2017春八年级数学下册4因式分解3公式法第2课时课件
《公式法》因式分解PPT(第2课时)-北师大版八年级数学下册
课堂小结
1.要想运用完全平方公式分解因式, 必须紧扣完全平方公式的特点. (1)左边是三项式, 其中首末两项分别是两个数(或两个式子)的完全平方. 这两个项的 符号相同, 中间一项是这两个数(或两个式子)的积的2倍, 符号正负均可. (2)右边是两个数(或两个式子)的和(或者差)的平方.当中间的乘积项与首末两项符号相 同时, 是和的平方; 反之, 则是差的平方. 2. 因式分解的一般步骤: (1)“提”, 先看多项式各项, 有就提出来; (2)“套”, 尝试用乘法公式来分解; (3)“查”, 因式分解必须进行到不能再分解为止.
(1)这种方法的关键是 凑成完全平方式 ;
(2)用上述方法把a ²-8a+15因式分解.
合作探究
问题:阅读材料 我们知道对于二次三项式x²+2ax+a²这样的完全平方式, 可以用公式将它分解成(x+a)² 的形式, 但是对于二次三项式x²+2ax-3a²就不能直接应用完全平方公式了, 我们可以采用如下 的办法: x²+2ax-3a²=x²+2ax+a²-a²-3a² =(x+a)²-(2a)² =(x+3a)(x-a) (2)用上述方法把a ²-8a+15因式分解. 解:(2)a²-8a+15= a²-8a+16-16+15
=(a-4)²-1 =(a-3)(a-5)
举一反三
1. 若x ²+2(a+4)x+25是完全平方式, 求a的值. 解:∵x ²+2(a+4)x+25是完全平方式, ∴2(a+4)=±2×5, 解得a=1或a=-9. 故a的值是1或-9.
举一反三
2. 已知二次三项式x²﹣4x+m有一个因式是(x+3), 求另一个因式以及m的值. 解:设另一个因式为(x+n), 得 x2﹣4x+m=(x+3)(x+n) 则x ²﹣4x+m=x²+(n+3)x+3n ∴n+3=-4, m=3n. 解得:n=﹣7, m=﹣21 ∴另一个因式为(x﹣7), m的值为﹣21.
北师大版数学八年级下册4.因式分解-提取公因式课件
③确定字母次数:相同字母的最低次数
探索新知
问题3:对照乘法分配律的逆运算,你能将 + 写成几个因
式的乘积情势吗?
解:4x3+ 12x2
=4x2∙x+4x2∙3
=4x2(x2+3)
提公因式法:如果一个多项式的各项含有公因式,那么就可以把
这个公因式提出来,从而将多项式化成两个因式乘积的情势,这
b是公因式
(2) 3x2 +x
x是公因式
(3) abx-aby
ab是公因式
多项式中各项都含有的相同因式,叫做这个多项式各项的公因式。
探索新知
问题1:找 2 + 4 3 − 6;的公因式。
2
定系数
mb
定字母
2
公因式是2mb
定指数
问题2:如何确定一个多项式的公因式呢?
①确定数字系数:各项系数的最大公约数
(3) - x2+xy-xz = - x(x+y-z)
= - x(x-y+z)
提出负号时括号里的项没变号
错误
随堂测验
2.多项式-6ab2+18a2b2-12a3b2c的公因式是( C )
A.-6ab2c
B-ab2
C.-6ab2
D.-6a3b2C
3.若多项式-6ab+18abx+24aby的一个因式是-6ab,那么另一个因式
种因式分解的方法叫做提公因式法.
典例分析
例1
把7 3 − 21 2 分解因式
解: = 7 2 ∙ − 7 2 ∙ 3
2
= 7 ( − 3)
例2 把−24 3 + 12 2 − 28因式分解
公式法分解因式(二)课件
例3 分解因式
1. 3ax2+6axy+3ay2 2. -x2-4y2+4xy 3. (x+y)x2+2xy(x+y)+y2(x+y)
例4 分解因式
1. a2+b2-2ab - 4(a-b)+4 2. 9(a+2b)2- 30a- 60b+25
3. x4+x2 +1
两人一组,合作编题。
编两道分解因式题,分别满足: 1. 要用到提公因式法和完全平
完全平方公式法分解因式
复习
1、因式分解定义 2、已学过的因式分解的方法
例1 判断下列多项式是不是完 全平方式,若是,请分解因式。
1. x2+12x+36 2. x2-4xy-4y2 3. (x+y)2-6(x+y)+9
例2 分解因式
1. 9a2b2+6ab+1 2. 4-12(x-y)+9(x-y)2 3. x6-10x3+25
方公式。 2. 要用到平方差公式和完全平
方公式。
看谁做得快
1. 20022-4×2002+4 2. 1.23452+0.76552 +
2.469 × 0.7655 3. 20062-4010×2006+20052
随堂测试:分解因式
(1)x2y2-6xy+9 (2)-a+2a2-a3 (3)a4-8a2b2+16b4 (4) (x2+5x)(x2+5_______ 2.我想进一步研究的问题是______
分解因式歌 首先提取公因式,然后想到用公式。 两项想到平方差,然后立方和与差。 三项考虑全平方,十字相乘不能忘。 添项拆项试一试,整体换元功能强。
八年级数学北师大版初二下册--第四单元 4.3《公式法--第二课时:用完全平方公式分解因式》课件
7 【2017·安顺】若代数式x2+kx+25是一个完全 平方式,则k=___±__1_0__.
知识点 2 用完全平方公式分解因式
知2-导
用公式法正确分解因式关键是什么?
从项数看: 都是有3项
熟知公式特征!
从每一项看: 都有两项可化为两个数(或整式)的平方, 另一项为这两个数(或整式)的乘积的2倍.
容易忽视②⑤,注意②提出 1 ,⑤提出3以后 2
就能利用完全平方公式分解因式.
请完成《典中点》 Ⅱ 、 Ⅲ板块 对应习题!
A.b<c<a
B.a<c<b
C.b<a<c
D.c<b<a
知3-练
4 若一个长方形的面积是x3+2x2+x(x>0),且 一边长为x+1,则其邻边长为__x_2_+__x__.
1 知识小结
完全平方公式法: 两个数的平方和加上(或减去)这两个数的积的2倍, 等于这两个数的和(或差)的平方. 即:a2±2ab+b2=(a±b)2.
(来自《完全平方公式进行因式分解的 是( D )
A.x2+1
B.x2+2x-1
C.x2+x+1
D.x2+4x+4
知2-练
3 (2016·长春)把多项式x2-6x+9分解因式,结果正
确的是( A )
A.(x-3)2
B.(x-9)2
C.(x+3)(x-3)
D.(x+9)(x-9)
知1-导
a2 2ab b2 a2 2ab b2
我们把以上两个式子叫做完全平方式 . 两个“项”的平方和加上(或减去)这两“项” 的积的两倍
知1-讲
八年级数学下册第四章3公式法第2课时完全平方公式作业课件121
3.下列多项式不能用完全平方公式因式分解的是( B )
A.91a2+23ab+b2 B.a2-6a+36 C.-4x2+12xy-9y2 D.x2+x+14
4.下列各式因式分解正确的是( B )
A.1+4x2=(1+2x)2 B.6a-9-a2=-(a-3)2 C.1+4m-4m2=(1-2m)2 D.x2+xy+y2=(x+y)2
=0,∴a=b=c,即△ABC为等边三角形
23.给出三个多项式: ①2x2+4x-4; ②2x2+12x+4; ③2x2-4x. 请你把其中任意两个多项式进行加法运算(写出所有可能的结 果),并把每个结果因式分解.
解:①+②,得2x2+4x-4+2x2+12x+4=4x2+16x=4x(x+ 4);①+③,得2x2+4x-4+2x2-4x=4x2-4=4(x+1)(x-1); ②+③,得2x2+12x+4+2x2-4x=4x2+8x+4=4(x2+2x+1)=
4(x+1)2
第二单元 理解权利义 务
第四课 公民义务
第2课时 依法履行义务
13.下列四个多项式中,能因式分解的是( B ) A.a2+1 B.a2-6a+9 C.x2+5y D.x2-5y
14.把下列各式分解因式.
(1)(2015·北京)5x3-10x2+5x; 解:原式=5Βιβλιοθήκη (x2-2x+1)=5x(x-1)2
(2)(2015·黄岗)x3-2x2+x; 解:原式=x(x2-2x+1)=x(x-1)2
(3)(2015·南京)(a-b)(a-4b)+ab. 解:原式=a2-5ab+4b2+ab=a2-4ab+4b2=(a-2b)2
15.分解因式2x2-4x+2的最终结果是( C )
A.2x(x-2) B.2(x2-2x+1) C.2(x-1)2 D.(2x-2)2
北师大版八年级数学下册第四章因式分解章末复习课件(共42张)
章末复习
母题2 (教材P104复习题第1题) 把下列各式因式分解: (1)7x2-63; (2)a3-a; (3)3a2-3b2; (4)y2-9(x+y)2; (5)a(x-y)-b(y-x)+c(x-y); (6)x(m+n)-y(n+m)+(m+n); (7)(x+y)2-16(x-y)2; (8)a2(a-b)2-b2(a-b)2; (9)(x+y+z)2-(x-y-z)2; (10)(x+y)2-14(x+y)+49.
章末复习
相关题1 把下列各式分解因式: (1)5x2-15xy+10xy2; (2)a(x-2)+(2-x)2; (3)2x2y-8xy+8y; (4)(m2+n2)2-4m2n2.
章末复习
解:(1)原式=5x(x-3y+2y2). (2)原式=(x-2)(a+x-2). (3)原式=2y(x2-4x+4)=2y(x-2)2. (4)原式=(m2+n2+2mn)(m2+n2-2mn)=(m+n)2·(m-n)2.
相关题3 求证:不论x取何实数, 多项式-2x4-12x3-18x2的值都不会是 正数.
证明:原式=-2x2(x2+6x+9)=-2x2(x+3)2. ∵-2x2≤0,(x+3)2≥0, ∴-2x2(x+3)2≤0, ∴不论 x 取何实数,原式的值都不会是正数.
章末复习
专题四 因式分解的应用
【要点指点】 因式分解不仅在数值计算、代数式的化简求值等方 面有广泛的应用, 在解决实际问题时也同样重要.通过学习和应用 因式分解, 能使我们的视察能力、运算能力、逻辑思维能力、探究 能力得到提高.
八年级数学下册数学第四章因式分解同步串讲课件
【例1】下列各题中,从左式到右式的变形,哪
些是分解因式?哪些不是分解因式?为什么? (1)a2+2ab+b2=(a+b)2; (2)x2-3x+2=(x-1)(x-2); (3)(x+2)(x-1)=x2+x-2; (4)x(x+2)=x2+2x; (5)x2-y2=(x+y)(x-y); (6)m2+m-4=(m+3)(m-2)+2.
二.因式分解与整式乘法的关系
1. 示例:
两个互 逆的过 程——
分解因式
(a+b)(a-b) 整式乘法
结合:a2-b2
2.
3. 4.ຫໍສະໝຸດ 乘法:积化和差(体现在“乘”上); 因式分解:和差化积(体现在“分解”上)。 二者是一个互逆的过程,可以互相验算印证 乘法是一种运算;因式分解是为了达到目的 进行的一种变形,是解决问题的工具。
;
. ; ; .
形如a2+2ab+b2与a2–2ab+b2 的式子称为完全平方式.
注意:完全平方公式中的a与b不仅可以表示单项式,也可以表示多项式
一.利用平方差公式因式分解
1. 2. 3. 公式:a2-b2=(a+b)(a-b) 特征:左边是两项式,两项符号相反,能写 成平方差的形式。 文字语言:两数平方的差,等于这两数和与 差的乘积。
8a 2c+ 2b c - 4a 3b3 + 6 a2 b - 2ab
- 2x2 –12xy2 +8xy3
第三单元:公式法
填空:
(1)(a+b)(a–b) = ;
(2)(a+b)2=
(3)(a–b)2 = 根据上面式子填空: (1)a2–b2= (2)a2–2ab+b2 = (3)a2+2ab+b2 =
《公式法》因式分解PPT课件(第2课时)
B. + −
C. − +
D. − + +
D
)
课堂检测
基础巩固题
3.如果x2-6x+N是一个完全平方式,那么N是(
A . 11
B. 9
C. -11
)
B
D. -9
4.如果x2-mx+16是一个完全平方式,那么m的值为________.
±8
课堂检测
∴++=(+) =112=121.
连接中考
(2020•眉山)已知 + = − − ,则 −
. 4
的值为
解析:由 +
得
+
= − − ,
− + + = ,
即 − + + + + = ,
∵ − = , = ,
∴原式=2.
巩固练习
变式训练
已知-+-+=,求++的值.
解:∵x2-4x+y2-10y+29=0,
∴(-)+(-)=.
∵(-) ≥ ,(-) ≥ ,
∴-=,-=,∴=,=,
是.
巩固练习
变式训练
将前面例题的(2)(3)(4)变为完全平方式?
(2) + ²;
+ ² + ;
(3) + − ;
+ + ;
(4) + + .
+ + .
探究新知
知识点 2
用完全平方公式因式分解
【最新】北师大版八年级数学下册第四章《4.3公式法》公开课课件2.ppt
=-(x2+2xy+y2 ) =-ab3(a2-2a+1)
=-(x+y)2
=-ab3(a-1)2
用简便方法计算:
2 0 0 5 2 4 0 1 0 2 0 0 3 2 0 0 3 2
解: 2 0 0 5 2 4 0 1 0 2 0 0 3 2 0 0 3 2 2 0 0 5 2 2 2 0 0 5 2 0 0 3 2 0 0 3 2
3、有这两“项”的2倍或-2倍
首 2 2 首 尾 尾 2
按照完全平方公式填空:
( 1 )a 2 1 0 a (2 5 ) (a 5 )2
( 2 )(a 2 y 2 ) 2 a y 1 (ay 1 ) 2
(3) 1( r s 4
1 )r2s2( 2 r s
)2
例1:把下列式子分解因式
⑴ 3ax2这两
=2a(x2+2xy+y2)
=2a(x+y)2
⑵ -x2-4y2+4xy
=-(x2-4xy+4y2)
题,你觉得 分解因式时 应该注意什
么?
=-[x2-2·x·2y+(2y)2]
=-(x-2y)2
把下列多项式分解因式
(1) -2xy-x2-y2 . (2)-a3b3+2a2b3-ab3
A.①② B.①③ C.②③ D.①⑤ B
(2)若a+b=4,则a2+2ab+b2的值是( ) A.8 B.16 C.2 D.4
(3)若x2+2(Dm-3)x+16, 是一个完全平方式,那么m应
为( )
2、把下列各式分解因式:
(1)16a4+24a2b2+9b4 (2) 3am 23an 26am n
北师版初中八下数学第四章 因式分解 公式法 第2课时 运用完全平方公式因式分解
(2)该同学因式分解的结果是否彻底?若不彻底,请直接写出因式分解的最后结 果. 解:(2)该同学因式分解的结果不彻底,因式分解的最后结果为(x-2)4.
(3)请你模仿以上方法对多项式(x2-2x)(x2-2x+2)+1进行因式分解. 解:(3)设x2-2x=y. 原式=y(y+2)+1=y2+2y+1=(y+1)2=(x2-2x+1)2=(x-1)4.
=(x2-4)2 =(x+2)2(x-2)2.
(4)16x2-(x2+4)2; 解:原式=(4x+x2+4)(4x-x2-4)
=-(x+2)2(x-2)2. (5)(x2-2xy+y2)+(-2x+2y)+1. 解:原式=(x-y)2-2(x-y)+1
=(x-y-1)2.
14.已知x2+y2-4x+6y+13=0,求多项式x2-6xy+9y2的值. 解:∵x2+y2-4x+6y+13=0, ∴x2-4x+4+y2+6y+9=0, ∴(x-2)2+(y+3)2=0, ∴x-2=0,y+3=0, 解得x=2,y=-3. 当x=2,y=-3时, x2-6xy+9y2=(x-3y)2=[2-3×(-3)]2=112=121.
=(2x-y)2. (2)9-12a+4a2; 解:原式=32-2×3×2a+(2a)2
=(3-2a)2. (3)(m+n)2-6(m+n)+9. 解:原式=(m+n)2-2×3×(m+n)+32
=(m+n-3)2.
知识点三 先提公因式后运用完全平方公式因式分解
6.把多项式4a2b+4ab2+b3因式分解,正确的是( B )
=-y(y-2x)2. (3)-2a3b2+8a2b2-8ab2. 解:原式=-2ab2(a2-4a+4)
=-2ab2(a-2)2.
易错点 运用公式法因式分解时不彻底 9.把(a2+1)2-4a2进行因式分解,得到的结果为( C )
北师大版八年级数学下册4.运用平方差公式因式分解精品课件
2 平方差公式与提公因式法综合运用
例3 计算下列各题:
(1)1012-992;
(2)53.52×4-46.52×4.
解:1012-992
解:53.52×4-46.52×4
=(101+99)(101-99) =400
=4×(53.52-46.52) =4×(53.5+46.5)(53.5-46.5) =4×100×7=2800.
=(3m+3n+m-n)(3m+3n-m+n)
=(4m+2n)(2m+4n) =4(2m+n)(m+2n).
若用平方差公式分解后的结果中有 公因式,一定要再用提公因式法继 续分解.
பைடு நூலகம்
课程讲授
2 平方差公式与提公因式法综合运用
(2)2x3-8x.
(2)原式=2x(x2-4) =2x(x2-22) =2x(x+2)(x-2)
示数、单项式、还是多项式, 只要被分解的多项式能转化成 平方差的情势,就能用平方差
公式因式分解.
课程讲授
2 平方差公式与提公因式法综合运用
例1 把下列各式因式分解:
(1)9(m+n)2-(m-n)2;
(2)2x3-8x.
解:(1)原式=[3(m+n)]2-(m-n)2
=[3(m+n)+(m-n)][3(m+n)-(m-n)]
课堂小结
运用平方差公 式因式分解
根据
两个数的平方差,等于这两个数的和 与这两个数的差的乘积。
a2-b2=(a+b)(a-b)
与提公因式 法综合运用
①提取公因式;
②运用平方差公式;
③检查多项式的因式分解是否完全,有没
有分解到不能再分解为止.
=ab(a2-1) =ab(a+1)(a-1).
北师大版八年级数学下册4.3 第2课时 完全平方公式
a2 2ab b2 a b2
• 3:完全平方公式特点: 含有三项;两平方项的符号同号;首尾2倍中间项
课外作业
1.练闯考P57(预习导学、课内精 炼1-10题)
2.课本P102-103(随堂练习第1、2 题,习题 4.5第1、2题,做到作业 本上)
(2)a2+2ab-b2 (a b)2
错。此多项式不是完全平方式
典例精析
例3 如果x2-6x+N是一个完全平方式,那么N是( B )
A . 11
B. 9 C. -11 D. -9
解析:根据完全平方式的特征,中间项-6x=2x×(-3), 故可知N=(-3)2=9.
变式训练 如果x2-mx+16是一个完全平方式,那么m的值 为___±__8___.
练习
把下列各式分解因式
① ax4 ax2
解:原式=ax2(x2-1) =ax2(x+1)(x-1)
② x4-16
解:原式=(x2+4)(x2-4)
=(x2 +4)(x+2)(x-2)
(有公因式,先提公因式) (因式分解要彻底。)
2.除了平方差公式外,还学过了哪些公式?
(a b)2 a2 2ab b2 (a b)2 a2 2ab b2
解析:∵16=(±4)2,故-m=2×(±4),m=±8.
方法总结:本题要熟练掌握完全平方公式的结构特 征, 根据参数所在位置,结合公式,找出参数与已 知项之间的数量关系,从而求出参数的值.计算过程 中,要注意积的2倍的符号,避免漏解.
课堂小结
• 1:整式乘法的完全平方公式是:
a b2 a2 2ab b2
4.3公式法第2课时逆用完全平方公式课件北师大版八年级数学下册
第四章 因式分解 4.3 公式法
第2课时 逆用完全平方公式
完全平方
完全平方式 2.由因式分解与整式乘法的关系可以看出,如果把乘法公式反过来,就可以用来把 某些多项式因式分解,这种因式分解的方法叫作__运__用__公__式_பைடு நூலகம்法___. 3.分解因式时,一般都遵循“一提、二套、三变、四查”这四步. (1)如果多项式的各项含有公因式,那么首先提取这个公因式. (2)如果多项式各项没有公因式,那么考虑套用公式.
(3)如果用上述方法还不能分解,那么可以尝试先变形整理,再运用提公因式法、 公式法等来分解. (4)必须进行到每一个多项式都不能再分解为止.
【点拨】若一个多项式各项含有公因式,首先提公因式,然后再用其他方法进行因 式分解,同时因式分解要彻底,直到不能分解为止,注意整体思想在因式分解中的运用.
D
B
D
B
6.把下列各式因式分解:
北师大版八年级下册数学第四章 因式分解第3节《公式法(2)》参考教案
4.3.2 公式法(二)●教学目标(一)教学知识点1.使学生会用完全平方公式分解因式.2.使学生学习多步骤,多方法的分解因式.(二)能力训练要求在导出完全平方公式及对其特点进行辨析的过程中,培养学生观察、归纳和逆向思维的能力.(三)情感与价值观要求通过综合运用提公因式法、完全平方公式,分解因式,进一步培养学生的观察和联想能力.●教学重点让学生掌握多步骤、多方法分解因式方法.●教学难点让学生学会观察多项式的特点,恰当地安排步骤,恰当地选用不同方法分解因式.●教学方法观察—发现—运用法●教具准备投影片两张第一张(记作§4.3.2 A)第二张(记作§4.3.2 B)●教学过程Ⅰ.创设问题情境,引入新课[师]我们知道,因式分解是整式乘法的反过程,倒用乘法公式,我们找到了因式分解的两种方法:提取公因式法、运用平方差公式法.现在,大家自然会想,还有哪些乘法公式可以用来分解因式呢?在前面我们不仅学习了平方差公式(a+b)(a-b)=a2-b2而且还学习了完全平方公式(a±b)2=a2±2ab+b2本节课,我们就要学习用完全平方公式分解因式.Ⅱ.新课1.推导用完全平方公式分解因式的公式以及公式的特点.[师]由因式分解和整式乘法的关系,大家能否猜想出用完全平方公式分解因式的公式呢?[生]可以.将完全平方公式倒写:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.便得到用完全平方公式分解因式的公式.[师]很好.那么什么样的多项式才可以用这个公式分解因式呢?请大家互相交流,找出这个多项式的特点.[生]从上面的式子来看,两个等式的左边都是三项,其中两项符号为“+”,是一个整式的平方,还有一项符号可“+”可“-”,它是那两项乘积的两倍.凡具备这些特点的三项式,就是一个二项式的完全平方,将它写成平方形式,便实现了因式分解.[师]左边的特点有(1)多项式是三项式;(2)其中有两项同号,且此两项能写成两数或两式的平方和的形式;(3)另一项是这两数或两式乘积的2倍.右边的特点:这两数或两式和(差)的平方.用语言叙述为:两个数的平方和,加上(或减去)这两数的乘积的2倍,等于这两个数的和(或差)的平方.形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式.由分解因式与整式乘法的关系可以看出,如果把乘法公式反过来,那么就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.投影(§4.3.2 A)项;其中有两项同号且能写成两个数或式的平方;另一项是这两数或式乘积的2倍.[生](1)是.(2)不是;因为4x不是x与2y乘积的2倍;(3)是;(4)不是.ab不是a与b乘积的2倍.(5)不是,x2与-9的符号不统一.(6)是.2.例题讲解[例1]把下列完全平方式分解因式:(1)x2+14x+49;(2)(m+n)2-6(m +n)+9.[师]分析:大家先把多项式化成符合完全平方公式特点的形式,然后再根据公式分解因式.公式中的a,b可以是单项式,也可以是多项式.解:(1)x2+14x+49=x2+2×7x+72=(x+7)2(2)(m +n)2-6(m +n)+9=(m +n)2-2·(m +n)×3+32=[(m +n)-3]2=(m +n-3)2.[例2]把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)-x2-4y2+4xy.[师]分析:对一个三项式,如果发现它不能直接用完全平方公式分解时,要仔细观察它是否有公因式,若有公因式应先提取公因式,再考虑用完全平方公式分解因式.如果三项中有两项能写成两数或式的平方,但符号不是“+”号时,可以先提取“-”号,然后再用完全平方公式分解因式.解:(1)3ax 2+6axy+3ay 2=3a (x 2+2xy+y 2)=3a (x+y )2(2)-x 2-4y 2+4xy=-(x 2-4xy+4y 2)=-[x 2-2·x·2y+(2y )2]=-(x -2y )2Ⅲ.课堂练习a.随堂练习1.解:(1)是完全平方式x 2-x+41=x 2-2·x·21+(21)2=(x -21)2 (2)不是完全平方式,因为3ab 不符合要求.(3)是完全平方式41m 2+3 m n+9n 2 =(21 m )2+2×21 m×3n+(3n )2 =(21 m +3n )2 (4)不是完全平方式2.解:(1)x 2-12xy+36y 2=x 2-2·x·6y+(6y )2=(x -6y )2;(2)16a 4+24a 2b 2+9b 4=(4a 2)2+2·4a 2·3b 2+(3b 2)2=(4a2+3b2)2(3)-2xy-x2-y2=-(x2+2xy+y2)=-(x+y)2;(4)4-12(x-y)+9(x-y)2=22-2×2×3(x-y)+[3(x-y)]2 =[2-3(x-y)]2=(2-3x+3y)2b.补充练习投影片(§4.3.2 B)这节课我们学习了用完全平方公式分解因式.它与平方差公式不同之处是:(1)要求多项式有三项.(2)其中两项同号,且都可以写成某数或式的平方,另一项则是这两数或式的乘积的2倍,符号可正可负.同时,我们还学习了若一个多项式有公因式时,应先提取公因式,再用公式分解因式.Ⅴ.课后作业习题4.51.解:(1)x 2y 2-2xy+1=(xy -1)2;(2)9-12t+4t 2=(3-2t )2;(3)y 2+y+41=(y+21)2; (4)25m 2-80 m +64=(5 m -8)2;(5)42x +xy+y 2=(2x +y )2; (6)a 2b 2-4ab+4=(ab -2)22.解:(1)(x+y )2+6(x+y )+9=[(x+y )+3]2=(x+y+3)2;(2)a 2-2a (b+c )+(b+c )2=[a -(b+c )]2=(a -b -c )2;(3)4xy 2-4x 2y -y 3=y (4xy -4x 2-y 2)=-y(4x2-4xy+y2)=-y(2x-y)2;(4)-a+2a2-a3=-(a-2a2+a3)=-a(1-2a+a2)=-a(1-a)2.3.解:设两个奇数分别为x、x-2,得x2-(x-2)2=[x+(x-2)][x-(x-2)]=(x+x-2)(x-x+2)=2(2x-2)=4(x-1)因为x为奇数,所以x-1为偶数,因此4(x-1)能被8整除.Ⅵ.活动与探究写出一个三项式,再把它分解因式(要求三项式含有字母a和b,分数、次数不限,并能先用提公因式法,再用公式法分解因式.分析:本题属于答案不固定的开放性试题,所构造的多项式同时具备条件:①含字母a和b;②三项式;③可提公因式后,再用公式法分解.参考答案:4a3b-4a2b2+ab3=ab(4a2-4ab+b2)=ab(2a-b)2●板书设计参考练习把下列各式分解因式1.-4xy-4x2-y2;2.3ab2+6a2b+3a3;3.(s+t)2-10(s+t)+25;4.0.25a2b2-abc+c2;5.x2y-6xy+9y;6.2x3y2-16x2y+32x;7.16x5+8x3y2+xy4参考答案:解:1.-4xy-4x2-y2=-(4x2+4xy+y2)=-(2x+y)2;2.3ab2+6a2b+3a3=3a(b2+2ab+a2)=3a(a+b)2;3.(s+t)2-10(s+t)+25=[(s+t)-5]2=(s+t-5)2;4.0.25a2b2-abc+c2=(0.5ab-c)2;5.x2y-6xy+9y=y(x2-6x+9)=y(x-3)2;6.2x3y2-16x2y+32x=2x(x2y2-8xy+16)=2x(xy-4)2;7.16x5+8x3y2+xy4=x(16x4+8x2y2+y4)=x(4x2+y2)2.。
北师大版八年级数学下册第四章4.和4.因式分解公式法课件
练习:课本100页,知识技能1
例2
把下列各式因式分解:
总结
1.分解因式的步骤:
(1)9(m+ n)2-(m-n)2
(2)2x3-8x
(1)提;(2)套
2.整体思想
解:(1)原式=[3(m+n)]2-(m-n)2 (2)原式=2x(x2-4)
=[3(m+n)+(m-n)][3(m+n)-(m-n)] =2x(x2-22)
(2)原式=-( − + ) =-(a-2b)2 1.提 2.套
(3)原式=y(y2-4y+4)
= y(y-2)2.
(4)原式= (y2 + x2 )2 -()
=(y2 + x2 +2xy)(y2 + x2 -2xy) = + 2 ( − )2
先破后立
练习:名校课堂67页-68页
=( 2 +4 2 )(x+2y)(x-2y)
=(x+3)(x-3)
先破后立:
若一个多项式没有公因式,也不能直接运用公式时,
要把多项式化简,然后再考虑用适当的方法分解
练习:课本100页知识技能2(1)(3)(5)
想一想:以前学过两个乘法公式
a b
2
a b
2
a 2ab b
y)]
=(6x+6y+7x-7y)(6x+6y-7x+7y)
=(13x-y)(13y-x);
(2) -16
(3) ( − ) +2(x-5)
解(2)原式= ( 2 )2 −( )
(3)原式= -2x+1+2x-10
3 公式法 第2课时2
相应的
各表示什么?
第五环节 随堂练习
1.判别下列各式是不是完全平方式,若是说出
相应的
各表示什么?
不是 不是
不是
2. 把下列各式分解因式:
第六环节 联系拓广
1. 用简便方法计算:
第六环节 联系拓广
1. 用简便方法计算:
2. 若a²+b²-6a+4b+13=0,
求a+b的值
3.将
再加上一个整式,使它成为完全
例2.把下列各式分解因式:
解:原式
解:原式
若多项式中有公因式, 应先提取公因式,然后 再进一步分解因式。 注意:一提二套三检查
例2.把下列各式分解因式:
解:原式
解:原式
若多项式中有公因式, 应先提取公因式,然后 再进一步分解因式。 注意:一提二套三检查
第五环节 随堂练习
1.判别下列各式是不是完全平方式,若是说出
两个数的平方和,加上(或减去) 这两个数 的积的两倍,等于这两数和(或者差) 的平 方.
第二环节 学习新知
a2 2ab b2 (a b)2
两个数的平方和,加上(或减去)这两个数 的积的两倍,等于这两数和(或者差)的平方.
形如
的多项式称为完全平方式.
完全平方式的特点:
1、总含有三项;
2、其中两项可写成两数的平方和的形式,另一项刚好是两项积的2倍 ;
平方式,你有几种方法?
第七环节自主小结
从今天的课程中,你学到了哪些知识? 掌握了 哪些方法?
• 完全平方公式:
完全平方式的特点: 1、总含有三项,a,b既可以是数,也可以是单项式或多项式; 2、其中两项可写成两数的平方和的形式,另一项刚好是两项积 的2倍;
(1)形如________________形式的多项式可以用 完全平方公式分解因式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(教材例3)把下列完全平方式因式分解:
(1)x2+14x+49;
(2)(m+n)2-6(m+n)+9. „解析‟ 首先把多项式化成符合完全平方公式特点的形式, 然后再根据公式分解因式.公式中的a,b可以是单项式,也可以是 多项式. 解:(1)x2+14x+49 =x2+2×7x+72 =(x+7)2. (2)(m+n)2-6(m+n)+9 =(m+n)2-2×(m+n)×3+32
八年级数பைடு நூலகம்· 下 新课标[北师]
第四章 因式分解
学习新知
检测反馈
问题思考
学习新知
1.什么叫把一个多项式因式分解?我们已经学习了哪些因式分解的方法?
把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分
解.我们学过的因式分解的方法有提公因式法及运用平方差公式法. 2.把下列各式分解因式: (1)ax4-ax2 ; (2)16m4-n4. 解:(1)ax4-ax2=ax2(x2-1) =ax2(x+1)(x-1). (2)16m4-n4=(4m2)2-(n2)2 =(4m2+n2)(4m2-n2) =(4m2+n2)(2m+n)(2m-n). 3.我们学过的乘法公式除了平方差公式之外,还有哪些公式? 解:有完全平方公式:(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.
(a-1)2
.
解析:a2-2a+1=a2-2· a· 1+12=(a-1)2.故填(a-1)2. 6.分解因式: (1)a2+8a+16; 解:(1)(a+4)2. (2)(1-2t)2.
(2)1-4t+4t2.
=[(m+n)-3]2
=(m+n-3)2.
(教材例4)把下列各式因式分解: (1)3ax2+6axy+3ay2; (2)-x2-4y2+4xy. „解析‟ 对一个三项式,首先要仔细观察它是否有公因式, 若有公因式,则应先提取公因式,再考虑用完全平方公式分解因 式.如果三项中有两项能写成两数或式的平方,但符号不是“+” 号时,可以先提取“-”号,然后再用完全平方公式分解因式. (2)-x2-4y2+4xy 解:(1)3ax2+6axy+3ay2 =3a(x2+2xy+y2) =-(x2-4xy+4y2) =-[x2-2· x· 2y+(2y)2] =-(x-2y)2.
=3a(x+y)2.
检测反馈
1.下列各式是完全平方式的是 ( C ) A.16x2-4xy+y2 B.m2+mn+n2
1 2 d 4
C.9a2-24ab+16b2
D.c2+2cd+
2.把多项式3x3-6x2y+3xy2因式分解结果正确的是 ( D ) A.x(3x+y)(x-3y) C.x(3x-y)2 B.3x(x2-2xy+y2) D.3x(x-y)2
用完全平方公式分解因式
和讨论运用平方差公式把多项式因式分解的思路一样,把完全 平方公式反过来,就得到: a2+2ab+b2=(a+b)2; a2-2ab+b2=(a-b)2. 上面式子左边的特点:(1)多项式是三项式;(2)其中有两项同号, 且这两项能写成数或式的平方的形式;(3)另一项是这两数或两式 乘积的2倍. 上面式子右边的特点:这两数或两式和(或差)的平方. 用语言叙述为:两个数的平方和,加上(或减去)这两数的乘积 的2倍,等于这两个数的和(或差)的平方. 形如a2+2ab+b2或a2-2ab+b2的式子称为完全平方式. 由因式分解与整式乘法的关系可以看出,如果把乘法公式反过来, 那么就可以用来把某些多项式因式分解,这种因式分解的方法叫做 公式法.
解析:多项式提取公因式后,利用完全平方公式分解即可.故选D. 3.下列多项式:①x2+xy-y2;②-x2+2xy-y2;③xy+x2+y2;④1-x+ x 完全平方公式分解因式的是 ( D )
2
4
.其中能用
A.①②
B.①③
C.①④
D.②④
4.若a+b=3,则2a2+4ab+2b2的值为
18
.
解析:∵a+b=3,∴2a2+4ab+2b2=2(a+b)2=2×32=18.故 填18. 5.(2015· 温州中考)分解因式:a2-2a+1=