《充分条件、必要条件》集合与常用逻辑用语 图文

合集下载

第1单元-集合与常用逻辑用语(144张PPT)

第1单元-集合与常用逻辑用语(144张PPT)


向 固
2.集合间关系的基本问题

(1)A={x|2m+1<x<3m},集合 B={x|3<x<9},若 A
础 ⊆B,则 1≤m≤3.( )
(2)含有 n 个元素的集合的子集个数是 2n、真子集个
数是 2n-1、非空真子集的个数是 2n-2.( )
[答案] (1)× (2)√
返回目录
第1讲 集合及其运算
返回目录
使用建议
1.编写意图 高考对集合和常用逻辑用语的要求不高,集合主要是 一种基本语言和数学表达的工具,常用逻辑用语主要是数 学学习和思维的工具. 编写中注意到以下几个问题:(1)考虑到该部分在高考 试题中的考查特点和难度,加强了对基础知识、基本方法 的讲解和练习题的力度,控制了选题的难度;(2)从近几年 高考看来,涉及该部分内容的信息迁移题是高考的一个热 点话题,因此适当加入了类似的题目;(3)考虑到该部分内 容是第一轮初始阶段复习的知识,因此在选题时尽量避免 选用综合性强,思维难度大的题目.
A⊆B,∃x0∈B, x0∉A
相等
集合A,B的元素完全 __________
A⊆B,B⊆A⇒A =B
_______相__同任何元素
空集 的集不合含.空集是任何 ∀x,x∉∅,∅⊆A
集合A的子集
记法
A⊆B或 __B_⊇_A____
A_____B 或B A
__________ A=B

返回目录
第1讲 集合及其运算
考 向
m 的取值范围.
[答案] (1)B (2)A
返回目录
第1讲 集合及其运算
[解析] (1)若 a+2=1,则 a=-1,代入集合 A,得
A={1,0,1},与集合元素的互异性矛盾;

《充分条件、必要条件》集合与常用逻辑用语课件 图文

《充分条件、必要条件》集合与常用逻辑用语课件 图文
若 A B,则 p 是 q 的必要不充分条件.
栏目 导引
第一章 集合与常用逻辑用语
1.(2019·潮州期末)已知命题 p:-1<x<1,命题 q:x≥-2,
则 p 是 q 的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析:选 A.依题意可知 p⇒q 成立,反之不成立.即 p 是 q 的充
=-1,则由 x>-1,不一定推出 x>|-1|,即充分性不成立,则
“x>a”是“x>|a|”的必要不充分条件,故选 B.
栏目 导引
第一章 集合与常用逻辑用语
3.“x<2”是“x-1 2<0”的(
)
A.充要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
ቤተ መጻሕፍቲ ባይዱ
解析:选 A.由x-1 2<0 得 x-2<0 得 x<2,即“x<2”是“x-1 2<0” 的充要条件,故选 A.
条件关系
p 是 q 的__充__分__条件 q 是 p 的_必__要___条件
“如果 p,那么 q” 是假命题 p__⇒/__q
p 不是 q 的__充__分__条件 q 不是 p 的__必__要__条件
栏目 导引
第一章 集合与常用逻辑用语
■名师点拨 对于“p⇒q”,蕴含以下多种解释 (1)“如果 p,那么 q”形式的命题为真命题. (2)由条件 p 可以得到结论 q. (3)p 是 q 的充分条件或 q 的充分条件是 p. (4)只要有条件 p,就一定有结论 q,即 p 对于 q 是充分的. (5)q 是 p 的必要条件或 p 的必要条件是 q. (6)为得到结论 q,具备条件 p 就可以推出. 显然,“p 是 q 的充分条件”与“q 是 p 的必要条件”表述的是 同一个逻辑关系,即 p⇒q,只是说法不同.

第2讲 充分条件与必要条件(共43张PPT)

第2讲 充分条件与必要条件(共43张PPT)
解析
角度 2 集合法判断充分、必要条件
例 2 (2020·济南市高三上学期期末)设 x∈R,则“2x>4”是“lg (|x|
-1)>0”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 设 p:2x>4,即 p:2x>22,整理得 p:x>2;设 q:lg (|x|-1)
“a·b=0”是“a⊥b”的充要条件.故选 C.
解析 答案
3.若集合 A={2,4},B={1,m2},则“A∩B={4}”是“m=2”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
解析 当 m=2 时,有 A∩B={4};若 A∩B={4},则 m2=4,解得 m
() A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
答案
解析 若 ln m<ln n,根据对数函数的定义域及单调性可知 0<m<n,可 得 m2<n2,因而具有充分性;若 m2<n2,则|m|<|n|,当 m<0,n<0 时对数函数 无意义,因而不具有必要性,综上可知,“ln m<ln n”是“m2<n2”的充分不必 要条件.故选 A.
淆.
2.根据充分、必要条件求解参数范围的方法 (1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合 之间的关系,然后根据集合之间的关系列出关于参数的不等式(组)求解. (2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利 用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决 定端点值的取舍,处理不当容易出现漏解或增解的现象.

16《充分条件、必要条件》集合与常用逻辑用语 PPT教学课件 (第1课时充分条件与必要条件)

16《充分条件、必要条件》集合与常用逻辑用语 PPT教学课件 (第1课时充分条件与必要条件)

29
栏目导航
30
1.Байду номын сангаас分条件、必要条件的判断方法 (1)定义法:直接利用定义进行判断. (2)等价法:“p⇔q”表示 p 等价于 q,等价命题可以进行转换, 当我们要证明 p 成立时,就可以去证明 q 成立.
栏目导航
31
(3)利用集合间的包含关系进行判断:如果条件 p 和结论 q 相应 的集合分别为 A 和 B,那么若 A⊆B,则 p 是 q 的充分条件;若 A⊇B, 则 p 是 q 的必要条件;若 A=B,则 p 既是 q 的充分条件,也是 q 的 必要条件.
第一章 集合与常用逻辑用语
1.2 常用逻辑用语 1.2.3 充分条件、必要条件 第1课时 充分条件与必要条件
2
学习目标
核心素养
1.通过充分条件、必要条件 1.理解充分条件、必要条件的定义.(难
的判断,提升逻辑推理素 点)
养. 2.会判断充分条件、必要条件.(重点)
2.通过充分条件、必要条 3.会根据充分不必要条件、必要不充分
[答案] C
33
栏目导航
2.使 x>3 成立的一个充分条件是( )
A.x>4
B.x>0
C.x>2
D.x<2
A [只有x>4⇒x>3,其他选项均不可推出x>3.]
34
栏目导航
35
3.设 x,y∈R,则“x≥2 且 y≥2”是“x2+y2≥4”的( )
A.充分不必要条件
B.必要不充分条件
C.充分必要条件
栏目导航
5
思考 1:(1)p 是 q 的充分条件与 q 是 p 的必要条件所表示的推出 关系是否相同?
(2)以下五种表述形式:①p⇒q;②p 是 q 的充分条件;③q 的充 分条件是 p;④q 是 p 的必要条件;⑤p 的必要条件是 q.这五种表述 形式等价吗?

《充分条件与必要条件》集合与常用逻辑用语

《充分条件与必要条件》集合与常用逻辑用语
充分条件与必要条件
汇报人:
目录
• 充分条件 • 必要条件 • 充分条件与必要条件的比较 • 集合论基础知识
01
充分条件
定义
• 充分条件指的是在某个逻辑推理或论证中,导致某个结论或结果成立的充分条件。简单来说 ,就是仅当满足此条件时,结论或结果就会发生。
例子
• 例如,考虑以下逻辑命题:“如果下雨,则比赛会取消”。在 这个命题中,“下雨”就是导致“比赛取消”的充分条件。也 就是说,只有当下雨的情况下,比赛才会被取消。
逻辑用语
• 在逻辑推理或论证中,充分条件通常用“如果…则…”的形 式来表示。例如,“如果P,则Q”表示P是Q的充分条件。
02
必要条件
定义
• 必要条件是指为了使某一结论成立,必须具备的条件,但该条件不保证结论一定成立。换句话说,如果没有该条件,则结 论无法成立。
例子
• 例如,对于结论“如果一个人是大学生,则他一定通过高考 ”,其中的“通过高考”就是必要条件。因为如果一个人没 有通过高考,他就无法成为大学生。
逻辑用语
• 在逻辑用语中,必要条件通常用“只有…才…”或“不… 就…”来表示。例如,“只有通过高考,才能上大学”或 “如果不通过高考,就不能上大学”。
03
充分条件与必要条件的比较
比较定义
充分条件
如果一个条件A能够导致结果B,那么A是B的充分 条件。
必要条件
如果一个条件A是结果B发生的必要条件,也就是 说没有A就没有B。
集合的运算
并集
两个或多个集合合并 后的结果。记作A∪B

交集
两个或多个集合中共 有的元素组成的集合
。记作A∩B。
差集
由属于A但不属于B的 元素组成的集合。记

充分条件与必要条件ppt课件

充分条件与必要条件ppt课件
(2)这是三角形相似的一条性质定理, ⇒ ,所以,是的必要条件.
(3)如图,四边形的对角线互相垂直,但它不是菱形, ⇏ ,所以,
不是的必要条件.
(4)显然, ⇒ ,所以,是的必要条件.
(5)由于(−1) × 0 = 1 × 0,但−1 ≠ 1, ⇏ ,所以,不是的必要条件.
并不意味着只能由这个条件才能推出结论.一般来说,对给
定结论,使得成立的条件是不唯一的.例如我们知道下列
命题均为真命题:
①若四边形的两组对边分别相等,则这个四边形是平行四边形;
②若四边形的一组对边平行且相等,则这个四边形是平行四边形;
③若四边形的两条对角线互相平分,则这个四边形是平行四边形.
(2)若两个三角形相似,则这两个三角形的三边成比例;是
(3)若四边形的对角线互相垂直,则这个四边形为菱形; 不是
(4)若 = 1,则 2 = 1; 是
(5)若 = ,则 = ;不是
(6)若为无理数,则,为无理数. 不是
解:(1)这是平行四边形的一条性质定理, ⇒ ,所以,是的必要条件.
中的与互为充要条件.
⇒ , ⇒ ,则是的充要条件
⇒ , ⇏ ,则是的充分不必要条件
⇏ , ⇒ ,则是的必要不充分条件
⇏ , ⇏ ,则是的既不充分也不必要条件
例3.下列各题中,哪些是的充要条件?
(1):四边形是正方形,
:四边形的对角线互相垂直且平分
(6)由于1 × 2 = 2为无理数,但1, 2不全是无理数, ⇏ ,所以,不是
的必要条件.
一般地,要判断“若,则”形式的命题中是否为的必
要条件,只需判断是否有“ ⇒ ”,即“若,则”是否是
真命题.
不唯一
我们说是的必要条件,是指以为条件可以推出结论,但这

《充分条件、必要条件》集合与常用逻辑用语

《充分条件、必要条件》集合与常用逻辑用语

《充分条件、必要条件》集合与常用逻辑用语汇报人:日期:•集合与常用逻辑用语概述•充分条件•必要条件•充分条件与必要条件的联系与区别•集合与充分条件、必要条件的应用目录01集合与常用逻辑用语概述由具有某种特定性质的元素组成的整体,称为集合。

集合元素子集集合中的每一个成员称为元素。

如果一个集合中的每一个元素都是另一个集合中的元素,那么称这个集合为另一个集合的子集。

03集合的基本概念0201集合的基本概念如果一个集合是另一个集合的子集,但并非等于另一个集合,则称这个集合为真子集。

真子集并集交集补集将两个或多个集合中的所有元素组合在一起,形成一个新的集合,称为并集。

在两个或多个集合中共有的元素组成的集合,称为交集。

在全集中去掉一个或多个集合的所有元素后,剩余的元素组成的集合,称为补集。

常用逻辑用语简介01命题用语言表述一个事实或观点,称为命题。

02真命题如果一个命题符合实际情况,称为真命题。

03假命题如果一个命题不符合实际情况,称为假命题。

04充分条件如果一个条件成立,可以导致另一个条件成立,则称这个条件为充分条件。

05必要条件如果一个条件的成立必须依赖于另一个条件,则称这个条件为必要条件。

06充分必要条件如果一个条件既是充分条件又是必要条件,则称这个条件为充分必要条件。

02充分条件在计算机科学中,充分条件通常指一个程序的输入能够完全确定程序的输出,而不依赖于其他任何输入或程序的状态。

充分条件的定义充分条件又称“充分条件”或“充足条件”,指的是在逻辑推理中,只要有这个条件就足以推导出结论,无需考虑其他条件。

在数学中,充分条件指的是如果有一个集合A,使得集合A中的每一个元素都是集合B的元素,那么称A是B的充分条件。

充分条件的分类充分条件的分类主要有以下几种充分条件归纳判断:指的是在某个时间点或某个事件发生之前,如果有多个事件发生,则可以推导出另一个事件一定会发生。

充分条件假言判断:指的是在某个时间点或某个事件发生之前,如果有某个事件发生,则可以推导出另一个事件一定会发生。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档