SCR脱硝催化剂循环再利用的研究进展
SCR烟气脱硝催化剂生产与应用现状

SCR烟气脱硝催化剂生产与应用现状0 引言氮氧化物(NOx)是主要的大气污染物,主要包括NO、NO2、N2O等,可以引起酸雨、光化学烟雾、温室效应及臭氧层的破坏。
自然界中的NOx63%来自工业污染和交通污染,是自然发生源的2倍,其中电力工业和汽车尾气的排放各占40%,其他工业污染源占20%。
在通常的燃烧温度下,燃烧过程产生的NOx中90%以上是NO,NO2占5%~10%,另有极少量的N2O。
NO排到大气中很快被氧化成NO2,引起呼吸道疾病,对人类健康造成危害。
火电厂产生的NOx主要是燃料在燃烧过程中产生的。
其中一部分是由燃料中的含氮化合物在燃烧过程中氧化而成,称燃料型NOx;另一部分由空气中的氮高温氧化所致,即热力型NOx,化学反应为:N2+O2→2NO(1)NO+1/2O2→NO2(2)还有极少部分是在燃烧的早期阶段由碳氢化合物与氮通过中间产物HCN、CN转化为NOx,简称瞬态型NOx[1]。
减少NOx排放有燃烧过程控制和燃烧后烟气脱硝2条途径。
现阶段主要通过控制燃烧过程NOx的生成,通过各类低氮燃烧器得以实现[2-3]。
这是一个既经济又可靠的方法,对大部分煤质通过燃烧过程控制可以满足目前排放标准。
1 烟气脱硝工艺1.1 相关化学反应NO的分解反应(式(1)的逆反应)在较低温度下反应速度非常缓慢,迄今为止还没有找到有效的催化剂。
因此,要将NO还原成N2,需要加入还原剂。
氨(NH3)是至今已发现的最有效的还原剂。
有氧气存在时,在900~1100℃,NH3可以将NO和NO2还原成N2和H2O,反应如式(3)、(4)所示[4]。
还有一个副反应,生成副产物N2O,N2O 是温室气体,因此,式(5)的反应是不希望发生的。
4NO+4NH3+O2→4N2+6H2O(3)2NO2+4NH3+O2→3N2+6H2O(4)4NO+4NH3+3O2→4N2O+6H2O(5)在900℃时,NH3还可以被氧气氧化,如式(6)~(8)所示。
SCR脱硝催化剂再生试验研究

SCR脱硝催化剂再生试验研究王海军;阳鹏飞;王宏青【摘要】The ash deposition in the waste SCR catalysts were completely removed by these method of screening, washing and purging, and the SCR catalysts with no dust were ob-tained.The use of acid,alkali and other methods to remove the catalyst surface residual trace impurities,the waste SCR catalyst in the arsenic,aluminum,iron,sodium,potassium,sulfur,calcium,silicon and other harmful components decreased to the level of new prod-ucts.The catalysts for the above treatment were added to the vanadium experiment,and the chemical composition of the waste SCR catalyst could reach the level of the new SCR cata-lyst through the regeneration treatment.%采用筛分、洗涤、吹扫等方法彻底清除废旧SCR催化剂中的积灰,得到基本不含灰尘的SCR催化剂,利用包括酸洗、碱洗等方法除去催化剂表面残存的微量杂质,将废SCR催化剂中的砷、铝、铁、钠、钾、硫、钙、硅等有害成分降低至新产品水平。
对上述处理的催化剂进行补钒实验,通过再生处理,废SCR催化剂化学成分可以达到新产SCR催化剂水平。
脱硝催化剂重金属中毒及其再生技术的研究

脱硝催化剂重金属中毒及其再生技术的研究本文所指的脱硝催化剂泛指应用在电厂SCR脱硝系统中的催化剂,SCR技术中的核心部分就是催化剂,它不仅仅决定了SCR系统的脱硝效率,而且还可以大大提高经济性。
近些年来,很多发达国家都不惜花费投入大量的人力、物力、财力,研究和开发高效率、低成本的烟气脱硝催化剂。
然而催化剂长时间的使用便会造成催化剂堵塞烧结以及催化剂中毒等,在这些影响中,重金属中毒也是不可忽视的重要因素。
本文着重于脱硝催化剂重金属铅、砷中毒及其再生技术的研究。
标签:脱硝催化剂;重金属中毒;再生技术引言:目前的科学技术中,选择性催化还原法,即SCR是脱除烟气中氮氧化物最成熟最有效的方法,其中,催化剂作为整个SCR脱硝系统的核心,其性能的好坏直接关系到了整体脱硝效率的高低,同时也让整体的经济成本大大降低。
但是催化剂在长时间的使用过程中就会出现催化剂堵塞烧结以及催化剂中毒的情况发生。
一、SCR催化剂失活研究与分析根据现有的情况分析来看,SCR烟气脱硝催化反应装置大多主要安装在省煤器和空气预热器中间的位置。
整个位置的烟气温度大约在300-400℃之间,温度相当之高,此外,烟气中含有大量的飞灰和大量高浓度的二氧化碳气体。
伴随脱硝工艺运营时间的增加,就会逐步使得催化剂的催化性能降低,从而致使催化剂的中毒失活。
当前,促使催化剂中毒失活的原因主要有以下几种:催化剂烧结受损、微孔阻塞、表面被覆盖、活性组分流失等等。
在催化剂失活过程中,中毒位置主要是:碱金属、碱土金属、磷、HCL、二氧化硫气体等等。
脱硝催化剂的失活原理过程相对比较复杂,在不同的运行条件下,失活的因素也就会有不同。
通过对催化剂失活的因素分析就可以为预防催化剂失活、研究开发相关的再生技术打下坚实的基础。
1. 碱金属与碱土金属中毒在脱硝催化剂中最为常见的一种中毒就是碱金属中毒,碱金属中毒最为显著的是钾、钠元素的中毒。
由于钾、钠元素可以与催化剂中的酸性位相结合,使得催化剂原有的酸性减少,这样一来,就会导致氨的吸附能力大大下降,从而造成催化剂的化学中毒。
SCR烟气脱硝催化剂再生研究进展_吴卫红

在 400 ℃ 左右硫酸盐化的铜能够得到有效的再 剂, , 生 但是对于硫酸盐化的铝, 其再生效果不理想。当 温度高于 400 ℃ 时, 热还原再生后的 CuO / Al2 O3 催 其比表面积和孔径分布与新鲜催化剂相差无 化剂, 几。
WO3 / TiO2 催化剂, 制备了以陶瓷为骨架的 V2 O5 分 K2 O 和 Na2 O ) 中 别研究了水洗再生对碱金属 ( KCl、 毒和 Ca 中毒催化剂的影响。 结果表明, 水洗再生 不能提高碱金属中毒催化剂脱硝活性, 他们认为可 。 能是因为水洗造成了催化剂的剥落 但是, 水洗使 Ca 中 毒 催 化 剂 的 脱 硝 活 性 恢 复 明 显, 在 300 ~ 400 ℃ 的范围, 从 70% 左右提高到 85% ~ 95% 。 有研究者采用超声波清洗设备辅助水洗再生 SCR 催化 剂, 加 强 去 离 子 水 的 冲 洗 效 果。 崔 力 文
第7 期
吴卫红等: SCR 烟气脱硝催化剂再生研究进展
1305
1
水洗再生
水洗再生的具体操作过程为: 首先, 用压缩空气 SCR , 对失活 催化剂进行冲刷 去除催化剂表面黏附 不牢的粉尘; 然后用去离子水冲洗、 清洗和溶解沉积 在催化剂表面的可溶性物质和部分颗粒物 ; 最后, 用 压缩空气进行干燥。 水洗再生一般作为催化剂再生前的预处理阶 不同 段。关于水洗再生对 SCR 催化剂活性的影响, 研究者得到的结论并不相同。 云端等
[2 ] 2 [4 ] 年就需 要 更 换 。 SCR 催 化 剂 的 置 换 费 用 约 占 SCR 系统总价的 50% [5]。 对失活 SCR 催化剂进行
再生, 能够提高或者恢复失活催化剂的活性 , 使失活 催化剂能够得以重新利用。再生费用只占全部更换
脱硝催化剂再生技术及应用

脱硝催化剂再生技术及应用1脱硝催化剂再生的背景NO X是主要大气污染物之一,是灰霾、酸雨污染及光化学烟雾的主要前驱物质。
我国70%的氮氧化物排放均来自于煤炭的燃烧,电厂是用煤大户,如何有效控制燃煤电厂NO X 的排放已成为了环境保护中的重要课题。
在一系列政策、标准的驱动下,“十二五”期间,燃煤火电厂脱硝改造呈全面爆发增长趋势。
截至2013年底,已投运火电厂烟气脱硝机组容量约4.3亿千瓦,占全国现役火电机组容量的50%。
预计到2014年底,已投运火电厂烟气脱硝机组容量约6.8亿千瓦,约占全国现役火电机组容量的75%。
按中国每MW发电机组SCR脱硝催化剂初装量(两层)为0.80~1.1立方米(即0.80~1.1m3/MW),SCR占95%以上估算,预计到2014年底,脱硝催化剂保有量约60万立方米。
脱硝催化剂的化学寿命基本上是按24000小时设计的,意味着运行三到四年后,其催化剂活性会降低。
按照脱硝催化剂的运行更换规律,预计从2016年开始,废催化剂的产生量为每年10~24万立方米(约5~12Mt/a),呈每年递增趋势。
环保部2014年8月正式发布《关于加强废烟气脱硝催化剂监管工作的通知》和《废烟气脱硝催化剂危险废物经营许可证审查指南》,将废烟气脱硝催化剂纳入危险废物进行管理。
更换下来的废催化剂若随意堆存或不当处置,将造成环境污染和资源浪费。
废催化剂的再生处理正是解决这些问题的最佳途径,具有显著的社会效益和经济效益。
作为燃煤电厂SCR脱硝系统的重要组成部分,脱硝催化剂成本约占脱硝工程总投资的35%左右。
废催化剂进行再生处理可为电厂节约可观的催化剂购置费用,否则电厂除了需要投入大量的资金采购新催化剂外还需花费一定费用处理废催化剂。
废催化剂进行再生,实现了中国有限资源的循环再利用,节约原材料,降低能耗,有利于环境保护。
如果不进行再生,将造成资源的严重浪费,并对环境带来二次污染。
可以预见,脱硝催化剂再生虽然在国内是全新的业务,但中国的SCR脱硝装置大量使用再生催化剂是大势所趋。
SCR催化剂的研究应用状况和发展方向

科技情报开发与经济 文章编号: 0 — 0 3 20 )4 0 2 — 2 1 5 6 3 (0 8 1— 10 0 0
S IT C F R A I N D V L P E T& E O O Y C— E H I O M TO E E O M N N C NM
ห้องสมุดไป่ตู้
4 含铅废水治 理措 施的 发展方 向
() 1实施清洁生产措施 。实施清洁 的生产工艺、 使用先进的设备 、 生 产过程实现 自动化 、 落实高效 的管理措施 , 是减少废水和污染物排放 的
最有效途径和最好的工程治理措施 。
1 9 ,7 4 : 5 3 . 9 7 1 ( )3 — 6
硝率 , s 抗 0 中毒能力较强。但其缺点是促进了 s s 0 向 0 的转化 , 并且 其温度范围高于 30℃。C O和 F ’3 高温下很难发生生成 N0的反 5 u e 在 0 ’
1 S R催化剂 的分 类 C
11 贵 金 属 催化 剂 .
应, 并且二者 和 V 是金属氧化物中活性最好 的。M 0 近期一直被用 nx 于研究低温催化剂。 这些催化剂中研究和应用最 多的是 v0 ,i : ' ’ I , 0 . v , 0
技 ,9 9 1( )6 — 1 19 ,9 1 :0 6 .
量降低到最小 。 () 3 确保处理措施 自身的环保 和高效 。要 向占地少 、 节约能耗 、 自动 化操作与管理方便、 处理效率高的方向发展 。
参 考 文 献
等作为载体 。To 具有优 良的低温活性 、 i' 抗结碳性能 、 中毒性能和抗 抗
热稳定性 , s 对 0 有较高 的抵抗性 】 , 但缺点是 对 N 一定的氧化作 H有
~ 一 一 ●
SCR脱硝催化剂现状及成型工艺分析

SCR脱硝催化剂现状及成型工艺分析介绍了国内外钢钛系SCR脱硝催化剂的应用现状,阐述了低温钵系SCR脱硝催化剂的研究进展与工程探索情况,总结了商用蜂窝状、板式和波纹式SCR催化剂的成型工艺,并针对不同行业特性提出了脱硝催化剂研究方向。
选择性催化还原技术(ive catalytic reduction, SCR)是控制氮氧化物(NOx) 排放的最为关键的技术,广泛应用于热电厂、焚烧厂等工业烟气脱硝,以及柴油机动车尾气净化。
该技术以尿素、氨水或液氨产生的NH3为还原剂,核心是催化活性好、选择性高、机械强度高且运行稳定的脱硝催化剂。
SCR催化剂从最初电力脱硝行业的传统车凡钛催化剂的普及应用,到目前应用于钢铁、玻璃等非电行业的低温催化剂的广泛研究,其发展和应用得到突破性进展。
传统钢钛催化剂的发展已经相对成熟,但应用范围窄,条件苛刻;低温催化剂存在易中毒、寿命低、工况适用性等问题亟需解决。
SCR催化剂成型工艺是其应用与工业推广的关键所在,我国在传统催化剂成型技术取得全面性普及与推广,但相比国外催化剂的应用效果不佳;近几年低温SCR 催化剂的研究工作取得突破性成果,应用和推广有待工程校验。
因此,通过深入研究催化剂生产技术和成型工艺,研发经得住实际工程考验的具有自主知识产权催化剂是未来SCR技术发展的重要环节。
1传统SCR脱硝催化剂发展历程1.1国外SCR催化剂的应用美国Engelhard公司在1957年首次成功研发SCR催化剂,由Pt、Rh和Pb等贵金属构成,具有很高的催化活性,但造价昂贵、温度区间窄、易中毒,不适于工业应用。
日本日立、三菱重工等生产的V205(W03)/Ti02 (车凡钛系)催化剂较早实现商业化应用。
20世纪七八十年代,日本和欧美相继建造多套脱硝系统,钢钛系SCR催化剂的商业应用趋于成熟,主要应用于电力行业烟气污染控制。
近30年SCR催化剂在研究和应用方面都取得一定进展,具体发展过程如图1。
SCR脱硝催化剂再生技术的发展及应用

SCR脱硝催化剂再生技术的发展及应用SCR脱硝催化剂是一种重要的大气污染治理技朧,主要用于减少燃煤电厂和柴油发动机等工业设施排放的氮氧化物(NOx)污染物。
在SCR脱硝过程中,氨气(NH3)作为还原剂与NOx在催化剂的作用下发生反应,生成氮气(N2)和水(H2O),从而实现降低NOx排放的目的。
然而,随着SCR脱硝技术的广泛应用,催化剂表面会逐渐积累吸附物和活性物质,使得催化剂活性逐渐降低,因此需要对催化剂进行再生。
SCR脱硝催化剂再生技术的发展主要包括物理方法、化学方法和生物方法三大类。
物理方法主要是通过高温氧化还原(HTOR)处理,将积碳、硫和钾等物质氧化还原为无害物质,恢复催化剂的活性。
化学方法主要是采用酸洗法或溶剂法,通过将催化剂浸泡在酸溶液或溶剂中,去除积碳和硫等物质,然后再进行还原处理。
生物方法则是利用微生物对催化剂进行降解处理,将积碳和硫等物质降解为无害物质,从而恢复催化剂的活性。
随着SCR脱硝催化剂再生技术的不断发展,其应用范围也在逐渐扩大。
目前,SCR脱硝催化剂再生技术已经广泛应用于燃煤电厂、燃气锅炉、石油化工等工业领域,有效降低了NOx排放量,保护了环境。
在未来,随着环保要求的不断提高,SCR脱硝催化剂再生技术将会进一步完善和推广,成为治理大气污染的重要手段之一值得注意的是,虽然SCR脱硝催化剂再生技术在大气污染治理中具有重要意义,但在实际应用中仍存在一些挑战和问题。
首先,催化剂再生成本较高,需要经济上的支持。
其次,高温氧化还原处理可能导致催化剂结构破坏和活性降低。
同时,催化剂再生处理过程中的废水废气处理也需要考虑,以避免对环境造成二次污染。
为了更好地应对这些挑战和问题,未来可以进一步深入研究SCR脱硝催化剂再生技术,提高再生效率,降低成本,减少再生过程对催化剂性能的影响。
同时,加强催化剂再生技术与环保法规政策的结合,促进技术应用和推广。
通过不断创新和改进,SCR脱硝催化剂再生技术将更好地为大气污染治理做出贡献,保护人类健康和环境安全。
SCR脱硝催化剂在线清洗再生活化技术

SCR脱硝催化剂在线清洗再生活化技术一、技术背景随着SCR(Selective Catalytic Reduction)烟气脱硝技术在我国的应用推广,SCR催化剂的重要性逐渐被人们认识,在现有技术条件下,SCR技术以其运行稳定、脱硝性高、氨逃逸低等诸多优点不断获得广泛应用,SCR脱硝催化剂通常采用“2+1”的安装方式,由于SCR催化剂长期处于高温高尘的工作环境中,在运行一段时间后,会出现(1)SCR催化剂表面或孔道堵塞。
SCR脱硝催化过程中,催化剂孔装置会慢慢堵塞并形成一层薄壁,薄壁的厚度约为1-100 um,降低了烟气与催化剂的有效接触,导致不能将N0X 和NH3转化成N2和H20。
(2)催化剂活性成分中毒。
烟气中的有毒成分,如As、K、Na,会在催化剂表面富集,而使催化剂中毒。
例如砷会富集在催化剂表面和内表面,阻止反应进行。
(3)催化剂磨损损失。
烟气中灰尘流经催化剂时,会造成催化剂的磨损,导致催化剂活性成分减少,同时反应截面积减少。
催化剂磨损造成的活性降低是一个不可逆的过程。
烟气中的飞灰流经催化剂不仅造成催化剂磨损,还会造成催化剂表面积灰的磨损;同时,烟气中的飞灰被截留,在催化剂表面形成新的表面覆盖物,阻碍烟气的扩散等原因。
都会使SCR催化剂活性表面减少,活性降低,寿命缩短。
正常的SCR催化剂使用寿命为2年左右,在第3年就会有废SCR催化剂产生。
由于SCR催化剂初期投资大,约占整个脱硝系统总投资的30-50%,当SCR催化剂中毒失活后,若采用新SCR催化剂进行替换会导致脱硝成本大幅度增加,而若采用适当的技术对SCR催化剂进行在线再生,则可能有效降低脱硝成本,据测算,对一个典型的600兆瓦机组,若采用SCR催化剂在线再生技术处理中毒失活的旧SCR 催化剂,每年可节省100-300万人民币。
目前我国火电机组所安装的SCR催化剂已进入更换期,SCR催化剂的更换主要采用购买新SCR催化剂或对失活的旧SCR 催化剂进行在线再生的方式,采用购买新SCR催化剂进行更换的方式将直接影响SCR系统的运行成本。
SCR脱硝催化剂再生技术的发展及应用

22技术与工程应用Technology & Engineering Application王春兰1,宋 浩2,韩东琴2(1.中国环保机械行业协会,北京 100823;2.苏州华乐大气污染控制科技发展有限公司,江苏 苏州 215027)摘 要:催化剂是SCR烟气脱硝技术的核心,其成本占整个SCR烟气脱硝系统投资成本的40%甚至更多。
催化剂的性能直接决定了SCR烟气脱硝系统的脱硝效率和氮氧化物排放量、氨逃逸量、SO 2/SO 3转化率、系统压力、电能消耗、还原剂消耗等,一般工业应用的SCR催化剂的使用寿命为2.4万小时,逾期需要及时更换或进行再生。
文章介绍了SCR脱硝催化剂再生技术的发展现状,分析了国内SCR催化剂再生技术的发展前景,并列举了催化剂再生技术的应用案例。
关键词:选择性催化还原法(SCR);催化剂再生;烟气脱硝中图分类号:TQ426 文献标志码:A 文章编号:1006-5377(2014)04-0022-04前言我国一次能源消耗呈现逐年递增的趋势,预计到2050年,我国一次能源需求量将达到6657.4万吨[1]。
据2012年BP统计,中国消耗了全球49.6%的煤炭,位于世界第一,且在未来相当长时期内, 中国以煤为主的能源供应格局不会发生根本性改变,煤在总能源中比重很难低于50%。
中国80%以上的煤炭直接或间接用于燃烧,生成了大量SO 2、NO x 、Hg等多种烟气污染物,造成严重的大气污染问题。
就火电厂来说,二氧化硫和氮氧化物的排放量占了全国工业污染物总排放量约50%以上,其中又以氮氧化物排放比例最高[2]。
选择性催化还原法(Selective C atalytic R eduction,SCR )是目前控制NO x 排放最成熟、最有效的方法[3]。
该方法是SCR脱硝催化剂再生技术的发展及应用在一定温度和催化剂作用下,利用氨做还原剂可选择性地将NO x 还原为氮气和水的方法[4],可使NO x 脱除率达到90%以上,该法已在全球范围内得到广泛应用[5]。
SCR法烟气脱硝催化剂及其应用特性的研究

纤维 , 比金属 板式 催化 剂或 挤压 蜂 窝式 催化 剂要 轻许 多 。 () 2 催化 剂 的孔 型为 小规则 的波纹 状 ,所 以比表 而积很大 ,且 孔隙大 小分布 呈多样 ; ( ) 化剂 具有 3种大 小等 的孔 隙结构 ,对 于各种类 型的催化 3 催 剂 ,通 常观 察 到 的砷 多 聚集 在 微孔 内 。 3,影响 值 化 剂的 因 素
科 学 论 坛
l ■
GaWed coy ^ h  ̄ n口 hl 0 I 3 n eng w n o T oR
S R法烟 气脱硝 催化 剂及其应 用特 性的研究 C
纪 源 宫 正
( 辽宁工程技 术大学资源与 环境 工程学院 辽宁 阜新 1 3 0 ) 2 0 0 [ 摘 要] 在介绍 S R C 法烟 气脱硝 催化荆 工作原理的基础 上 ,着重 阐述 了3种典 型催 化剂 的技术 特点 ;并分析 了影 响 S R催化剂性能的一 C 些因素以及应对措施 。最 后,对 S R C 催化 剂的发展方 向以及 催化剂国产化提 出了~些建议 ,为火 电厂 S R C 法烟气脱硝 系统催化剂的使用提供 良
石 分 子 筛 型 () 2 支座设计 [ 3 支座 尽可 能分布 在 同一平面 上 , 以避 免对 反应器 竖 向的热变形 形成约束。所有的支座 当中,只能有一个支座 是完全固定 的,各个支 座的滑动 自由度方 向示意 图。 当进入 S R反应器前烟气分布不均匀 时,会导致脱硝效率的降低 , C
一
Байду номын сангаас
括VO/ i. V0/ i s0 VO V I i. , T O、 ;T O , i ,— 0/ O 以及 VO一o T 0 i T , . M O/ i , ,
国内外SCR法脱硝催化剂技术及现状

国内外SCR法脱硝催化剂技术及现状SCR法脱销是目前国际上电站锅炉烟气脱硝的主流技术,催化剂是SCR脱硝系统的技术核心,催化剂的费用通常占到脱硝工程初期投资的30%~55%。
目前,经过几年的发展和技术积累,我国已经建成并投产了多家催化剂的生产工厂,脱硝催化剂的国产化技术研发已获成功,我国脱硝催化剂依赖进口的历史已经结束。
近年来随着国家环保政策的实施,我国火电厂脱硝市场正如火如荼地展开。
本文主要介绍了SCR法脱硝催化剂的发展历史,国外主要的生产厂家、催化剂产品的型号规格,以及我国主要的生产厂家及其技术来源,并从市场的角度对我国的脱硝市场进行分析。
一、关于SCR法催化还原技术的起源SCR法是在催化剂的作用下,以NH3作为还原剂,有选择性地与烟气中的NOx反应并生成无毒、无污染的N2和H2O。
首先由Engelhard公司发现并1957年申请专利,后来日本在该国环保政策驱动下,成功研制出了现今被广泛使用的V2O5/TiO2催化剂,并分别于1977年和1979年在燃油和燃煤锅炉上成功投入商业运用。
SCR法目前已成为世界上应用最多、最为成熟且最有成效的一种烟气脱硝技术,其主要反应为:4NH3+4NO+O2—4N2+6H2O (1)8NH3+6NO2一N2+12H2O (2)4NH3+2NO2+O2—3N2+6H2O (3)选择适当的催化剂可以使反应(1)、(2)在300~400℃范围内进行,并能有效抑制副反应。
在NH3 与NO化学计量比为1的情况下,可以得到高达80%~95%的NOx脱除率。
世界上采用SCR的装置有数千套之多,技术成熟且运行可靠。
二、国外主要生产商SCR工艺自1978年在日本成功地实现工业化生产以后,工艺技术与催化剂的生产技术一直在不断地进步与完善,形成由触媒化成与堺化学为代表的蜂窝式和以Babcock-Hitachi 为代表的板式2种主流结构与技术,在本国的生产能力并没有太多扩大,可是技术已经向美国、欧洲及亚洲的韩国、中国台湾省及中国内地输出。
浅谈SCR废催化剂的回收再利用

曾 瑞(攀枝花市晟天钛业有限公司,四川 攀枝花 617000)摘 要:SCR催化剂是脱硝工程中必不可少的元素,但其含有V 2O 5、WO 3和MoO 3等有毒物质。
本文详细阐述了SCR废催化剂产生的过程;介绍了国外对废催化剂回收再利用的情况;分析了我国SCR废催化剂回收利用情况及存在的问题;提出了SCR废催化剂进行减量化、资源化、无害化处理的相关建议。
关键词:NO x ;脱硝;SCR催化剂;废催化剂;回收利用中图分类号:X705 文献标志码:A 文章编号:1006-5377(2013)02-0000-04浅谈SCR废催化剂的回收再利用1 燃煤锅炉的烟气脱硝我国是一个以火力发电为主的能源消耗大国,在燃煤的同时排放了大量的NO x 。
据统计,我国1998年与能源消耗相关部门的NO x 排放量为11.18×106吨,其中电力部门为4.23×106吨,占37.9%;工业部门4.59×106吨,占41.0%;交通运输1.45×106吨,占13.0%。
为了缓解城市NO x 污染,很多城市要求强制安装汽车尾气净化器,减少交通运输的NO x 排放,此举已使部分城市的NO x 排放得到一定的遏制;工业部门和电力部门的NO x 排放多为固定源,相对于工业部门,电力部门的NO x 排放具有量大集中便于控制的特点。
对电厂的NO x 排放进行控制,将对NO x 的减排和大气质量改善效果明显。
国家 “十二五”期间火电厂烟气氮氧化物的减排指标规定:NO x 排放标准为200~250mg/m 3。
《火电厂氮氧化物防治技术政策》指出:低氮燃烧技术应作为燃煤电厂氮氧化物控制的首选技术。
当采用低氮燃烧技术后,氮氧化物排放浓度不达标或不满足总量控制要求时,应建设烟气脱硝设施。
2 SCR催化剂简介减少NO x 排放,有燃烧过程控制和燃烧后烟气脱硝两条途径,燃煤电厂烟气脱硝分为选择性催化还原法(SCR)和非催化还原法(SNCR);SNCR工艺无需催化剂,SCR工艺需要催化剂。
SNCR+SCR联合脱硝技术在循环流化床锅炉超低排放改造中的运用

SNCR+SCR联合脱硝技术在循环流化床锅炉超低排放改造中的运用【摘要】本文主要介绍了SNCR+SCR联合脱硝技术在循环流化床锅炉超低排放改造中的应用。
首先从技术原理入手,详细阐述了该技术的工作机制。
然后分析了循环流化床锅炉超低排放改造的必要性,并总结了SNCR+SCR联合脱硝技术在该过程中的优势。
接着通过实际案例分析,展示了该技术在实际工程中的应用效果。
最后从效果评估和未来研究方向两个方面对该技术进行了总结和展望。
通过本文的研究可以看出,SNCR+SCR联合脱硝技术在循环流化床锅炉超低排放改造中具有明显的效果和广阔的应用前景,对于推动环保和节能减排工作具有积极的意义。
【关键词】循环流化床锅炉、SNCR、SCR、联合脱硝技术、超低排放、改造、优势、应用案例、工程实施、效果、未来研究方向、总结、研究背景、研究目的、研究意义。
1. 引言1.1 研究背景为了实现循环流化床锅炉超低排放的目标,需要采取有效的脱硝技术。
传统的脱硝技术如SCR(选择性催化还原)和SNCR(选择性非催化还原)分别具有一定的效果,但各自也存在一些问题,如SCR技术需要高成本,SNCR技术在低温条件下催化效果不佳。
SNCR+SCR联合脱硝技术的出现成为了一种解决方案。
通过结合两种技术的优势,可以有效降低NOx的排放,实现循环流化床锅炉的超低排放。
研究SNCR+SCR联合脱硝技术在循环流化床锅炉超低排放改造中的应用具有重要意义。
1.2 研究目的研究目的是为了探讨在循环流化床锅炉超低排放改造中应用SNCR+SCR联合脱硝技术的可行性和效果。
通过分析这种联合脱硝技术的原理,我们希望能够找出如何最大程度减少氮氧化物的排放,实现循环流化床锅炉排放达到更加严格的环保标准。
我们也希望通过研究该技术在循环流化床锅炉上的优势和应用案例,为工程实施提供可靠的理论依据和实践操作指导。
通过对SNCR+SCR联合脱硝技术在循环流化床锅炉超低排放改造中的效果进行评估,我们将为未来循环流化床锅炉超低排放改造提供指导和建议,以实现更加清洁和高效的能源利用。
低温SCR锰系脱硝催化剂的研究进展

低温SCR锰系脱硝催化剂的研究进展肖翠微;李婷【摘要】氮氧化物(NOx)是大气环境的主要污染物之一,对人体健康和生态环境都会造成巨大的危害.选择性催化还原(SCR)是有效的烟气脱硝技术之一,而催化剂是脱硝技术的关键.近年来,锰系金属氧化物催化剂由于在低温SCR反应中表现出优良的催化活性得到了广泛的关注.综述了锰系低温SCR脱硝催化剂的的研究现状,按照非载体型和载体型催化剂进行了介绍,阐述了载体、元素掺杂等因素对锰系催化剂活性的影响,良好活性的催化剂须具有较高的比表面积、无定型的晶态结构.展望了锰系低温SCR脱硝催化剂的研究重点,为进一步研究和提高性能优良的低温锰系SCR脱硝催化剂提供参考信息.【期刊名称】《洁净煤技术》【年(卷),期】2016(022)001【总页数】6页(P95-100)【关键词】氮氧化物;选择性催化还原;锰系;低温;催化剂【作者】肖翠微;李婷【作者单位】煤炭科学技术研究院有限公司,北京100013;煤炭资源高效开采与洁净利用国家重点实验室,北京100013;国家能源煤炭高效利用与节能减排技术装备重点实验室,北京100013;煤炭科学技术研究院有限公司,北京100013;煤炭资源高效开采与洁净利用国家重点实验室,北京100013;国家能源煤炭高效利用与节能减排技术装备重点实验室,北京100013【正文语种】中文【中图分类】O643.36氮氧化物(NOx) 是大气环境的主要污染物之一,对人体健康和生态环境都有巨大的危害。
NOx来源于燃料燃烧产生的烟气中,主要存在形式是N2O、NO、N2O3、NO2、N2O4、N2O5等[1],其中以NO为主,约占NOx总量的90%以上,其次是NO2。
在大气中,NO又会被氧化为NO2,而NO2在紫外线照射的条件下,与烟气中的CHx反应,生成一种光化学烟雾,毒性是NO的4~5倍,对人体多数器官以及动植物均有极大的危害。
N2O虽然含量较低,是形成近地表大气臭氧污染、二次微细颗粒物污染以及地表水富营养化的前提物质,由此引起的环境问题已成为大气环境污染的热点问题[2-3]。
水泥行业SCR脱硝催化剂失活及再生研究

-6-C€AiEtiT2021.N〇.4水泥行业SCR脱硝催化剂失活及再生研究张晓望,任英杰,张涛,单维军,邹于,邓立锋(龙净科杰环保技术(上海)有限公司,上海20110⑴摘要:本文通过对灰分及失活催化剂的取样分析,探究了水泥项目SC R脱硝催化剂的失活原因,同时采用不同方法对失活催化剂进行再生,研究如何达到最佳再生效果经成分分析表明,水泥项目SCR脱硝催化剂失活的原因主要是含钙灰分的覆盖、碱金属中毒以及可能的铊中毒失活的催化剂经过独有技术的全面再生处理能够去除各类中毒物质,并清除微孔堵塞关键词:水泥脱硝;铊中毒;脱硝催化剂;再生A bstract: In this paper, the deactivation reason o f SCR denitration catalyst in cement plant was studied by sampling andanalyzing the ash content and deactivation catalyst. The deactivated catalyst was regenerated by different methods to research how to achieve the best regeneration effect. The composition analysis showed that the deactivation o f SCR catalyst in cement industry was mainly caused by the covering o f calcium ash, alkali metal poisoning and possibly thallium poisoning.The deactivated catalyst was fully regenerated with a unique technology which can remove various toxic substances and eliminate micropore blockages.Key w ords: cement denitration; thallium poisoning; denitration catalyst; regenerationF irst au th o r’s address: Longjing Kejie Environmental Protection Technology (Shanghai) C o丄td.,Shanghai 201100, China中图分类号:X701.7 文献标识码:A 文章编号:1002-9877(2021)04-0006-04 DOI: 10.13739/H-1899/tq.2021.04.0020引言水泥行业在早期主要以SNCR(选择性非催化还 原法)的形式对产生废气中的NOt进行脱除,该工艺 路线技术成熟,应用广泛,在全世界水泥工业的采用 率达到约90%>2]。
科技成果——SCR脱硝催化剂再生技术

科技成果——SCR脱硝催化剂再生技术适用范围电厂、钢铁等有脱硝系统行业的烟气治理技术原理该技术对中毒、失效或失活的SCR脱硝催化剂采用合理的清洗配方,经超声清洗-酸洗-水洗三道清洗工序进行一级烘干处理,烘干处理后的催化剂放入含有一定浓度和配比药品的植入槽中进行催化剂活性的恢复,最终实现催化剂的再生。
工艺流程1、检验分析:与已有的强大数据库进行比对,量身定制出再生的最佳工艺方案;2、预处理:模块进入除尘车间去除催化剂表面松散的飞灰;3、物理化学清洗:去除覆盖催化剂活性部位和堵塞催化剂微孔的物质;4、中间热处理:模块放入热处理设备中,巩固催化剂微孔结构;5、催化剂模块随即放入具有特定催化物质的活性植入装置中,进一步恢复催化剂的活性;6、最终热处理:植入活性物质的催化剂模块经过特殊的升温和降温工艺,使活性物质均匀地分布在载体上并牢固粘附;7、质量检验:包括催化剂和其化学性能的测试(脱硝率,SO2/SO3转化率,催化活性等),对再生催化剂单个模块孔道疏通率要求达到98%;8、质检达标后进行包装、入库。
工艺流程图关键技术根据不同的催化剂失活现象,与现有数据库对比,量身定制出最佳的再生工艺方案;该工艺经过严格的清洗,保证再生后单个模块通孔率达到98%;再生催化剂的单层SO2/SO3转化率≤0.5%;再生催化剂的失活速率保持与新催化剂一致;再生后催化剂的机械性能与再生前相比没有降低。
典型规模SCR脱硝催化剂再生系统占地约141亩,产能为2000m3/年。
应用情况在美国科杰公司有该技术的应用,科杰公司拥有超过66000m3的催化剂再生业绩,占据美国85%的催化剂再生市场;在江苏盐城有该技术的应用,产能达到2000m3/年。
典型案例(一)项目概况大唐宝鸡热电厂2×330MW国产亚临界抽气供热燃煤机组脱硝系统采用SCR脱硝技术,双反应器布置,催化剂采用2+1布置(上层为备用层)。
1号机组于2009年6月投产,催化剂采用雅佶隆公司生产的蜂窝式催化剂,单台机组每层催化剂由45个模块组成,单台机组共安装180个催化剂模块,催化剂总体积260m3,再生催化剂体积共130m3。
废弃SCR脱硝催化剂处理行业的现状和建议

废烟气脱硝催化剂处理行业的现状和建议一、行业现状近年来,废烟气脱硝催化剂数量逐年增长,预计2017年后,全国每年产生量将达到10万吨左右,由于该催化剂中含有对环境和人体有毒有害物质,环保部在2014年将其列为危险废物,并在2016年将其纳入危险废物名录。
《废烟气脱硝催化剂危险废物经营许可证审查指南》要求经营企业必须具备年再生5000立方米和综合利用5000立方米的能力。
经营企业只有同时具备再生和利用,才能确保其接收的废烟气脱硝催化剂得到有效处置。
由于各地环保部门对审查指南的理解不一致,大量只有再生项目的企业获得了废烟气脱硝催化剂的经营许可证。
从目前行业来看,绝大部分经营企业(20家左右)只有再生业务,其接收的不能再生的废催化剂并未得到有效处置,根据国家相关规范规定:危险废物储存不得超过一年,这些企业存在严重的违规行为。
一些从业者甚至可能将废催化剂未经处理转手给不具备经营资质的企业。
这些企业在市场上恶性竞争,使得规范处理的企业处于不利的市场地位,因此,从目前行业现状来看,很难确保废烟气脱硝催化剂作为危废得到有效处置。
二、加强监管的有效性目前,废烟气脱硝催化剂行业的监管存在一定漏洞。
以山西为例,从2015年至今,山西省电厂共产生3000多吨废烟气脱硝催化剂,由于山西在之前未有处置能力,因此,产生的废烟气脱硝催化剂均运到省外,主要包括江苏、河南和安徽等地,从山西环保部门获悉,他们对转运到省外的废烟气脱硝催化剂的处置情况并不清楚。
接收的这几家企业目前都只有再生业务,废烟气脱硝催化剂作为危废虽然从电厂“合法”转移到了具有资质的企业手里,但其实只是转移了一个地方,并没有全部得到有效处置,这对环境存在着较大的潜在隐患。
因该对跨省转移的危险废物应该加强监管,确保废烟气脱硝催化剂得到有效处置。
三、最优处置方案废烟气脱硝催化剂处理技术包括再生和综合利用两个方面,再生是对性能修复,重新投入运行;综合利用是通过一定的方法使其得到无害化和资源化处理。
低温NH3-SCR脱硝催化剂研究进展

和 氮氧 化 物 (NOx)等致 酸 物 质 的污 染 程 度 不 断 加 大 。我 国 已 成 为 世 界 NOx排 放 量 最 大 的 国 家 之
一
_1]
。
目前 ,随着 sOz控制技术 的不断进 步及相关
政 策措 施 的落实 ,我 国 SO 的 控 制 已经 取 得 显著 成
就 。氮 氧化 物 的减 排就成 为 控制大 气 污染 的重要组 成 部分 。相 关研 究 发现 ,SO。、NO 和可 吸人 颗粒 物
2.1 贵金属 催化剂
贵 金属 催 化 剂 的研究 较 早 ,因其 良好 的低 温 活 性 ,上 世纪 7O年代 开始 ,铂 、钯 等贵金 属催 化剂 就广 泛 应用 于机动 车尾 气 的治 理 ,同 时也 是 最 早用 于烟 气 脱硝 的催化 剂 。这 些 贵金属催 化剂 对 N0 的还原 作 用很 强 ,具 有 良好 的脱 硝性 能 。 目前 ,对 于 贵金属 催 化剂 的研究 主要集 中在 NH。一SCR及 HC_SCR领 域 。Zhang Z.X.等[ ]在 TiO2上 负载 一定 比例 的 Pt、 Pd、Rh等 贵金属 制备 了一 系列 催化 剂 ,研 究 了其 选 择性脱 硝性 能 。研 究 结果 显 示 Pt/,riO 在 140℃ 时 具有很 好 的脱 硝 活 性 ,NOx转 化 率 可 达 到 63 9/6。 同时 ,国 内外 研究 人员 对 贵 金 属催 化 剂 的脱 硝机 理 也进行 了大 量 研 究 。Efthimiadis E.A.等 l_6]人 的研 究结果 和 Meunier,F.C.等[7]人 的研 究 都 发 现 ,在 贵金属 脱 氮过程 中 NOz并 不 是 NO 和 Oz的反 应直 接产 生 ,而 是生 成某种 中 间形 态 的结合 氮 ,更 有利 于 生成 N ,提高 了脱氮 效率 。但该 方法 在在 选择 活 性 窗 口温度 较窄 、易发 生氧抑 制和硫 中毒 等 ,加上投 资 运行 成本 较高 ,从而使 其工 业应用 受 到限制 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SCR 脱硝催化剂循环再利用的研究进展徐晓亮,黄丽娜,缪明烽(中环工程有限公司,江苏南京210008)摘要:指出了催化剂是选择性催化还原(SCR)脱硝系统的核心,催化剂的寿命直接关系着SCR 脱硝系统的运行成本,分析了SCR 反应过程催化剂失活的各项因素,并针对特定的失活原因,详细阐述了失活SCR 催化剂再生技术的原理和特点,就现行应用于废弃含钒催化剂提取钒的工艺进行了探讨。
关键词:烟气脱硝;选择性催化还原;催化剂;循环再利用收稿日期:2011 05 04作者简介:徐晓亮(1981 ),男,山东人,博士,工程师,主要从事大气污染控制技术的研究。
中图分类号:T Q426 文献标识码:A 文章编号:1674 9944(2011)06 0006 041 引言燃煤电厂排放的氮氧化物(NO x )是主要大气污染物之一,也是形成光化学烟雾、酸雨污染及破坏臭氧层的主要物质。
如何有效控制NO x 排放已成为当前环境保护中令人关注的重要课题[1]。
而在众多的脱硝技术中,选择性催化还原法(Selective Cata lytic Reductio n,SCR)以其无副产物,装置简单并且脱除效率高(可达90%以上)、运行可靠、便于维护等优点,已成为现阶段世界上应用最为广泛的烟气脱硝技术。
采用SCR 技术的关键问题是选择优良的催化剂,它的性能直接影响到SCR 系统的整体脱硝效果。
经过多年的工业实践和验证,目前广泛使用的是以锐钛矿型二氧化钛为载体负载钒氧化物作为活性物质,辅以氧化钨或氧化钼为助催化剂的金属氧化物催化剂。
目前,用于燃煤电厂烟气脱硝的钒基催化剂的工作温度范围为310~430 ,相当于锅炉省煤器出口的烟气温度。
因此SCR 脱硝反应器直接安装在锅炉省煤器与空气预热器之间,即所谓的高位布置方式[2]。
尽管这种布置方式下催化剂活性最大,有利于反应的进行,但该布置区间烟气中高浓度的粉尘会冲刷催化剂并使其中毒,同时烟气温度过高使得催化剂发生烧结、失活,使催化剂的寿命缩短。
当催化剂的活性下降致使其性能劣化到一定程度时,就要更换催化剂,在运行费用中除了氨的消耗,催化剂的更换更是占据了大部分费用。
对于可逆性中毒的催化剂和活性降低的催化剂可以通过再生重新利用,再生费用只有全部更换费用的20~30%,而活性可恢复到原来的90%~100%,甚至更高[3]。
此外,不可再生的废弃SCR 脱硝催化剂中含有钒等有价金属,直接丢弃会造成环境污染,其中钒是稀有金属,在自然界中分散而不集中,富集钒矿不多,提取和分离比较困难。
近几年随着科技的发展,对钒需求量每年约增长5%,致使钒价不断上扬。
因此,从废弃SCR 脱硝催化剂中回收V 2O 5既能避免对环境的污染,又能节约宝贵的资源。
2 SCR 催化剂的失活机理在SCR 系统运行过程中,导致SCR 催化剂活性降低乃至失活的原因主要有以下几种[4,5]。
2.1 高温引起的烧结、活性组分挥发温度对于SCR 催化剂活性有较大的影响,对于V 2O 5-WO 3/TiO 2催化剂的热力型失活也有相关的研究,长时间暴露于450 以上的高温环境中可引起催化剂活性位置(表面)烧结,直接导致催化剂颗粒增大,表面积减小,一部分活性组分的挥发损失,进而使催化剂活性降低。
Reiche 等人[6]研究了V 2O 5/TiO 2在不同温度下的活性变化,结果发现当温度高于500 时催化剂将严重失活。
Mo radi 等人[7]的研究结果表明,催化剂失活过程中,外部环境温度是一个重要的参数。
当外界环境温度升高时,亚微观粒子在催化剂失活中的作用将被加强。
2.2 碱金属、碱土金属氧化物引起的催化剂中毒飞灰中的可溶性碱金属主要包括N a 与K 这两种物质,在水溶液离子状态下,它们能够渗透到催化剂深层直接与催化剂活性颗粒反应,使酸位中毒以降低其对NH 3的吸附量和吸附活性,继而降低催化活性[8]。
碱金属元素被认为是对催化剂毒性最大的一类元素,因此碱金属中毒本质成为探讨的焦点。
Kamata 等[9]通过脱硝活性实验证实,随着催化剂表面K 2O 含量的增加,NO 转化率急剧下降,当K 2O 质量分数达到1%时,催化剂活性几乎完全丧失。
他们还利用DRFIT 等方法分析得到了催化剂钾中毒机理:K 2O 存在使得SCR 催化剂活性位之一的Bronsted 酸性活性位的数量大大减少,同时也削弱了Bronsted 酸性位的酸性,但是随着SCR 催化剂表面K 2O 含量的增加,另一种活性位Lew is 酸性位2011年6月Journal of Green Science and Technology 第6期的数量几乎不发生变化,这说明SCR催化剂钾中毒后,活性的下降是由Bronsted酸性位的变化引发的。
另外,碱金属物质的增加,会使载体氧化物的pH值增大,在高温的烧结下,会使催化剂晶型改变而造成结构坍塌,堵塞内孔而导致活性降低。
因此,若烟气中K2O、Na2O的含量增加,则催化剂的失活现象就更严重[10]。
朱崇兵等[11,12]利用模拟中毒法使得V2O5-WO3/TiO2催化剂中毒,通过检测中毒后催化剂的脱硝活性,比较了相同摩尔比的碱金属氧化物中毒条件下催化剂的失活程度,得到如下结论:碱金属氧化物与催化剂表面V物种的结合生成部分碱金属盐(如KVO3、NaVO3),改变了催化剂的表面结构,使催化剂中有效活性位的数量大大降低,从而导致催化剂活性降低。
两种碱金属氧化物对催化剂的毒性顺序为K2O>N a2O。
碱土金属元素(Ca、Mg)对于SCR催化剂的影响主要表现在氧化物在催化剂表面的沉积并进一步发生反应而造成孔结构堵塞。
Benson等[13]对催化剂表面XRD的检测结果表明,催化剂表面沉积的碱土金属化合物主要为CaSO4,其余为Ca3M g (SiO4)2和CaCO3,其中CaSO4和CaCO3是由CaO 分别与SO3和CO2反应得到的。
Nicosia等[14]通过NH3-T PD和DRFIT的测量证实,Ca也能够和K 一样,影响Bronsted酸性位和V5+==O上NH3的吸附,而对于Lew is酸性位则几乎没有任何影响,但在同摩尔分数下Ca的影响比K小。
2.3 非金属氧化物引起的催化剂中毒砷(As)是大多数煤种中都存在的成分,SCR催化剂的砷中毒是由气态砷的化合物扩散进入催化剂表面及堆积在催化剂小孔中,然后在催化剂的活性位置与其他物质发生反应,引起催化剂活性降低。
烟气中气态砷的主要形态为As2O3,在SCR催化剂所处的温度区间会部分生成As3O5或As4O6[5]。
H ans等[16]通过ESEM照片显示,As2O3主要沉积并堵塞催化剂的中孔,即孔径在0.1~ 1.0 m之间的孔。
磷与砷同属于VA族的元素,存在于烟气中磷化合物主要以P2O5的形式存在,P2O5不是机械地固定在催化剂的表面上的,而是也通催化剂的活性组分进行化学反应,从而导致SCR催化剂钝化。
Kam ata等[17]考察了不同P2O5负载量下催化剂脱硝活性的变化,并通过表征手段对SCR催化剂的磷中毒机理进行深入研究。
结果表明,催化剂的活性随着P2O5负载量的增加而下降,但相比碱金属的影响则要小很多,磷致催化剂中毒机理被认为是P 取代了V-OH和W-OH中的V和W,生成了P -OH基团,P-OH的酸性不如V-OH和W-OH,减少了Bro nsted酸性位的数量,致使催化剂的脱硝活性下降。
2.4 烟气中其他成分导致的催化剂失活飞灰成分复杂,它的组成与性质因燃煤品种、燃烧温度及燃烧方式不同而变化,其中除了含有大量碱金属、碱土金属、P、As主要毒性氧化物外,还含有一定量的铁、铅、硅等游离氧化物,这些游离氧化物同样能够与活性位发生作用而使催化剂钝化。
此外,烟气中的H Cl气体对SCR催化剂也有一定的毒害作用,表现在一方面,在烟气温度低于340 时,H Cl会与NH3反应,生成NH4Cl黏附在催化剂表面,致使活性位与烟气接触的表面积下降;另一方面,催化剂表面上的氯离子会与V结合生成VCl2和VCl4,从而破坏了催化剂的活性位。
2.5 催化剂的堵塞与机械磨损造成催化剂堵塞的主要是飞灰的小颗粒及反应过程中形成的铵盐,它们沉积在催化剂表面的小孔中,阻碍NO x、NH3和O2达到催化剂活性位,引起催化剂钝化。
另外,在催化剂的安装、更换过程中,不可避免地要冲击催化剂;并且由于SCR反应器中的催化剂垂直布置,烟气自反应器顶部垂直向下平行催化剂流动,在较大气速下,烟气中的大颗粒物质会对催化剂造成较大磨损。
3 SCR催化剂循环再利用技术3.1 SCR催化剂的再生技术对采用SCR技术的燃煤电站而言,催化剂中毒失活不仅会增加SCR系统的运行成本,同时也会带来不可忽视的环境问题。
考虑到催化剂的运行成本和催化剂处置的难度,催化剂再生是处理催化剂的首选方法[18]。
3.1.1 水洗再生通过压缩空气冲刷去除催化剂表明的浮尘,然后用去离子水冲洗以清洗和溶解与催化剂表明结合的尘土及盐分子,再用空气干燥。
此方法简单有效,可以冲洗溶解性物质以及冲刷掉催化剂表面部分颗粒物,可以比较明显提高催化剂的脱硝效率,用此方法处理的催化剂活性能从50%恢复到83%左右[19]。
水洗再生对碱金属中毒的催化剂基本是有效的,但仍然有报道一些商业SCR催化剂碱金属中毒后采用水浸泡后溶液中检测不到碱金属[20]。
3.1.2 酸、碱液处理再生酸液处理催化剂再生报道常用于催化剂金属氧化物中毒后的再生。
一般是将中毒后的催化剂在一定浓度的酸溶液中浸泡若干时间,再用清水洗涤至pH值接近7,将处理好的催化剂在低于100 的温度下干燥[21]。
有研究者[20,22]通过实验证明:硫酸处理再生比单纯的水洗再生更有效,酸洗再生后K2O 得以完全清除。
同时在催化剂表面引入了SO2-4,使其再生后催化剂的脱硝活性在350~500 内高于中毒前。
Fo erster研究了Fe2O3对V2O5-W O3/徐晓亮等:SCR脱硝催化剂循环再利用的研究进展 环境与安全TiO2催化剂的毒化作用,并考察了酸洗处理对催化剂的再生效果。
研究发现,由于Fe2O3对SO2具有催化氧化作用,Fe2O3的添加导致催化剂SO2的氧化率不断提高,而脱硝活性下降。
使用含有一定量抗氧化剂和表面活性剂的酸液处理后,Fe2O3得以完全清除,脱硝活性可恢复到原来的95%~100%, SO2氧化率得到很好抑制[23]。
酸碱组合式处理催化剂再生,用于催化剂非金属氧化物(As2O3、P2O5)中毒后的再生。
其过程与酸洗再生过程类似,先将中毒的催化剂置于一定浓度的碱溶液中浸泡若干时间,随后过剩的的碱用无机或有机酸进行中和处理,将处理好的催化剂干燥后用活性元素的水溶性化合物进行浸渍。