浙教版八年级上册数学期中试题

合集下载

浙教版八年级上数学期中试卷及答案

浙教版八年级上数学期中试卷及答案

八年级第一学期期中检测卷考试时间90分钟,满分120分一、选择题(每小题3分,共30分)1、如图,直线DE 截AB ,AC ,其中内错角有( )对。

A 、1 B 、2 C 、3 D 、42、在一个不透明的袋子里放入2个红球,3个白球和5个黄球,每个球 除颜色外都相同,曾老师摇匀后随意地摸出一球,这个球是红球或白 球的概率为( )。

A 、0.2B 、0.3C 、0.5D 、0.8 3、如图a ∥b ,∠1=45°,则∠2=( )。

A 、45°B 、135°C 、150°D 、50° 4、一个四面体有棱( )条。

A 、5B 、6C 、8D 、12 5、下列各图中能折成正方体的是( )。

6、在下面的四个几何体中,它们各自的主视图与左视图可能不相同的是( )。

A B C D7、为了解初三学生的体育锻炼时间,小华调查了某班45名同学一周参加体育锻炼的情况,并把它绘制成折线统计图(如图所示).那么关于该班45名同学一周参加体育锻炼时间......的说法错误..的是( )。

A 、众数是9B 、中位数是9C 、平均数是9D 、锻炼时间不低于9小时的有14人ABCD锻炼时间(小时)21ba AD ECBA BCF 8、如图,在Rt △ABC 中,AB =AC ,AD ⊥BC ,垂足为D .E 、F 分 别是CD 、AD 上的点,且CE =AF .如果∠AED =62º,那么 ∠DBF =( )。

A 、62ºB 、38ºC 、28ºD 、26º9、以下说法:①对顶角相等;②两条平行线中,一条直线上的点到另一条直线的距离叫做这两条平行线之间的距离;③等腰三角形是轴对称图形,顶角平分线是它的对称轴;④角的内部,到角两边距离相等的点,在这个角的平分线上; ⑤直棱柱的相邻两条侧棱互相平行但并不一定相等。

其中正确的个数是( )。

浙教版初中数学八年级上册期中测试卷(标准难度)(含答案)

浙教版初中数学八年级上册期中测试卷(标准难度)(含答案)

浙教版初中数学八年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36分)1.已知△ABC的三边长分别为3,5,7,△DEF的三边长分别为3,3x−2,2x−1.若这两个三角形全等,则x等于( )B. 3C. 4D. 5A. 732.如图,点A,E,F,D在同一直线上,AB//CD,AB=CD,AE=DF,则图中全等三角形共有( )A. 1对B. 2对C. 3对D. 4对3.如图,在△ABC中,点D在AC上,连结BD,∠ABD=2∠DBC,∠ADB=2∠C,∠DBC=∠A,则图中等腰三角形共有( )A. 0个B. 1个C. 2个D. 3个4.如图,在△ABC中,AB=AC,若∠BAD=30∘,AD是BC上的高,AD=AE,则∠EDC的度数为( )A. 10∘B. 15∘C. 20∘D. 30∘5.已知关于x的不等式x−a≥1,若x=1是不等式的解,x=−1不是不等式的解,则a的取值范围为( )6.三个连续自然数的和小于15,这样的自然数组共有( )A. 6组B. 5组C. 4组D. 3组7.如图,已知∠BAD=∠CAE,AC=AE,下列添加的条件中不能证明△ABC≌△ADE的是( )A. DE=BCB. AB=ADC. ∠C=∠ED. ∠B=∠D8.两组邻边分别相等的四边形叫做“筝形”.如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB.在探究筝形的性质时,得到下列结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=12AC⋅BD.其中正确的有A. 0个B. 1个C. 2个D. 3个9.已知下列命题: ①若a+b=0,则a与b互为相反数; ②若a>0,则√a2=(√a)2; ③两直线平行,同位角相等; ④若a2+b2=0,则a=0,b=0.其中原命题与逆命题均为真命题的个数为( )A. 4B. 3C. 2D. 110.如图,在△MNP中,∠P=60∘,MN=NP,MQ⊥PN,垂足为Q,延长MN至点G,取NG=NQ,若△MNP的周长为a,MQ=b,则△MGQ的周长为( )A. 2a+12b B. 2b+12a C. a+b D. 2a+2b11.我们知道不等式1+x2<1+2x3+1的解集是x>−5,现给出另一个不等式1+(3x−1)2<1+2(3x−1)3+1,它的解集是( )12.规定[x]为不大于x的最大整数,如[3.6]=3,[−2.1]=−3,若[x+12]=3且[3−2x]=−4,则x的取值范围为( )A. 52<x<72B. 3<x<72C. 3<x≤72D. 52≤x<72第II卷(非选择题)二、填空题(本大题共4小题,共12分)13.一次生活常识竞赛共有25道题,答对一题得4分,不答题得0分,答错一题扣2分.若小明有2道题没答,且竞赛成绩高于80分,则小明至多答错了______道题.14.已知不等式组{x≥−a−1 ①,−x≥−b ②在同一条数轴上表示不等式 ①, ②的解集如图所示,则b−a的值为.15.如图,等边△ABC的边长为12cm,M,N两点分别从点A,B同时出发,沿△ABC的边顺时针运动,点M的速度为1cm/s,点N的速度为2cm/s,当点N第一次到达B点时,M,N两点同时停止运动,则当M,N运动时间t=s时,△AMN为等腰三角形.16.如图所示,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为____________.三、解答题(本大题共9小题,共72分)17.在正方形网格中,网格线的交点叫做格点,三个顶点均在格点上的三角形叫做格点三角形.(1)在图1中计算格点三角形ABC的面积是______ ;(每个小正方形的边长为1)(2)△ABC是格点三角形.①在图2中画出一个与△ABC全等且有一条公共边BC的格点三角形;②在图3中画出一个与△ABC全等且有一个公共点A的格点三角形.18.如图,在△ABC中,∠ABC的平分线与∠ACB的外角平分线交于点P,∠A=50°,求∠BPC的度数.19.如图,△ABC的两条角平分线BD,CE相交于点O,∠A=60°.求证:CD+BE=BC.20.如图,在△ABC中,AD⊥BC,AB=10,BD=8,∠ACD=45°.(1)求线段AD的长;(2)求△ABC的周长.21.如图,在△ABC中,AC<AB<BC.(1)已知线段AB的垂直平分线与BC边交于点P,连接AP,求证:∠APC=2∠B.(2)以点B为圆心,线段AB的长为半径画弧,与BC边交于点Q,连接AQ.若∠AQC=3∠B,求∠B的度数.22.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了1元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2000元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有4%的损耗,该水果店希望售完这些水果获利不低于3780元,则该水果每千克售价至少为多少元?23.已知关于x的不等式组{x−a⩾05−2x>1(1)若a=−1,求不等式组的解集.(2)若不等式组只有四个整数解,求实数a的取值范围.24.某公司的1号仓库与2号仓库共存粮450吨,如果从1号仓库运出存粮的60%,从2号仓库运出存粮的40%,2号仓库所余粮食就比1号仓库所余粮食多30吨,从1号仓库、2号仓库调运存粮到加工厂的运价分别为120元/吨和100元/吨.(1)求1号仓库与2号仓库原来各存粮多少吨?(2)该公司将两个仓库中原来的存粮共调出300吨运往加工厂进行深加工,若2号仓库调出的粮食不少于1号仓库调出粮食的1.5倍,设从1号仓库调出m吨粮食到加工厂,求m的取值范围;(3)在(2)的条件下,若1号仓库到加工厂的运价可优惠a元/吨(15≤a≤30),2号仓库到加工厂的运价不变,当总运费的最小值为30360元时,请直接写出a的值.25.某超市购进A和B两种商品,已知每件A商品的进货价格比每件B商品的进货价格贵2元,用250元购买A商品的数量恰好与用200元购买B商品的数量相等.(1)求A商品的进货价格;(2)计划购进这两种商品共30件,且投入的成本不超过280元,那么最多购进多少件A商品?答案和解析1.【答案】B【解析】 【分析】此题主要考查了全等三角形的性质,关键是掌握性质定理,要分情况讨论.首先根据全等三角形的性质:全等三角形的对应边相等可得:3x −2与5是对应边,或3x −2与7是对应边,计算发现,3x −2=5时,2x −1≠7,故3x −2与5不是对应边. 【解答】解:∵△ABC 与△DEF 全等,当3x −2=5,2x −1=7,x =73,把x =73代入2x −1中,2x −1≠7,∴3x −2与5不是对应边,当3x −2=7时,x =3,把x =3代入2x −1中,2x −1=5, 故选B .2.【答案】C【解析】 【分析】本题考查了全等三角形的判定定理的应用,注意:全等三角形的判定定理有SAS ,ASA ,AAS ,SSS 、HL 。

浙教版八年级数学上册期中能力试卷含答案

浙教版八年级数学上册期中能力试卷含答案

浙教版八年级数学上册期中能力试卷含答案一、单选题1.一个三角形的三边的长分别是3、4、5,则这个三角形最长边上的高是()A.4B.C.D.2.如图所示是由同样大小的小正方形组成的网格,△ABC的三个顶点均落在小正方形的顶点上,在网格上画出三个顶点都落在小正方形的顶点上,且与△ABC成轴对称的三角形共有( )A.5个B.4个C.3个D.2个3.如图,在△ABC 中,△C=90°,以点B 为圆心,任意长为半径画弧,分别交AB、BC于点M、N分别以点M、N为圆心,以大于MN的长度为半径画弧两弧相交于点P过点P作线段BD,交AC于点D,过点D作DE△AB于点E,则下列结论△CD=ED;△△ABD=△ABC;△BC=BE;△AE=BE中,一定正确的是()A.△②△B.△ △ △C.△△△D.△△△4.如图,△ABC中,AB=AC,AD△BC,下列结论中不正确的是()A.△B=△C B.BD=CD C.AD平分△BAC D.AB=2BD5.点(-2,1)关于轴对称点的坐标为()A.(-2,-1)B.(2,1)C.(-1,-2)D.(-1,2)6.下列国旗图案是轴对称图形但不是中心对称图形的是( )A.(A)B.(B)C.(C)D.(D)7.把一块直尺与一块含的三角板如图放置,若,则的度数为()A.B.C.D.8.已知等腰三角形一腰上的中线将它的周长分成9cm和12cm两部分,则等腰三角形的底边长为()A.9cm B.5cm C.6cm或5cm D.5cm或9cm9.下面四个图形分别是低碳、节水、回收和绿色食品标志,在这四个标志中,是轴对称图形的是A.B.C.D.10.如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为()A.B.C.1D.二、填空题11.已知在△ABC中,AB=BC=10,AC=8,AF⊥BC于点F,BE⊥AC于点E,取AB的中点D,则△DEF 的周长为.。

【八年级】八年级上册数学期中考试题(新浙教版有答案)

【八年级】八年级上册数学期中考试题(新浙教版有答案)

【八年级】八年级上册数学期中考试题(新浙教版有答案)来新浙江教育版第八次数学期中考试一、(每小题3分,共30分)1.众所周知△ ABC,ab=AC,∠ a=56°,高度BD和BC之间的夹角为()a.28°b.34°c.68°d.62°2.在△ ABC,ab=3,AC=4,将BC扩展到D,使CD=BC,连接ad,则ad长度的值范围为()a.1<ad<7b.2<ad<14c.2.5<ad<5.5d.5<ad<113.如图所示,在△ 美国广播公司,∠ C=90°,CA=CB,ad平分∠ 驾驶室,与BC相交于D,D⊥ 点E处的AB,AB=6,则△ 黛布是()a.4b.6c.8d.104.使用尺子和指南针使角度等于已知角度。

示意图如下∠a′o′b′=∠aob的依据是a、(s.s.s.)b.(s.a.s.)c.(a.s.a.)d.(a.a.s.5.举一个错误命题的反例:“任何角度的补码都不小于这个角度”。

正确的反例是()a.∠α=60&ord;,∠α的补角∠β=120&ord;,∠β>∠αB∠ α=90&ord∠ α互补角∠ β=900&ord∠ β= ∠ αc.∠α=100&ord;,∠α的补角∠β=80&ord;,∠β<∠αd、两个角相互补充(问题3)6.△abc与△abc中,条件①ab=ab,②bc=bc,③ac=ac,④∠a=∠a,⑤∠b=∠b,⑥∠c=∠c,则下列各组条件中不能保证△abc≌△abc的是()A.①②③B①②⑤C①③⑤D②⑤⑥7.如图,在△abc中,ab=ac,高bd,ce交于点o,ao交bc于点f,则图中共有全等三角形()a、 7对B.6对C.5对D.4对8.如图,在△abc中,∠c=90°,ac=bc,ad平分∠bac交bc于点d,de⊥ab于点e,若△deb的周长为10c,则斜边ab的长为()a、 8cb.10cc.12cd.20c9.如图,△abc与△bde均为等边三角形,ab<bd,若△abc不动,将△bde绕点b旋转,则在旋转过程中,ae与cd的大小关系为()a、 AE=CDB。

浙教版八年级上学期数学期中考试试卷(附答案)

浙教版八年级上学期数学期中考试试卷(附答案)

浙教版八年级上学期数学期中考试试卷(附答案)一、单选题(共12题;共24分)1.下列长度的三条线段,能组成三角形的是( )A. 1,1,2B. 2,3,7C. 1,4,6D. 3,4,52.如图所示BC//DE,∠1=108°,∠AED=75°,则∠A的大小是()A. 60°B. 33°C. 30°D. 23°3.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A. ①和②B. ②和③C. ①和③D. ①②③4.如图,AB∥CD,AD平分∠BAC,∠C=80°,则∠D的度数为( )。

A. 50°B. 55°C. 70°D. 80°5.已知AB=AC=BD,则∠1与∠2的关系是()A. ∠1=2∠2B. 2∠1+∠2=180°C. ∠1+3∠2=180°D. 3∠1﹣∠2=180°6.如图,将三角形纸片△ABC沿DE折叠,使点A落在BC边上的点F处,且DE ∥ BC,下列结论中,一定正确的个数是()①△BDF是等腰三角形;②DE= BC;③四边形ADFE是菱形;④∠BDF+∠FEC=2∠A.A. 1个B. 2个C. 3个D. 4个7.放学以后,小明和小强从学校分手,分别沿东南方向和西南方向回家,若小明和小强行走的速度都是40米/分,小明用15分钟到家,小强用20分钟到家,小明家和小强家的距离为()A. 600米B. 800米C. 1000米D. 不能确定8.如图,AB为⊙O的直径,CD切⊙O于点C,交AB的延长线于点D,且CO=CD,则∠A的度数为()A. 45°B. 30°C. 22.5°D. 37.5°9..如图,已知≌,A和B,C和D分别是对应顶点.如果AB=6cm,BD=7cm,AD=4cm,那么BC的长为()A. 4cmB. 5cmC. 6cmD. 7cm10.下列说法中正确的是()A. 两腰对应相等的两个等腰三角形全等B. 面积相等的两个等腰三角形全等C. 能够完全重合的两个三角形全等D. 两个锐角对应相等的两个直角三角形全等11.有下列命题:(1)有一个角是60°的三角形不一定是等边三角形;(2)两个无理数的和不一定是无理数;(3)各有一个角是100°,腰长为8cm的两个等腰三角形全等;(4)不论m为何值,关于x的方程x2+mx﹣m﹣1=0必定有实数根.其中真命题的个数为()A. 1个B. 2个C. 3个D. 4个12.如图所示,三角形ABC的面积为1cm2。

浙教版八年级上期中考试数学试卷(实验班)(含答案)

浙教版八年级上期中考试数学试卷(实验班)(含答案)

上学期期中考试 八年级数学试卷(实验班)说明:考试时间90分钟,满分100分一选择题(本大题共10小题,每小题3分,满分30分)分) 1.在函数131y x =-中,自变量x 的取值范围是【的取值范围是【 ▲ 】A .13x <B .13x >C .13x ¹-D .13x ¹2.若一个圆锥的底面圆的周长是4πcm ,母线长是6cm ,则该圆锥的侧面展开图的圆心角的度数是【度数是【 ▲ 】A .40°B .80°C .120°D .150°3.若234a b c ==,且0abc ¹,则2a bc b +-的值是【的值是【▲ 】 A .-2 B .2 C .-3 D .3 4.如图,点A ,B ,C ,D 的坐标分别是(1,7),(1,1),(4,1),), (6,1),以C ,D ,E 为顶点的三角形与△ABC 相似,则点E 的 坐标不可能是【坐标不可能是【 ▲ 】A .(6,0)B .(6,3)C .(6,5)D .(4,2)5.二次函数227y x x =+-的函数值是8,那么对应的x 的值是【的值是【 ▲ 】 A .3 B .5 C .-3和5 D .3和-5 6.已知两个相似三角形的周长之和为24cm ,一组对应边分别为2.5cm 和3.5cm ,则较大三角形的周长为【角形的周长为【 ▲ 】A .10 cm B .12 cm C .14 cm D .16 cm 7.如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB , 则下列结论错误的是【则下列结论错误的是【 ▲ 】A .OF=CF B .AF=BF C .AD BD = D .∠DBC=90° 8.下列函数中,当x >0时,y 随x 的增大而增大的是【的增大而增大的是【 ▲ 】 A .1y x =-+ B .21y x =- C .1y x=D .21y x =-+9.平面直角坐标中,平面直角坐标中,已知点已知点O (0,0),A (0,2),B (1,0),点P 是反比例函数1y x=-图象上的一个动点,过点P 作PQ ⊥x 轴,垂足为Q .若以点O 、P 、Q 为顶点的三角形与△OAB 相似,则相应的点P 共有【共有【 ▲ 】A .1个B .2个C .3个D .4个第4题图题图第7题图题图ABCDOABCDEPO 10.给出定义:设一条直线与一条抛物线只有一个公共点,设一条直线与一条抛物线只有一个公共点,且这条直线与这条抛物线的对称且这条直线与这条抛物线的对称轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:轴不平行,就称直线与抛物线相切,这条直线是抛物线的切线.有下列命题:① 直线y =0是抛物线214y x =的切线;的切线; ② 直线x =-2与抛物线214y x =相切于点(-2,1););③ 直线y =x +b 与抛物线214y x =相切,则相切于点(2,1););④ 若直线y =kx -2与抛物线214y x =相切,则实数k =2 .其中正确命题的是【其中正确命题的是【 ▲ 】A .①②④.①②④B .①③.①③C .②③.②③D .①③④.①③④ 二、填空题(每小题4分,共24分)分)11.已知双曲线1k y x+=经过点(-1,2),那么k 的值等于的值等于 ▲ 。

浙教版八年级数学上册期中测试卷(附答案)

浙教版八年级数学上册期中测试卷(附答案)

浙教版八年级数学期中测试卷班级: _________ 姓名: _________ 得分: _________一、仔细选一选(本题有10小题,每小题3分,共30分)1.下列命题是真命题的是()A.如果两个角不相等,那么这两个角不是对顶角B.两个互补的角一定是邻补角C.如果a2=b2.那么a = bD.如果两个角是同位角,那么这两个角一定相等2.已知等腰三角形一腰上的中线将它的周长分成6 cm和12 cm脚部分,则等腰三角形的底边长为()A.2 cmB. 10 cmC.6 cm或4 cmD.2 cm或10 cm3.下列语句不是命题的是()A.x与y的和等于0吗B.不平行的两条直线有一个交点C.两点之间线段最短D.对顶角不相等4.如图,∠ABC = ∠ACB,∠A = ∠ADB,则不可能是∠A的度数的是()A.55°B.65°C.75°D.85°5.如图,在△ABC中,D为AB上一点,E为BC上一点,且AC= CD= BD= BE,∠A= 50°.则∠CDE的度数为()A.50°B.51°C.51.5D.52.5°6.如图所示的正方形网格中,网格线的交点称为格点.已知A.B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是 ( )A.6B.7C.8D.9第4题第5题第6题第7题7.如图,已知直线l交直线a,b于A,B两点,且a∥b,E是a上的点,F是b上的点,满足∠DAE = 13∠BAE,∠DBF =13∠ABF,则∠ADB的度数是 ( )A.45°B.50°C.60°D.无法确定8.在△ABC中,AB = 3,AC = 4,延长BC至点D,使CD = BC,连结AD,则AD的长的取值范围( )A.1 < AD < 7B.2 < AD < 14C.2.5 < AD < 5.5D.5 < AD < 119.如图,已知AB = AC = BD,那么∠1与∠2之间的关系是 ( )A.∠1 = 2∠2B.2∠1 + ∠2 = 180°C.∠1+3∠2=180°D.3∠1 -∠2 = 180°第9题第10题第13题10.如图,△ABC和△ADE都是等腰直角三角形,∠EAD= ∠BAC= 90°,∠DAB= 45°.连结BE.DC.EC.则下列说法正确的有()①BE = DC ②AD∥BC ③EC = DC ④BE = ECA.①③B.②①C.①③④D.①②③④二、认真填一填(本题有6小题,每小题4分,共24分)11.如果一个三角形的三边之比是1:3:2.则这个三角形的形状是 _________ .12.下刚命题:①钝角的补角是锐角:②两个无理数的商仍为无理数:③相等的角是对顶角:④若x是实数,则x2+ 1 > 0;⑤一个锐角与一个钝角的和等于一个平角.是真命题的有 _________ .(用序号表示)13.如图,在△ABC中,点D是BC的中点,作射线AD.在线段AD及其延长线上分别取点E,F,连结CE.BF.添加一个条件,使得△BDF≌△CDE.你添加的条件是 _________ .(不添加辅助线)第14题第16题14.三个等边三角形的位置如图所示,若∠3 = 40°,则∠1 + ∠2 = _________ °.15.在一张长为8 cm,宽为6 cm的矩形纸片上,现要剪下一个腰长为5 cm的等腰三角形(要求:等腰三角形的一个顶点与矩形的一个顶点重合,其余的两个顶点在矩形的边上).则剪下的等腰三角形的面积为 _________ cm2.16.如图,D,E分别是△ABC边AB,BC上的点,AD= 2BD.BE= CE,设△ADC的面积为S1,△ACE的面积为S2,若S△ABC = 6,则S1-S2的值为 _________ .三、全面答一答(本题有7小题,共66分)17.(6分)如图,在△ABC中,∠C= 90°,边AB的垂直平分线交AB,AC边分别为点D,点E,连结BE.(1)若∠A = 40°,求∠CBE的度数;(2)若AB = 10,BC = 6.求△BCE的周长.18.(8分)如图,∠BAD = ∠CAE.AB = AD,AC = AE.(1)试说明△ABC ≌△ADE:(2)若∠B = 20°,DE = 6,求∠D的度数及BC的长.19.(8分)如图,已知:AD是△ABC的角平分线,CE是△ABC的高,∠BAC= 60°.∠BCE= 40°.求∠ADB的度数.20.(10分)某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B = 90°,∠A= 30°;图②中,∠D= 90°,∠F= 45°.图③是该同学所做的一个实验:他将△DEF的直角边DE与△ABC的斜边AC重合在一起,并将△DEF沿AC方向移动.在移动过程中,D,E两点始终在AC边上(移动开始时点D与点A重合).(1)在△DEF沿AC方向移动的过程中,该同学发现:F,C两点间的距离逐渐 _________ ;连结FC,∠FCE的度数逐渐 _________ ;(填“不变”、“变大”或“变小”)(2)△DEF在移动的过程中,∠FCE与∠CFE的度数之和是否为定值,请加以说明;(3)能否将△DEF移动至某位置,使F,C的连线与AB平行?若存在,请求出∠CFE的度数.21.(10分)如图,△ACB和△ECD都是等腰直角三角形,∠ACB = ∠ECD = 90°,点D为AB边上一点,求证:(1)△ACE ≌△BCD;(2)AD2 + DB2 = DE2.22.(12分)已知在△ABC中,∠C= 90°,沿过B的一条直线BE折叠这个三角形,使点C与AB 边上的一点D重合,如图所示.(1)要使D恰为AB的中点,还应添加一个什么条件?(请写出一个你认为正确的添加条件)(2)将(1)中的添加条件作为题目的补充条件,试说明其能使D为AB中点的理由.解:(1)添加条件: _________ ;(2)说明:23.(12分)如图,在△ABC中,∠C= Rt∠,AB= 5 cm,BC= 3 cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1 cm,设出发的时间为ts.(1)出发2s后,求△ABP的周长;(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2 cm,若P,Q两点同时出发,当P,Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC 的周长分成相等的两部分?。

浙教版八年级上册数学期中测试卷(含答案)

浙教版八年级上册数学期中测试卷(含答案)

期中测试卷一、选择题(每小题3分,共30分)1.下列四个图形中,不是轴对称图形的是( )。

2.如图是某地区的长方形大理石广场示意图,如果小琴要从A 角走到C 角,至少走( )。

A.90mB.100mC.120mD.140m3.若m>n ,下列不等式不一定成立的是( )。

A.m+2>n+2B.2m>2nC.22n m > D.22n m > 4.若△ABC 三边长a ,b ,c 满足|a+b -7|+|a -b -1|+(c -5)2=0,则△ABC 是( )。

A.等腰三角形B.直角三角形C.等边三角形D.等腰直角三角形5.如图,已知在△ABC 中,CD 是AB 边上的高线,BE 平分△ABC ,交CD 于点E ,BC=8,DE=4,则△BCE 的面积等于( )。

A.32B.16C.8D.46.若关于x 的不等式⎩⎨⎧≤-<-1270x m x 的整数解共有4个,则m 的取值范围是( )。

A.6<m<7B.6≤m<7C.6≤m≤7D.6<m≤77.下列命题中,真命题有( )。

△有一个角为60°的三角形是等边三角形;△底边相等的两个等腰三角形全等;△有一个角是40°,腰相等的两个等腰三角形全等;△一边上的中线等于这条边的一半的三角形是直角三角形;A.1个B.2个C.3个D.4个8.如图在4×4方格中作以AB 为一边的Rt△ABC ,要求点C 也在格点上,这样的Rt□△ABC 能作出( )。

A.2个B.3个C.5个D.6个9.如图△是一个直角三角形纸片,△A=30°,BC=4cm ,将其折叠,使点C 落在斜边上的点C'处折痕为BD ,如图△,再将△沿DE 折叠,使点A 落在DC'的延长线上的点A'处,如图△,则折痕DE 的长为( )。

A.cm 38 B 32cm C.2√2cm D.3cm10.如图,△ABC 和△ADE 都是等腰直角三角形,△BAC=△DAE=90°,连结CE 交AD 于点F ,连结BD 交CE 于点G ,连结BE.下列结论中,正确的结论有( )。

浙教版数学八年级上册期中考试试题及答案

浙教版数学八年级上册期中考试试题及答案

浙教版数学八年级上册期中考试试卷一、选择题。

(每小题只有一个正确答案)1.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D . 2.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm 3.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分,小明有两道题未答,至少答对几道题,总分才不会低于60分,则小明至少答对的题数是( )A .14道B .13道C .12道D .ll 道4.把不等式组13264x x +≥⎧⎨--⎩>﹣中每个不等式的解集在同一条数轴上表示出来,正确的为( ) A . B . C . D . 5.如图,在ABC 中,55A ︒∠=,45B ︒∠=,那么ACD ∠的度数为( )A .110B .100C .55D .456.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这个三角形为特异三角形.若△ABC 是特异三角形,∠A=30°,∠B 为钝角,则符合条件的∠B 有( )个. A .1 B .2 C .3 D .47.如图,AD 是△ABC 的中线,点E 是AD 的中点,连接BE 、CE ,若△ABC 的面积是8,则阴影部分的面积为( )A .2B .4C .6D .88.用反证法证明a b >时,应假设( )A .a b <B .a b ≤C .a b ≥D .a b9.如图,D 为△ABC 内一点,CD 平分∠ACB ,BD ⊥CD ,∠A =∠ABD ,若AC =5,BC =3,则BD 的长为( )A .1B .1.5C .D .410.如图,将矩形ABCD 沿EM 折叠,使顶点B 恰好落在CD 边的中点N 上.若AB=6,AD=9,则五边形ABMND 的周长为( )A .28B .26C .25D .22二、填空题 11.在数学课上,老师要求同学们利用一副三角板画出两条平行线.小明的画法如下:步骤一:运用三角板一边任意画一条直线l ;步骤二:按如图方式摆放三角板;步骤三:沿三角板的直角边画出直线AB 、CD ;这样,得到AB ∥CD .小明这样画图的依据是_____.12.x 的35与12的差不小于6,用不等式表示为_____. 13.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入________小球时有水溢出.14.如图,在△ABC 中,AB=AC ,以点C 为圆心,以CB 长为半径作圆弧,交AC 的延长线于点D ,连结BD ,若∠A=32°,则∠CDB 的大小为_____度.15.如图,四个全等的直角三角形围成一个大正方形ABCD ,中间阴影部分是一个小正方形EFGH ,这样就组成一个“赵爽弦图”.若AB=5,AE=4,则正方形EFGH 的面积为_____.16.如图,将等腰直角三角形ABC (∠B=90°)沿EF 折叠,使点A 落在BC 边的中点A 1处,BC=8,那么线段AE 的长度为__.三、解答题17.解下列不等式(组):(1)2(x+3)>4x-(x-3) (2)()x 2x 52x 3x 28<⎧-⎪⎨⎪--≤⎩18.如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).19.已知等腰三角形一腰上的中线将三角形的周长分成6cm和15cm的两部分,求这个三角形的腰和底边的长度.20.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.21.如图,在等腰三角形△ABC中,AB=AC,BD平分∠ABC,在BC的延长线上取一点E,使CE=CD,连接DE,求证:BD=DE.22.在一款名为超级玛丽的游戏中,玛丽到达一个高为10米的高台A,利用旗杆顶部的绳索,划过90°到达与高台A水平距离为17米,高为3米的矮台B,(1)求高台A比矮台B高多少米?(2)求旗杆的高度OM;(3)玛丽在荡绳索过程中离地面的最低点的高度MN.23.阅读下面材料:小伟遇到这样一个问题:如图1,在△ABC(其中∠BAC是一个可以变化的角)中,AB=2,AC=4,以BC为边在BC的下方作等边△PBC,求AP的最大值.小伟是这样思考的:利用变换和等边三角形将边的位置重新组合.他的方法是以点B为旋转中心将△ABP逆时针旋转60°得到△A′BC,连接A′A,当点A落在A′C上时,此题可解(如图2).请你回答:AP的最大值是.参考小伟同学思考问题的方法,解决下列问题:如图3,等腰Rt△ABC.边AB=4,P为△ABC内部一点,则AP+BP+CP的最小值是.(结果可以不化简)参考答案1.D【分析】分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点睛】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.2.B【详解】分析:结合“三角形中较短的两边之和大于第三边”,分别套入四个选项中得三边长,即可得出结论.详解:A、∵5+4=9,9=9,∴该三边不能组成三角形,故此选项错误;B、8+8=16,16>15,∴该三边能组成三角形,故此选项正确;C、5+5=10,10=10,∴该三边不能组成三角形,故此选项错误;D、6+7=13,13<14,∴该三边不能组成三角形,故此选项错误;故选B.点睛:本题考查了三角形的三边关系,解题的关键是:用较短的两边长相交于第三边作比较.本题属于基础题,难度不大,解决该题型题目时,结合三角形三边关系,代入数据来验证即可.3.A【分析】设小明答对的题数是x道,根据“总分不会低于60分”列出不等式5x﹣2(20﹣2﹣x)≥60,解不等式求得x的取值范围,根据x为整数,结合题意即可求解.【详解】设小明答对的题数是x道,5x﹣2(20﹣2﹣x)≥60,x≥1357,∵x为整数,∴x的最小整数为14,故选A.【点睛】本题了一元一次不等式的应用,关键是设出相应的未知数,以得分做为不等量关系列不等式求解.4.B【详解】分析:先求出不等式组中各个不等式的解集,再利用数轴确定不等式组的解集.详解:解不等式x+1≥3,得:x≥2,解不等式﹣2x﹣6>﹣4,得:x<﹣1,将两不等式解集表示在数轴上如下:故选B.点睛:本题考查了解一元一次不等式组,在数轴上表示不等式组的解集时要注意解集的确定原则:同大取大,同小取小,大小小大取中间,大大小小无解了.5.B【分析】根据三角形的外角的性质计算即可.【详解】由三角形的外角的性质可知,∠ACD=∠A+∠B=100°,故选B.【点睛】本题考查的是三角形的外角的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.6.B【详解】如下图,当30°角为等腰三角形的底角时有两种情况:∠B=135°或90°,当30°角为等腰三角形的顶角时有一种情况:∠B=112.5°,所以符合条件的∠B有三个.又因为∠B为钝角,则符合答案的有两个,故本题应选B.点睛:因为不确定这个等腰三角形的底边,所以应当以点A为一个确定点进行分类讨论:①当以B为顶点时,即以B为圆心,AB长为半径画弧交AC于点D,构成等腰△BAD;②当以点A为顶点时,即以点A为圆心,AB长为半径画弧,交AC于点D,构成等腰△ABD;或作线段AB的垂直平分线交AC于点D构成等腰△DAB.7.B【分析】根据三角形的中线将三角形分成面积相等的两部分的知识进行解答即可.【详解】∵AD是△ABC的中线,∴S△ABD=S△ACD=12S△ABC,∵点E是AD的中点,∴S△ABE=S△ADE=12S△ABD,S△CDE=S△CAE=12S△ACD,∵S△ABE=14S△ABC,S△CDE=14S△ABC,∴S△ABE+S△CDE=12S△ABC=12×8=4;∴阴影部分的面积为4,故选B.【点睛】本题主要考查了三角形面积及三角形面积的等积变换,三角形的中线将三角形分成面积相等的两部分,此题难度不大.8.B【分析】熟记反证法的步骤,直接填空即可.要注意的是a>b的反面有多种情况,需一一否定.【详解】用反证法证明“a>b”时,应先假设a≤b.故选B.【点睛】本题结合角的比较考查反证法,解此题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.9.A【分析】延长BD与AC交于点E,由题意可推出BE=AE,依据等角的余角相等,即可得等腰三角形BCE,可推出BC=CE,AE=BE=2BD,根据AC=5,BC=3,即可推出BD的长度.【详解】延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=5,BC=3,∴CE=3,∴AE=AC-EC=5-3=2,∴BE=2,∴BD=1.故选A.【点睛】本题主要考查等腰三角形的判定与性质,比较简单,关键在于正确地作出辅助线,构建等腰三角形,通过等量代换,即可推出结论.10.A【分析】如图,运用矩形的性质首先证明CN=3,∠C=90°;运用翻折变换的性质证明BM=MN(设为λ),运用勾股定理列出关于λ的方程,求出λ,即可解决问题.【详解】如图,由题意得:BM=MN(设为λ),CN=DN=3;∵四边形ABCD为矩形,∴BC=AD=9,∠C=90°,MC=9-λ;由勾股定理得:λ2=(9-λ)2+32,解得:λ=5,∴五边形ABMND的周长=6+5+5+3+9=28,故选A.【点睛】该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理或解答.11.内错角相等,两直线平行.【解析】【分析】由作图知∠ABC=∠BCD=90°,根据“内错角相等,两直线平行”即可判定AB∥CD.【详解】由作图知∠ABC=∠BCD=90°,所以AB∥CD,所以小明这样画图的依据是内错角相等,两直线平行,故答案为:内错角相等,两直线平行.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握平行线的判定.12.35x﹣12≥6.【详解】根据题意得35x﹣12≥6.13.10【解析】(36-20)÷3=2(cm).设放入x小球有水溢出,由题意得2x+30>49,∴x>9.5,∴放入10小球有水溢出.14.37【分析】根据等腰三角形的性质以及三角形内角和定理在△ABC中可求得∠ACB=∠ABC=74°,根据∠ACB=37°.等腰三角形的性质以及三角形外角的性质在△BCD中可求得∠CDB=∠CBD=12【详解】∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°,又∵BC=DC,∠ACB=37°,∴∠CDB=∠CBD=12故答案为37.【点睛】本题主要考查等腰三角形的性质,三角形外角的性质,掌握等边对等角是解题的关键,注意三角形内角和定理的应用.15.1【解析】【分析】利用勾股定理求得直角边的较短边,进一步根据正方形EFGH的面积=大正方形面积-4个直角三角形面积即可求得正方形EFGH的面积.【详解】,正方形EFGH的面积=5×5-4×3÷2×4=25-24=1.故答案为:1.【点睛】此题考查勾股定理的运用,掌握勾股定理的推导过程是解决问题的关键.16.5.【详解】分析:由折叠的性质可求得AE=A1E,可设AE=A1E=x,则BE=8-x,且A1B=4,在Rt△A1BE 中,利用勾股定理可列方程,则可求得答案.详解:由折叠的性质可得AE=A1E,∵△ABC为等腰直角三角形,BC=8,∴AB=8,∵A 1为BC 的中点,∴A 1B=4,设AE=A 1E=x ,则BE=8-x ,在Rt △A 1BE 中,由勾股定理可得42+(8-x )2=x 2,解得x=5,故答案为5.点睛:本题主要考查折叠的性质,利用折叠的性质得到AE=A 1E 是解题的关键,注意勾股定理的应用.17.(1) x <3;(2)﹣1≤x <2.【解析】试题分析:()1按照解不等式的步骤解不等式即可.()2分别解不等式,找出解集的公共部分即可.试题解析:(1)去括号,得:2643x x x +>-+,移项,得:2436x x x ,-+>-合并同类项,得:3x ,->-系数化为1,得:3x ;<(2)()252328xx x x ①②⎧<-⎪⎨⎪--≤⎩解不等式①,得:2x ,<解不等式②,得:1x ≥-,则不等式组的解集为12x .-≤<18.(1)证明见解析;(2)证明见解析;(3)②.【分析】(1)欲证明AE=CD ,只要证明△ABE ≌△CBD ;(2)由△ABE ≌△CBD ,推出BAE=∠BCD ,由∠NMC=180°-∠BCD-∠CNM ,∠ABC=180°-∠BAE-∠ANB ,又∠CNM=∠ABC ,∠ABC=90°,可得∠NMC=90°; (3)结论:②;作BK ⊥AE 于K ,BJ ⊥CD 于J .理由角平分线的判定定理证明即可.【详解】(1)证明:∵∠ABC=∠DBE ,∴∠ABC+∠CBE=∠DBE+∠CBE ,即∠ABE=∠CBD ,在△ABE 和△CBD 中,AB CBABE CBD BE BD⎧⎪∠∠⎨⎪⎩===,∴△ABE ≌△CBD ,∴AE=CD .(2)∵△ABE ≌△CBD ,∴∠BAE=∠BCD ,∵∠NMC=180°-∠BCD-∠CNM ,∠ABC=180°-∠BAE-∠ANB ,又∠CNM=∠ABC ,∵∠ABC=90°,∴∠NMC=90°,∴AE ⊥CD .(3)结论:②理由:作BK ⊥AE 于K ,BJ ⊥CD 于J .∵△ABE ≌△CBD ,∴AE=CD ,S △ABE =S △CDB , ∴12•AE•BK=12•CD•BJ ,∴BK=BJ ,∵作BK ⊥AE 于K ,BJ ⊥CD 于J ,∴BM 平分∠AMD .不妨设①成立,则△ABM ≌△DBM ,则AB=BD ,显然可不能,故①错误.故答案为②.【点睛】本题考查全等三角形的判定和性质、等腰直角三角形的性质、角平分线的性质定理等知识,解题的关键是正确寻找全等三角形解决问题,学会添加常用辅助线解决问题.19.等腰三角形各边的长为10cm ,10cm ,1cm .【解析】试题分析:分腰长与腰长的一半是6cm 和15cm 两种情况,求出腰长,再求出底边,然后利用三角形的任意两边之和大于第三边进行判断即可.试题解析:如图所示,在ABC ∆中,AB AC =,AD BD =,设BD x =,BC y =,由题意有6215x y x x +=⎧⎨+=⎩ , 解得51x y =⎧⎨=⎩, 或 1526x y x x +=⎧⎨+=⎩, 解得213x y =⎧⎨=⎩, ∵三角形任意两边之和大于第三边.∴ 5x = , 1y = ,即这个三角形的腰为10cm ,底为1cm .20.(1)篮球每个50元,排球每个30元. (2)满足题意的方案有三种:①购买篮球8个,排球12个;②购买篮球9,排球11个;③购买篮球10个,排球10个;方案①最省钱【详解】试题分析:(1)设篮球每个x 元,排球每个y 元,根据费用可得等量关系为:购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同,列方程求解即可;(2)不等关系为:购买足球和篮球的总费用不超过800元,列式求得解集后得到相应整数解,从而求解.试题解析:解:(1)设篮球每个x 元,排球每个y 元,依题意,得:2319035x y x y +=⎧⎨=⎩解得5030x y =⎧⎨=⎩:. 答:篮球每个50元,排球每个30元.(2)设购买篮球m 个,则购买排球(20-m )个,依题意,得:50m +30(20-m )≤800.解得:m ≤10.又∵m ≥8,∴8≤m ≤10.∵篮球的个数必须为整数,∴m 只能取8、9、10.∴满足题意的方案有三种:①购买篮球8个,排球12个,费用为760元;②购买篮球9,排球11个,费用为780元;③购买篮球10个,排球10个,费用为800元.以上三个方案中,方案①最省钱.点睛:本题主要考查了二元一次方程组及一元一次不等式的应用;得到相应总费用的关系式是解答本题的关键.21.证明见解析.【分析】求出∠ABC=∠ACB ,求出∠DBC=12∠ABC ,根据等腰三角形性质和三角形外角性质求出∠E=12∠ACB ,推出∠E=∠DBC 即可. 【详解】∵AB=AC∴∠ABC=∠ACB ,∵BD 平分∠ABC ,∴∠DBC=12∠ABC , ∵CD=CE ,∴∠E=∠CDE ,∵∠ACB=∠E+∠CDE ,∴∠E=12∠ACB , ∴∠E=∠DBE ,∴BD=DE .【点睛】本题考查了三角形内角和定理,三角形外角性质和等腰三角形的性质和判定的应用,主要考查学生的推理能力和计算能力.22.(1)7米;(2)15m ;(3)玛丽在荡绳索过程中离地面的最低点的高度MN 为2米.【分析】(1)作差.(2) 作AE ⊥OM ,BF ⊥OM,证明在△AOE 和△OBF 相似,可以计算出OE +OF 长度,最后算出OM 长度.(3)利用勾股定理求出半径长度,作差求MN 长度.【详解】(1)10-3=7(米).(2)作AE ⊥OM 于E,,BF ⊥OM 与F ,∵∠AOE +∠BOF =∠BOF +∠OBF =90°,∴∠AOE =∠OBF ,在△AOE 和△OBF 中,OEA BFO AOE OBF OA OB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AOE ≌△OBF (AAS ),∴OE=BF ,AE=OF ,即OE+OF=AE+BF=CD =17(m )∵EF=EM ﹣FM=AC ﹣BD =10﹣3=7(m ),∴2EO+EF =17,则2EO =10,所以OE =5m ,OF =12m ,所以OM=OF+FM =15m.(3)由勾股定理得ON=OA =13,所以MN =15﹣13=2(m ).答:玛丽在荡绳索过程中离地面的最低点的高度MN为2米.【点睛】本题考查全等三角形的判定和性质,作出正确的辅助线构造全等三角形的关键.23.(1)6;(2)【分析】(1)由旋转得到△A′BC,有△A′BA是等边三角形,当点A′A、C三点共线时,A′C=AA′+AC,最大即可;(2)由旋转得到结论PA+PB+PC=P1A1+P1B+PC,只有,A1、P1、P、C四点共线时,(P1A+P1B+PC)最短,即线段A1C最短,根据勾股定理,即可.【详解】解:(1)如图2,∵△ABP逆时针旋转60°得到△A′BC,∴∠A′BA=60°,A′B=AB,AP=A′C∴△A′BA是等边三角形,∴A′A=AB=BA′=2,在△AA′C中,A′C<AA′+AC,即AP<6,则当点A′A、C三点共线时,A′C=AA′+AC,即AP=6,即AP的最大值是:6;故答案是:6.(2)如图3,∵Rt△ABC是等腰三角形,∴AB=BC.以B为中心,将△APB逆时针旋转60°得到△A'P'B.则A'B=AB=BC=4,PA=P′A′,PB=P′B,∴PA+PB+PC=P′A′+P'B+PC.∵当A'、P'、P、C四点共线时,(P'A+P'B+PC)最短,即线段A'C最短,∴A'C=PA+PB+PC,∴A'C长度即为所求.过A'作A'D⊥CB延长线于D.∵∠A'BA=60°(由旋转可知),∴∠1=30°.∵A'B=4,∴A1D=2,∴在Rt△A1DC中,A1∴AP+BP+CP的最小值是:.【点睛】此题是几何变换综合题,主要考查了图形的旋转的性质,画出图形是解本题的关键,也是难点.。

浙教版初中数学八年级上册期中测试卷(较易)(含答案)

浙教版初中数学八年级上册期中测试卷(较易)(含答案)

浙教版初中数学八年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分第I卷(选择题)一、选择题(本大题共12小题,共36分)1.观察下列作图痕迹,所作CD为△ABC的边AB上的中线是( )A. B.C. D.2.如图,N,C,A三点在同一条直线上,在△ABC中,∠A:∠ABC:∠ACB=3:5:10,△MNC≌△ABC,则∠BCM:∠BCN等于( )A. 1:2B. 1:3C. 2:3D. 1:43.如图,若AB//EF,CE=CA,∠E=65°,则∠CAB的度数为( )A. 25°B. 50°C. 60°D. 65°4.一个直角三角形的两直角边长分别为5和12,则此直角三角形斜边上的中线的长是( )A. 5B. 6C. 6.5D. 135.不等式3(1−x)>2−4x的解在数轴上表示正确的是( )A. B.C. D.>x的最大整数解为( )6.不等式4−x3A. x=−1B. x=0C. x=1D. x=27.如图,用尺规作图作“一个角等于已知角”的原理是:因为△D′O′C′≌△DOC,所以∠D′O′C′=∠DOC.由这种作图方法得到的△D′O′C′和△DOC全等的依据是( )A. SSSB. SASC. ASAD. AAS8.如图,在△ABC中,∠ABC与∠ACB的角平分线交于点O.若∠A=α,则∠BOC的度数是.( )A. 180∘−12αB. 90∘+12αC. 90∘−12αD. 12α9.下列命题中,正确的是( )A. 等腰三角形顶角的外角平分线与底边平行B. 等腰三角形的高线、中线、角平分线互相重合C. 顶角相等的两个等腰三角形全等D. 等腰三角形的一边不可以是另一边的2倍10.如图,在△ABC中,∠ACB=90°,∠B=30°,点D为AB的中点,若AC=2,则CD的长为( )A. 2B. 3C. 4D. 511.某不等式的解集在数轴上表示如下,该不等式的解是( )A. x≤−2B. x>−2C. x<−2D. x≥−212.若0<a<1,则下列不等式正确的是( )A. a<1<1a B. a<1a<1 C. 1a<a<1 D. 1<1a<a第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 关于x 、y 的方程组{x −y =a +13x +2y =a 的解满足x +y <1,则a 的取值范围是______.14. 如图,已知∠OAB =∠OBC =∠OCD =90°,AB =BC =CD =1,OA =2,则OD =________.15. 已知:一等腰三角形的两边长x 、y 满足方程组{2x −y =33x +2y =8,则此等腰三角形的周长为 .16. 如图,在△ABC 中,∠BAC =80°,∠B =40°,AD 是∠BAC 的角平分线,则∠ADB =________°.三、解答题(本大题共9小题,共72分)17. 如图,在△ABC 和△DAE 中,∠BAC =∠DAE ,AB =AE ,AC =AD ,连结BD ,CE ,求证:△ABD ≌△AEC .18. 一个零件的形状如图,按规定,若∠A 是90°,∠B 和∠C 分别是32°和21°,则零件合格,检验工人量得∠BDC 是149°,就判定这个零件不合格.请运用三角形的有关知识说明零件不合格的理由.19.如图,D为等腰△ABC底边BC上的一点,AD=DC,∠B=30°.试判断△ABD是不是直角三角形,并说明理由.20.问题:如图,在△ABD中,BA=BD.在BD的延长线上取点E,C,作△AEC,使EA=EC,若∠BAE=90°,∠B=45°,求∠DAC的度数.答案:∠DAC=45°.思考:(1)如果把以上“问题”中的条件“∠B=45°”去掉,其余条件不变,那么∠DAC的度数会改变吗?说明理由;(2)如果把以上“问题”中的条件“∠B=45°”去掉,再将“∠BAE=90°”改为“∠BAE=n°”,其余条件不变,求∠DAC的度数.21.某商店第一次用600元购进2B铅笔若干支,第二次又用600元购进该款铅笔,但这倍,购进数量比第一次少了30支.次每支的进价是第一次进价的54(1)第一次每支铅笔的进价是多少元?(2)若要求这两次购进的铅笔按同一价格全部销售完毕后获利不低于420元,则每支售价至少是多少元?22.已知不等式6x−1>2(x+m)−3+1<x+3的解集相同,求m的值;(1)若它的解集与不等式x−52+1<x+3的解,求m的取值范围.(2)若它的解都是不等式x−5223. 已知关于x ,y 的方程组{x −y =−3x +y =1−3a 的解满足3x +y ≥2,求a 的取值范围. 24. 如图,在△ABC 中,点E 在AB 上,点D 在BC 上,BD =BE ,∠BAD =∠BCE ,AD 与CE 相交于点F ,试判断△AFC 的形状,并说明理由.25. 如图,在△ABC 中,∠ACB =90°,AC =BC ,AE 是BC 边上的中线,过点C 作CF ⊥AE ,垂足为F ,过点B 作BD ⊥BC ,交CF 的延长线于点D .(1)求证:AE =CD .(2)若AC =12 cm ,求BD 的长.答案和解析1.【答案】B【解析】解:观察作图痕迹可知:A.CD⊥AB,但不平分,所以A选项不符合题意;B.CD为△ABC的边AB上的中线,所以B选项符合题意;C.CD是∠ACB的平分线,所以C选项不符合题意;D.不符合基本作图过程,所以D选项不符合题意.故选:B.根据题意,CD为△ABC的边AB上的中线,就是作AB边的垂直平分线,交AB于点D,连接CD即可判断.本题考查了作图−基本作图、三角形的角平分线、中线和高、线段垂直平分线的性质,解决本题的关键是掌握三角形的中线.2.【答案】D【解析】【分析】本题考查了全等三角形的性质;利用三角形的三角的比,求得三个角的大小是很重要的方法,要注意掌握.利用三角形的三角的比,求出三角的度数,再进一步根据各角之间的关系求出∠BCM、∠BCN的度数可求出结果.【解答】解:在△ABC中,∠A:∠ABC:∠ACB=3:5:10,设∠A=3x°,则∠ABC=5x°,∠ACB=10x°,∵∠A+∠ABC+∠ACB=180°,∴3x+5x+10x=180,解得x=10,则∠A=30°,∠ABC=50°,∠ACB=100°,∴∠BCN=180°−100°=80°,又∵△MNC≌△ABC,∴∠ACB=∠MCN=100°,∴∠BCM=∠NCM−∠BCN=100°−80°=20°,∴∠BCM:∠BCN=20°:80°=1:4.故选D.3.【答案】B【解析】【分析】本题是等腰三角形的性质:等边对等角,与平行线的性质的综合应用.CE=CA即△ACE 是等腰三角形.∠E是底角,根据等腰三角形的两底角相等得到∠E=∠EAC=65°,由平行线的性质得到:∠EAB=115°,从而求出∠CAB的度数.【解答】解:∵CE=CA,∴∠E=∠EAC=65°,又∵AB//EF,∴∠EAB=180°−∠E=115°,∴∠CAB=∠EAB−∠EAC=50°.故选B.4.【答案】C【解析】【分析】本题考查了勾股定理、直角三角形斜边上的中线.勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么a2+b2=c2.即直角三角形,两直角边的平方和等于斜边的平方.直角三角形的性质:在直角三角形中斜边上的中线等于斜边的一半.【解答】解:如图,在△ABC中,∠C=90°,AC=12,BC=5,则根据勾股定理知,AB=√122+52=13,∵CD为斜边AB上的中线,AB=6.5.∴CD=12故选C.5.【答案】A【解析】解:去括号,得:3−3x>2−4x,移项,得:−3x+4x>2−3,合并,得:x>−1,在数轴上表示为,故选:A.根据解一元一次不等式基本步骤:去括号、移项、合并同类项可得不等式的解集,继而可得答案.本题主要考查解一元一次不等式以及在数轴上表示不等式的解集,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变以及在数轴上表示注意空心点和实心点.6.【答案】B>x,【解析】解:4−x34−x>3x,−x−3x>−4,x<1,>x的最大整数解是0.∴不等式4−x3故选:B.根据不等式的解法求出不等式的解集,然后再找出最大整数解即可.本题主要考查了一元一次不等式的解法,在解题时要注意解不等式的步骤和符号.7.【答案】A【解析】解:由作法得OD=OC=OD′=OC′,CD=C′D′,所以根据“SSS”可判断△D′O′C′≌△DOC.故选:A.根据作图得到OD=OC=OD′=OC′,CD=C′D′,然后根据全等三角形的判定方法求解.本题考查了作图−复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了全等三角形的判定与性质.8.【答案】B【解析】【分析】本题考查了三角形的内角和定理、角平分线的定义等知识.根据BO、CO分别是∠ABC与∠ACB的角平分线,用α的代数式表示出∠OBC与∠OCB的和,再根据三角形的内角和定理求出∠BOC的度数.【解答】解:∵∠A=α,∴∠ABC+∠ACB=180°−α,∵BO、CO分别是∠ABC与∠ACB的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=12(180°−α)=90°−12α,∴∠BOC=180°−(∠OBC+∠OCB)=90°+1 2α故选B.9.【答案】A【解析】【分析】本题主要考查对于等腰三角形的性质定理的记忆与理解.从各选项提供的已知条件,根据等腰三角形的性质,全等三角形的判定对各个命题进行分析,从而得到答案.【解答】解:A.因为等腰三角形顶角的外角等于两底角的和,作顶角的外角的平分线得到的角就等于等腰三角形的底角,根据内错角相等,两直线平行就可以得到:等腰三角形顶角的外角平分线与底边平行,所以此命题正确;B.应该为等腰三角形底边上的高线,中线,角平分线重合,所以原命题不正确;C.因为顶角相等的两个等腰三角形对应边不一定相等,因而不一定全等,所以原命题不正确;D.等腰三角形的腰可以为底边的两倍,所以原命题不正确;故选A.10.【答案】A【解析】解:∵AC=2,∠B=30°,∠ACB=90°,∴AB=2AC=4,∵点D为AB的中点,AB=2,∴CD=12故选:A.利用直角三角形的性质得到AB长,然后再利用直角三角形斜边上的中线的性质可得答案.此题主要考查了直角三角形斜边上的中线,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.11.【答案】D【解析】【分析】本题主要考查对在数轴上表示不等式的解集的理解和掌握,能根据数轴上不等式的解集得出答案是解此题的关键.根据数轴上不等式的解集得出x≥−2即可.【解答】解:根据数轴上不等式的解集得:x≥−2,故选D.12.【答案】A【解析】【分析】.即可判断出.本题考查了不等式的基本性质,属于基础题.由0<a<1,可得a<1<1a【解答】解:∵0<a<1,∴1<1 aa<1<1 a故选A.13.【答案】a<6【解析】解:{x−y=a+1 ①3x+2y=a ②,①×2+②得:5x=3a+2,即x=3a+25,把x=3a+25代入②得:y=−2a+35,根据题意得:3a+25−2a+35<1,解得:a<6,故答案为a<6.把a看做已知数表示出方程组的解,根据题意不等式求出a的范围即可.此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.14.【答案】√7【解析】【分析】此题考查了勾股定理,熟练掌握勾股定理是解本题的关键.在直角三角形AOB中,由OA与AB的长,利用勾股定理求出OB的长,在直角三角形BOC中,由OB与BC的长,利用勾股定理求出OC的长,在直角三角形OCD中,由OC与CD的长,利用勾股定理即可求出OD 的长.【解答】解:∵∠OAB=∠OBC=∠OCD=90°,AB=BC=CD=1,OA=2,∴在Rt△AOB中,根据勾股定理得:OB=√OA2+AB2=√4+1=√5,在Rt△BOC中,根据勾股定理得:OC=√BC2+OB2=√5+1=√6,在Rt△COD中,根据勾股定理得:OD=√OC2+CD2=√6+1=√7.故答案为√7.15.【答案】5【解析】解:解方程组{2x −y =33x +2y =8得{x =2y =1.所以,等腰三角形的两边长为2,1.若腰长为1,底边长为2,由1+1=2知,这样的三角形不存在.若腰长为2,底边长为1,则三角形的周长为5.所以这个等腰三角形的周长为5.故答案为:5.先解二元一次方程组,然后讨论腰长的大小,再根据三角形三边关系即可得出答案. 本题考查了三角形三边关系及解二元一次方程组,难度一般,关键是掌握分类讨论的思想解题.16.【答案】100【解析】【分析】本题考查了角平分线定义和性质、三角形外角性质以及三角形内角和,注意:三角形的一个外角等于和它不相邻的两个内角的和.根据角平分线定义求出∠CAD ,再根据三角形外角性质求出即可.【解答】解:∵在△ABC 中,∠BAC =80°,∠B =40°,AD 是△ABC 的角平分线,∴∠C =60°,∠CAD =40°,∴∠ADB =∠CAD +∠C =100°,故答案为100.17.【答案】证明:∵∠BAC =∠DAE ,∴∠BAC −∠BAE =∠DAE −∠BAE ,即∠BAD =∠CAE ,在△ABD 和△AEC 中,{D =AC ∠BAD =∠EAC AB =AE, ∴△ABD≌△AEC(SAS).【解析】本题考查了全等三角形的判定,判断三角形全等的方法有:SSS ,SAS ,ASA ,AAS ,以及判断两个直角三角形全等的方法HL .根据∠BAC=∠DAE,可得∠BAD=∠CAE,再根据全等的条件可得出结论.18.【答案】解:如图,延长CD交AB于M.∵∠A=90°,∠C=21°,∴∠1=∠A+∠C=90°+21°=111°,∵∠B=32°,∴∠BDC=∠B+∠1=32°+111°=143°.又∵∠BDC=149°,∴这个零件不合格.【解析】延长CD交AB于M,根据三角形的一个外角等于与它不相邻的两个内角的和列式求出∠BDC,然后即可判断.本题考查的是三角形外角的性质,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.19.【答案】【解答】解:△ABD是直角三角形.∵AD=DC,∠B=30°,∴∠DAC=30°,∵△ABC是等腰三角形,∴∠B=∠C=30°,∠BAC=120°,∴∠BAD=∠BAC−∠DAC=120°−30°=90°,∴△ABD是直角三角形.【解析】【解析】本题主要考查了三角形的内角和定理,三角形的性质的综合应用,等腰三角形的判定,等腰三角形的性质,直角三角形的判定及性质.解题关键是利用等腰三角形的性质及判定,利用三角形内角和定理,及已知条件解出∠BAD 的度数,从而判断三角形的形状.20.【答案】解:(1)∠DAC 的度数不会改变;∵EA =EC ,∴∠CAE =∠C ,①∵∠BAE =90°,∴∠BAD =12[180°−(90°−2∠C)]=45°+∠C ,∴∠DAE =90°−∠BAD =90°−(45°+∠C)=45°−∠C ,②由①,②得,∠DAC =∠DAE +∠CAE =45°;(2)设∠ABC =m°,则∠BAD =12(180°−m°)=90°−12m°,∠AEB =180°−n°−m°,∴∠DAE =n°−∠BAD =n°−90°+12m°, ∵EA =EC ,∴∠CAE =12∠AEB =90°−12n°−12m°,∴∠DAC =∠DAE +∠CAE =n°−90°+12m°+90°−12n°−12m°=12n°. 【解析】本题考查了等腰三角形的性质,三角形的内角和定理,正确的识别图形是解题的关键.(1)根据等腰三角形的性质得到∠CAE =∠C ,①求得∠DAE =90°−∠BAD =90°−(45°+∠C)=45°−∠C ,②;由①,②即可得到结论;(2)设∠ABC =m°,根据三角形的内角和定理和等腰三角形的性质即可得到结论.21.【答案】解:(1)设第一次每支铅笔的进价为x 元,则第二次每支铅笔的进价为54x 元. 根据题意列方程得600x −60054x =30, 解得x =4.经检验,x =4是原分式方程的解,即第一次每支铅笔的进价为4元;(2)设售价为y 元,根据题意列不等式为6004(y −4)+6004×54(y −4×54)≥420,解得y≥6,即每支售价至少是6元.【解析】本题考查了分式方程的应用和一元一次不等式的应用,弄清题意并找出题中的数量关系并列出方程是解题的关键,最后不要忘记检验.(1)设第一次每支铅笔进价为x元,则第二次每支铅笔进价为54x元,根据题意可列出分式方程解答;(2)设售价为y元,求出利润表达式,然后列不等式解答.22.【答案】解:6x−1>2(x+m)−3,6x−2x>2m−3+1,4x>2m−2,x>m−1 2(1)x−52+1<x+3,解得:x>−9,∴m−12=−9,解得m=−17;(2)解不等式x−52+1<x+3得,x>−9,由题意可得,m−12≥−9,解得:m≥−17.【解析】(1)分别求出两个不等式的解,然后根据两个不等式的解集相同而得到方程,再解方程即可.(2)根据题意列出不等式,求解即可得出m的取值范围.本题考查了解一元一次不等式,分别求出两个不等式的解集,再列出关于m的不等式是解题的关键.23.【答案】解:{x−y=−3①x+y=1−3a②,①+②,得:2x=−2−3a,解得:x=−1−32a,②−①,得:2y=4−3a,解得:y =2−32a ,∴方程组的解为{x =−1−32a y =2−32a, ∵关于x ,y 的方程组{x −y =−3x +y =1−3a的解满足3x +y ≥2, ∴3(−1−32a)+2−32a ≥2, 去括号得:−3−92a +2−32a ≥2,移项得:−92a −32a ≥2+3−2,合并同类项得:−6a ≥3,系数化为1得:a ≤−12.【解析】本题考查了加减消元法解二元一次方程,解一元一次不等式,二元一次方程组的解.先利用加减消元法得到方程组的解,根据题意即可得到关于a 的一元一次不等式,解不等式即可.24.【答案】解:△AFC 是等腰三角形.理由:在△BAD 与△BCE 中,∵∠B =∠B ,∠BAD =∠BCE ,BD =BE ,∴△BAD≌△BCE ,∴BA =BC ,∴∠BAC =∠BCA ,∴∠BAC −∠BAD =∠BCA −∠BCE ,即∠FAC =∠FCA ,∴△AFC 是等腰三角形.【解析】本题考查了全等三角形的判定与性质及等腰三角形的判定等知识点,利用全等三角形来得出角相等是本题解题的关键.要判断△AFC 的形状,可通过判断角的关系来得出结论,那么就要看∠FAC 和∠FCA 的关系.因为∠BAD =∠BCE ,因此我们只比较∠BAC 和∠BCA 的关系即可.根据题中的条件:BD =BE ,∠BAD =∠BCE ,△BDA 和△BEC 又有一个公共角,因此两三角形全等,那么AB =AC ,于是∠BAC =∠BCA ,由此便可推导出∠FAC =∠FCA ,那么三角形AFC 应该是个等腰三角形.25.【答案】(1)证明:∵DB⊥BC,CF⊥AE,∴∠DCB+∠D=∠DCB+∠AEC=90°.∴∠D=∠AEC.又∵∠DBC=∠ECA=90°,且BC=CA,在△DBC和△ECA中,∵{∠D=∠AEC∠DBC=∠ECA=90∘BC=AC,∴△DBC≌△ECA(AAS).∴AE=CD.(2)解:由(1)得AE=CD,AC=BC,在Rt△CDB和Rt△AEC中{AE=CDAC=BC,∴Rt△CDB≌Rt△AEC(HL),∴BD=CE,∵AE是BC边上的中线,∴BD=EC=12BC=12AC,且AC=12cm.∴BD=6cm.【解析】本题考查的是全等三角形的判定与性质有关知识.(1)证两条线段相等,通常用全等,本题中的AE和CD分别在三角形AEC和三角形CDB中,在这两个三角形中,已经有一组边相等,一组角相等了,因此只需再找一组角即可利用角角边进行解答.(2)由(1)得BD=EC=12BC=12AC,且AC=12,即可求出BD的长.。

浙教版初中数学八年级上册期中测试卷(标准难度)(含解析)

浙教版初中数学八年级上册期中测试卷(标准难度)(含解析)

中浙教版初中数学八年级上册期中测试卷考试范围:第一.二.三章;考试时间:120分钟;总分:120分学校:___________姓名:___________班级:___________考号:___________第I卷(选择题)一、选择题(本大题共12小题,共36分。

在每小题列出的选项中,选出符合题目的一项)1.如图,已知:AB=DE,∠1=∠2,下列条件中能使△ABC≌△DEF的是( )A. AF=CDB. ED=BCC. AB=EFD. ∠B=∠E2.下面说法正确的个数是( )(1)三角形中最小的内角不能大于60°;(2)三角形的一个外角等于这个三角形的两个内角的和;(3)三角形任意两个内角的和大于第三个内角;(4)直角三角形只有一条高;(5)在同圆中任意两条直径都相互平分;(6)三角形一边上的高小于这个三角形的其他两边.A. 5个B. 4个C. 3个D. 2个3.已知:如图所示,将△ABC的∠C沿DE折叠,点C落在点C′处,若设∠C=α,∠AEC′=β,∠BDC′=γ,则下列关系成立的是( )A. 2α=β+γB. α=β+γC. α+β+γ=180°D. α+β=2γ4. 若△ABC 的三边长分别为a ,b ,c ,则下列条件中能判定△ABC 是直角三角形的有( )①∠A =∠B −∠C ;②∠A :∠B :∠C =3:4:5;③a 2=(b +c)(b −c);④a :b :c =5:12:13.A. 1个B. 2个C. 3个D. 4个5. 如图,三角形是直角三角形,四边形是正方形,已知正方形A 的面积是64,正方形B 的面积是100,则半圆C 的面积是( )A. 4.5πB. 9πC. 36D. 18π6. 如图,Rt △ABC 中,∠C =90°,利用尺规在BC ,BA 上分别截取BE ,BD ,使BE =BD ;分别以D ,E 为圆心、以大于12DE 的长为半径作弧,两弧在∠CBA 内交于点F ;作射线BF 交AC 于点G.若AB =10,BC =8,则点G 到直线AB 的距离为( )A. 83B. 3C. 4D. 2457.如果关于x 的不等式组{x−m2>0x−43−x <−4的解集为x >4,且整数m 使得关于x ,y 的二元一次方程组{mx +y =83x +y =1的解为整数(x,y 均为整数),则符合条件的所有整数m 的和是( )A. −2B. 2C. 6D. 108. 不等式组1≤8−x 3−1<2的解集在数轴上表示正确的是( )A.B.C.D.9. 如果关于x 的不等式{x +8<4x −1x >m的解集是x >3,那么m 的取值范围是( )A. m ≥3B. m ≤3C. m =3D. m <310. 某种商品的进价为200元,商场的标价是300元,后来由于商品积压,商场准备打折销售,为了保证利润率不低于5%,则该商品最多打几折( )中A. 9折B. 8折C. 7折D. 6折11. 若数a 使关于x 的不等式组{x+13≥−1−x 25x −2>x +a有且仅有五个整数解,且使关于y 的方程y+ay−1+2a1−y =2的解为非负数,则符合条件的所有整数a 的和为( ) A. −3 B. −2 C. 1 D. −112. 如图,利用尺规作∠AOB 的平分线,作法如下:①以点O 为圆心,适当长为半径画弧,交OA 于点D ,交OB 于点E ;②分别以点D ,E 为圆心,大于12DE 的长为半径画弧,两弧在∠AOB 的内部交于点C ; ③画射线OC ,射线OC 就是∠AOB 的平分线. 通过上述作法,可得△OEC≌△ODC ,其依据是( )A. SSSB. ASAC. AASD. SAS第II 卷(非选择题)二、填空题(本大题共4小题,共12分)13. 如图,AB//CD ,EF 分别与AB ,CD 交于点B ,F.若∠E =30∘,∠EFC =130∘,则∠A = .14. 在△ABC 中,∠A −∠B =35°,∠C =55°,则∠B 等于______°.15. 如图,在Rt △ABC 中,∠ACB =90°,AC =2,BC =4,点P 为AB 上不与A ,B 重合的一个动点,连接CP ,将△ACP 沿CP 折叠得到△QCP ,点A 的对应点为点Q ,连接BQ ,则线段BQ 的取值范围为______.16. 已知方程组{2x +y =m4x +5y =2的解x 、y 满足x +y >1,则m 的取值范围是______.三、解答题(本大题共9小题,共72分。

新浙教版八年级上数学期中考试试题及答案

新浙教版八年级上数学期中考试试题及答案

B ′C ′D ′O ′A ′ODC BA(第4题)新浙教版八上数学期中考试一、选择题(每小题3分,共30分)1.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( )A .28°B .34°C .68°D .62°2.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( )A .1<A D <7B .2<A D <14C .2.5<AD <5.5 D .5<A D <113.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,D E ⊥AB 于点E ,且AB =6,则△DEB 的周长为( )A .4B .6C .8D .10 4.用直尺和圆规作一个角等于已知角的示意图如下,则说明 ∠A ′O ′B ′=∠AOB 的依据是 A .(S .S .S .)B .(S .A .S .) C .(A .S .A .)D .(A .A .S .5. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ) A.∠α=60º,∠α的补角∠β=120º,∠β>∠α B.∠α=90º,∠α的补角∠β=900º,∠β=∠α C.∠α=100º,∠α的补角∠β=80º,∠β<∠αD.两个角互为邻补角 (第3题)6. △ABC 与△A´B´C ´中,条件①AB = A´B´,②BC = B´C´,③AC =A´C´,④∠A=∠A´,⑤∠B =∠B´,⑥∠C =∠C´,则下列各组条件中不能保证△ABC ≌△A´B´C´的是( )A. ①②③B. ①②⑤C. ①③⑤D. ②⑤⑥7.如图,在△ABC 中,AB =AC ,高BD ,CE 交于点O ,AO 交BC 于点F ,则图中共有全等三角形( )A .7对B .6对C .5对D .4对8.如图,在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC 交BC 于点D ,D E ⊥AB 于点E ,若△DEB 的周长为10cm ,则斜边AB 的长为( )A .8 cmB .10 cmC .12 cmD . 20 cm9.如图,△ABC 与△BDE 均为等边三角形,A B <BD ,若△ABC 不动,将△BDE 绕点B 旋转,则在旋转过程中,AE 与CD 的大小关系为( )A .AE =CDB .A E >CDC .A E <CD D .无法确定10.已知∠P =80°,过不在∠P 上一点Q 作QM ,QN 分别垂直于∠P 的两边,垂足为M ,N ,则∠Q 的度数等于( ) A .10° B .80° C .100° D .80°或100°E CDBAH EDC B A 一、填空题(每小题2分,共20分)11.如图,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 . 12.如图,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌△ ,理由是 ,△ABE ≌△ ,理由是 .(第1题) (第2题) (第4题)13.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是 cm. 14.如图,AD 、A´D´分别是锐角△ABC 和△A´B´C´中BC 与B´C´边上的高,且AB = A´B´,AD = A´D´,若使△ABC ≌△A´B´C´,请你补充条件 (只需填写一个你认为适当的条件)15. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形完全重合. 16. 如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC +∠DFE =___________度(第16题) (第17题) (第18题)17.已知:如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点,则DN +MN的最小值为__________.18.如图,在△ABC 中,∠B =90o ,D 是斜边AC 的垂直平分线与BC 的交点,连结AD ,若 ∠DAC :∠DAB =2:5,则∠DAC =___________.19.等腰直角三角形ABC 中,∠BAC =90o ,BD 平分∠ABC 交AC 于点D ,若AB +AD =8cm ,则底边BC上的高为___________.20.锐角三角形ABC 中,高AD 和BE 交于点H ,且BH =AC ,则∠ABC =__________度.(第19题) (第20题)三、解答题(每小题5分,共30分)21.如图,点E 在AB 上,AC =AD ,请你添加一个条件,使图中存在全等三角形,并给予证明.所添条件为 ,BAEDCE DABC1 2DA BC B´D´A´C´MND CBAFED CB A DC B A EDCBA你得到的一对全等三角形是∆ ∆≅ . 22.如图,EG ∥AF ,请你从下面三个条件中再选两个作为已知条件,另一个为结论,推出一个正确的命题(只需写出一种情况),并给予证明.①AB =AC ,②DE =DF ,③BE =CF , 已知:EG ∥AF , = , = , 求证: 证明:(第22题)23. 如图,在△ABC 和△DEF 中,B 、E 、C 、F 在同一直线上,下面有四个条件,请你在其中选择3个作为题设,余下的1个作为结论,写一个真命题,并加以证明. ①AB =DE ,②AC =DF ,③∠ABC =∠DEF ,④BE =CF(第23题)24. 如图,四边形ABCD 中,点E 在边CD 上.连结AE 、BF ,给出下列五个关系式:①AD ∥BC ;②DE =CE ③. ∠1=∠2 ④. ∠3=∠4 . ⑤AD +BC =AB 将其中的三个关系式作为假设,另外两个作为结论,构成一个命题.(1)用序号写出一个真命题,书写形式如:如果……,那么……,并给出证明; (2)用序号再写出三个真命题(不要求证明); (3)真命题不止以上四个,想一想就能够多写出几个真命题EDAC 4321FBEA BD FC25.已知,如图,D 是△ABC 的边AB 上一点,DF 交AC 于点E , DE =FE , AB ∥FC . 问线段AD 、CF 的长度关系如何?请予以证明.(第25题)26.如图,已知ΔABC 是等腰直角三角形,∠C =90°.(1)操作并观察,如图,将三角板的45°角的顶点与点C 重合,使这个角落在∠ACB 的内部,两边分别与斜边AB 交于E 、F 两点,然后将这个角绕着点C 在∠ACB 的内部旋转,观察在点E 、F 的位置发生变化时,AE 、EF 、FB 中最长线段是否始终是EF ?写出观察结果.(2)探索:AE 、EF、FB 这三条线段能否组成以EF 为斜边的直角三角形?如果能,试加以证明.四、探究题 (每题10分,共20分)27.如图①,OP 是∠MON 的平分线,请你利用该图形画一对以OP 所在直线为对称轴的全等三角形.请你参考这个作全等三角形的方法,解答下列问题:(1)如图②,在△ABC 中,∠ACB 是直角,∠B =60°,AD 、CE 分别是∠BAC 、∠BCA 的平分线,AD 、CE 相交于点F .请你判断并写出FE 与FD 之间的数量关系;(2)如图③,在△ABC 中,如果∠ACB 不是直角,而(1)中的其它条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.28.如图a ,△ABC 和△CEF 是两个大小不等的等边三角形,且有一个公共顶点C ,连接AF 和BE. (1)线段AF 和BE 有怎样的大小关系?请证明你的结论;(2)将图a 中的△CEF 绕点C 旋转一定的角度,得到图b ,(1)中的结论还成立吗?作出判断并说明理由;(3)若将图a 中的△ABC 绕点C 旋转一定的角度,请你画山一个变换后的图形(草图即可),(1)中的结论还成立吗?作出判断不必说明理由;(4)根据以上证明、说理、画图,归纳你的发现).EACFBEAC FB图a 图bOPAMN EB CD FACEFBD图①图②图③参考答案一、1.∠DBE , CA 2.△ACE , SAS , △ACD , ASA (或SAS )3. 64.CD =C´D´(或AC =A´C´,或∠C =∠C´或∠CAD =∠C´A´D´)5.平移,翻折6. 907. 108. 20º9.248- 10. 45二、11. A 12. D 13. B 14.A 15.C 16.C 17.A 18.B 19.A 20.D三、21.可选择BD BC DAB CAB DE CE =∠=∠=、、等条件中的一个.可得到△ACE ≌△ADE 或△ACB≌△ADB 等.22.结合图形,已知条件以及所供选择的3个论断,认真分析它们之间的内在联系 可选①AB =AC ,②DE =DF ,作为已知条件,③BE =CF 作为结论;推理过程为:∵EG ∥AF ,∴∠GED =∠CFD ,∠BGE =∠BCA ,∵AB =AC ,∴∠B =∠BCA , ∴∠B =∠BGE ∴BE =EG ,在△DEG 和△DFC 中,∠GED =∠CFD ,DE =DF ,∠EDG =∠FDC ,∴△DEG ≌△DFC ,∴EG =CF ,而EG =BE ,∴BE =CF ;若选①AB =AC ,③BE =CF 为条件,同样可以推得②DE =DF , 23.结合图形,认真分析所供选择的4个论断之间的内在联系由④BE =CF 还可推得BC =EF ,根据三角形全等的判定方法,可选论断:①AB =DE ,②AC =DF ,④BE =CF 为条件,根据三边对应相等的两个三角形全等可以得到:△ABC ≌△DEF ,进而推得论断③∠ABC =∠DEF ,同样可选①AB =DE ,③∠ABC =∠DEF ,④BE =CF 为条件,根据两边夹角对应相等的两个三角形全等可以得到:△ABC ≌△DEF ,进而推得论断②AC =DF . 24. (1)如果①②③,那么④⑤证明:如图,延长AE 交BC 的延长线于F 因为AD ∥BC 所以 ∠1=∠F 又因为∠AED =∠CEF ,DE =EC 所以△ADE ≌△FCE ,所以AD =CF ,AE =EF 因为∠1=∠F ,∠1=∠2 所以∠2=∠F 所以AB =BF .所以∠3=∠4 所以AD +BC =CF +BC =BF =AB(2)如果①②④,那么③⑤;如果①③④,那么②⑤;如果①③⑤,那么②④. (3) 如果①②⑤,那么③④;如果②④⑤,那么①③;如果③④⑤,那么①②.25. (1)观察结果是:当45°角的顶点与点C 重合,并将这个角绕着点C 在重合,并将这个角绕着点C在∠ACB 内部旋转时,AE 、EF 、FB 中最长的线段始终是EF .(2)AE 、EF 、FB 三条线段能构成以EF 为斜边的直角三角形,证明如下:在∠ECF 的内部作∠ECG =∠ACE ,使CG =AC ,连结EG ,FG ,∴ΔACE ≌ΔGCE ,∴∠A =∠1,同理∠B =∠2,∵∠A +∠B =90°,∴∠1+∠2=90°, ∴∠EGF =90°,EF 为斜边.四、27.(1)FE 与FD 之间的数量关系为FE =FD (2)答:(1)中的结论FE=FD 仍然成立图① 图② 证法一:如图1,在AC 上截取AG =AE ,连接FG ∵ ∠1=∠2,AF =AF ,AE =AG ∴ △AEF ≌△AGF∴ ∠AFE =∠AFG ,FG =FE ∵ ∠B=60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线 ∴ ∠2+∠3=60°,∠AFE =∠CFD =∠AFG =60°∴ ∠CFG =60° ∵ ∠4=∠3,CF =CF ,∴ △CFG ≌△CFD ∴ FG =FD ∴ FE =FD 证法二:如图2,过点F 分别作F G ⊥AB 于点G ,FH ⊥BC 于点H ∵ ∠B =60°,且AD 、CE 分别是∠BAC 、∠BCA 的平分线 ∴ ∠2+∠3=60° ∴ ∠GEF =60°+∠1,FG =FH∵ ∠HDF =∠B +∠1 ∴ ∠GEF =∠HDF ∴ △EG F ≌△DHF ∴ FE =FD28. (1)AF =BE .证明:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形,∴AC =BC ,CF =CE ,∠ACF =∠BCE =60.∴△AFC ≌△BEC . ∴AF =BE . (2)成立. 理由:在△AFC 和△BEC 中, ∵△ABC 和△CEF 是等边三角形, ∴AC =BC ,CF =CE ,∠ACB =∠FCE =60°. ∴∠ACB -∠FCB =∠FCE -∠FCB. 即∠ACF =∠BCE . ∴△AFC ≌△BEC . ∴AF =BE . (3)此处图形不惟一,仅举几例.如图,(1)中的结论仍成立.图⑤(4)根据以上证明、说明、画图,归纳如下:如图a,大小不等的等边三角形ABC和等边三角形CEF有且仅有一个公共顶点C,则以点C为旋转中心,任意旋转其中一个三角形,都有AF=BE.。

新浙教版八年级上册数学期中考试试题及答案

新浙教版八年级上册数学期中考试试题及答案

B ′C ′D ′O ′A ′ODC BA(第4题)宏夏学堂新浙教版八上数学期中考试一、选择题(每小题3分,共30分)1.已知在△ABC 中,AB =AC ,∠A =56°,则高BD 与BC 的夹角为( )A .28°B .34°C .68°D .62°2.在△ABC 中,AB =3,AC =4,延长BC 至D ,使CD =BC ,连接AD ,则AD 的长的取值范围为( )A .1<A D <7B .2<A D <14C .2。

5<AD <5。

5 D .5<A D <113.如图,在△ABC 中,∠C =90°,CA =CB ,AD 平分∠CAB 交BC 于D ,D E ⊥AB 于点E ,且AB =6,则△DEB的周长为( )A .4B .6C .8D .10 4.用直尺和圆规作一个角等于已知角的示意图如下,则说明 ∠A ′O ′B ′=∠AOB 的依据是 A .(S .S .S .)B .(S .A .S .) C .(A .S .A .)D .(A .A .S .5. 对假命题“任何一个角的补角都不小于这个角”举反例,正确的反例是( ) A.∠α=60º,∠α的补角∠β=120º,∠β>∠α B 。

∠α=90º,∠α的补角∠β=900º,∠β=∠α C 。

∠α=100º,∠α的补角∠β=80º,∠β〈∠αD.两个角互为邻补角 (第3题)6. △ABC 与△A´B´C ´中,条件①AB = A´B´,②BC = B´C´,③AC =A´C´,④∠A=∠A´,⑤∠B =∠B´,⑥∠C =∠C´,则下列各组条件中不能保证△ABC ≌△A´B´C´的是( )A 。

2022-2023学年浙教新版八年级上册数学期中复习试卷(含解析)

2022-2023学年浙教新版八年级上册数学期中复习试卷(含解析)

2022-2023学年浙教新版八年级上册数学期中复习试卷一.选择题(共10小题,满分30分,每小题3分)1.下列银行图标中,属于轴对称图形的是( )A.B.C.D.2.在长为2、3、4、5的四根木条中,任选三根能组成三角形的选法有( )A.1种B.2种C.3种D.4种3.已知a<b,则下列四个不等式中,不正确的是( )A.2a<2b B.﹣5a<﹣5bC.a﹣2<b﹣2D.1.2+a<1.2+b4.已知下列命题,其中真命题的个数( )(1)27的立方根是﹣3;(2)有理数与数轴上的点一一对应;(3)平方根是它本身的数有±1和0;(4)同位角相等;(5)等腰三角形两腰上的高相等;(6)若a2=b2,则a=b.A.4个B.3个C.2个D.1个5.如图,AD,BE,CF是△ABC的三条中线,以下结论正确的是( )A.BC=2AD B.AF=AB C.AD=CD D.BE=CF6.一宾馆有二人间,三人间,四人间三种客房供游客租住,某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,租房方案有( )A.4种B.3种C.2种D.1种7.已知平面直角坐标系上的动点A(x,y),满足x=1+2a,y=1﹣a,其中﹣2≤a≤3,有下列四个结论:①﹣3≤x≤7 ②﹣2≤y≤0 ③0≤x+y≤5 ④若x≤0,则0≤y≤3.其中正确的结论是( )A.①③B.①②C.②④D.③④8.如图,在△ABC中,∠C=90°,∠B=30°,AD是∠BAC的平分线,若CD=2,那么BD等于( )A.6B.4C.3D.29.如图,直线l上有三个正方形a,b,c,若a,c的面积分别为7和15,则b的面积为( )A.8B.22C.24D.2610.[问题背景]①如图1,CD为△ABC的中线,则有S△ACD=S△BCD;②如图2,将①中的∠ACB特殊化,使∠ACB=90°,则可借助“面积法”或“中线倍长法”证明AB=2CD;[问题应用]如图3,若点G为△ABC的重心(△ABC的三条中线的交点),CG⊥BG,若AG×BC=16,则△BGC面积的最大值是( )A.2B.8C.4D.6二.填空题(共6小题,满分24分,每小题4分)11.如果有序数对(a,b)表示某栋楼房中a层楼b号房,那么有序数对(3,2)表示该栋楼房中的 层楼 号房,小明家在该栋楼的26层楼5号房,用有序数对表示为 .12.“等角对等边”的逆命题是 .13.如图,已知Rt△ABC,∠ABC=90°,BO是斜边AC上的中线.(1)若BO=3cm,则AC= cm;(2)若BO=6.5cm,AB=5cm,则BC= cm.14.等腰三角形一底角平分线与其对边所成的锐角为84°,则等腰三角形的顶角大小为 .15.有一条铁丝长a米,用去了一半少b米(已知a>2b),则铁丝还剩 米.16.已知,在△ABC中,AB=,∠C=22.5°,将△ABC翻折使得点A与点C重合,折痕与边BC交于点D,如果DC=2,那么BD的长为 .三.解答题(共7小题,满分66分)17.(6分)解不等式组:.18.(8分)已知点P(2a﹣1,3﹣a),且点P在第二象限.(1)求a的取值范围;(2)若点P到坐标轴的距离相等,求点P的坐标.19.(8分)如图,四边形ABCD和四边形ECGF都是正方形,边长分别为a和6,点D在边EC上.(1)求阴影部分图形的面积.(用含a的代数式表示)(2)当a=4时,计算阴影部分图形的面积.20.(10分)如图,AD平分∠BAC,DE⊥AC,垂足为E,BF∥AC交ED的延长线于点F,若BC恰好平分∠ABF.求证:(1)点D为EF的中点;(2)AD⊥BC.21.(10分)如图,已知Rt△ABC中,∠ACB=90°,AB=8,BC=5.(1)作BC的垂直平分线,分别交AB、BC于点D、H;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)的条件下,连接CD,求△BCD的周长.22.(12分)如图,AE∥BC,AB=BC,CD⊥AB于点D,若∠ACD=24°,求∠CAE的度数.23.(12分)已知:等腰Rt△ABC,∠ACB=90°,AC=BC.(1)如图1,直线l过点B,过点A作AD⊥l于D,连接CD.①填空:∠CAD+∠CBD= °;②求的值.(2)如图2,∠CEB=45°,连接AE,求证:AE2=2CE2+BE2.参考答案与试题解析一.选择题(共10小题,满分30分,每小题3分)1.解:A、不是轴对称图形,不符合题意;B、是轴对称图形,符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意.故选:B.2.解:四根木条的所有组合:2,3,4和2,4,5和3,4,5和2,3,5;根据三角形的三边关系,得能组成三角形的有2,3,4和2,4,5和3,4,5.故选:C.3.解:根据不等式的性质可得:选项A:根据不等式的性质2,在a<b的两边同时乘以2,可得2a<2b,故A正确,不符合题意;选项B:根据不等式的性质3,在a<b的两边同时乘以﹣5,可得﹣5a>﹣5b,故B不正确,符合题意;选项C:根据不等式的性质1,在a<b的两边同时减去2,可得a﹣2<b﹣2,故C正确,不符合题意;选项D:根据不等式的性质1,在a<b的两边同时加上1.2,可得1.2+a<1.2+b,故D 正确,不符合题意;综上,只有选项B不正确.故选:B.4.解:27的立方根是3,故(1)中的命题是假命题;有理数与数轴上的点一一对应,故(2)中的命题是假命题;平方根是它本身的数只有0,故(3)中的命题是假命题;如果两直线不平行时,同位角就不相等,故(4)中的命题是假命题;等腰三角形两腰上的高相等,故(5)中的命题是真命题;若a2=b2,则a=±b,故(6)中的命题是假命题;故选:D.5.解:∵AD、BE、CF是△ABC的三条中线,∴AE=EC=AC,AB=2BF=2AF,BD=DC=BC,故A、C、D都不一定正确;B正确.故选:B.6.解:设租二人间x间,租三人间y间,则四人间客房7﹣x﹣y.依题意得:,解得:x>1.∵2x+y=8,y>0,7﹣x﹣y>0,∴x=2,y=4,7﹣x﹣y=1;x=3,y=2,7﹣x﹣y=2.故有2种租房方案.故选:C.7.解:∵x=1+2a,∴a=,而﹣2≤a≤3,∴﹣2≤≤3,∴﹣3≤x≤7,所以①正确;∵y=1﹣a,∴a=1﹣y,∴﹣2≤1﹣y≤3,∴﹣2≤y≤3,所以②错误;∵x+y=1+2a+1﹣a=2+a,∴a=x+y﹣2,∴﹣2≤x+y﹣2≤3,∴0≤x+y≤5,所以③正确;当x≤0,则1+2a≤0,解得a≤﹣,∴﹣2≤a≤﹣,∴﹣2≤1﹣y≤﹣,∴≤y≤3,所以④错误.故选:A.8.解:∵∠C=90°,∠B=30°,∴∠BAC=90°﹣30°=60°,又∵AD是∠BAC的平分线,∴∠BAD=∠CAD=30°,根据直角三角形的性质可知:AD=2CD=2×2=4,根据勾股定理可得:AC==2,又知,∠B=30°,则AB=2AC=4,则根据勾股定理可得:BC==6,则BD=BC﹣CD=6﹣2=4.故选:B.9.解:由于a、b、c都是正方形,所以AC=CD,∠ACD=90°;∵∠ACB+∠DCE=∠ACB+∠BAC=90°,即∠BAC=∠DCE,在△ABC和△CED中,,∴△ACB≌△CDE(AAS),∴AB=CE,BC=DE;在Rt△ABC中,由勾股定理得:AC2=AB2+BC2=AB2+DE2=7+15=22,即S b=22,则b的面积为22,故选:B.10.解:[问题背景]①如图1,过点C作CH⊥AB于H,∵CD为△ABC的中线,∴AD=BD,∵S△ACD=AD×CH,S△BCD=×BD×CH,∴S△ACD=S△BCD;②延长CD至Q,使DQ=CD,连接BQ,∵AD=BD,∠ADC=∠BDQ,CD=DQ,∴△ACD≌△BQD(SAS),∴AC=BQ,∠ACD=∠Q,∴AC∥BQ,∴∠ACB=∠CBQ=90°,又∵BC=BC,∴△ACB≌△QBC(SAS),∴CQ=AB,∴AB=2CD;[问题应用]∵点G为△ABC的重心,∴BE,AD是△ABC的中线,∴AE=CE,CD=DB,S△ACD=S△ABC=S△BCE,∴S△AEG=S△BDG,∴S△AEG=S△CEG=S△CDG=S△BDG,∴S△AGC=2S△CDG,∴AG=2GD,∵CG⊥BG,∴当GD⊥BC时,△BGC面积有最大值,∴△BGC面积的最大值=×BC×GD=×BC×AG=4,故选:C.二.填空题(共6小题,满分24分,每小题4分)11.解:根据题意有序数对(3,2)表示该栋楼房中的3层楼2号房,小明家在该栋楼的26层楼5号房,用有序数对表示为(26,5).故答案为:3,2;(26,5).12.解:“等角对等边”的逆命题为等边对等角.故答案为等边对等角.13.解:(1)∵Rt△ABC,∠ABC=90°,BO是斜边AC上的中线,BO=3cm,∴AC=2BO=6cm;(2)∵Rt△ABC,∠ABC=90°,BO是斜边AC上的中线,BO=6.5cm,∴AC=2BO=13cm,又∵AB=5cm,∴BC===12(cm).故答案为6;12.14.解:设∠ABC=∠C=2x°,∵BD平分∠ABC,∴∠ABD=∠CBD=x°,则∠A=180°﹣4x°,①当∠ADB=84°时,在△ABD中,x+180﹣4x+84=180,解得:x=28,∴∠A=180°﹣4×28°=68°;②当∠CDB=84°时,∵∠CDB=∠A+∠ABD,∴84=180﹣4x+x,解得:x=32,∴∠A=180°﹣4×32°=52°;综上所述:∠A的度数为52°或68°,故答案为:52°或68°.15.解:由题可得,铁丝还剩a﹣(a﹣b)=a+b(米),故答案为:(a+b).16.解:分两种情况:①当∠B为锐角时,如图所示,过A作AF⊥BC于F,由折叠可得,折痕DE垂直平分AC,∴AD=CD=2,∴∠ADB=2∠C=45°,∴△ADF是等腰直角三角形,∴AF=DF=,又∵AB=,∴Rt△ABF中,BF==1,∴BD=BF+DF=1+;②当∠ABC为钝角时,如图所示,过A作AF⊥BC于F,同理可得,△ADF是等腰直角三角形,∴AF=DF=,又∵AB=,∴Rt△ABF中,BF==1,∴BD=DF﹣BF=﹣1;故答案为:+1或﹣1.三.解答题(共7小题,满分66分)17.解:,由①得:x≤2,由②得:x<﹣3,∴不等式组的解集为x<﹣3.18.解:(1)∵点P(2a﹣1,3﹣a),且点P在第二象限,∴,解得:a<;(2)∵点P到坐标轴的距离相等,∴2a﹣1+3﹣a=0,解得:a=﹣2,故2a﹣1=﹣5,3﹣a=5,故点P的坐标为(﹣5,5).19.解:(1)阴影部分图形的面积为:a2+62﹣a2﹣(a+6)×6=a2﹣3a+18.(2)当a=4时,原式=×42﹣3×4+18=8﹣12+18=14.20.证明:(1)过点D作DH⊥AB于H,∵AD平分∠BAC,DE⊥AC,DH⊥AB,∴DE=DH,∵BF∥AC,DE⊥AC,∴BF⊥DF,∵BC平分∠ABF,DH⊥AB,DF⊥BF,∴DF=DH,∴DE=DF,∴点D为EF的中点;(2)∵BF∥AC,∴∠C=∠DBF,且∠CDE=∠BDF,DE=DF,∴△DCE≌△DBF(AAS)∴CD=BD,∵BC平分∠ABF,∴∠ABD=∠DBF,∴∠C=∠ABD,∴AC=AB,且CD=BD,∴AD⊥BC.21.解:(1)如图,DH为所作;(2)∵DH垂直平分BC,∴DC=DB,∴∠B=∠DCB,∵∠B+∠A=90°,∠DCB+∠DCA=90°,∴∠A=∠DCA,∴DC=DA,∴△BCD的周长=DC+DB+BC=DA+DB+BC=AB+BC=8+5=13.22.解:∵CD⊥AB,∴∠ADC=90°,∵∠ADC+∠CAD+∠ACD=180°,∠ACD=24°,∴∠CAD=180°﹣∠ADC﹣∠ACD=180﹣90°﹣24°=66°,∵AB=BC,∴∠BCA=∠CAD=66°,∵AE∥BC,∴∠CAE=∠BCA=66°.23.(1)解:①∵AD⊥l于D,∴∠ADB=90°,∵∠ACB=90°,∴∠CAD+∠CBD=360°﹣∠ADB﹣∠ACB=360°﹣90°﹣90°=180°,故答案为:180;②如图1,延长DB至M,使BM=AD,连接CM,由①可知,∠CAD+∠CBD=180°,∵∠CBM+∠CBD=180°,∴∠CAD=∠CBM,在△CAD和△CBM中,,∴△CAD≌△CBM(SAS),∴CD=CM,∠ACD=∠BCM,∴∠BCM+∠BCD=∠ACD+∠BCD=∠ACB=90°,即∠DCM=90°,∴△CDM是等腰直角三角形,DM==CD,∵DM=BD+BM=BD+AD,∴BD+AD=CD,∴==;(2)证明:如图2,过点C作CF⊥CE,使CF=CE,连接EF、BF,则△CEF是等腰直角三角形,∴EF2=CE2+CF2=2CE2,∠CEF=45°,∴∠BEF=∠CEF+∠CEB=45°+45°=90°,∴BF2=EF2+BE2=2CE2+BE2,∵∠ACB=90°,∠ECF=90°,∴∠ACB+∠BCE=∠ECF+∠BCE,即∠ACE=∠BCF,在△ACE和△BCF中,,∴△ACE≌△BCF(SAS),∴AE=BF,∴AE2=2CE2+BE2.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浙教版八年级上册数学期中试题
班级 姓名__________学号_____
一.选择题:(下面每小题都给出编号为A,B,C,D 的四个答案,其中有且只有一个是符合题意的,请
选择符合题意的答案的编号,填在题后的括号内,本题共30分,每小题3分,选错,多选,不选都给零分)
1.有公共顶点的角可能是( )
A.同位角
B.内错角
C.对顶角
D.同旁内角
2.如图是某地一的长方形大理石广场示意图,如果小琴要
从A 角走到C 角,至少走( )米
A. 90
B. 100
C. 120
D. 140 3.如图,若AB ∥CD,则有①∠A +∠B =180O ②∠B +∠C =180O
③∠C
+∠D =180O ;上述结论正确的是( )
A.只有①
B.只有②
C.只有③
D.只有①和③
4.等边三角形按顺时针旋转最小角度是( )时,图形与原图形重合.
A .30O
B . 90O
C . 120O
D .60O
5.使两个直角三角形全等的条件是
A .斜边相等
B .两直角边对应相等
C .一锐角对应相等
D .两锐角对应相等
6.分析下列说法中正确的有( )种
①长方体、正方体都是棱柱 ; ②球体的三种视图均为同样大小的图形; ③三棱柱的侧面是三角形; ④直六棱柱有六个侧面、侧面为长方形; ⑤圆锥的三视图中:主视图、左视图是三角形,俯视图是圆. A.2 B.3 C.4 D.5 7.下列命题错误的是( )
A .等腰三角形两腰上的中线相等
B .等腰三角形两腰上的高相等
C .等腰三角形的中线与高重合
D .等腰三角形顶角平分线上任一点到底边两端点的距离相等 8.有10个数据的平均数为6,另有20个数据的平均数为3,那么所有这30个数据的平均数是( ) A. 3.5 B.4 C. 4.5 D.5 9.如图,在Rt △ABC 中,∠ACB=90O,BC=6,
正方形ABDE 的面积为100,则正方 形ACFG 的面积为( )
A.64
B.36
C.82
D.49 10.八年级(1)班50名学生的年龄统计 结果如右表所示:则此班学生年龄的众数、中位数分别为( )
A .14,14
B .15,14
C .14,15
D .15,16 二.填空题:(把正确答案填在空格内,本题共30分,每小题3分) 11. 某中学举行广播操比赛,六名评委对八年级某班打分如下:
7.5分,8.2分,7.8分,9.0分,8.1分,7.9分.
去掉一个最高分和一个最底分后的平均分是 分. 12.分析下列四种调查:
①了解我班同学的视力状况; ②估计小明家的一年总用电量; ③登飞机前,对旅客进行安全检查; ④了解中小学生的主要娱乐方式; 其中应作普查的是: (填序号).
13. 等腰三角形的顶角是120º,底边上的高是1cm ,则腰长为______cm. 14.观察下列几组数:
5.5米 2.5米
(第15题图)
80米 (第2题)
A B (第3题图) A E
F G D
C B
①3,4,5 ② 1,2,3 ③5,12,13 ④8,15,17 ⑤9,12,15;
其中能作为直角三角形三边长的是: (填序号).
15.某宾馆在重新装修后,准备在大厅的主楼梯上铺上红色地毯.已知这种红色地毯的售价为每平方米32元,主楼道宽2
16.如图,已知∠AEF =∠C ,∠AFD +∠EDF =180O
; 请推断出两个与角有关的结论:
; . 17.某百货店用每斤13元的甲种糖4斤与每斤10元的乙种糖6斤混合成杂糖出售,那么这种杂糖平
均每斤售价应为 元 18.如图,在△ABC 中,∠A=40º,AB=AC , AB 的垂直平分线DE 交AC 于D ,
则∠DBC 的度数是

19
.如图,已知CA=CB ,则数轴上点A 所表示的数是____ .
20.如图所示,用一根长度足够的长方形纸带, 先对折长方形得折痕l ,再折纸使折线过点B ,且 使得A 在折痕l 上,这时折线CB 与DB 所成的
角为: .
三.解答题:(下面每小题必须有解题过程,本题共40分) 21.计算与说理:(第⑴⑵小题,每题4分,第⑶小题5分,共13分)
⑴如图,已知∠1和∠3互余,∠3和∠2也互余,则m∥n吗?请说明理由.
⑵已知直角三角形的两条边的长分别为3和4,试计算第三条边的长?
⑶又若直角三角形的斜边为5,一直角边为3,那么该直角三角形斜边上的高线长又为多少?
22.画图与计算:(第⑴⑵小题,每题4分,第⑶小题5分,共13分)
A
B
C
E D (第18题图)
(第16题图)
A
B l
D A
/
B
A
l
C

(第20题图)
m n 2 3
1 (第21题第⑴小题图) (第22题⑴图 第22题⑵图
第22题⑶图)
⑴如上图,正方形网格中的每个小正方形边长都是1,任意连结这些小正方形的顶点,可得到一些线段;请在图中画出AB = 2 ,CD = 5 ,EF =13 这样的线段.
⑵如图所示,在边长为1的网格中作出△ABC 绕点A 按逆时针方向旋转90º后的图形△A ¹B ¹C ¹;并计算对应点B 和B ¹之间的距离?
⑶右图是由5个边长为1的小正方形拼成的. ①将该图形分成三块(在图中画出),使由这三块可拼成一个正方形;(3分) ②求出所拼成的正方形的面积S .(2分)
23. (本题6分)我们知道:平均数,中位数和众数都是数据的代表,它们从不同侧面反映了数据的平均水平.
有一次:小王、小李和小张三位同学举行射击比赛,每人打10发子弹,命中环数如下: 小王:9 7 6 9 9 10 8 8 7 10 小李:7 10 9 8 9 10 6 8 9 10 小张:10 8 9 10 7 8 9 9 10 10
某种统计结果表明,三人的“平均水平”都是9环.根据这一结果,请判断三人运用了平均数、
中位数和众数中的哪一种“平均水平”?(每人写出一个“平均水平”即可)
24.(本题6分)如图所示,若△ABC 、△ADE 都是正三角形,请试比较:线段BD 与线段CE 的大小?写出你的猜想,并说明理由.
25.(本题6分)晶晶同学想知道学校旗杆的高,他发现从旗杆顶上挂下来的绳子垂直到地面还多1米,当他把绳子拉开离旗杆底部5米后,绳子下端刚好接触地面;请你帮晶晶同学算一算学校旗杆高度.
26.(本题6分)已知,如图,直线MA ∥NB ,
⑴若点P 在直线MA 与NB 之间,你能得到∠APB =∠MAP +∠NBP 这个结论吗?并说明你的理由.
D
A C
B
E
(第24题图) M




(第26题(1)图)
⑵若P 在两条直线MA ,NB 之外时,又会有 什么结论?(不需要说明理由) (3)你还能就本题作出什么新的猜想?(只需画出图形,写出条件和结论,不需要寿命理由)
参考答案:
填空:
1.C ;2.B ;3.B ;4.C ;5.B ;6.C ;7.C ;8.B ;9.A ;10. B ;
选择:
11. 8;12.①③;13. 2;14.①③④⑤;15.512; 16.∠AFE =∠B,∠A +∠AED =180O
等;17.11.2; 18.30º;19.1- 5 ; 20.60O
; 解题:
21.解:⑴∵∠1和∠3互余,且∠3和∠2也互余∴∠1=∠2∴m∥n
⑵①当3和4为两直角边时,则第三边长为5;②当4为斜边时,第三边长为7 ;⑶该直角三角形斜




A (第26题(2)图)
边上的高线长为12
5
22. ⑴
⑵B 和B ¹之间的距离为2 5 ; ⑶①
②求出所拼成的正方形的面积S=5;
23.解:小王:运用了众数;小李:运用了中位数;小张:运用了平均数. 24.解:①判断:BD =CE ;②理由:∵△ABC 、△ADE 都是正三角形 ∴AB=AC ,AD=AE ,∠EAD =∠CAB =60O
,∴∠EAD +∠CAD =∠CAB +∠CAD 所以:∠EA C=∠DAB 则:△EA C≌△DAB ∴BD =CE 25.旗杆高度为12米.
26.解:⑴连接,∵MA ∥NB ∴∠MAB +∠NBA =180O 又∵∠PAB +∠PBA +∠APB =180O
且∠PAB +∠MAP +∠PBA +∠NBP =180O
∴∠APB =∠MAP +∠NBP
⑵ ∵ ∠NOP=∠APB+∠NBP 又∵MA ∥NB ∴∠NOP=∠M AP∴∠M AP=∠APB+∠NBP ∴∠APB=∠M AP—∠NBP
(3)略
(第22题⑴图
A
B
D E F C 第22题⑵图 第22题⑶图)
M N P


(第26题(1)图) M




(第26题(2)图)
O。

相关文档
最新文档