19.1.1平行四边形的性质1
平行四边形的性质
E
●
D
A
E
●
D
●
O
F
O
N
B (4) (3) (4) F C
B
●
(3) (1) F
C
F●
小结:过平行四边形的对角线交点作直线与平行四边形 的一组对边或对边的延长线相交,得到线段总相等。
一位饱经苍桑的老人,经过 一辈子的辛勤劳动,到晚年的 时候,终于拥有了一块平行四边形的土地, 由于年迈体弱,他决定把这块土地分给他的四个孩子,他 是这样分的:
§19.1 .1平行四边形的性质
平行四边形
图 形
名 文字语言 称
定 两组对边分别平行的 义 四边形
图形语言
符号语言
D
A D
C ∵AB∥CD,AD∥BC
∴四边形ABCD是平行四边 形
平 行 四 边 形
性 1边:对边平行且相等; 质 2角:对角相等; 邻角 互补; A 3对角线:对角线互相 D 平分。
A E
D
O ●
F C
B
A E
3
●
1
D
●
O
2ห้องสมุดไป่ตู้
●
4
F
B
C
在上述问题中,若直线EF与边DA、BC的延长线 交于点E、F,(如图2),上述结论是否仍然成立? 试说明理由。 A E ●
D
●
A
●
D
●
E
O
●
O
F
●
F
B
(1)
C
B
(2)
C
在上述问题中,若将直线 EF 绕点O旋转至下图(3)的位置时,上述结论是否 M 若此时再与两边延长线相交呢? 仍然成立? ●E A E
19.1.1平行四边形的性质.ppt
A
4 1
D
B
2
3
C
例 题 教 学 解:
在 ABCD中,已知∠A=52 ° ,求其 余三个角的度数。
A D 52°
∵四边形ABCD是平行四边形 且∠A=52°(已知)
性质2:平行四边形的对角相等。
O B D
A
C
∵四边形ABCD是平行四边形
∠A=∠C,∠B=∠D.
已知:
ABCD(如图)
求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB
证明:连结AC ∵AB∥CD,AD∥BC(平行四边形的对边平行) ∴∠1=∠2,∠3=∠4 在 ABC和 CDA中
∠1=∠2,AC=CA,∠3=∠4
画一个平行四边形,观察它的边之间还有什么关系?
A D
平行四边形的对边平行.
∵四边形ABCD是平行四边形 ∴AB ∥ CD,BC ∥ AD.
B
C
A D
平行四边形的对边相等.
∵四边形ABCD是平行四边形 ∴AB=CD,BC=AD.
B
C
性质1:平行四边形的对边平行。 性质2:平行四边形是中心对称图形。 (C) (B) A D
B
C
∴ ∠A=∠C=52°(平行四边形的对角相等) 又∵AD∥BC(平行四边形的对边平行)
∴∠A+∠B=180°(两直线平行,同旁内角互补)
∴∠B=∠D= 180 °-∠A= 180º 52°=128 ° -
变式练习:
A 如图: 在 ABCD中,∠A+∠C=200° 则:∠A= 100 ° ,∠B= 80 ° . D C B
19.1平行四边形的性质(一)
A
D
B 图 19.1
C
解:∵ 四边形 ABCD 是平行四边形 ∴ AB=CD , AD=BC ∵ AB=8 m ∴ CD=8 m 又 AB+BC+CD+AD=36 m ∴ AD=BC=10 m
中,∠A=80°,你能
求出其他各角的度数吗?说说你的理
∠C=80° ∠B=100° ∠D=100°
作业
P84 练习题1,2 ,3 习题19.1 1 ,2 题
B C
探 究
量一量角
开启
已知平行四边 形一个内角的 度数,你能确 通过观察和度量,不难发现,平行四边形 定其他内角的 具有以下性质: 度数吗? 平行四边形的对边相等; 平行四边形的对角相等。 我们能否证明上面结论的正确性呢? 利用三角形的全等,可以证明上述结论
智慧
利用三角形的全等证明平行四边形的对边、 对角相等
证明:在平行四边形ABCD中,连接AC. ∵ AD//BC,AB//CD ∴ ∠1= ∠2, ∠3= ∠4 又知AC是公共边 ∴ △ABC≌ △CDA ∴ AD=BC, AB=CD
B A 4 1 3 C D
2
我们可以用同样的方 法证明: ∠A= ∠C
∠B= ∠D
例1 如图19.1 ,小明用一 根36 m 长的绳子围成了一个平 行四边形的场地,其中AB边长 为8 m ,其他三条边的长各是 多少?
B C
平行四边形用“
”表示
平行四边形 ABCD 记作“
ABCD”
2、平行四边形不相邻的两个顶点连 成的线段叫它的对角线
A D
线段AC.BD就是它的对角线
B C
3、平行四边形相对的边称为对边 相对的角称为对角
探 究
19.1.1平行四边形的性质
1、在 ABCD中,DE是∠ADC的角平分线, 、 的角平分线, 中 是 ADC的角平分线 BC于点 于点E. 交BC于点E.
(1)求证:AB=CE; 求证: 求证 ; (2)若BE=CE,∠B=80°,求∠DAE的度数 若 , ° 的度数
1、平行四边形 、 的四边形叫做平行四边形 叫做平行四边形. 两组对边分别平行 的四边形叫做平行四边形. 2、平行四边形的性质 、 平行四边形的边 位置关系 对边平行 数量关系 对边相等 对角 相等 相邻内角 互补
5、在 ABCD中,CE⊥AB,E为垂足 如果 、 为垂足.如果 中 ⊥ , 为垂足 的度数. ∠A=125°,求∠BCE的度数 °求 的度数
AE平分 平分∠ 例1、如图所示,在 ABCD 中,AE平分∠BAD 如图所示, DC于点 于点E AD=5cm,AB=8cm, EC的长 的长. 交DC于点E,AD=5cm,AB=8cm,求EC的长.
1、已知a∥b,c∥d,则 已知 ∥ , ∥ , (1)∠1= (1)∠1= ∠2 ( ∠2= ∠3 ( (2)∠1 + ∠4= ∠3 + ∠4= ∴∠1=∠3( ( ( ) ) ) ) )
如图, 如图,把两个全等的直角三角形进行 拼接,你能得到哪些四边形? 拼接,你能得到哪些四边形?
两组对边分别平行的ห้องสมุดไป่ตู้边形叫做平行四边形 两组对边分别平行的四边形叫做平行四边形. 平行四边形.
° ABCD中 已知∠A=130° 1、在□ ABCD中,已知∠A=130°,则∠B= 50° , 130° ° 50° ∠C=___ ,∠D=___. C=___ =___. °
平行四边形相邻的角互补 2、在 、
° ABCD中, ∠B+∠D=140°,则∠A= 110° 中 ∠ °则
平行四边形的性质
19.1.1平行四边形的性质(一)学习目标:1、理解平行四边形的定义及有关概念;2、能根据定义探索并掌握平行四边形的对边相等、对角相等的性质;3、能根据平行四边形的性质进行简单的计算和证明;学习重点:平行四边形的定义,平行四边形对角、对边相等的性质;学习难点:如何添加辅助线将平行四边形问题转化为三角形问题解决的思想方法;一.自主学习预习课本83-84页,完成问题:1、观察图形,说出它们的边有什么特征?(1)中的四边形的两组对边都不;(2)中的四边形一组对边,另一组对边,这种四边形叫;(3)中的四边形两组对边都分别,这种四边形叫。
2、(1给平行四边形下个定义:。
(2∵∥ ,∥∴四边形ABCD是平行四边形3、平行四边形的数学符号是“”,平行四边形ABCD可以记作:。
4、我们知道平行四边形是对称图形,对称中心是。
5、请你画两个一样的ABCD,作出两条对角线交于点O,将其中一个旋转180°,然后重合在一起,仔细观察完成下列各题:(1)∠A与∠重合,∠B与∠重合,因此:∠A=∠,∠B=∠。
即:平行四边形的相等(2)AB与重合,BC与重合,因此:AB= ,BC= 。
即:平行四边形的相等思考:1、平行四边形的邻角是什么关系?(3)(2)(1)CBAD2、你能用逻辑推理的方式证明平行四边形的一些性质吗?如果能,那就把你的想法与其他同学分享一下吧!二.自主检测1、在 ABCD 中,已知∠B=50°,则∠A=____,∠C=____,∠D=______ 。
2、在 ABCD 中,已知∠A+∠C=260°,则∠A=____,∠B=___,∠C=____,∠D=____。
3、在 ABCD中, ∠A:∠B= 4:5,那么∠B=__________,∠C=_________4、在 ABCD 中,若AB= a ,BC= b ,则 ABCD 的周长为_______5、如图,在 ABCD 中,EF ∥BC ,GH ∥AB ,EF 、GH 相交于O ,图中有_____个平行四边形。
平行四边形测试题
119.1.1 平行四边形及其性质(一)1.填空: (1)在ABCD 中,∠A=︒50,则∠B= 度,∠C= 度,∠D= 度.(2)如果ABCD 中,∠A —∠B=240,则∠A= 度,∠B= 度,∠C= 度,∠D= 度. (3)如果ABCD 的周长为28cm ,且AB :BC=2∶5,那么AB= cm ,BC= cm ,CD= cm ,CD= cm .2.如图4.3-9,在ABCD 中,AC 为对角线,BE ⊥AC ,DF ⊥AC , E 、F 为垂足,求证:BE =DF .3.(选择)在下列图形的性质中,平行四边形不一定具有的是( ). (A )对角相等 (B )对角互补 (C )邻角互补 (D )内角和是︒360 4.在ABCD 中,如果EF ∥AD ,GH ∥CD ,EF 与GH 相交与点O ,那么图中的平行四边形一共有( ).(A )4个 (B )5个 (C )8个 (D )9个5.如图,AD ∥BC ,AE ∥CD ,BD 平分∠ABC ,求证AB=CE .6、如图,在平行四边形ABCD 中,AE=CF ,求证:AF=CE .19.1.1 平行四边形的性质(二)1.在平行四边形中,周长等于48, ① 已知一边长12,求各边的长 ② 已知AB=2BC ,求各边的长③ 已知对角线AC 、BD 交于点O ,△AOD 与△AOB 的周长的差是10,求各边的长2.如图,ABCD 中,AE ⊥BD ,∠EAD=60°,AE=2cm ,AC+BD=14cm ,则△OBC 的周长是____ ___cm .3.ABCD 一内角的平分线与边相交并把这条边分成cm 5,cm 7的两条线段,则ABCD 的周长是__ ___cm .4.判断对错 (1)在ABCD 中,AC 交BD 于O ,则AO=OB=OC=OD . ( )(2)平行四边形两条对角线的交点到一组对边的距离相等. ( ) (3)平行四边形的两组对边分别平行且相等. ( ) (4)平行四边形是轴对称图形. ( ) 5.在 ABCD 中,AC =6、BD =4,则AB 的范围是__ ______.6.在平行四边形ABCD 中,已知AB 、BC 、CD 三条边的长度分别为(x+3),(x-4)和16,则这个四边形的周长是 .7.公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB =15cm ,AD =12cm ,AC ⊥BC ,求小路BC ,CD ,OC 的长,并算出绿地的面积.8、 已知:如图4-21,ABCD 的对角线AC 、BD 相交于点O ,EF 过点O 与AB 、CD 分别相交于点E 、F .求证:OE =OF ,AE=CF ,BE=DF .※【引申】若例1中的条件都不变,将EF 转动到图b 的位置,那么例1的结论是否成立?若将EF 向两方延长与平行四边形的两对边的延长线分别相交(图c 和图d ),例1的结论是否成立,说明你的理由.19.1.2(一)平行四边形的判定1.如图,在四边形ABCD中,AC、BD相交于点O,(1)若A D=8cm,AB=4cm,那么当BC=___ _cm,CD=___ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=__ _cm,DO=__ _cm时,四边形ABCD为平行四边形.2.已知:如图,ABCD中,点E、F分别在CD、AB上,DF∥BE,EF交BD于点O.求证:EO=OF.3.灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:①第4个图形中平行四边形的个数为___ __.(6个)②第8个图形中平行四边形的个数为___ __.(20个)4.(选择)下列条件中能判断四边形是平行四边形的是().(A)对角线互相垂直(B)对角线相等(C)对角线互相垂直且相等(D)对角线互相平分5.已知:如图,△ABC,BD平分∠ABC,DE∥BC,EF∥BC,求证:BE=CF19.1.2(二)平行四边形的判定1.(选择)在下列给出的条件中,能判定四边形ABCD为平行四边形的是().(A)AB∥CD,AD=BC (B)∠A=∠B,∠C=∠D(C)AB=CD,AD=BC (D)AB=AD,CB=CD2.已知:如图,AC∥ED,点B在AC上,且AB=ED=BC,找出图中的平行四边形,并说明理由.3.已知:如图,在ABCD中,AE、CF分别是∠DAB、∠BCD的平分线.求证:四边形AFCE是平行四边形.4.判断题:(1)相邻的两个角都互补的四边形是平行四边形;()(2)两组对角分别相等的四边形是平行四边形;()(3)一组对边平行,另一组对边相等的四边形是平行四边形;()(4)一组对边平行且相等的四边形是平行四边形;()(5)对角线相等的四边形是平行四边形;()(6)对角线互相平分的四边形是平行四边形.()5.延长△ABC的中线AD至E,使DE=AD.求证:四边形ABEC是平行四边形.6.在四边形ABCD中,(1)AB∥CD;(2)AD∥BC;(3)AD=BC;(4)AO=OC;(5)DO=BO;(6)AB =CD.选择两个条件,能判定四边形ABCD是平行四边形的共有________对.(共有9对)7、已知:如图,ABCD中,E、F分别是AC上两点,且BE⊥AC于E,DF⊥AC于F.求证:四边形BEDF是平行四边形.19.1.2(三)平行四边形的判定——三角形的中位线1.(填空)如图,A、B两点被池塘隔开,在AB外选一点C,连结AC和BC,并分别找出AC和BC的中点M、N,如果测得MN=20 m,那么A、B两点的距离是m,理由是.2.已知:三角形的各边分别为8cm 、10cm和12cm ,求连结各边中点所成三角形的周长.3.如图,△ABC中,D、E、F分别是AB、AC、BC的中点,(1)若EF=5cm,则AB= cm;若BC=9cm,则DE= cm;(2)中线AF与DE中位线有什么特殊的关系?证明你的猜想.24.(填空)一个三角形的周长是135cm,过三角形各顶点作对边的平行线,则这三条平行线所组成的三角形的周长是cm.5.(填空)已知:△ABC中,点D、E、F分别是△ABC三边的中点,如果△DEF的周长是12cm,那么△ABC的周长是cm.6.已知:如图,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.7、已知:如图(1),在四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.19.2.1 矩形(一)1.(填空)(1)矩形的定义中有两个条件:一是,二是.(2)已知矩形的一条对角线与一边的夹角为30°,则矩形两条对角线相交所得的四个角的度数分别为、、、.(3)已知矩形的一条对角线长为10cm,两条对角线的一个交角为120°,则矩形的边长分别为cm,cm,cm,cm.2.(选择)(1)下列说法错误的是().(A)矩形的对角线互相平分(B)矩形的对角线相等(C)有一个角是直角的四边形是矩形(D)有一个角是直角的平行四边形叫做矩形(2)矩形的对角线把矩形分成的三角形中全等三角形一共有().(A)2对(B)4对(C)6对(D)8对3.已知:如图,O是矩形ABCD对角线的交点,AE平分∠BAD,∠AOD=120°,求∠AEO的度数.4.(选择)矩形的两条对角线的夹角为60°,对角线长为15cm,较短边的长为().(A)12cm (B)10cm (C)7.5cm (D)5cm5.在直角三角形ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.6.已知:矩形ABCD中,BC=2AB,E是BC的中点,求证:EA⊥ED.7.如图,矩形ABCD中,AB=2BC,且AB=AE,求证:∠CBE的度数.8、已知:如图,矩形ABCD,AB长8 cm ,对角线比AD边长4 cm.求AD的长及点A到BD的距离AE的长.分析:(1)因为矩形四个角都是直角,因此矩形中的计算经常要用到直角三角形的性质,而此题利用方程的思想,解决直角三角形中的计算,这是几何计算题中常用的方法.9、已知:如图,矩形ABCD中,E是BC上一点,DF⊥AE于F,若AE=BC.求证:CE=EF.分析:CE、EF分别是BC,AE等线段上的一部分,若AF=BE,则问题解决,而证明AF=BE,只要证明△ABE≌△DFA即可,在矩形中容易构造全等的直角三角形.证明:∵四边形ABCD是矩形,∴∠B=90°,且AD∥BC.∴∠1=∠2.∵DF⊥AE,∴∠AFD=90°.∴∠B=∠AFD.又AD=AE,∴△ABE≌△DFA(AAS).∴AF=BE.∴EF=EC.此题还可以连接DE,证明△DEF≌△DEC,得到EF=E319.2.1 矩形(二)1.(选择)下列说法正确的是().(A)有一组对角是直角的四边形一定是矩形(B)有一组邻角是直角的四边形一定是矩形(C)对角线互相平分的四边形是矩形(D)对角互补的平行四边形是矩形2.已知:如图,在△ABC中,∠C=90°, CD为中线,延长CD到点E,使得DE=CD.连结AE,BE,则四边形ACBE为矩形.3.工人师傅做铝合金窗框分下面三个步骤进行:⑴先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;⑵摆放成如图②的四边形,则这时窗框的形状是形,根据的数学道理是:;⑶将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是形,根据的数学道理是:;4.在Rt△ABC中,∠C=90°,AB=2AC,求∠A、∠B的度数.5、下列各句判定矩形的说法是否正确?为什么?(1)有一个角是直角的四边形是矩形;()(2)有四个角是直角的四边形是矩形;()(3)四个角都相等的四边形是矩形;()(4)对角线相等的四边形是矩形;()(5)对角线相等且互相垂直的四边形是矩形;()(6)对角线互相平分且相等的四边形是矩形;()(7)对角线相等,且有一个角是直角的四边形是矩形;()(8)一组邻边垂直,一组对边平行且相等的四边形是矩形;()(9)两组对边分别平行,且对角线相等的四边形是矩形.( )6、已知ABCD的对角线AC、BD相交于点O,△AOB是等边三角形,AB=4 cm,求这个平行四边形的面积.分析:首先根据△AOB是等边三角形及平行四边形对角线互相平分的性质判定出ABCD是矩形,再利用勾股定理计算边长,从而得到面积值.解:7、已知:如图(1),ABCD的四个内角的平分线分别相交于点E,F,G,H.求证:四边形EFGH 是矩形.分析:要证四边形EFGH是矩形,由于此题目可分解出基本图形,如图(2),因此,可选用“三个角是直角的四边形是矩形”来证明.证明:19.2.2 菱形(一)1.若菱形的边长等于一条对角线的长,则它的一组邻角的度数分别为.2.已知菱形的两条对角线分别是6cm和8cm ,求菱形的周长和面积.3.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,求菱形的对角线的长和面积.4.已知:如图,菱形ABCD中,E、F分别是CB、CD上的点,且BE=DF.求证:∠AEF=∠AFE.5.菱形ABCD中,∠D∶∠A=3∶1,菱形的周长为8cm,求菱形的高.6.如图,四边形ABCD是边长为13cm的菱形,其中对角线BD长10cm,求(1)对角线AC的长度;(2)菱形ABCD的面积.419.2.2 菱形(二)1.填空:(1)对角线互相平分的四边形是;(2)对角线互相垂直平分的四边形是________;(3)对角线相等且互相平分的四边形是________;(4)两组对边分别平行,且对角线的四边形是菱形.2.画一个菱形,使它的两条对角线长分别为6cm、8cm.3.如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。
平行四边形的性质1
19.1.1平行四边形的性质(一)人教版八年级数学元氏二中时菊芳教学目标:【知识技能】1 理解平行四边形的定义及有关概念。
2能根据定义探索并掌握平行四边形的对边相等,对角相等的性质。
3了解平行四边形在实际生活中的应用,能根据平行四边形的性质进行简单的计算和证明。
【数学思考】1经历运用平行四边形描述观察世界的过程,发展学生的形象思维和抽象思维。
2根据平行四边形的性质进行简单的计算和证明,通过观察,实验,归纳,证明,能运用数学语言合乎逻辑地进行讨论和质疑,培养学生的推理能力和演绎能力。
【解决问题】由平行四边形的定义,能从数学的角度探究平行四边形的其他性质,并能运用平行四边形的性质进行有关的证明和计算,发展应用意识。
【情感态度】在应用平行四边形的性质过程中培养独立思考的习惯,在数学活动中获得成功的体验。
通过平行四边形的应用,进一步认识数学与生活的密切联系。
教学重难点:【重点】平行四边形的概念和性质。
【难点】平行四边形性质的探究。
教学方法:探究、启发式教学过程:一、创设情境,引入新课观看投影:生活中的竹篱笆格子和汽车的防护链等,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?二、探究定义(1) 定义:两组对边分别平行的四边形是平行四边形。
(2)定义的双重性:具备“两组对边分别平行”的四边形,才是“平行四边形”;反过来,“平行四边形”就一定具有“两组对边分别平行”性质。
(3)表示方法:如图,平行四边形ABCD,记作ABCD三、引导实验,探索新知学生操作:画一个平行四边形,观察这个四边形,除了“两组对边分别平行”以外,它的边角之间还有其他的关系吗?猜一猜量一量得出结论:平行四边形的对边相等.平行四边形的对角相等.(引导学生积极参与画图,猜想,度量,探讨结论。
)证一证得出平行四边形性质1平行四边形的对边相等.2 平行四边形的对角相等.引导学生写出已知:ABCD求证:(1)AB=DC AD=BC(2)∠A=∠C ∠B=∠D证明(证明过程学生独立完成,投影仪展示或板演。
平行四边形的性质(1)
19.1.1平行四边形的性质(1)【学习目标】1、理解并掌握平行四边形的定义;掌握平行四边形的性质定理1及性质定理22、理解两条平行线的距离的概念3、经历探索平行四边形的有关概念和性质的过程,发展学生的探究意识和合情推理的能力【重点、难点】重点:平行四边形的定义,性质,以及性质的应用难点:运用平行四边形的性质进行有关的论证和计算【学习过程】一、知识回顾:在四边形中,最常见、应用最广泛的是平行四边形,如竹篱笆格子、推拉门、汽车防护链、书本等,都是平行四边形,平行四边形有哪些性质呢?1、什么是四边形?四边形的一组对边有怎样的位置关系?2、一般四边形有哪些性质?二、探究新知:【探究】平行四边形是一种特殊的四边形,如何定义平行四边形它具有哪些性质?1、平行四边形的定义:(1)定义:两组对边分别平行的四边形叫做平行四边形。
(2)几何语言表述∵ AB∥CD AD∥BC ∴四边形ABCD是平行四边形(3)定义的双重性具备“两组对边分别平行”的四边形,才是“平行四边形”,反过来,“平行四边形”就一定具有“两组对边分别平行”性质。
(4)平行四边形的表示:用表示,如ABCD2、看图形猜想:平行四边形的性质已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵ AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又 AC=CA,∴ △ABC ≌△CDA (ASA ).∴ AB =CD ,CB =AD ,∠B =∠D .又 ∠1+∠4=∠2+∠3,∴ ∠BAD =∠BCD .总结:平行四边形的性质(1)共性:具有一般四边形的性质(2)特性:(板书)角平行四边形的对角相等边 平行四边形的对边相等推论 夹在两条平行线间的平行线段相等注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.3、两条平行线的距离(定义略)注意:(1)两相交直线无距离可言(2)与两点的距离、点到直线的距离的区别与联系三、学以致用:例(补充)如图,在平行四边形ABCD 中,AE=CF ,求证:AF=CE .分析:要证AF=CE ,需证△ADF ≌△CBE,由于四边形ABCD 是平行四边形,因此有∠D=∠B ,AD=BC ,AB=CD ,又AE=CF ,根据等式性质,可得BE=DF .由“边角边”可得出所需要的结论.证明略.例:(1)在平行四边形ABCD 中,∠A=500,求∠B 、∠C 、∠D 的度数。
19.1.1平行四边形的性质(1)
性 质
∴AB∥CD AD∥BC
∵ AB∥CD AD∥BC
判定
∴四边形ABCD是平行四边形
平行四边形的有关概念:
1、平行四边形中相对的边称为对边, 相对的角称为对角。
2、平行四边形中相邻的边称为邻边,
B
A
D
C
相邻的角称为邻角。
3、平行四边形不相邻的两个顶点连成的线段 叫它的对角线。
平行四边形的邻角有什么性质呢?
∠1= ∠2 AC=CA ∠3= ∠4 ∴ △ABC≌△CDA(ASA) 即∠BAD=∠DCB
行家看门道
取出两张全等的三角形纸片拼平行四 边形,你能拼出几种不同的平行四边形?
A
D C
平行四边形对边相等 平行四边形对角相等
B
用符号语言表示:如图
∵四边形ABCD是平行四边形
∴AB=C D AD=BC
A B C D
如图, ABCD中,AE⊥BC,AF⊥CD, ∠B=60° BE=2,DF=3。则 ABCD的周长为( ) C A、20 3 B、12 B C D A C、20 D、12 3
A B E C F
D
已知
ABCD,延长AB到E, 延长CD到F ,使BE=DF
F D C
求证:AF=CE
A
∴ AF=BM
பைடு நூலகம்
∠ A=∠ C ∠ B=∠ D
小结:平行四边形的性质是证明线段相等和 角相等的重要依据和方法。
例1 如图
小明用一根36m长的绳子围成了一个 平行四边形的场地,其中一条边AB长为8m,其他 三条边各长多少?
A D 解: ∵ 四边形ABCD是平行四边形 B C ∴AB=CD, AD=BC ∵AB=8m
平行四边形的性质1
四边形19.1 平行四边形19.1.1 平行四边形的性质要点提示【重点提示】平行四边形的定义及性质.【难点提示】探索平行四边形的性质、寻求解题思路.【考点提示】1.应用平行四边形的性质定理解题.2.运用平行四边形对角、对边相等的性质进行有关的论证和计算.一课三练【课前自练】(10分钟)○1._________________________________的四边形叫做平行四边形.○2.平行四边形的性质:(1)___________________________(2) ________________________(3) _______________________________.○3.在□ABCD中,AB=3,BC=4,则□ABCD的周长等于_______.△4.在□ABCD中,∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4 B.1:2:2:1C.1:1:2:2 D.2:1:2:1△5.平行四边行的两条对角线把它分成全等三角形的对数是()A.2 B.4 C.6 D.8【课堂精练】(20分钟,50分)○6.(8分)在□ABCD中,∠A、∠B的度数之比为5:4,则∠C等于()A.60°B.80°C.100°D.120°△7.(8分)将一张平行四边形的纸片折一次,使得折痕平分这个平行四边形的面积,则这样的折纸方法共有()A.1种B.2种C.4种D.无数种△8.(8分)平行四边形的周长等于56 cm,两邻边长的比为3:1,那么这个平行四边形较长的边长为_______.△9.(12分)如图,在□ABCD中,AB=AC,若□ABCD的周长为38 cm,△ABC的周长比□ABCD 的周长少10 cm,求□ABCD的一组邻边的长.第9题图☆10.(14分)如图,在□ABCD中,对角线AC、BD相交于点O,MN是过O点的直线,交BC 于M,交AD于N,BM=2,AN=2.8,求BC和AD的长.第10题图【课后演练】(20分钟,50分)○11.(6分)平行四边形的两条对角线和一条边的长依次可以取()A.6、6、6B.6、4、3C.6、4、6D.3、4、5○12.如图:A/B/∥BA,B/C/∥CB,C/A/∥AC,图中的平行四边形有个,它们分别是.第12题图△13.(6分)在□ABCD中,∠A+∠C=270°,则∠B=______,∠C=______.△14.(10分)如图,在平行四边形ABCD中,BC=2AB,E为BC的中点,求∠AED的度数.第14题图△15.(10分)如图,在□ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.那么OE与OF是否相等?为什么?第15题图☆16.(12分)如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.第16题图ACBCAB′′′答案○1.两组对边分别平行的○2. (1)平行四边形的对边相等(2)平行四边形的对角相等(3)平行四边形的对角线互相平分○3.24 △4. D △5. B ○6. C △7. D △8.21 cm △9. AD=10cm CD=9cm 【讲析】∵△ABC的周长= AB+AC+BC,□ABCD的周长=AB+BC+CD+AD,又∵△ABC的周长比□ABCD的周长少10 cm,且AB=AC,∴AD=10cm,∴CD=9cm ☆10. BC=4.8 AD=4.8 【讲析】∵点O是对角线的交点,∴AO=CO,∵MN是过O点的直线,∴∠AON=∠COM,又∵∠NAO=∠MCO,∴△AON≌△COM,∴AN =MC,又∵AN=2.8,∴BC=4.8,∵AD=BC,∴AD=4.8 ○11.C○12. 3□A/B/ C/B、□A/CB/ C/、□A/B/ AC/△13. 45°135°△14. 90°△15. 相等由△DOF≌△BOE易得到OE=OF☆16. 相等【讲析】∵四边形ABCD为平行四边形,∴AD∥EC,又∵AE∥CF,∴四边形AECF为平行四边形,∴AE=CF。
平行四边形的性质(一)
19.1.1 平行四边形的性质(一)教学目标:(一)知识与技能1、理解平行四边形的定义,能根据定义探究平行四边形的性质。
2、了解平行四边形在生活中的应用实例,能应用性质解决简单的实际问题。
(二)过程与方法1、经历探索平行四边形有关概念和性质的过程使学生理解平行四边形的概念和性质。
2、探索平行四边形的对边相等、对角相等的性质,并能掌握应用它解决问题。
(三)情感态度在应用平行四边形的性质的过程中培养独立思考的习惯,在数学学习的活动中获得成功的体验,通过平行四边形的应用进一步认识数学与生活的密切联系。
教学重点:平行四边形的性质的探索,平行四边形性质的应用。
教学难点:理解并应用平行四边形的性质。
教具准备:多媒体课件。
教学过程:活动一:了解生活中的平行四边形,理解平行四边形的定义及相关概念。
1、演示图片,让学生去欣赏,从中感受平行四边形。
2、结合图形,回顾平行四边形的定义及相关概念。
①两组对边分别平行的四边形叫做平行四边形如图,四边形ABCD 是平行四边形,记作:□ABCD ,读作:平行四边形ABCD②平行四边形相对的边称为对边,相对的角称为对角。
③平行四边形不相邻的两个顶点连成的线段叫做平行四边形的对角线。
线段AC 就是□ABCD 的对角线。
活动二:平行四边形的性质探究:1、质疑:根据定义可知平行四边形的对边互相平行,除此之外还有什么性质呢?2、探索交流——平行四边形对边还有什么性质?猜想——度量——动画演示(平移)——总结结论:平行四边形的对边相等。
3、探索交流——平行四边形的对角有什么性质?猜想——度量——动画演示(旋转)——总结结论:平行四边形的对角相等。
思考:平行四边形中相邻的两角有什么关系?4、总结归纳:平行四边形的性质:①平行四边形对边平行且相等。
②平行四边形对角相等。
③平行四边形邻角互补。
5、证明性质。
已知:□ABCD (如图)求证:AB =CD ,BC =DA ,∠B =∠D ,∠BAD =∠DCB活动三:用两个全等的不等边三角形纸片可以拼出几种形状不同的平行四边形?问题:从拼图中可以得到什么启示?小结:平行四边形可以是由两个全等的三角形组成,因此在解决平行四边形的问题时,通常可以连结对角线转化两个全等的三角形进行解题。
19.1.1平行四边形的性质(1)
从拼图可以得到什么启示?
小结:
平行四边形可以是由两个全等的三角形组成, 因此在解决平行四边形的问题时,通常可以连结对 角线转化为两个全等的三角形进行解题。
已知: ABCD 求证:AB=CD,BC=DA; ∠B=∠D,∠A=∠C. 证明:连接AC ∵四边形ABCD是平行四边形
4 1 2 3
∴AB∥CD,AD∥BC ∴∠1=∠2,∠3=∠4 在△ABC和△CDA中 ∠1=∠2
19.1平行四边形
平行四边形相关概念
1.两组对边分别平行的四边形叫做平行四边形.
如图:四边形ABCD是平行四边形 记作: ABCD
B
A
D
C
2.平行四边形不相邻的两个顶点连成的线段叫
平行四边形的对角线.
线段AC、BD就是 ABCD的两条对角线。
3.平行四边形相对的边称为 对边, 相对的角称为 对角.
∠A= ∠C, ∠B= ∠D(平行四边形的对角相等)
1.如图:在 ABCD中,根据已知你能得到哪 些结论?为什么?
A 30cm B
124°
32cm
56° 124°
D
30cm
56°
32cm
C
在
ABCD中,AB=5,BC=3,求它的周长
例1:如图 小明用一根36m长的绳子围成了一个平行四 边形的场地,其中一条边AB长为8m,其他三条边各长 多少? A D 解:∵ 四边形ABCD是平行四边形 8cm ∴AB=CD, AD=BC B C ∵AB=8m
Hale Waihona Puke 对边:AB与CD; BC与DA. 对角: ∠ABC与∠CDA; ∠BAD与∠DCB.
平行四边形的边、角有怎样的数 量关系?
请用直尺,量角器等工具度量你手中平行 四边形的边和角,并记录下数据,验证猜想 AB=DC,AD=BC,∠A=∠C,∠B=∠D是否正确? 用你以前所学的知识证明猜想.
19.1.1平行四边形及其性质
19.1平行四边形及其性质第一课时一、教学目标知识与技能理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.过程与方法会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.情感、态度与价值观培养学生发现问题、解决问题的能力及逻辑推理能力.二、重点难点重点: 平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.难点: 运用平行四边形的性质进行有关的论证和计算.三、教学准备多媒体课件。
四、教学方法自主、合作、探究法。
五、教学过程(一)复习导入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC,AD//BC (性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.探究:平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC 和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA (ASA).∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD.由此得到:平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.(二)新课教授例1.(教材P93例1)例2.(补充)如图,在平行四边形ABCD 中,AE=CF ,求证:AF=CE .分析:要证AF=CE ,需证△ADF ≌△CBE ,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC ,AB=CD ,又AE=CF ,根据等式性质,可得BE=DF .由“边角边”可得出所需要的结论.证明略.例3.如图所示,小明用一根36米长的绳子围成了一个平行四边形场地,其中一条边AB 长为8米,其他三边各长多少?师生共析:利用“平行四边形对边相等”。
19.1.1平行四边形的性质(1)
(2)表示:平行四边形用符号“ ”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.
知识点二平行四边形的性质
【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.
四、课堂梳理小结作业说明
小结具体内容
平行四边形的性质及应用
详细分层作业
布置要求说明
必做:书P84练习1、2(本上)导航P38随堂练习
选作:导航P39课后演练
初二学案记录学科八下数学时间月日
课题
19.1.1平行四边形的性质(1)
课型
新授
课时
1
一、课堂导入知识点衔接
复习内容重点
回忆小学时,学习的平行四边形的概念及相关知识
具体衔接点
1、已知的平行四边形的相关知识
2、平行线的相关性质二、本课知点强调说明本课重点难点
1、四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用
针对性练习:1:、 ABCD中,AB=10,BC=6,则它的周长是____
2、如右图,在 ABCD中, ,如果∠A=125°
那么∠BCE的度数为()A 55°B 35°C 25°D 30°
例2如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.
练习:
如图4.3-9,在 ABCD中,AC为对角线,BE⊥AC,
DF⊥AC,E、F为垂足,求证:BE=DF.
随堂练习
1、(1)在 ABCD中,∠A= ,则∠B=度,∠C=度,∠D=度.
[初中数学]平行四边形的性质教案7(第1课时) 人教版
《平行四边形的性质》教案(第1课时)长春外国语学校王方方平行四边形的性质第一课时教案讲授课题:人教版八年级数学下册19.1.1平行四边形的性质(一)教学目标:1、知识目标:理解平行四边形的概念,掌握平行四边形的边、角、对角线的性质,并能初步用其来解决实际问题.2、能力目标:通过探索、发现、论证培养学生类比、转化的数学思想方法,锻炼学生缜密的逻辑思维能力,渗透“转化”的数学思想.3、情感目标:让学生在观察、合作、讨论、交流中感受数学的实际应用价值,同时培养学生善于发现、积极思考、合作学习的学习态度.教学重点:平行四边形的性质教学难点:理解并应用平行四边形的性质教学方法:探究、启发式教学过程:一、创设情境,引入新课引入:在四边形中,最常见、价值最大的是平行四边形,如竹篱笆格子、推拉门、汽车防护链、书本等,都是平行四边形,平行四边形有哪些性质呢?做一做将两张全等的三角形纸片,设法找到某一边的中点,记作点O,将上层的三角形纸片绕点O旋转180度,下层的三角形纸片保持不动,此时:(1)两张纸片拼成了怎样的图形?(2)这个图形中有哪些相等的角?有没有互相平行的线段?(3)用简洁的语言刻画这个图形的特征,并与同伴交流.通过观察,让学生勾勒出发现的几何图形:平行四边形,然后举出一些生活中的实例。
从而引出平行四边形在日常生活中应用广泛,是一种美观实用的图形,因此我们有必要系统学习平行四边形.二、感悟图形,明确概念1、观察质疑:平行四边形如何区别于一般的四边形.让学生自己归纳定义:有两组对边分别平行的四边形叫做平行四边形引入概念:2、引入平行四边形对边、邻边、对角、邻角、对角线等概念.3、平行四边形的表示:通过演示使学生学会用文字语言、图形语言、符号语言来描述. 如图,平行四边形ABCD根据定义画出平行四边形,得到图形语言 还可以用符号语言来描述平行四边形的定义AB//CD AD//BC 三、引导实验,探索新知1、探索平行四边形的性质由定义可知平行四边形的对边平行2、质疑:平行四边形除以上性质外还有其他性质吗?鼓励学生大胆猜想(提示:请学生仿照三角形的学习方法从边和角去探索)第一步:猜想边和角之间的数量关系(对边相等,对角相等) 第二步:小组合作学习探索:让各组学生画平行四边形,用测量、旋转、平移、推理等方法验证上面的猜想.3、 小组汇报发现:平行四边形的对边相等平行四边形的对角相等4、推理:(如何证明上述结论?)已知:如图ABCD , AB CD A 1234求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)证明:连接AC,∵AB∥CD,AD∥BC,∴∠1=∠3,∠2=∠4.又AC=CA,∴△ABC≌△CDA (ASA).∴AB=CD,CB=AD,∠B=∠D.又∠1+∠4=∠2+∠3,∴∠BAD=∠BCD分析:解决四边形问题的常用方法:转化为三角形的问题。
1911平行四边形的性质(第1课时)汇总
19.1.1平行四边形的性质(第1课时) 1.填空:(1)中,∠A=120°,则∠C= °,∠B= °, ∠D= °; (2) ABCD 中,AB=5,BC=3,则它的周长= ;(3)如图, ABCD 的周长为36,AB=8,则DC= ,BC= ,AD= . 2.完成下面的证明过程:证明平行四边形的对角相等.中,AB ∥DC ,AD ∥BC , 求证:∠A=∠C ,∠B=∠D. 证明:∵AB ∥DC ,∴∠A=180°-∠(两直线平行,同旁内角互补). 又∵AD ∥BC ,∴∠C=180°-∠(两直线平行,同旁内角互补). ∴∠A=∠C.同理可证∠B=∠D.3.完成下面的证明过程:证明平行四边形的对边相等.ABCD 中,AB ∥DC ,AD ∥BC ,求证:AB=DC ,BC=AD.证明:连接AC. ∵AB ∥DC ,∴∠ =∠(两直线平行,内错角相等). 又∵AD ∥BC ,∴∠ =∠(两直线平行,内错角相等).在△ABC 和△CDA 中,__________,AC CA (公共边)__________,⎧∠=∠⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDA (ASA ). ∴AB=DC ,BC=AD(全等三角形 相等)19.1.1平行四边形的性质(第2课时) 1.填空:(1)有两组 分别平行的四边形叫做平行四边形;(2)平行四边形的对边 ,平行四边形的对角 . 2.填空:(1)如图,∠1的一个外角, ∠1=38°,则∠2= °, ∠A= °,∠B= °, ∠D= °.(2)如图, ABCD 的周长为12,BC=2AB , 则CD= ,AD= .3.下面就请同学们自己来完成下面的证明过程.证明平行四边形的对角线互相平分. ABCD 中,对角线AC 、BD 相交于点O ,求证:OA=OC ,OB=OD.证明:∵AD ∥BC ,∴∠1=∠ ,∠3=∠ (两直线平行,内错角相等). 在△ADO 和△CBO 中,1_____,AD _______(平行四边形的对边相等)3_____,⎧∠=∠⎪=⎨⎪∠=∠⎩A B CD CDBA 4321CDB A ABD12O3142A B DC CD BA∴△ADO ≌△CBO ( ).∴OA=OC ,OB=OD(全等三角形的对应边相等).4.如图,在 ABCD 中,BC=10cm ,AC=8cm ,BD=14cm ,填空: (1)△AOD 的周长= cm ;(2)△DBC 的周长比△ABC的周长长了 cm.19.1.1平行四边形的性质(第3课时) 1.如图,在 ABCD 中,AB =6,AD =8,∠B =60°,AE ⊥BC 于E ,求:(1)EC 的长;(2)AE 的长; 的面积.2.填空题:ABCD 中,∠B =30°,CE 平分∠BCD ,AB =3,BC =5,则 (1)∠1= °; (2)DE = ; (3)AE = .课外补充作业: 3.填空题:中, AB =4,AD =3, OF =1.3,则四边形BCFE 的周长= .4. ABCD 中,CA ⊥AB 于A ,且∠B =45°,AB =4,求:(1) ABCD 的周长; (2) ABCD 的面积; (3)连接BD ,求BD 的长.D ABCE 1B DC A DCB AO8660 E A B C D F E BCO D A19.1.2平行四边形的判定(第1课时) 1.完成下面的证明过程:证明两组对边分别相等的四边形是平行四边形.已知:如图,AB=DC ,BC=AD ,求证:四边形ABCD 是平行四边形. 证明:连接AC. 在△ABC 与△CDA 中, AB =DC ,BC =AD ,AC =_____,⎧⎪⎨⎪⎩∴△ABC ≌△CDA ( ).∴∠2=∠ ,∠3=∠ . ∴AB ∥ ,BC ∥( 角相等,两直线平行). ∴四边形ABCD 是平行四边形. 2.完成下面的证明过程:证明两组对角分别相等的四边形是平行四边形.已知:如图,∠A=∠C ,∠B=∠D , 求证:四边形ABCD 是平行四边形.证明:∵∠A=∠C ,∠B=∠D ,而∠A +∠C +∠B +∠D= °, ∴∠A +∠B= °,∠A +∠D= °.∴BC ∥AD ,AB ∥DC(同旁内角 ,两直线平行). ∴四边形ABCD 是平行四边形. 课外作业:3.证明对角线互相平分的四边形是平行四边形.已知:如图, 求证: 证明:19.1.2平行四边形的判定(第2课时) 1.填空:(1)两组对边分别 的四边形是平行四边形;(2)两组对边分别 的四边形是平行四边形;(3)两组对角分别 的四边形是平行四边形;(4)对角线 的四边形是平行四边形.2.完成下面的证明过程:已知:如图,在四边形ABCD 中,AB ∥DC ,∠A=∠C.求证:四边形ABCD 是平行四边形. 证明:∵AB ∥DC ,∴∠B=180°-∠ ,∠D=180°-∠(两直线平行,同旁内角互补). 而∠A=∠C , ∴∠B=∠ .∴四边形ABCD 是平行四边形(两组分别相等的四边形是平行四边形).43CD BA 21A B C D DC B A O C DBA3.已知:如图,四边形ABCD中,AD=12,DO=OB=5,AC=26,∠ADB=90°.求证:四边形ABCD是平行四边形.19.1.2平行四边形的判定(第3课时)1.证明一组对边平行且相等的四边形是平行四边形.已知:如图,AB∥DC,AB=DC.求证:四边形ABCD是平行四边形.证明:连接AC. 2. ABCD中,AM=CN.求证:四边形MBND是平行四边形.证法一:(用“一组对边平行且相等的四边形是平行四边形”来证)证法二:(用“两组对边分别相等的四边形是平行四边形”来证)O A CDBC DB AMNABCD19.1.2平行四边形的判定(第4课时) 1.如图,D 、E 、F 是△ABC 三边的中点, (1)画出△ABC 的三条中位线; (2)画出△ABC 的三条中线.2.如图,DE 、EF 是△ABC 的中位线, EF=4,BC=9, 则AB= ,DE= .3.填空:已知△ABC 的周长为12,则连结各边中点所成△DEF 的周长为 . 课外补充作业:4.已知:如图,在△ABC 中,DE 是中位线,AF 是中线,求证:DE 与AF 互相平分.证明:连接DF ,EF.19.1.2平行四边形的判定(第5课时) 1.如图,a ∥b ,用尺子测量后填空:(1)点P 与点O 的距离= 厘米; (2)点P 到直线a 的距离= 厘米; (3)点P 到直线b 的距离= 厘米;(4)直线a 与直线b 之间的距离= 厘米.19.2.1矩形(第1课时)1.证明矩形的两条对角线相等:已知:如图,四边形ABCD 是矩形. 求证:AC=BD.A B C D E F●●●A DB FC E A B CDEF a bO ●P ●A B C D2.如图,四边形ABCD 是矩形,填空: (1)∠1=25°,则∠2= °, ∠3= °, ∠4= °;(2)OA=3,则AC= ,BD= ,OD= .3.如图,在矩形ABCD 中,∠BDC=60°,OA=2, 求DC 和BC 的长.19.2.1矩形(第2课时) 1.填空:(1)有 个角是 角的平行四边形叫做矩形;(2)矩形的 个角都是 角,矩形的对角线 .2.完成下面的证明过程:证明直角三角形斜边上的中线等于斜边的一半:已知:如图,在△ABC 中,∠ABC=90°,OB是AC 边上的中线.求证:OB=12AC.证明:延长BO 到D ,使OB=OD ,连接AD ,DC. ∵OB 是AC 边上的中线, ∴OA= . 而OB=OD ,∴四边形ABCD 是 四边形. 又∵∠ABC=90°, ∴四边形ABCD 是矩形.∴BD= .而OB=12 ,∴OB=12AC.3.如图,在Rt △ABC 中,CD 是AB 边上的中线,CD=2,∠B=50°,填空: (1)AB= , AD= ,BD= ;(2)∠1= °,∠2= °.4.填空:如图,在Rt △ABC 中,∠ACB=90°,∠A=30°,CD 是角平分线,CE 是AB 边上的中线, 则∠DCE= °.19.2.1矩形(第3课时) 1.完成下面的证明过程:证明对角线相等的平行四边形是矩形. 已知:如图,四边形ABCD 是平行四边形,AC=BD ,求证:四边形ABCD 是矩形.证明:∵四边形ABCD 是平行四边形, ∴AB= .在△ABC 与△DCB 中,AB=________,BC=________,AC=________,⎧⎪⎨⎪⎩∴△ABC ≌△DCB ( ). ∴∠ABC=∠DCB. 而AB ∥DC ,∴∠ABC +∠DCB= °. ∴∠ABC= °. ∴四边形ABCD 是矩形(矩形的定义). 2.判断正误:对的画“√”,错的画“×”. (1)有两个角是直角的四边形是矩形; ( ) (2)两组对边相等并且对角线也相等的四边形O 4321D CB AO DC BA D ABC OA B C D 21AB CDA B C D是矩形; ( ) (3)一组对边平行另一组对边相等并且对角线也相等的四边形是矩形; ( ) (4)对角线相等且互相平分的四边形是矩形. ( ) 3.证明四个角都相等的四边形是矩形.19.2.2菱形(第1课时) 1.完成下面的证明过程:证明菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.已知:如图,四边形ABCD 是菱形,求证:BD ⊥AC ,∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.证明:∵四边形ABCD 是菱形, ∴AB=AD ,BO= .在等腰△ABD 中,AO 是底边BD 上的中线,∴AO 是底边BD 上的 ,AO 是顶角∠BAD 的 , 即BD ⊥AC ,∠1=∠ .同理可证,∠3=∠4,∠5=∠6,∠7=∠8.2.填空:如图,在菱形ABCD 中,∠1=60°, 则∠2= °,∠3= °,∠4= °, ∠5= °, ∠6= °, ∠7= °, ∠8= °.3.填空:如图,在菱形ABCD 中,AC=8,BD=6, 则AB= ,菱形的周长= .4.填空:菱形的一条对角线的长为24,周长为52,则另一条对角线的长为 .19.2.2菱形(第2课时) 1.填空:(1)有一个角是直角的平行四边形叫做 形;有一组邻边相等的平行四边形叫做 形.(2)矩形的四个角都是 ;菱形的四条边都 .(3)矩形的对角线 ;菱形的两条对角线 ,并且每一条对角线平分一组对角. 2.填空:如图,在菱形ABCD 中,∠BAD=120°, AC=2,则 AB= ,BD= ,菱形ABCD 的周长= ,菱形ABCD 的面积= .3.如图,四边形ABCD 是菱形,对角线AC=8,BD=6,DH ⊥AB 于点H.求DH 的长.(提示:菱形ABCD 的面积=12AC ·BD=AB ·DH )A C DB O42135678B C D A OA12ABC DO O A C D H补充课外作业:5.证明菱形的四条边相等.19.2.2菱形(第3课时)1.证明四边相等的四边形是菱形.已知:如图,AB=BC=CD=DA,求证:四边形ABCD是菱形.2.证明对角线互相垂直的平行四边形是菱形.ABCD中,BD⊥AC,求证:四边形ABCD是菱形.补充课外作业:3.判断正误:对的画“√”,错的画“×”.(1)一条边长为3,周长为12的平行四边形是菱形. ()(2)一条边长为10,对角线长为8和6的平行四边形是菱形. ()4.探究题:有一条对角线平分一个角的平行四边形是菱形吗?如果是,举一个例子来说明;如果不是,给出证明.DCB AABCDO19.2.2菱形(第4课时) 1.填空:(1)判定矩形的三种方法是: 根据定义:有一个角是 角的平行四边形是矩形; 判定定理:有 个角是直角的四边形是矩形;判定定理:对角线 的平行四边形是矩形.(2)判定菱形的三种方法是: 根据定义:有一组 相等的平行四边形是菱形;判定定理: 边相等的四边形是菱形; 判定定理:对角线 的平行四边形是菱形.2.已知:如图,∠1=∠2=∠3=∠4, 求证:四边形ABCD 是菱形.3.完成下面的证明过程:已知:如图,E ,F ,G ,H 是矩形ABCD 各边的中点,求证:四边形EFGH 是菱形.证明:连结AC ,BD.∵E ,F ,G ,H 是矩形ABCD 各边的中点,根据三角形中位线定理,有EH=12 ,FG=12 ,EF=12 ,GH=12,而四边形ABCD 是矩形, ∴AC= . ∴EH=FG=EF=GH.∴四边形EFGH 是菱形.19.2.3正方形(第1课时) 1.判断正误:对的画“√”,错的画“×”. (1)矩形的两条对角线把这个矩形分成四个等腰三角形; ( ) (2)矩形的两条对角线把这个矩形分成四个全等的等腰三角形; ( ) (3)菱形的两条对角线把这个菱形分成四个全等的直角三角形; ( ) (4)正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形. ( ) 2.判断正误:对的画“√”,错的画“×”. (1)对角线互相垂直的平行四边形是正方形; ( ) (2)对角线互相垂直的矩形是正方形;( ) (3)对角线相等的平行四边形是正方形; ( ) (4)对角线相等的菱形是正方形; ( ) (5)对角线互相垂直且相等的四边形是正方形; ( )HGA B D C F E AB CD 4312(6)对角线互相垂直且相等的平行四边形是正方形; ( ) (7)对角线互相垂直平分且相等的四边形是正方形. ( ) 课外补充作业:3.已知:如图,点E ,F ,G ,H 分别是正方形ABCD 四条边上的中点,求证:四边形EFGH 是正方形.19.3梯形(第1课时)1.证明等腰梯形同一底边上的两个角相等. 已知:如图,在等腰梯形ABCD 中,AD ∥BC ,AB=DC ,求证:∠A=∠D ,∠B=∠C.证明:过点A 作AE ⊥BC ,过点D 作DF ⊥BC.2.填空:如图,在等腰梯形ABCD 中,∠A=100°,则 ∠B= °, ∠C= °, ∠D= °.3.填空:如图,在等腰梯形ABCD 中, AD=4,BC=10,AB=5,则 BE= , AE= .4.有一个角是直角的梯形叫做直角梯形,请你画出一个直角梯形.19.3梯形(第2课时) 1.填空:(1)一组对边 ,另一组对边 的四边形叫做梯形;(2) 相等的梯形叫做等腰梯形; (3)有一个角是 的梯形叫做直角梯形;(4)等腰梯形同一底边上的两个 相等. 2.已知:如图,在梯形ABCD 中,AE ⊥BC 于E ,B A D CEAB C DAB C D FE G H A B C DE FAE=3,AD=5,∠B=45°,∠C=30°, 求BC.(结果保留一位小数)3.证明等腰梯形下底的中点到两腰的距离相等.19.3梯形(第3课时) 1.填空:(1)梯形ABCD 中,AD ∥BC ,AB=CD ,∠C=70°,则∠A= °;(2)如图,在直角梯形ABCD 中,AD=9,BC=14,DC=13,则AB= .2.证明等腰梯形的两条对角线相等.已知:如图,求证:证明:3.填空:如图,四边形ABCD 是等腰梯形,则OA= , OB= .4.填空:如上图,四边形ABCD 是等腰梯形,BA ⊥AC ,OA=3,AB=4,则BD= ,△ABC 的面积= . 补充课外作业5.如图,四边形ABCD 是等腰梯形,图中共有哪几对全等三角形?6.如图,四边形ABCD 是等腰梯形,AC ⊥BD ,OA=3,OB=7,求梯形ABCD 的面积.EA B C D 12E A B C D A BC D D CB A O DAOA B C DO A B CD19.3梯形(第4课时)1.已知:如图,在梯形ABCD 中,AD ∥BC ,∠B=∠C ,求证:梯形ABCD 是等腰梯形.证明:过点A 作AE ⊥BC ,过点D 作DF ⊥BC.2.已知:如图,在梯形ABCD 中,AD ∥BC , ∠B=∠C ,求证:梯形ABCD 是等腰梯形. 证明:过点D 作DE ∥AB.课外补充作业:3.证明:两条对角线相等的梯形是等腰梯形. 已知:如图,在梯形ABCD 中,AD ∥BC ,AC=DB , 求证:梯形ABCD 是等腰梯形.证明:过点D 作DE ∥AC ,交BC 的延长线于E.第十九章四边形复习(第1、2、3课时) (二)基本训练,掌握双基1.填空(以下内容是本章的基础知识,是需要你认真理解的,先直接用铅笔填,想不起来再在课本中找)(1)有两组对边分别平行的四边形叫做 ;一组对边平行,另一组对边不平行的四边形叫做 .E A BC D D C B A E E F A BC D E A BC D(2)有一个角是直角的平行四边形叫做;有一组邻边相等的平行四边形叫做 .(3)既是矩形又是菱形的四边形叫做.(4)两腰相等的梯形叫做;有一个角是直角的梯形叫做 .(5)三角形中位线定理:三角形的中位线三角形的第三边,且等于第三边的 .(6)两条平行线之间垂线段的长度叫做这两条平行线间的 .(7)直角三角形斜边上的中线等于斜边的.(1)平行四边形邻角互补. ()(2)一组对边平行,另一组对边相等的四边形是平行四边形. ()(3)对角线垂直且相等的四边形是平行四边形.()(4)邻角相等的平行四边形是矩形. ()(5)如果直角三角形一条直角边等于斜边的一半,那么这条直角边所对的角等于30°.()(6)菱形的面积等于两条对角线的乘积. ()(7)对角线互相垂直的矩形是正方形. ()(8)对角线相等的菱形是正方形. ()(9)有一组对边平行的四边形是梯形. ()(10)等腰梯形的对角线互相平分. ()(11)平行四边形是轴对称图形. ()(12)矩形、菱形、正方形、等腰梯形都是轴对称图形. ()3.填空:(1)在 ABCD中,AB+BC=15的周长= .(2)在 ABCD中,∠A:∠B=2:1,则∠C= °.(3)在中,AB=5,AC=8,BD=12,AC与BD相交于点O,则△OCD的周长= . (4)如图, ABCD中,AC与BD相交于点O,S△BOC=2,则S△AOB= ,S△AOD= ,S ABCD= .(5)如图,D,E,F分别是△ABC三边的中点,△ABC的周长为16,面积为8,则△DEF的周长= ,△DEF的面积= .(6)如图,在矩形ABCD中,AB CFDOB=1,∠ACD=30°, 则AD= , DC= .(7)矩形对角线组成的对顶角中,有一组是两个50°的角,则对角线与各边组成的角是 °、 °.(8)如图,在Rt △ABC 中, BC=3,AC=4,CD 是AB的中线,则CD= . (9)菱形的两条对角线是12和16,则菱形的周长= ,面积= .(10)菱形的一个内角是120°,周长为28,则较短的对角线的长为 .(11)若菱形的周长为8,高为1,则菱形两邻角的度数比为 .(12)如图,在正方形ABCD的外侧,作等边三角形ADE ,则∠AEB= °. (13)如图,在直角梯形ABCD 中,∠B=90°,∠C=30°, DC=4,则BC -AD= . (14)等腰梯形的上底与高相等,下底是上底的3倍,则腰与下底所成的角= °. (15)矩形的对称轴有 条,菱形的对称轴有 条,正方形的对称轴有 条,等腰梯形的对称轴有 条.4.已知:如图,在 ABCD 中,AE ⊥BC ,AF ⊥CD ,∠EAF=45°,求∠B 的度数.5.如图,在△ABC 中,D ,E ,F 是各边的中点,四边形DBFE 的周长为10,EC=2,求△ABC的周长.6.已知:如图,E 是矩形ABCD 中BC 边上的一点,且有AE=BC ,DF ⊥AE. 求证:DF=DC.A BCDE A B C DA BC D F A BC DEAB C D E A B CD E FABC D7.如图,在等腰梯形ABCD 中,AD ∥BC ,AB=DC ,∠1=∠2,∠C=60°,BC=6,求等腰梯形ABCD 的周长.A BC D 21。
配菜中学pecia教学设计
教学设计(首页)授课教师:备课日期: 年月日课题19.1.1 平行四边形及其性质(一)教学目标1.理解并掌握平行四边形的概念和平行四边形对边、对角相等的性质.2.会用平行四边形的性质解决简单的平行四边形的计算问题,并会进行有关的论证.3.培养学生发现问题、解决问题的能力及逻辑推理能力.教学重点平行四边形的定义,平行四边形对角、对边相等的性质,以及性质的应用.教学难点运用平行四边形的性质进行有关的论证和计算.教学用具小黑板教学方法参与式授课时数共 2 课时第 1 课时板书设计19.1.1 平行四边形及其性质(一)平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等教学反思审阅人年月日第页教学设计(续页)教学活动设计补充内容一、课堂引入1.我们一起来观察下图中的竹篱笆格子和汽车的防护链,想一想它们是什么几何图形的形象?平行四边形是我们常见的图形,你还能举出平行四边形在生活中应用的例子吗?你能总结出平行四边形的定义吗?(1)定义:两组对边分别平行的四边形是平行四边形.(2)表示:平行四边形用符号“”来表示.如图,在四边形ABCD中,AB∥DC,AD∥BC,那么四边形ABCD是平行四边形.平行四边形ABCD记作“ ABCD”,读作“平行四边形ABCD”.①∵AB//DC ,AD//BC,∴四边形ABCD是平行四边形(判定);②∵四边形ABCD是平行四边形∴AB//DC,AD//BC(性质).注意:平行四边形中对边是指无公共点的边,对角是指不相邻的角,邻边是指有公共端点的边,邻角是指有一条公共边的两个角.而三角形对边是指一个角的对边,对角是指一条边的对角.(教学时要结合图形,让学生认识清楚)2.【探究】平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?我们一起来探究一下.让学生根据平行四边形的定义画一个一个平行四边形,观察这个四边形,它除具有四边形的性质和两组对边分别平行外以,它的边和角之间有什么关系?度量一下,是不是和你猜想的一致?(1)由定义知道,平行四边形的对边平行.根据平行线的性质可知,在平行四边形中,第页教学设计(续页)教学活动设计补充内容相邻的角互为补角.(相邻的角指四边形中有一条公共边的两个角.注意和第一章的邻角相区别.教学时结合图形使学生分辨清楚.)(2)猜想平行四边形的对边相等、对角相等.下面证明这个结论的正确性.已知:如图ABCD,求证:AB=CD,CB=AD,∠B=∠D,∠BAD=∠BCD.分析:作ABCD的对角线AC,它将平行四边形分成△ABC和△CDA,证明这两个三角形全等即可得到结论.(作对角线是解决四边形问题常用的辅助线,通过作对角线,可以把未知问题转化为已知的关于三角形的问题.)平行四边形性质1 平行四边形的对边相等.平行四边形性质2 平行四边形的对角相等.二、例习题分析例1(教材P93例1)例2(补充)如图,在平行四边形ABCD中,AE=CF,求证:AF=CE.分析:要证AF=CE,需证△ADF≌△CBE,由于四边形ABCD是平行四边形,因此有∠D=∠B ,AD=BC,AB=CD,又AE=CF,根据等式性质,可得BE=DF.由“边角边”可得出所需要的结论.三、随堂练习课本练习四、小结本节课你学到了什么知识?五、作业课本90页习题19、1 第1、2题第页教学设计(首页)授课教师:备课日期: 年月日课题19.1.1 平行四边形的性质(二)教学目标4.理解平行四边形中心对称的特征,掌握平行四边形对角线互相平分的性质.5.能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题.6.培养学生的推理论证能力和逻辑思维能力.教学重点平行四边形对角线互相平分的性质,以及性质的应用.教学难点综合运用平行四边形的性质进行有关的论证和计算.教学用具小黑板教学方法参与式授课时数共2课时第 2 课时板书设计19.1.1 平行四边形的性质(二)(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.教学反思审阅人年月日第页教学设计(续页)教学活动设计补充内容一、课堂引入1.复习提问:(1)什么样的四边形是平行四边形?四边形与平行四边形的关系是:(2)平行四边形的性质:①具有一般四边形的性质(内角和是︒360).②角:平行四边形的对角相等,邻角互补.边:平行四边形的对边相等.2.【探究】:请学生在纸上画两个全等的ABCD和EFGH,并连接对角线AC、BD和EG、HF,设它们分别交于点O.把这两个平行四边形落在一起,在点O处钉一个图钉,将ABCD绕点O旋转︒180,观察它还和EFGH重合吗?你能从子中看出前面所得到的平行四边形的边、角关系吗?进一步,你还能发现平行四边形的什么性质吗?结论:(1)平行四边形是中心对称图形,两条对角线的交点是对称中心;(2)平行四边形的对角线互相平分.二、例习题分析例1(补充)已知:如图4-21,ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F.求证:OE=OF,AE=CF,BE=DF.第页教学设计(续页)教学活动设计补充内容※【引申】若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由.例2(教材P94的例2)已知四边形ABCD是平行四边形,AB=10cm,AD=8cm,AC⊥BC,求BC、CD、AC、OA的长以及ABCD的面积.分析:由平行四边形的对边相等,可得BC、CD的长,在Rt△ABC中,由勾股定理可得AC的长.再由平行四边形的对角线互相平分可求得OA的长,根据平行四边形的面积计算公式:平行四边形的面积=底×高(高为此底上的高),可求得ABCD的面积.(平行四边形的面积小学学过,再次强调“底”是对应着高说的,平行四边形中,任一边都可以作为“底”,“底”确定后,高也就随之确定了.)3.平行四边形的面积计算三、随堂练习课本随堂练习四、小结本节课你学到了什么知识?五、作业课本90页习题19、1 第3、4题第页教学设计(首页)授课教师:备课日期: 年月日课题19.1.2(一)平行四边形的判定教学目标1.在探索平行四边形的判别条件中,理解并掌握用边、对角线来判定平行四边形的方法.2.会综合运用平行四边形的判定方法和性质来解决问题.3.培养用类比、逆向联想及运动的思维方法来研究问题.教学重点平行四边形的判定方法及应用.教学难点平行四边形的判定定理与性质定理的灵活应用教学用具小黑板教学方法参与式授课时数共 2 课时第1课时板书设计19.1.2(一)平行四边形的判定平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思路点拨: 连结AC
B C
证明三角形ABC全等于三 角形ADC
对应边、对应角相等
已知:
ABCD(如图)
求证:AB=CD,BC=DA;∠B=∠D,∠BAD=∠DCB
证明:连结AC ∵AB∥CD,AD∥BC(平行四边形的对边平行) ∴∠1=∠2,∠3=∠4 在 ABC和 CDA中
A
∠1=∠2,AC=CA,∠3=∠4
∴ ABC≌ CDA(ASA) ∴AB=CD,BC=DA,∠B=∠D 又∵∠1=∠2,∠3=∠4 ∴∠1+∠3=∠2+∠4 即∠BAD=∠DCB
B
4 1
D
2
3C平行四边形的性 Nhomakorabea:平行四边形的对边平行;
四边形ABCD是平行四边形 AB CD , AD BC
平行四边形的对边相等;
四边形ABCD是平行四边形 AB CD; AD BC
作业:P90,第一题
原计划150千米的路程, 原计划150千米的路程, 每天以平均的速度完成, 黎老师以x份/小时的速度批改 每天以平均的速度完成, 但由于赶急完成,原150 150份试卷,一小时后,由于 但由于着急完成,第二 千米的路程可减少原每 天就以原速度的2倍来赶 熟悉了试题,以原来速度的2 天时间所建设的路程, 工,最终完成剩余路程 倍完成了剩下的试卷,完成剩 但要比原速度增加2倍, 的时间比原计划所用时 余试卷的时间比原速度用的时 最终比原计划所用时间 间快2天,求原每天建设 间快了2个小时,求x. 快2天,求原每天建设多 多少米? 少米?
平行四边形的对角相等;
四边形ABCD是平行四边形 A C; B D
平行四边形的邻角互补;
1、已知一个平行四边形的两个内角之比为1︰2,你能求出 平行四边形每个内角的度数吗? C 解: 设<A:<B=1:2
则<B=2<A 因为四边形ABCD是平 行四边形 所以<A+<B=180度
1、在本子上画一个平行四边形,并把它表示出来。
2、画出平行四边形的两条对角边.
3、用一张半透明的纸复制你刚才画的平行四边 形,并将复制后的平行四边形绕对角线的交点旋 转180度,你有什么发现? 明 天 解 决
思考:平行四边形的邻角有什么关系呢?
已知:平行四边形ABCD
A D
CD, BC DA; B D, BAD DCB.
蔡朝焜纪念中学 黎忠靠
这些图片中,有你熟悉的图形吗?
自主学习
A D
1、定义: 有两组对边分别平行的四边形 叫做平行四边形。 ABCD
2、记作:
B C
3、读作:平行四边形ABCD
四边形 4、两要素: 两组对边分别平行 四边形ABCD 是平行四边形
5、几何语言: AB∥CD AD∥BC
6.平行四边形中相对的边称为对边,相对的角称为对角。
AB 8, CD 8(m) 又 AB BC CD AD 36 AD BC 10(m)
小结:平行四边形两邻边的和等 于 周长的一半 。
感悟与收获
1、平行四边形的定义:两组对边分别平行 的四边形叫做平行四边形. 2、平行四边形的性质1: 平行四边形的对 边平行且相等;平行四边形的对角相等,邻 角互补。 3、平行四边形性质的几何描述:
D
A
B
所以<A=<C=60度, <B=<D=120度
小结:平行四边形中已知 内角 的度数比 可求出每一个内角的度数。
例1 如图,小明用一根36m长的绳子围成了一个平行四边 形的场地,其中一条边AB长为8m,其他三条边各长多少? 解: 四边形ABCD是平行四边形
AB CD; AD BC