工程数学线性代数课后习题答案_图文.ppt
合集下载
工程数学线性代数课后答案__同济第五版
第五章 相似矩阵及二次型
1试用施密特法把下列向量组正交化
(1)
解 根据施密特正交化方法
(2)
解 根据施密特正交化方法
2下列矩阵是不是正交阵:
(1) ;
解 此矩阵的第一个行向量非单位向量,故不是正交阵
(2)
解 该方阵每一个行向量均是单位向量且两两正交故为正交阵
3设x为n维列向量xTx1令HE2xxT证明H是对称的正交阵
于是有正交矩阵P(p1p2p3)使P1APdiag(2110)从而有正交变换
使原二次方程变为标准方程2u211v21
29明二次型fxTAx在||x||1时的最大值为矩阵A的最大特征值.
证明A为实对称矩阵则有一正交矩阵T使得
TAT1diag(12n)
成立其中12n为A的特征值不妨设1最大
作正交变换yTx即xTTy注意到T1TT有
f2y125y22y32
(2)fx12x22x32x422x1x22x1x42x2x32x3x4
解 二次型矩阵为 由
得A的特征值为1123341
当11时可得单位特征向量
当23时可得单位特征向量
当341时可得线性无关的单位特征向量
于是有正交矩阵T(p1p2p3p4)和正交变换xTy使
fy123y22y32y42
证明 因为
HT(E2xxT)TE2(xxT)TE2(xxT)T
E2(xT)TxTE2xxT
所以H是对称矩阵
因为
HTHHH(E2xxT)(E2xxT)
E2xxT2xxT(2xxT)(2xxT)
E4xxT4x(xTx)xT
E4xxT4xxT
E
所以H是正交矩阵
4设A与B都是n阶正交阵证明AB也是正交阵
1试用施密特法把下列向量组正交化
(1)
解 根据施密特正交化方法
(2)
解 根据施密特正交化方法
2下列矩阵是不是正交阵:
(1) ;
解 此矩阵的第一个行向量非单位向量,故不是正交阵
(2)
解 该方阵每一个行向量均是单位向量且两两正交故为正交阵
3设x为n维列向量xTx1令HE2xxT证明H是对称的正交阵
于是有正交矩阵P(p1p2p3)使P1APdiag(2110)从而有正交变换
使原二次方程变为标准方程2u211v21
29明二次型fxTAx在||x||1时的最大值为矩阵A的最大特征值.
证明A为实对称矩阵则有一正交矩阵T使得
TAT1diag(12n)
成立其中12n为A的特征值不妨设1最大
作正交变换yTx即xTTy注意到T1TT有
f2y125y22y32
(2)fx12x22x32x422x1x22x1x42x2x32x3x4
解 二次型矩阵为 由
得A的特征值为1123341
当11时可得单位特征向量
当23时可得单位特征向量
当341时可得线性无关的单位特征向量
于是有正交矩阵T(p1p2p3p4)和正交变换xTy使
fy123y22y32y42
证明 因为
HT(E2xxT)TE2(xxT)TE2(xxT)T
E2(xT)TxTE2xxT
所以H是对称矩阵
因为
HTHHH(E2xxT)(E2xxT)
E2xxT2xxT(2xxT)(2xxT)
E4xxT4x(xTx)xT
E4xxT4xxT
E
所以H是正交矩阵
4设A与B都是n阶正交阵证明AB也是正交阵
工程数学线性代数(同济大学第六版)课后习题答案精品.ppt
精品文档
精品文档
10.
精品文档
12.
精品文档
13.
精品文档
14.
精品文档
精品文档
1 3 3
(4)
AXB
C,
其中A
2 5
1 4
,
B
11
4 3
3 4
,
C
1 1
0 2
01.
7 3 3
A1
1Hale Waihona Puke 34 512
,
B1
1 1
1 0
0 1
7 3 3
X
A1CB 1
1 4
3
5
11 0
线性代数(同济六版)
精品文档
1
第一章
精品文档
2
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
(4) 1 1 1
abc bc ca ab
1
1
1
r3 r2 a
b
c
abc cab abc
精品文档
6 证明:
(1) a2 ab b2 2a a b 2b (a-b)3; 111
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
精品文档
7
精品文档
精品文档
8
精品文档
精品文档
7
精品文档
精品文档
精品文档
(5) 1 a1 a1 L a1
工程数学线性代数(同济大学第五版)课后习题答案【精品共223页
工程数学线性代数(同济大学第五版)课后 习题答案【精品
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民ห้องสมุดไป่ตู้幸福是至高无个的法。— —西塞 罗
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
56、极端的法规,就是极端的不公。 ——西 塞罗 57、法律一旦成为人们的需要,人们 就不再 配享受 自由了 。—— 毕达哥 拉斯 58、法律规定的惩罚不是为了私人的 利益, 而是为 了公共 的利益 ;一部 分靠有 害的强 制,一 部分靠 榜样的 效力。 ——格 老秀斯 59、假如没有法律他们会更快乐的话 ,那么 法律作 为一件 无用之 物自己 就会消 灭。— —洛克
60、人民ห้องสมุดไป่ตู้幸福是至高无个的法。— —西塞 罗
21、要知道对好事的称颂过于夸大,也会招来人们的反感轻蔑和嫉妒。——培根 22、业精于勤,荒于嬉;行成于思,毁于随。——韩愈
23、一切节省,归根到底都归结为时间的节省。——马克思 24、意志命运往往背道而驰,决心到最后会全部推倒。——莎士比亚
25、学习是劳动,是充满思想的劳动。——乌申斯基
谢谢!
工程数学线性代数课后答案
习题二
16
同济大学数学系
17
同济大学数学系
18
同济大学数学系
19
同济大学数学系
20
同济大学数学系
21
同济大学数学系
22
同济大学数学系
23
同济大学数学系
24
同济大学数学系
25
同济大学数学系
26
同济大学数学系
27
同济大学数学系
28
同济大学数学系
29
同济大学数学系
习题三
30
同济大学数学系
46
同济大学数学系
习题四
47
同济大学数学系
48
同济大学数学系
49
同济大学数学系
50
同济大学数学系
51
同济大学数学系
52
同济大学数学系
53
同济大学数学系
54
同济大学数学系
55
同济大学数学系
56
同济大学数学系
57
同济大学数学系
58
同济大学数学系
59
同济大学数学系
60
同济大学数学系
31
同济大学数学系
32
同济大学数学系
33
同济大学数学系
34
同济大学数学系
35
同济大学数学系
36
同济大学数学系
37
同济大学数学系
38
同济大学数学系
39
同济大学数学系
40
同济大学数学系
41
同济大学数学系
42
同济大学数学系
43
同济大学数学系
44
同济大学数学系
45
同济大学数学系
16
同济大学数学系
17
同济大学数学系
18
同济大学数学系
19
同济大学数学系
20
同济大学数学系
21
同济大学数学系
22
同济大学数学系
23
同济大学数学系
24
同济大学数学系
25
同济大学数学系
26
同济大学数学系
27
同济大学数学系
28
同济大学数学系
29
同济大学数学系
习题三
30
同济大学数学系
46
同济大学数学系
习题四
47
同济大学数学系
48
同济大学数学系
49
同济大学数学系
50
同济大学数学系
51
同济大学数学系
52
同济大学数学系
53
同济大学数学系
54
同济大学数学系
55
同济大学数学系
56
同济大学数学系
57
同济大学数学系
58
同济大学数学系
59
同济大学数学系
60
同济大学数学系
31
同济大学数学系
32
同济大学数学系
33
同济大学数学系
34
同济大学数学系
35
同济大学数学系
36
同济大学数学系
37
同济大学数学系
38
同济大学数学系
39
同济大学数学系
40
同济大学数学系
41
同济大学数学系
42
同济大学数学系
43
同济大学数学系
44
同济大学数学系
45
同济大学数学系
相关主题