。
个性化大学物理实验教学的探索与实践
第29卷第2期 2010年2月实验室研究与探索R ESEARCH AND EXPLORATI ON I N L ABORAT OR YVol .29No .2 Feb.2010 个性化大学物理实验教学的探索与实践陈汉军, 姜向东, 邱春蓉(西南交通大学理学院物理实验中心,四川成都610031)摘 要:个性特征是创新能力的一个基本因素,个性化物理实验是在一般物理实验上的拓展,涵盖基础性、综合性、设计性或研究性实验各个层次。
介绍了个性化物理实验的项目、教学组织与管理,并列举了2个实例反映学生的学习体会。
探索个性化大学物理实验教学,有利于对大学生创新能力培养。
关键词:实验教学;个性化实验;物理实验;创新能力中图分类号:O 4233;G 642.0 文献标识码:A 文章编号:1006-7167(2010)02-0113204Exp l o ra ti o n and P rac ti ce of the I ndi vi dua li zedU ni ve rs ity Physics Expe ri m enta l TeachingCH E N Han 2jun, J I AN G Xiang 2don g, Q I U Chun 2r ong(Physics Experi mental Center,College of Science,Southwe st Jiaot ong Unive rsity,Chengdu 610031,China )Abstrac t:Physics experi m ent course is one of the basic courses f or engineering undergraduates .One of the basic c r ea 2tive ability e m bodie s individual charac teristic .I ndividual physic s experi m ents,which include basic,integrated,designed,and investiga tive experi m ents,are extension of gene r a l physics experi m ents .The pr oject,organizati on andadm inistr a tion of the individual experi m ents were intr oduced .The t wo learning experiences of the undergradua tes were shown a s exa mples .Exp l oring the individualized experi m ent teaching would hel p to cultiva te the creative ability for undergraduates .Key wor ds:experi m enta l teaching;individua liz ed expe ri ment ;physics experi m ent;creative ability收稿日期36作者简介陈汉军(6),女,陕西汉中人,学士,副教授,从事物理实验教学和材料性能测试分析工作。
西南交通大学大学物理实验期末试题汇总(大二)
误差理论_05 出题:物理实验中心 用误差限 0.10mm 的钢直尺测量钢丝长度,11 次的测量数据为:(单位:mm) 45.8、25.8、25.7、25.5、25.6、25.8、 25.6、25.5、25.4、25.7、25.6。钢丝的测量结果为(D) A) l =25.62 0.04 m B) l =27.4 2.1 m C) l =25.62 m 0.06 m D) l =25.6 0.1 m
( xi x )2 n ( n 1)
A)
B) uA2i uB2i
2
f
C)
xi
uxi
ai
D) 3
误差理论_17 出题:物理实验中心 以下表述中错误的是(B) 正常测量数据的标准 S 有可能为零 系统误差指的是在测量过程中其值保持不变的那部分误差 最小二乘法原理适用于任意的曲线 使用逐差法的前提是自变量与因变量之间满足线性关系
误差理论_14 出题:物理实验中心
某同学测量物理量 L 后写出的最终结果表达式为:L=12.003 0.006。该式(C)
完全正确 有一处错误 有两处错误 有三处错误
误差理论_15 出题:物理实验中心
对某物体的长度进行测量,得到结果:L=12.340 0.010 cm,则下面叙述中正确的是(D)
ux2
u
2 y
N n xi yi3 uN
C)
i1 n ,
n xi yi3 N 2
i1 n n 1
D)
N
x y3
uN
,
n xi yi3 N 2
i1 n n 1
误差理论_04 出题:物理实验中心 下列测量结果正确的表示为(D) A) 重力加速度 g=9.78±0.044 B) v=343.24±2.553m/s C) E=1.34325V±2.00 mV D) I=1.3V±0.2 mA
西南交通大学理论力学作业答案①
第一章物体的受力分析和受力图
作业参考解答
1.分析下面各物体所受的约束力,并画出它们的受力图。
假设所有接触面都是光滑的,其中没有画重力矢的物体都不考虑自重。
题1-1解:
题1-1图
题1-2解:
题1-2图
题1-3解:
题1-3图题1-4解:
题1-4图
2.分析下列各刚体系统中每个物体及整体的受力情况,并画出它们的受力图。
图中没有画上重力矢的物体都不考虑自重,并假设所有接触面都是光滑的。
题2-1解:
题2-2解:
题2-3解:
题2-4解:
3.分析下列结构中每根杆件(不含销钉)及整体的受力情况,并画出它们的受
力图。
图中没有画上重力矢的杆件都不考虑自重。
解:
题3图
F Cx
F Cy
F A
By
F Bx
′
ABy
A。
西南交通大学大物参考答案NO导体介质中的静电场
A 球电势 U A
= q1 4πε 0r1
+
q内 4πε 0r2
+
q外 4πε 0 r3
= 5400 V
B 球电势 U B
= q1 4πε 0r3
+
q内 4πε 0r3
+
q外 4πε 0 r3
=
q外 4πε 0r3
= 3600 V
4.一平行板电容器,充电后与电源保持联接,然后使两极板间充满相对介电常量为εr 的
电场强度 E′ = σ ′ / ε 0ε r = Q′ / S / ε 0ε r = ε rQ / S / ε 0ε r = E
电场能量W ′
=
1 C′V 2 2
=
1 2 ε rCV
2
= ε rW
即分别为 ε r ,1, ε r 倍
5.一空气平行板电容器,电容为 C,两极板间距离为 d。充电后,两极板间相互作用力
分布为
E = λ /(2πε r)
设电容器内外两极板半径分别为 r0,R,则极板间电压为
∫ ⋅ ∫ R � � R
U = E dr =
λ
λR d r = ln
r
r 2πε r
2πε r0
电介质中场强最大处在内柱面上,当这里场强达到 E0 时电容器击穿,这时应有
λ = 2πε r0 E0
R U = r0 E0 ln r0
适当选择 r0 的值,可使 U 有极大值,即令
dU /d r0 = E0 ln(R / r0 ) − E0 = 0
得 显然有
r0 = R / e
d2 U
< 0, 故当
d r0 2
r0 = R / e
西南交大大学物理版NO详细解答
解:双缝干涉中,光程差满足 Δ = kλ (k = 0, 1, 2,L)为明纹,k=0 为中央明纹,k=1 为
第一级明纹,…。故对第三级明纹有 k=3,光程差为 Δ = 3λ 。将整个装置放入透明液
体中, 3λ = 4 λ → n = 4 = 1.33 。
n
3
2.两束光在界面发生反射和折射,如图所示。a 和 b 在界
O
A
解:(1)明环半径为 r =
2k −1 Rλ , 2
k = 1, 2, 3L
( ) 所以入射光波长
λ
=
2r 2
(2k −1)R
=
2 × 0.30 ×10−2
(2 ×5 −1)× 4
2
= 5×10−7 (m)
(2)由明环半径公式, 2r 2 = (2k −1)Rλ
k
=
r2 Rλ
+
1 2
=
(10−2 )2 4 × 5 ×10−7
两表面反射光线①和②的光程差应为 Δ = 2n2e
故选 A
4.如图,用单色光垂直照射在观察牛顿环的装置上。当平凸透镜垂直
单色光
向上缓慢平移而远离平面玻璃时,可以观察到这些环状干涉条纹
[
] (A) 向右平移
(B) 向中心收缩
空气
(C) 静止不动
(D) 向外扩张
(E) 向左平移向外扩张
解:当平凸透镜垂直向上缓慢平移而远离平面玻璃时,空气膜的中心区域厚度将增加,
[ C ] (A) 凸起,且高度为λ / 4
(B) 凸起,且高度为λ / 2
(C) 凹陷,且深度为λ / 2
空气劈尖
(D) 凹陷,且深度为λ / 4
平玻璃 工件
解:劈尖干涉条纹向相邻低级次弯曲,说明低级次处有膜厚增加的情况(凹陷),而由劈
《大学物理AII》作业 No.05 光的干涉(答案解析)
©西南交通大学-大学物理教学研究中心_2018_02《大学物理AII》作业No.05光的干涉班级________学号________姓名_________成绩_______ ----------------------------------------------------------------------------------------------------**************************本章教学要求****************************1、理解光的相干条件及利用普通光源获得相干光的方法和原理。
2、理解光程及光程差的概念,并掌握其计算方法。
理解什么情况下有半波损失,理解薄透镜不引起附加光程差的意义。
3、掌握杨氏双缝干涉实验的基本装置及其条纹位置、条纹间距的计算。
4、理解薄膜等倾干涉。
5、掌握薄膜等厚干涉实验的基本装置(劈尖、牛顿环),能计算条纹位置、条纹间距,能理解干涉条纹形状与薄膜等厚线形状的关系。
6、理解迈克耳孙干涉仪原理及应用。
----------------------------------------------------------------------------------------------------一、选择题:1.在双缝干涉实验中,入射的波长为λ,用玻璃纸遮住其中一缝,如图,若玻璃纸中光程比相同厚度的空气的光程大2.5λ,则屏上原来的明纹处[B](A)仍为明纹(B)变为暗纹(C)既非明纹也非暗纹(D)无法确定解析:光程差增大2.5个波长,是半个波长的奇数倍,P点相位差改变π5,此时的明纹变成暗纹。
2.如图示两个边长有微小差别的彼此平行的立方柱体之间的距离为L,夹在两块平面玻璃的中间,形成空气劈尖,当单色光垂直入射时,产生等厚干涉条纹,如果柱体之间的距离L变小,则在L范围内干涉条纹的[B](A)数目减少,间距变大(B)数目不变,间距变小(C)数目增加,间距变小(D)数目减少,间距不变解析:如图所示,当L减少时,e∆不变,但θ会增大。
西南交通大学 大物AI作业参考解答_No.10 安培环路定理 磁力 磁介质
《大学物理AI 》作业No.10安培环路定理磁力磁介质参考答案--------------------------------------------------------------------------------------------------------------------****************************本章教学要求****************************1、理解磁场的高斯定理、磁场安培环路定理的物理意义,能熟练应用安培环路定律求解具有一定对称性分布的磁场磁感应强度;2、掌握洛仑兹力公式,能熟练计算各种运动电荷在磁场中的受力;3、掌握电流元在磁场中的安培力公式,能计算任意载流导线在磁场中的受力;4、理解载流线圈磁矩的定义,并能计算它在磁场中所受的磁力矩;5、理解霍尔效应并能计算有关的物理量;6、理解顺磁质、抗磁质磁化的微观解释,了解铁磁质的特性;7、理解磁场强度H 的定义及H 的环路定理的物理意义,并能利用它求解有磁介质存在时具有一定对称性的磁场分布。
--------------------------------------------------------------------------------------------------------------------一、选择题1.在图(a)和(b)中各有一半径相同的圆形回路L 1、L 2,圆周内有电流I 1、I 2,其分布相同,且均在真空中,但在(b)图中L 2回路外有电流I 3,P 1、P 2为两圆形回路上的对应点,则:[B ](A)2121,d d P P L L B B l B l B (B)2121,d d P P L L B B l B l B(C)2121,d d P P L L B B l B l B(D)2121,d d P P L L B B l B l B解:根据安培环路定理 内I l B L0d,可以判定21d d L L l B l B;而根据磁场叠加原理(空间任一点的磁场等于所有电流在那点产生的磁场的矢量叠加),知21P P B B。
大学物理(西南交大)作业参考答案3
NO.3 角动量和刚体定轴转动班级 姓名 学号 成绩一、选择1.体重、身高相同的甲乙两人,分别用双手握住跨过无摩擦轻滑轮的绳子各一端.他们从同一高度由初速为零向上爬,经过一定时间,甲相对绳子的速率是乙相对绳子速率的两倍,则到达顶点的情况是 [ C ] (A)甲先到达. (B)乙先到达.(C)同时到达. (D)谁先到达不能确定.2.如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、B 两滑轮的角加速度分别为βA 和βB ,不计滑轮轴的摩擦,则有 [ C ] (A) βA =βB . (B) βA >βB .(C) βA <βB . (D) 开始时βA =βB ,以后βA <βB .参考:2A Mgr Mr J β=+,BMgrJβ= 3.如图所示,一质量为m 的匀质细杆AB ,A 端靠在光滑的竖直墙壁上,B 端置于粗糙水平地面上而静止.杆身与竖直方向成θ角,则A 端对墙壁的压力大小[ B ] (A) 为41mg cos θ. (B) 为21mg tg θ(C) 为mg sin θ. (D) 不能唯一确定.4.如图所示,一匀质细杆可绕通过上端与杆垂直的水平光滑固定轴O 旋转,初始状态为静止悬挂.现有一个小球自左方水平打击细杆.设小球与细杆之间为非弹性碰撞,则在碰撞过程中对细杆与小球这一系统 [ C ] (A) 只有机械能守恒. (B) 只有动量守恒.(C) 只有对转轴O 的角动量守恒. (D) 机械能、动量和角动量均守恒.5.一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度ω [ C ] (A) 增大. (B) 不变. (C) 减小. (D) 不能确定. 参考:角动量守恒 ,而J 变大,故ω 变小。
6.已知地球的质量为m ,太阳的质量为M ,地心与日心的距离为R ,引力常数为G ,则地球绕太阳作圆周运动的轨道角动量为:[ A ](A )m GMR ; (B )R GMm ;(C )Mm RG ; (D )R GMm 2。
ch10_Electrostatic Precipitators
10Electrostatic PrecipitatorsPeter Paul BibboPrecipitator Product ManagerResearch-Cottrell,Inc.Somerville,N.J.10.1 DESCRIPTION OF CONTROL DEVICEElectrostatic precipitation is the most popular method in use for removing fine solids and liquids from gas streams. The first successful commercial-scale precipitators were installed by Frederick G. Cottrell on two California chemical plants in 1907. One of these units treated 5000 cfm of gas, and recovered precious metals and sulfuric acid. In 1910, Cottrell installed a successful precipitator on a 250,000-cfm smelter. The technology grew rapidly, and successful applications were soon found on a variety of industrial processes and in the power generation industry. Precipitators have been used to treat over 5,000,000 cfm of gas and have attained removal efficiencies approaching 99.99%.FundamentalsCompared to other methods of gas cleaning, electrostatic precipitators are as elegant as they are efficient. Instead of performing work on the entire gas stream in the cleaning process, the forces in a precipitator are applied directly to the suspended particles themselves. The result is high collection efficiency at a moderate cost in power.There are three fundamental steps in the electrostatic precipitation process:1.Charging the particles suspended in the gas stream2.Collecting the charged particles3.Removal of the collected particles into an external receptacleCharging is accomplished by applying a high dc voltage to an electrode system. The presence of a grounded electrode near the charged electrode gives rise to the formation of corona [ ]n.冠壮物,王冠, 光环and a unidirectional electric field. Particles traveling between the two electrodes acquire charge from the corona discharge and are driven toward the collecting electrode by the electric field. All commercial precipitators use negative polarity.Particles arriving at the collecting electrode do not have to be captured immediately for successful operation and may actually be recollected several times before they are removed. Current flows in the collection process are large enough to describe the operation as electrical in nature, the term “electrostatic”being one of convention rather than description. Precipitators may be single stage (or Cottrell type), or two-stage, in which the charging and collecting fields are formed independently. Also, the gas stream may flow through tubular collecting electrodes or between parallel plates. The parallel-plate single-stage precipitator is by far the most common.Particles remain on the collecting electrode, or plate, until they are dislodged by a mechanical blow, called rapping, and fall by gravity into an external vessel, usually some form of hopper. Rapping is not as simple as it may sound, and indeed must be as effective as the283284charging and collecting steps for efficient precipitation.Physical DescriptionThe heart of the electrostatic precipitation process is the discharge electrode system. It must produce a strong, uniform corona while maintaining the correct distance and alignment with respect to the collecting electrodes to prevent imbalances in the electric field and to avoid unnecessary arcing discharges. Discharge electrode sizes and shapes vary mainly by manufacturer, but variations among different applications or in different sections of the same precipitator are feasible. Round, straight wires about 0.1 in. in diameter are the most common discharge electrode in use. They may be hung individually and freely with a suspension weight at their bottom end, or they may be held in a structural framework which is rigidly attached to the precipitator structure. Discharge electrodes may also be mast-type or formed elements, where rigidity , mechanical strength, and corona properties are all embodied into the same member. Figures 10-1 to 10-3illustrate these three principal electrode designs.285High-voltage rectifiers[ ❒♏♦♓♐♋♓☜]n.整流器providing pulsating [☐✈●♦♏♓♦ ☐✈●♦♏♓♦] vi.搏动, 跳动, 有规律的跳动dc waveforms are in use almost exclusively due to the higher voltage and current attainable under sparking conditions when compared to pure direct current. With few exceptions, the discharge electrode system is subdivided into discrete sections, each being energized by a separate transformer-rectifier (TR) set. This “sectionalization”is important in matching corona currents and voltages to the TR set, and to promote reliability and stability under arcing conditions. TR sets are comprised of a high-voltage transformer and bridge rectifier, with typical secondary winding rms ratings between 53 to 66 kV and 250 to 2000 mA. Most TR sets can be connected to the precipitatordischarge electrode system in either full-wave or double half-wave, as shown in Figure 10-4.An important adjunct [ ✌♎✞✈☠♦ ]n.附件, 助手adj.附属的to the discharge electrode system is the automatic regulation of the high-voltage input to the precipitator, because only in rare cases does nature permit ideal operation. The earliest precipitators had no means of voltage regulation, but state-of-the-art advancements such as the silicon-controlled rectifier, solid-state construction, and digital control circuits have enabled precipitators to perform efficiently under286the most adverse conditions.In dry, parallel-plate precipitators, the collecting electrodes (plates) are suspended from the top of the precipitator, parallel to and in proper alignment with the discharge electrodes. These plates and their attachment must be strong enough to support collected particulate weight, yet light enough to react in a “lively”manner to dislodge particulate when rapped, and durable enough to withstand millions of rapping blows without fatigue failure. For these reasons, collecting plates are typically made of light-gauge metal and rigidly fastened to the precipitator structure only at their top ends. Most designs incorporate baffles to provide quiescent [ ♦♋✋♏♦☜⏹♦]adj.静止的zones where the probability of particle collection is enhanced. These baffles are integrated into vertical stiffeners, which are required because collecting plate heights up to 50 ft are in use. Figure 10-5 illustrates one style of collecting plate.刚性元件Hoppers are best thought of as temporary holding bins to store collected particulate until permanent disposal can be scheduled. They take a variety of shapes, and are also sectionalized[ ♦♏☞☜⏹☜●♋♓ ]v.使具有地方性to facilitate handling large quantities of dust. It is a mistake to think the precipitation process stops at the hoppers. Removing collected material from the hopper is just as important as getting the material to fall into the hoppe r in the287288 first place.The discharge electrodes, collecting plates, and hoppers are all contained and supported by the casing, or shell. This structure must provide a gas-tight envelope in which the process takes place and must also hold the two electrode systems in proper alignment, sometimes under cyclical load conditions. In nearly all economical designs, essentially all the important auxiliary equipments are attached somewhere directly to the casing. Insulators that support the discharge electrodes system are made almost exclusively from porcelain of fused alumina, and are contained in individual or grouped insulator compartments or all the high-tension support insulators may be housed in a top housing or penthouse. In many cases, the manufacturer requires these insulators to be heated and ventilated [♊♏⏹♦✋●♏✋♦✋♎]adj.通风的 at certain times during operation of the precipitator.The widest variation in design among manufacturers comes from rapping [ ❒✌☐♓☠ ]轻击修光(锻造中). In the simplest sense, rappers are either impulse (single blow) or vibrating (multiple blow) types. One impulse type consists of swing hammers striking the lower portions of the collecting electrodes or an intermediate portion of a rigid frame discharge electrode system. The swing hammers are actuated by a cam [ ✌❍ ]n.凸轮 shaft [ ☞♐♦ ]n.轴, 杆状物 driven by an electric motor, and swing from the peak of the cam action by gravity to strike the electrode systems in a horizontaldirection. Another type ofimpulse rapper is the drophammer, which may be actuatedby anelectromagnetic [✋●♏♦❒☜☺❍✌♈⏹✋♦✋]adj.电磁的solenoid located on top ofthe precipitators, or amotor-driven mechanicallinkage. The rapping blow isgravity actuated or may bespring-assisted, striking the topsof the systems in a verticaldirection, or nearly anycombination among thesepractices. Vibrating types arealmost exclusively on thedischarge electrode systems,especially on industrialprocesses where weighted wiregeometries are most common.Vibrators may be electric orpneumatic[ ⏹◆☎✆❍✌♦♓ ]adj.装满空气的, 有气胎的, 汽力的, 风力的, 灵魂的, the latterbeing extremely powerfuland289potentially destructive. Figures 10-6 and 10-7depict two impulse-type rappers.Other key components in a precipitator include the high-voltage bus and guard that deliver the TR output to the discharge electrodes; gas distribution diffusers at the inlet and outlet face; access systems, and a host of other systems, subsystems, and components necessary to support the operation by providing electrical power distribution, control, insulation, and so on. Most of these features are shown in Figure 10-8.ApplicationsOf all the particulate control devices available, the electrostatic precipitator has by far seen the widest usage, with successful applications in all the basic industries and in a few exotic [ ]adj.异国情调的, 外来的, 奇异的ones. The major reasons are that finely divided particles of all types acquire electrical charge quite readily, and that precipitators can handle large volumes of gas over a wide range of operating pressures and temperature. Units have demonstrated collection at 2000℉and several atmospheres.By far the greatest quantity of gas treated and material collected is in the power-generation industry. It is estimated that the material collected in the power industry in 1970 alone exceeded some 40 million tons.Precipitators have been used successfully in the ferrous and nonferrous metallurgical industries. Iron-, and later steelmaking, witnessed successful precipitator applications, although variability in the heat cycle on basic oxygen furnaces makes the steel application one of the most difficult. In the nonferrous metal industry, precipitators have been used in copper, lead, zinc, and aluminum smelting, and in a variety of sinter plants.Two other large application areas are in the cement industry, where precipitators have been used to collect calcium and silicon oxides, and in the pulp and paper industry, where salt cake is recovered in the firing of black liquor in the kraft process, and where a considerable amount offly ash is collected from coal and hog fuel-fired power boilers.290Other industries that have typically employed electrostatic precipitator in their recovery operations include the petroleum industry, where precipitators are used to recover fines from the fluid catalytic cracking process and to detar [ : ]脱焦油fuels; the chemical industry, primarily in the production of sulfuric acid; agriculture and feedstock plants; and gypsum plants.Table 10-1 is a summary of the applications areas for precipitators in the United States.TABLE 10-1 Precipitator applications areas.Industry Raw MaterialConsumption (tons)Prower generation AgricultureIron and steelCementPulp and paperPrimary nonferrous metals CalcinersReverbsSinteringRoastionSecondary nonferrous metals Asphalt and carbon black Petroleum catalytic cracking397,000,0008,400,000 345,000,00074,000,00027,900,00010,948,0005,800,0001,904,0001,079,000728,0001,975,0001,300,000 1,190,000,000 bblConventional T erminologyThe descriptive terminology that will be used in the remainder of this chapter is selected from present convention and defined briefly below. Also, the remainder of the discussion on precipitator design, operation, and maintenance will generally reflect power-generation-industry experience. This implies no loss of realism to the reader, however, since most aspects of design and use are common among all applications.Active height: V ertical length of collecting electrodes (plates)Active length:Horizontal length of energized precipitator, excluding empty spaces between fieldsActive surface: Total collecting surface area energizedAspect ratio: Active length divided by active heightBus section: Smallest portion of a field that can be deenergizedChamber: Gas-tight longitudinal subdivision of a precipitatorCollecting surface area: Surface area of energized collecting platesDistribution plate:A device installed at either the inlet or outlet of a precipitator to achieve optimum gas flow distributionEffective cross-sectional area:Active height×total number of gas passages×gas passage widthField: Transverse subdivision of a precipitator formed by parallel bus sectionsGas passage: V olume enclosed by two adjacent collecting platesMigration velocity:Theoretical speed of particulate normal to the direction of flow in the291292 process of collection; called “effective ” migration velocity when calculated from empirical data, but “collecting rate parameter ” is less misleadingPower density: Ratio of total power input to collecting surface area or gas flow rate, usually expressed in watts/ft 2 or watts/1000 cfmPrecipitator: Arrangement of electrodes and all other equipment for one independent casing Specific collecting area: Ratio of collecting surface area to gas flow rate, usually expressed as ft 2/1000 cfmTreatment time: Active length divided by treatment velocityTreatment velocity: Gas flow rate divided by effective cross-sectional area, expressed in ft/sec 10.2 DESIGN PROCEDURESThere are many ways to describe the design of any industrial machine, and precipitators are no exception. However, in almost all cases, precipitator design can be effectively divided into the four following aspects, each equally important over the life of the plant:1. Performance2. Reliability3. Operability4. MaintainabilityPerformance DesignPerformance design begins with sizing, or selection of the correct amount of collecting surface area, its arrangement, how it is energized, and how it is rapped. A fundamental knowledge of sizing is important to the operator for understanding the basic variables that control precipitator performance. From empirical observations by Anderson in 1919 and theoretical derivation by Deutsch in 1922, the first expression for precipitator performance (Deutsch-Anderson equation) took the formω)/(1V A e E --=where E = collection efficiencyA = total collecting surface areaV = gas flow rateω= migration velocitySince E and V are usually known, the amount of collecting surface A can be calculated from a judicious [ ]adj.明智的 selection of the term ω. For decades designers selected ω by analogy , that is, from experience with similar types of dusts and the performance that resulted. For each of these cases, ω was presumed constant. Sizing by analogy and some inherent inaccuracies in the Deutsch-Anderson equation related to particle size and uniformity led to some disappointing results, especially for very high efficiency requirements. It is virtually impossible to find a truly analogous situation, since industrial dusts are composed of many different-size particles, and ω is in fact not constant but dependent upon many process variables.An attempt to account for the sensitivity of ω on process variables, especially particle-size293distribution, appeared in 1957 and was later revised by Allander, Matts, and Ohnfeldt, who derived the expressionn k V Aw e E )/(1--=The second exponent (in this, the so-called modified Deutsch equation) provides a more accurate prediction of performance at high-efficiency levels, but becomes too pessimistic in certain situation. A more useful relationship, developed by Feldman in 1975[7], accounted for such variables as particle-size distribution at the precipitator inlet, changes in size distribution as particles are collected in the precipitator, and operating voltage levels. Figure 10-9 compares the three models for a selected case. These and many other models have been proposed to predict particulate collection in an electrostatic precipitator, and while special advantages can be argued for each depending upon which critical variables they account for, the fact remains that no model exists that accounts for all the variables that limit migration velocity in all situations. This is attributable mainly to the large number of variables that exist and because many of them are interrelated. For this reason, manufacturers size precipitators partly by theory a nd partly by analogy , and in all cases the proprietary [ ]所有者, 业主techniques used are closely guarded. In the final analysis, the goal is still to determine the correct amount of collecting surface area, and that usually depends upon the proper selection of ω.The method used to determine ω in precipitator sizing is not of particular importance to the operator, but knowledge of the variables that influence its value can be useful. The following is a brief discussion of the principal factors that influence effective migration velocity and which manufacturers must contend with in the design stage. The operator should be able to identify which factors he has the most operational control over and which ones, although fixed by design, provide information in understanding precipitator behavior under different operating conditions.Energization Usually expressed as power density related to the total collecting surface area or unit of gas flow rate, the Array amount of useful powerdelivered to the precipitatoris one of the chief variablesthat controls performance.Useful corona power is thepower absorbed incollecting particulate, notthe power consumed insparking or simply thetheoretical rating of the TRset. One empiricalrelationship betweenefficiency and powerdensity is shown in Figure10-10. V oltage is theimportant parameter, butreasonable levels of coronacurrent are necessary, sincewithout current flow,collection would not takeplace.Sectionalization Energization levels are sensitive to differences in gas temperature, dustconcentration,particle-size distribution, and resistivity. V ariations in these parameters are common and even expected across the width and along the length of a precipitator. No sound theoretical relationship between sectionalization and migration velocity is in use, but empirical results have been observed which strongly support the need for proper sectionalization. Ramsdell reported a relationship between efficiency and the sectionalization of complete precipitators, shown in Figure 10-11, and Figure 10-12shows results obtained by Darby relating effectivemigration velocity to bus section size.294Dust resistivity Determined by ash chemical composition and gas temperature and moisture levels, the resistivity of collected ash limits the rate of current flow and thereby affects the total useful corona power that can be delivered to the precipitator. Figure 10-13 shows resistivity as a function of temperature for some selected ashes. Sulfur content of the coal plays a major role in determining resistivity level. The debilitating[ ]使衰弱effect of high resistivity on energization can be seen in the voltage-current (V-I) curves of Figure 10-14. Here,a moderately resistive ash, around 1×1011Ω-cm, does not impair useful power input, and ahealthy current density of 20mA/1000ft2of collecting area is attained. However, the shape of295the curve for the high-resistivity ash breaks sharply around 3 mA/1000ft2, after which voltage decreases with increasing current. None of the power above the breakpoint is useful; in the case shown, the power above the breakpoint is indeed detrimental [ ♎♏♦❒♓❍♏⏹♦●]有害的, since it is indicative of a well-established formation of back corona. Back corona is the emission of positive ions from the collected dust layer that occurs when the electrical breakdown strength of the interstitial [ ♓⏹♦☜☎✆♦♦♓☞☜●](形成)空隙的gases is exceeded by the voltage drop across the collected dust layer. The presence of enough positive ions in the gas passage can destroy the normal precipitation process, but the most common yet least appreciated detriment of high resistivity is that it forces unequal distribution of corona on the discharge electrode, nullifying[ ⏹✈●♓♐♋♓]使无效collection in areas with no corona, and causing premature [ ☐❒♏❍☜♦◆☜]过早的sparking in areas of intense corona.296297Particle size distribution For a single particle of size d , its migration velocity under the influence of charging field strength 0E and collecting field strength p E can be defined asμεω300aCdE E p =where =μgas viscosity , dependent upon temperature=a a term for the charge acquired by the particle0εand C=correction constantsFrom this expression, it is apparent that different size particles will have different migration velocities. Large particles, over 1.0 µm diameter, are charged mainly by direct collision with ions and free electrons moving toward the collecting plate along electric field lines. This field charging mechanism is very efficient for large particles, but the velocity of large charged particles toward the collecting plate is impeded [ ]妨碍; 阻碍 by viscous drag forces. Small particles, less than 0.5 µm, become charged mainly by random thermal motion of ions. This diffusion charging mechanism is less efficient, but charged small particles can proceed toward the collecting plate with relative ease since the drag forces opposing their motion is small. Experimental results examining the effects of particle size are shown in Figure 10-15. The ability of a precipitator to collect the large and small particle sizes is essentially equal, but more difficult for the intermediate-size particles. A precipitator working on a dust comprised mainly ofparticles in the intermediate-size range will be less efficient than an equally sized precipitator working on either predominantly large or small particles.Rapping Intensity of the rapping blow, the time interval between raps, and the duration or on-time of vibrators when they are used determine the cleanliness of electrode systems, which in turn can have a profound effect on energization. Overzealo us rapping can be a detriment, contributing large dust quantities to reentrainment.Alignment Misalignment between discharge and collecting electrodes causes premature sparking and a reduction in the corona power that can be delivered.Collecting electrode spacing Direct relationships between spacing and effective migration velocity have been found from empirical observations, Figure 10-16 illustrating one of them. Applied voltage has to be increased with wider spacings.298299 Discharge electrode geometry The voltage-current relationship in any precipitator depends in part on the geometries and spacings between electrodes. Discharge electrodes of small radii generally produce less voltage at a given current than do large-diameter electrodes. A comparison of V-I curves for a 0.109-in. wire and a large rigid electrode is shown in Figure 10-17.Treatment velocity V ariation in migration velocity with gas velocity for a relative case in the precipitator is shown in Figure 10-18. Above some critical velocity , aerodynamic forces onparticles contribute to reentrainment.Gas flow distribution The best operating condition for a precipitator will occur when the treatment velocity distribution is uniform. When significant maldistribution[ ] (财、物等的)分配不当,分配不公(人口、资源等的)分布不均occurs, the higher velocity in one collecting plate area will decrease efficiency more thana lower velocity at another equal area will increase the efficiency of that area. Small particles tend to follow flow streamlines better than large particles, so a maldistribution in particle size distribution in areas of the precipitator will also occur. Gross flow maldistribution also contributes to reentrainment [ ❒♓♓⏹♦❒♏♓⏹❍☜⏹♦](集尘的)再飞散losses and sneakage of raw gases around collecting plates.Dust concentration Higher dust concentrations in the gas stream inhibit the free flow of current made up of ions and free electrons toward the collecting plate. This suppression in current flow drives the voltage up and can cause sparking. Obviously, the highest dust concentration occurs in the inlet fields, and energization of these field will be affected most.Aspect ratio Lacking any theoretical base, the importance of aspect ratio is related to the time necessary for particles agglomerated on the collecting plates to fall into the hoppers when rapped. If the aspect ratio is too low, contributions to reentrainment will occur. This situation is aggravated by excessively high treatment velocity. Aspect ratio is most important for high-efficiency requirements, with values ranging from 1.0 to 1.5 in common use for efficiencies over 98%.Precipitator length The longer a precipitator is, the finer the particle-size distribution will be in the outlet fields. This aspect of design and selection is most important for very high, on the order of 99.6 to 99.9%, efficiency requirements.Reentrainment This term represents the reintroduction of previously collected ash into the gas stream by any one or all of the mechanisms described above. Gas sneakage around collecting plates or through hoppers can be considered part of the losses constituting reentrainment. Perhaps the worst type of reentrainment is caused by cross-flow in hoppers, resulting from improper flue geometry. Hopper cross-flow can sweep efficiently collected and rapped dust in large quantities, exiting the hopper as an irretrievable [ ♓❒♓♦❒♓☜♌●]不能弥补的loss. Reentrainment is perhaps responsible for the largest difference between theoretical and effective migration velocity.A summary of the effects on precipitator design performance of the parameters described above is shown on Table 10-2.Parameter Property of Effect on Energization Electrode geometry, TR design, gasand ash propertiesCollecting efficiency Sectionalization Precipitator arrangement TR design EnergizationResistivity Ash and gas properties EnergizationParticle-size distribution Ash Energization, collectionefficiencyRapping Precipitator design Energization, reentrainment Alignment Precipitator condition EnergizationSpacing Precipitator design Migration velocityDischarge-electrode geometry Electrode design EnergizationTreatment velocity Precipitator design, gas flow rate Migration velocityGas flow distribution Precipitator design, gas velocity Migration velocityDust concentration Gas distribution, boiler/fuel/fluedesignEnergizationAspect ratio Percipitator design Collection efficiency300Precipitator length Precipitator design Particle-size distributionReentrainment Treatment velocity, rapping,energization (sparking),precipitator/flue geometry Collection efficiency, theoretical and effective migration velocityReliabilityA precipitator properly sized and capable of high efficiency cannot be considered a success if it demonstrates this capability only once during its lifetime. A key issue in assuring long-term operational success is designing for reliability. Designs should prevent subsystem deficiencies, which usually reduce full energization of the precipitator (performance reliability), and physical integrity of the component themselves (mechanical reliability). Although every component in the precipitator system contributes to overall reliability, certain major components and design elements are usually considered critical. These are the casing, electrode system, rapping systems, hoppers, energization equipment, sectionalization, and corrosion control.In addition to its primary functions of electrode support and alignment, the casing must be designed with sufficient strength to withstand temperature or pressure excursions [♓♦☜☞☜⏹]漂移, 偏移that may occur during process upset conditions. If the casing is distorted by thermally induced stress, the alignment of the attached equipment also becomes distorted [♎♓♦♦♦]使变形. In the case of hot precipitators, thermal stress must be accounted for, usually by derating allowable design stresses in main structural members. All precipitators expand and move on their supporting steel structure, so a liberal use of slide plates permitting free expansion with a minimum of frictional stress is required. Finally, the structural design should prevent large thermal gradients from occurring at high-stress areas in the casing and should also prevent high temperatures in the area of the slide plates or in the supporting structure. These features can readily be accommodated by using a stub-column (or stilt) casing design, as shown in Figure 10-19. The clearance between the casing and the support structure afforded by the stub column permits full insulation and ventilation of highly stressed hopper transitions, provides an isolated area for thermal gradients, and prevents the slide plates and support steel from overheating. A more challenging structural design problem occurs when the precipitator is intended for duty on cycling service. The total number of expected starts during the life of the unit and the excursion values should be included in the design.Experience has shown that the primary component that controls precipitator reliability is the discharge electrode system. Performance or mechanical reliability deficiencies in this system lead directly and rapidly to diminished precipitator performance. Designs should prevent electrode failure and ineffective rapping.301。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
'
'
r r 得在 S 系中看来,以 u 运动的场源电荷和以 v 运
动的检验电荷间相互作用:
r r r r r u F qE q 2 [( E y v y E z vz )i vx E y j vx E z k ] c r r r u r qE qv ( 2 E ) c 只与场源电荷有关
16
2、纵向场强不变
E
E
v
S系
S系
E E
17
三、匀速直线运动点电荷的电场
z
S系
r E ?
? P ( x, y, z , t )
r
vt
O
Q
v
x
18
匀速直线运动点电荷的电场:
r E
z
1 2 ˆ r 40 r 2 (1 2 sin2 ) 3 2 r E Q
q B
v
2
二、演示实验结果 磁体—磁体 磁体—电流 电流—电流 磁体中:分子电流 导线中:定向运动的电荷 磁力是运动电荷间的相互作用。
3
存在磁力
静
源 电 荷
r r F qE
静 q r r F qE r r F qE 动 r
动
r r r r F qE qv B
7
1、回旋加速器(cyclotron)
带电粒子
电子回旋周期与速 度无关,所以带电粒 子每次经过缝隙(电 场区域)均被加速。
q vB mv R
mv R qB
2
B
B
D形金属空腔
~
× B f q m
105 V
R
2 m 2 R T v q B
v
8
2、磁聚焦—电子显微镜
带电粒子
v// v cos(匀速运动) 螺旋线 v v sin (圆周运动)
15
电场可以独立于电荷存在,则可用任意电荷 分布来说明上述结论。为避开场点的相对论变 换,用平板电容器间的均匀静电场的变换这一 特例来说明。 1、横向场强增大到 倍。
v
E
S 系
E
静电场 E 0
S系
v
E E 0 0
P
若 v c 得
r r
r E
Q 40 r
2
ˆ r
r Q v
r r 是 r 和 v 的夹角 注意:
x
低速情况回到库 仑定律。
19
r E
1 2 ˆ r 2 2 2 32 40 r (1 sin ) Q
r E 0,
Q 2 ( 1 ) 2 40 r
' Ex Ex
y
'
q
2
E y 1 (u c ) E y
'
r' r' 由 F qE 得:
Fx qEx qEx
' '
Ez 1 (u c) Ez
' 2
o
z'
'
'
r' v
x'
'
Fy qEy' q 1 (u c)2 E y
'
r' 将 F 变换回S系时
要用到速度变换
§10.0 磁感应强度和磁力 电流周围存在着一种特殊物质---磁场 一、磁感应强度
运动电荷受到的最大洛仑兹力 B 电荷电量 电荷运动速度
fL max B qv
1
当电荷运动速度与 B 方向一致时电荷受 力为 0 。
q
v
B
当运动电荷速度与 磁场方向垂直时受到 洛伦兹力 fL 最大。
fL
r r 1 E dS
S
0
q
(S)
i
14
二、 在无磁场情况下电场的变换 S系
z z'
S‘系:只有电场,无磁场。
v
E' 求S系电场 E = ?
x' x
结论: E x E x , E y E y , Ez Ez
1
1 v c
2
2
纵向场强不变,横向场强增加到 倍。
求场源电荷与检验电荷的相互作用
r' r' 思路:因为只知在场源电荷相对观察者静止时有 F qE r' ' 成立, 所以先在固结于场源电荷的 S 系中求 F , r' r E E
再用相对论变换
r' r F F
r' r v v
至 S 系中
21
r' r' 由 F qE : r r r r' ' ' ' ' 设 S 系中: E E x i E y j Ez k
r' 将 F 变换回 S 系时要用到速度变换
23
r ' 设 S 系中 检验电荷 q 以 v 运动: r r r r' v v x i v y j vz k
'
vx u vx uvx 1 2 c
'
由速度变换式:
vy vy u (1 2 v x ) c
'
vz vz u (1 2 vx ) c
令
r r r u B 2 E c
磁感应强度
r r r r 得: F qE qv B
电场力 磁场力
26
m 螺距:d T v // 2q v B // 带电粒子每回旋一周所前进的距离d与v无关。 9
均匀磁场中螺距相同的电子被聚焦:
2 m v 螺距:d v // T q // B
实际中用得更多的是短线圈产生的非均匀磁 场的磁聚焦作用,这种线圈通常称为磁透镜, 它在电子显微镜中起了与光学仪器中的透镜类 似的作用。
Q +
Q 1 E 2 40 r 2 (1 2 )1 2
v
E 2 E0,
20
四、运动电荷间的相互作用
问题:
S 系(观察者)中 r 场源电荷以 u 运动 r 检验电荷以 v 运动
r r r r E E x i E y j Ez k
r r r r v vx i v y j vz k
12
§10.1 运动电荷间的相互作用 一、高斯定理与运动电荷 静止点电荷的电场 运动点电荷的电场 球对称 轴对称 库仑定律成立 库仑定律不成立!
+
+
v
基本假定:对于运动电荷, 高斯定理也成立。 qi
S(t)
S(t )
r r 1 E dS
0 ( S ( t ))
q
i中,凡是 电场,都服从高斯定理,即
'
24
代入得:
S 系y
u r ' r' Fx 2 F v c Fx u ' 1 2 vx c
'
q v
r u r
u qE x q ( E y v y E z vz ) 2 c
o
x
z
Fy uvx Fy qE y q 2 E y u ' c (1 2 vx ) c
22
Fz qEz q 1 (u c) Ez
' ' 2
r' 将 F 变换回 S 系:
u r r Fx 2 F v c Fx u 1 2 v x c
Fy Fy u (1 2 v ) x c
相对论力的变换式
Fz Fz u (1 2 v ) x c
q, v
r 洛仑兹力 :定义磁场 B
4
一些典型的磁感应线的分布:
直线电流的磁感线
圆形电流的磁感线
5
直螺线管电流的磁感线
环形螺线管电流的磁感线
6
三 、带电粒子在磁场中的运动 洛仑兹力
r r r r F qE qv B
四个诺贝尔物理奖: 回旋加速器(1939年) 电子显微镜(1986年) 量子霍尔效应(1985年) 分数量子霍尔效应(1998年)
10
绚丽多彩的极光
在地磁两极附近,由于磁感线与地面垂直,外层空 间入射的带电粒子可直接射入高空大气层内,它们和 空气分子的碰撞产生的辐射就形成了极光。
11
四、安培力 载流导线元在磁场中受的力— 安培力 r B r S Idl
n,q
r dF
r v
dF I dl B
r r r 证明:dF nSdl (qv B ) r r nqvS dl B r r Id l B