(完整word版)五年级上册多边形面积的计算
小学五年级数学上册第五单元《多边形的面积》概念与公式汇总
小学五年级数学上册第五单元《多边形的面积》概念与公式汇总1.长方形:周长=(长+宽)×2【C长=2(a+b)】面积=长×宽【S长=a b】正方形:周长=边长×4【C正=4a】面积=边长×边长【S正=a】2.平行四边形有无数条高。
三角形有三条高。
梯形有无数条高。
3.平行四边形面积公式的推导过程:把平行四边形沿一条高剪下,通过移拼,可以拼成一个长方形。
拼成长方形的长与平形四边形的底相等,长方形的宽与平形四边形的高相等,拼成长方形的面积与平形四边形面积相等,因为长方形面积长乘以宽,所以平行四边形底乘以高。
如果用S表示平形四边形的面积,用a、h分别表示平形四边形的底和高,面积公式可以写成:S=ah平行四边形的面积=底×高S平=ah平行四边形的底=面积÷高a平=S÷h平行四边形的高=面积÷底h平=S÷a4.三角形面积公式的推导过程:把两个完全一样的三角形可以拼成一个平行四边形,拼成平行四边形的底与三角形的底相等,平行四边形的高与三角形的高相等,每个三角形的面积是拼成平形四边形面积的一半,因为平形四边形的面积等于底乘以高,所以三角形面积等于底乘以高除以2。
如果用S表示三角形的面积,用a和h分别表示三角形的底和高,面积公式可以写成:S=ah÷2。
三角形的面积=底×高÷2S三=ah÷2三角形的底=面积×2÷高a三=S×2÷h三角形的高=面积×2÷底h三=S×2÷a5.梯形面积公式的推导过程:把两个完全一样的梯形可以拼成一个平形四边形,拼成平形四边形的底等于梯形的上底加下底的和,平行四边形的高与梯形的高相等,每个梯形的面积是拼成平形四边形面积的一半,因为平形四边形面积等于底乘以高,所以梯形等于(上底+下底)×高÷2. 如果用S表示梯形的面积,用a、b和h分别表示梯形的上底和高,面积公式可以写成S=(a+b)h÷2梯形的面积=(上底+下底)×高÷2S梯=(a+b)h÷2梯形的高=面积×2÷(上底+下底)h梯=S×2÷(a+b)上底+下底=面积×2÷高=S×2÷h梯形的上底=面积×2÷高-下底a梯=S×2÷h-b梯形的下底=面积×2÷高-上底b梯=S×2÷h-a。
五年级上册多边形的面积
五年级上册多边形的面积引言多边形是我们数学中常见的一个几何形状,它由多个线段构成的封闭图形。
而多边形的面积则是指这个多边形所占据的平面区域的大小。
在五年级上册中,我们将学习如何计算多边形的面积,这是一项重要的数学技能,将在解决各类实际问题中帮助我们。
如何计算多边形的面积计算多边形的面积有多种方法,常用的有以下几种:高度法对于任意多边形,可以使用高度法计算其面积。
具体步骤如下: 1. 选择一个边作为基边,并作为水平线段。
2. 从基边上的一端垂直向上或向下作一条高度线。
3. 计算高度线与多边形各边的交点,将多边形分割为若干个三角形或梯形。
4. 计算每个三角形或梯形的面积,并将它们之和即为多边形的面积。
边长法如果多边形的各边均已知长度,可以使用边长法计算其面积。
具体步骤如下:1. 将多边形分割为若干个三角形或梯形。
2. 计算每个三角形或梯形的面积,并将它们之和即为多边形的面积。
隔离法对于规则多边形(各边长度相等、各角度相等的多边形),可以使用隔离法计算其面积。
具体步骤如下: 1. 选择一个顶点为中心点,并以这个中心点为圆心,作一个外接圆。
2. 将外接圆与多边形的每条边的交点连接,形成若干个三角形。
3. 计算每个三角形的面积,并将它们之和即为多边形的面积。
例题让我们通过一个例题来具体理解如何计算多边形的面积。
问题:请计算下图所示的多边形的面积。
多边形示意图解法:我们可以使用高度法计算该多边形的面积。
1.选择基边AB,并作为水平线段。
2.从基边上的一端C垂直向下作一条高度线。
3.计算高度线与多边形各边的交点,将多边形分割为三个三角形和一个梯形。
4.分别计算每个三角形和梯形的面积。
我们假设多边形的高度为h,得到以下计算结果: - 三角形ACD的面积:(1/2) * AC * h - 三角形BCD的面积:(1/2) * BC * h - 三角形ADE的面积:(1/2) * AD * h - 梯形CDEF的面积:((CD + EF) / 2) * h最后,将每个三角形和梯形的面积相加,即可得到多边形的面积。
五年级多边形的面积计算公式汇总
五年级多边形的面积计
算公式汇总
集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]
多边形的面积计算公式
1、长方形的面积=长×宽
字母表示:S=ab
长方形的长=面积÷宽a=S ÷b
长方形的宽=面积÷长b=S ÷a
2、正方形的面积=边长×边长
字母表示:S=a2
3 平行四边形的面积=底×高
字母表示:S=ah
平行四边形的高=面积÷底h=S ÷a
平行四边形的底=面积÷高a=S ÷h
4、三角形的面积=底×高÷2
字母表示:S=ah ÷2
三角形的高=2×面积÷底h=2S ÷a
三角形的底=2×面积÷高a=2S ÷h
5、梯形的面积=(上底+下底)×高÷2
字母表示:S=(a+b)·h ÷2
梯形的高=2×面积÷(上底+下底)h=2S ÷(a+b)
梯形的上底=2×面积÷高—下底a=2S ÷h-b
梯形的下底=2×面积÷高—上底b=2S ÷h-a
1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米
1平方米=10000平方厘米1米==10分米=100厘米。
五年级上册数学《多边形的面积》知识点归纳
五年级上册数学《多边形的面积》知识点归纳五年级上册数学《多边形的面积》知识点1、公式长方形:周长=(长+宽)×2;字母公式:C=(a+b)×2面积=长×宽;字母公式:S=ab正方形:周长=边长×4;字母公式:C=4a面积=边长×边长;字母公式:S=a平行四边形:面积=底×高;字母公式:S=ah三角形:面积=底×高÷2;字母公式:S=ah÷2底=面积×2÷高;高=面积×2÷底梯形:面积=(上底+下底)×高÷2;字母公式:S=(a+b)h÷2上底=面积×2÷高-下底;下底=面积×2÷高-上底;高=面积×2÷(上底+下底)2、单位换算的方法大化小,乘进率;小化大,除以进率。
3、常用单位间的进率1千米=1000米1米=10分米1分米=10厘米1厘米=10毫米1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方分米=100平方厘米4、图形之间的关系(1)、平行四边形可以转化成一个长方形;两个完全相同的三角形可以拼成一个平行四边形。
两个完全相同的梯形可以拼成一个平行四边形。
(2)、等底等高的平行四边形面积相等;等底等高的三角形面积相等。
(3)、等底等高的平行四边形面积是三角形面积的2倍。
如果一个三角形和一个平行四边形等面积,等底,则三角形的高是平行四边形的2倍。
如果一个三角形和一个平行四边形等面积,等高,则三角形的底是平行四边形的2倍。
(4)、把长方形框架拉成平行四边形,周长不变,面积变小了。
5、求组合图形面积的方法(1)仔细观察,确定组合图形可以分割或添补成哪些可以计算面积的基本图形。
(2)找到计算这些基本图形的面积所需要的数据。
(3)分别计算这些基本图形的面积,然后再相加或相减。
五年级多边形的面积计算公式汇总
五年级多边形的面积计
算公式汇总
Document serial number【KK89K-LLS98YT-SS8CB-SSUT-SST108】
多边形的面积计算公式
1、长方形的面积=长×宽
字母表示:S=ab
长方形的长=面积÷宽a=S ÷b
长方形的宽=面积÷长b=S ÷a
2、正方形的面积=边长×边长
字母表示:S=a2
3 平行四边形的面积=底×高
字母表示:S=ah
平行四边形的高=面积÷底h=S ÷a
平行四边形的底=面积÷高a=S ÷h
4、三角形的面积=底×高÷2
字母表示:S=ah ÷2
三角形的高=2×面积÷底h=2S ÷a
三角形的底=2×面积÷高a=2S ÷h
5、梯形的面积=(上底+下底)×高÷2
字母表示:S=(a+b)·h ÷2
梯形的高=2×面积÷(上底+下底)h=2S ÷(a+b)
梯形的上底=2×面积÷高—下底a=2S ÷h-b
梯形的下底=2×面积÷高—上底b=2S ÷h-a
1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米
1平方米=10000平方厘米1米==10分米=100厘米。
五年级数学多边形的面积计算公式汇总+练习题(附答案)
五年级数学多边形的面积计算公式汇总+练习题(附答案)面积计算公式1、长方形的面积=长×宽字母表示:S=ab长方形的长=面积÷宽 a=S÷b长方形的宽=面积÷长b=S÷a2、正方形的面积=边长×边长字母表示: S= a²3、平行四边形的面积=底×高字母表示:S=ah平行四边形的高=面积÷底 h=S÷a平行四边形的底=面积÷高 a=S÷h4、三角形的面积=底×高÷2字母表示:S=ah÷2三角形的高= 2×面积÷底h=2S÷a三角形的底= 2×面积÷高a=2S÷h5、梯形的面积=(上底+下底)×高÷2字母表示:S=(a+b)·h ÷2梯形的高=2×面积÷(上底+下底)h=2S÷(a+b)梯形的上底=2×面积÷高—下底a=2S÷h-b梯形的下底=2×面积÷高—上底b=2S÷h-a1平方千米=100公顷1公顷=10000平方米1平方米=100平方分米1平方米=10000平方厘米1米=10分米=100厘米多边形面积同步试题一、填空1.完成下表。
考查目的:平行四边形、三角形和梯形的面积计算及变式练习。
答案:解析:直接利用公式计算这三种图形的面积,对于学生来说完成的难度不大。
对于已知平行四边形的面积和高求底、已知三角形的面积和底求高这两个变式练习,可引导学生进行比较,理解并强化三角形和梯形的类似计算中需要先将“面积×2”这一知识点。
2.下图是一个平行四边形,它包含了三个三角形,其中两个空白三角形的面积分别是15 平方厘米和25 平方厘米。
中间涂色三角形的面积是()。
考查目的:等底等高的三角形和平行四边形的面积之间的关系。
五年级上册多边形的面积
第五章多边形的面积【知识梳理】1.平行四边形的面积平行四边形的面积=底×高用字母表示:s=ah变形式:平行四边形的底=面积÷高 (a=s÷h)平行四边形的高=面积÷底(h=s÷a)要点提示:求平行四边形的面积时,底和高要对应.2.三角形的面积三角形的面积=底×高÷2用字母表示:s=ah÷2变形式:三角形的底=面积×2÷高(a=2s÷h)三角形的高=面积×2÷底(h=2s÷a)要点提示:①等底等高的三角形的面积相等。
②等底等高的平行四边形和三角形,三角形的面积是平行四边形面积的一半。
3.梯形的面积梯形的面积=(上底+下底)×高÷2用字母表示:s=(a+b)h÷2变形式:梯形的高=面积×2÷(上底+下底)字母表示为:h=2s÷(a+b)梯形的上底=面积×2÷高-下底字母表示为:a=2s÷h-b梯形的下底=面积×2÷高—上底字母表示为:b=2s÷h—a要点提示:已知梯形的面积,求梯形的高或其中一个底,也可以用方程法解决。
4。
组合图形的面积把求组合图形的面积转化成求几个简单图形的面积的和或差。
要点提示:求组合图形的面积时,一定要分清是由哪些基本图形组合而成的,再利用割补、剔除等方法求面积。
5.估计不规则图形的面积方法一:借助方格纸用数方格的方法进行估计。
方法二:根据图形的特点转化为近似的规则图形来估计。
要点提示:数方格时,先确定图形的面积范围,再估计它的面积。
【诊断自测】1.填空题.(1)3。
8dm2=()cm2 0。
03公顷=()平方米(2)一个三角形的底是3。
6米,高是2.5米,它的面积是()平方米,和它等底等高的平行四边形的面积是( )平方米.(3)一个平行四边形的高是12厘米,面积是96平方厘米,它的底是( )厘米。
五上多边形面积知识点归纳总结及习题
五年级数学上册第五单元多边形面积知识点归纳总结一、基本图形(一)长方形1、长方形面积=长×宽字母公式:s=ab长方形周长=(长+宽)×2字母公式:c=(a+b)×2(长=周长÷2-宽;宽=周长÷2-长)2、★长方形中面积、周长与长和宽之间的变化关系:(1)长方形的长加宽等于长方形周长的一半。
即 a + b = c ÷ 2(2)当长方形的周长不变时,长与宽的差越大,这个长方形的面积就越小;反之,长与宽的差越小,这个长方形的面积就越大。
(3)当长方形的面积不变时,长与宽的差越大,这个长方形的周长就越长;长与宽的差越小,这个长方形的周长就越短。
(4)长方形框架拉成平行四边形,周长不变,面积变小。
(二)正方形1、正方形面积=边长×边长字母公式:s= a²或者s=a×a2、正方形周长=边长×4字母公式:c=4a 或者c= a×4(三)平行四边形1、平行四边形面积=底×高字母公式:s=ah2、★平行四边形面积公式的推导过程:剪拼、平移沿着平行四边形的任意一条高剪开,将其一部分平移与另一部分正好拼成一个长方形,这个长方形的长就是平行四边形的底,这个长方形的宽就是平行四边形的高。
因为长方形的面积=长×宽,所以平行四边形的面积=底×高,用字母表示S=a×h。
3、★等底等高的平行四边形面积相等。
(四)三角形1、三角形面积=底× 高÷2字母公式:s=ah÷2(底=面积×2÷高;高=面积×2÷底)2、★三角形面积公式的推导过程:旋转、平移将两个完全一样的三角形拼成一个平行四边形,拼成的平行四边形的底就是三角形的底,拼成的平行四边形的高就是三角形的高,拼成的平行四边形的面积是三角形面积的2倍。
一个三角形的面积是这个平行四边形的面积一半。
五年级上第14讲多边形的面积计算
五年级上第14讲多边形的面积计算在我们的数学学习中,多边形的面积计算是一个非常重要的知识点。
对于五年级的同学来说,掌握好这部分内容,不仅能够帮助我们解决数学问题,还能在日常生活中派上用场呢。
首先,让我们来了解一下什么是多边形。
简单来说,多边形就是由多条线段首尾相连围成的封闭图形。
常见的多边形有三角形、四边形(包括长方形、正方形、平行四边形、梯形等)。
那怎么计算这些多边形的面积呢?我们一个一个来看。
三角形的面积计算相对来说比较简单。
如果我们知道三角形的底和高,就可以用公式“面积=底×高÷2”来计算。
比如说,有一个三角形,底是 6 厘米,高是 4 厘米,那么它的面积就是 6×4÷2 = 12 平方厘米。
接下来是长方形。
长方形的面积等于长乘以宽。
假设一个长方形的长是 8 厘米,宽是 5 厘米,那它的面积就是 8×5 = 40 平方厘米。
正方形就更特殊啦,因为它的四条边都相等,所以面积等于边长×边长。
比如边长为 7 厘米的正方形,面积就是 7×7 = 49 平方厘米。
平行四边形的面积计算可以通过底乘以高来得到。
有一个平行四边形,底是 9 厘米,高是 3 厘米,面积就是 9×3 = 27 平方厘米。
梯形的面积公式稍微复杂一点,是“(上底+下底)×高÷2”。
比如梯形的上底是 3 厘米,下底是 7 厘米,高是 5 厘米,面积就是(3 + 7)×5÷2 = 25 平方厘米。
在实际做题的时候,我们经常会遇到一些需要灵活运用这些公式的情况。
比如说,有的题目可能不会直接告诉我们底和高的长度,而是需要我们通过其他条件先求出来。
比如一个三角形,它的面积是 18 平方厘米,高是 6 厘米,那我们可以通过“底=面积×2÷高”,算出底是18×2÷6 = 6 厘米。
还有的时候,一个图形可能是由几个简单的多边形组合而成的。
五年级上多边形的面积
五年级上多边形的面积在我们五年级上册的数学学习中,多边形的面积可是一个非常重要的知识点。
这部分内容不仅有趣,还能帮助我们解决很多实际生活中的问题呢!首先,咱们来聊聊什么是多边形。
简单来说,多边形就是由三条或三条以上的线段首尾顺次连接所组成的封闭图形。
常见的多边形有三角形、四边形、五边形等等。
那怎么求多边形的面积呢?咱们一个一个来看。
先说说三角形。
三角形的面积公式是:面积=底×高÷2 。
为什么是这样呢?咱们可以通过实验来理解。
比如,我们用两个完全一样的三角形可以拼成一个平行四边形。
这个平行四边形的底就是三角形的底,高就是三角形的高。
因为平行四边形的面积=底×高,而三角形是平行四边形面积的一半,所以三角形的面积就是底×高÷2 。
举个例子,如果一个三角形的底是 6 厘米,高是 4 厘米,那它的面积就是 6×4÷2 = 12 平方厘米。
再来说说平行四边形。
平行四边形的面积=底×高。
这很好理解,我们可以把平行四边形沿着高剪开,然后平移拼成一个长方形。
这个长方形的长就是平行四边形的底,宽就是平行四边形的高。
因为长方形的面积=长×宽,所以平行四边形的面积=底×高。
比如,一个平行四边形的底是 8 厘米,高是 5 厘米,那它的面积就是 8×5 = 40 平方厘米。
接下来是梯形。
梯形的面积=(上底+下底)×高÷2 。
这个公式怎么来的呢?我们可以把两个完全一样的梯形拼成一个平行四边形。
这个平行四边形的底就是梯形的上底与下底之和,高就是梯形的高。
因为平行四边形的面积=底×高,所以一个梯形的面积就是(上底+下底)×高÷2 。
比如说,一个梯形的上底是 3 厘米,下底是 5 厘米,高是 4 厘米,那它的面积就是(3 + 5)×4÷2 = 16 平方厘米。
五年级数学多边形面积的计算
一、介绍多边形和面积的概念多边形是由直线段围成的图形,其中包括三角形、四边形、五边形等等。
面积是描述一个图形所占的平方单位的大小,用平方厘米、平方米等表示。
二、计算三角形面积的方法计算三角形的面积可以使用以下两种方法:1.使用底和高的公式对于任意一个三角形,我们可以通过测量底和高,然后使用公式:面积=底×高÷2,来计算三角形的面积。
2.使用海伦公式对于已知三角形三条边的长度的情况下,我们可以使用海伦公式来计算三角形的面积。
海伦公式如下:面积=√(s×(s-a)×(s-b)×(s-c))其中,a、b、c分别表示三角形的三条边的长度,s为半周长,即s=(a+b+c)÷2三、计算四边形面积的方法计算四边形的面积可以使用以下两种方法:1.使用边长和高的公式对于一个四边形,如果已知两对对边平行,并且我们可以测量其中一对对边的长度,以及从一对对边中的一边到另一对对边的垂直距离(即高),那么可以使用公式:面积=底×高,来计算四边形的面积。
2.使用对角线的公式对于一个四边形,如果已知两条对角线的长度,可以使用以下公式来计算四边形的面积:面积=1/2×(对角线1×对角线2)。
四、计算五边形面积的方法计算五边形的面积可以使用以下方法:使用分割法:将五边形分割成三角形和四边形,分别计算它们的面积,然后相加即可得到五边形的面积。
五、计算多边形面积的方法计算多边形的面积可以使用以下方法:1.使用分割法:将多边形分割成若干个不重叠的三角形,计算每个三角形的面积,然后相加。
2.使用公式法:对于规则多边形,可以使用特定的公式来计算面积。
例如,对于正n边形(n为正整数),面积=(n×边长×高)÷2六、实例请计算一个正三角形的面积,已知边长为6厘米。
根据公式:面积=边长×高÷2=6×(根号3×6)÷2≈15.59平方厘米。
小学五年级数学(上册)知识点:多边形的面积
小学五年级数学〔上册〕知识点:多边形的面积学习数学并不难,学习数学就像交朋友一样,朋友是越交越熟的,天天见面,朋友之间就亲密无间了。
查字典数学网编辑了小学五年级数学(上册)知识点:多边形的面积,欢送阅读!23、公式:长方形:周长=(长+宽)2--【长=周长2-宽;宽= 周长 2-长】字母公式:C=(a+b)2面积= 面积=长宽字母公式:S=ab正方形:周长=边长4 字母公式:C=4a平行四边形的面积=底高字母公式: S=ah三角形的面积=底高2 --【底=面积2高=面积2底】字母公式: S=ah2梯形的面积=(上底+下底)高2 字母公式: S=(a+b)h2【上底=面积2高-下底,下底=面积2高-上底;高=面积2(上底+下底)】24、平行四边形面积公式推导:剪拼、平移25、三角形面积公式推导:旋转平行四边形可以转化成一个长方形;两个完全一样的三角形可以拼成一个平行四边形,长方形的长相当于平行四边形的底;平行四边形的底相当于三角形的底;长方形的宽相当于平行四边形的高;平行四边形的高相当于三角形的高;长方形的面积等于平行四边形的面积,平行四边形的面积等于三角形面积的 2 倍,因为长方形面积=长宽,所以平行四边形面积=底高。
因为平行四边形面积= 因为平行四边形面积=底高,所以三角形面积=底高226、梯形面积公式推导:旋转27、三角形、梯形的第二种推导方法老师已讲,自己看书两个完全一样的梯形可以拼成一个平行四边形,知道就行。
平行四边形的底相当于梯形的上下底之和;平行四边形的高相当于梯形的高;平行四边形面积等于梯形面积的 2 倍,因为平行四边形面积=底高,所以梯形面积=(上底+下底)高2 28、等底等高的平行四边形面积相等;等底等高的三角形面积相等;等底等高的平行四边形面积是三角形面积的 2 倍。
29、长方形框架拉成平行四边形,周长不变,面积变小。
30、组合图形:转化成已学的简单图形,通过加、减进展计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不规则图形面积的计算(一)
我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:
实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF 的面积彼此相等,求三角形AEF的面积.
例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
例4 如右图,A为△CDE的DE边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD及△ACE的面积.
例5 如下页右上图,在正方形ABCD中,三角形ABE的面积是8平方厘
例6 如右图,已知:S△ABC=1,
例7 如下页右上图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG 的长DG为5厘米,求它的宽DE等于多少厘米?
例8 如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.
例9 如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.
习题一
一、填空题(求下列各图中阴影部分的面积):
二、解答题:
1.如右图,ABCD为长方形,AB=10厘米,BC=6厘米,E、F分别为AB、AD中点,且FG=2GE.求阴影部分面积。
2.如右图,正方形ABCD与正方形DEFG的边长分别为12厘米和6厘米.求四边形CMGN(阴影部分)的面积.
3.如右图,正方形ABCD的边长为5厘米,△CEF的面积比△ADF的面积大5平方厘米.求CE的长。
4.如右图,已知CF=2DF,DE=EA,三角形BCF的面积为2,四边形BEDF 的面积为4.求三角形ABE的面积.
5.如右图,直角梯形ABCD的上底BC=10厘米,下底AD=14厘米,高CD=5厘米.又三角形ABF、三角形BCE和四边形BEDF的面积相等。
求三角形DEF的面积.
6.如右图,四个一样大的长方形和一个小的正方形拼成一个大正方形,其中大、小正方形的面积分别是64平方米和9平方米.求长方形的长、宽各是多少?。