2015动态型函数问题(第9小题)

合集下载

专题24 动态几何之双(多)动点形成的函数关系问题(压轴题)

专题24 动态几何之双(多)动点形成的函数关系问题(压轴题)

《中考压轴题》专题24:动态几何之双(多)动点形成的函数关系问题一、选择题1.如图1,在等腰梯形ABCD中,∠B=60°,P、Q同时从B出发,以每秒1单位长度分别沿B-A-D-C和B-C-D方向运动至相遇时停止,设运动时间为t(秒),△BPQ的面积为S(平房单位),S与t的函数图象如图2所示,则下列结论错误的是A.当t=4秒时,S=43B.AD=4C.当4≤t≤8时,S=23t D.当t=9秒时,BP平分梯形ABCD的面积2.如图,正方形ABCD中,AB=8cm,对角线AC,BD相交于点O,点E,F分别从B,C两点同时出发,以1cm/s 的速度沿BC,CD运动,到点C,D时停止运动,设运动时间为t(s),△OEF的面积为s(cm2),则s(cm2)与t(s)的函数关系可用图象表示为A.B.C.D,3.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE ﹣ED ﹣DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm/s .若P ,Q 同时开始运动,设运动时间为t (s ),△BPQ 的面积为y (cm 2).已知y 与t 的函数图象如图2,则下列结论错误的是A .AE=6cmB .4sin EBC 5∠=C .当0<t ≤10时,22y t 5=D .当t=12s 时,△PBQ 是等腰三角形4.如图1,点E 为矩形ABCD 边AD 上一点,点P ,点Q 同时从点B 出发,点P 沿BE→ED→DC 运动到点C 停止,点Q 沿BC 运动到点C 停止,它们运动的速度都是1cm/s ,设P ,Q 出发t 秒时,△BPQ 的面积为ycm ,已知y 与t 的函数关系的图形如图2(曲线OM 为抛物线的一部分),则下列结论:①AD=BE=5cm ;②当0<t≤5时,22y t 5=;③直线NH 的解析式为5y t 272=-+;④若△ABE 与△QBP 相似,则t=294秒。

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数、导数及其应用 第9节

2015届高考数学(人教,理科)大一轮配套练透:第2章 函数、导数及其应用 第9节

[课堂练通考点]1.(2014·南昌质检)往外埠投寄平信,每封信不超过20 g ,付邮费0.80元,超过20 g 而不超过40 g ,付邮费1.60元,依此类推,每增加20 g 需增加邮费0.80元(信的质量在100 g 以内).如果某人所寄一封信的质量为72.5 g ,则他应付邮费( )A .3.20元B .2.90元C .2.80元D .2.40元解析:选A 由题意得20×3<72.5<20×4,则应付邮费0.80×4=3.20(元).故选A. 2.(2014·广州模拟)在某个物理实验中,测量得变量x 和变量y 的几组数据,如下表:则对x ,y 最适合的拟合函数是( ) A .y =2x B .y =x 2-1 C .y =2x -2D .y =log 2x解析:选D 根据x =0.50,y =-0.99,代入计算,可以排除A ;根据x =2.01,y =0.98,代入计算,可以排除B 、C ;将各数据代入函数y =log 2x ,可知满足题意.故选D.3.一种产品的成本原为a 元,在今后的m 年内,计划使成本平均每年比上一年降低p %,成本y 是关于经过年数x (0<x ≤m )的函数,其关系式y =f (x )可写成____________________.解析:依题意有y =a (1-p %)x (0<x ≤m ). 答案:y =a (1-p %)x (0<x ≤m )4.某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本y (万元)与年产量x (吨)之间的函数关系式可以近似地表示为y =x 25-48x +8 000,已知此生产线年产量最大为210吨.(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?解:(1)每吨平均成本为yx (万元).则y x =x 5+8 000x-48≥2x 5·8 000x-48=32,当且仅当x 5=8 000x ,即x =200时取等号.∴年产量为200吨时,每吨平均成本最低,最低为32万元. (2)设可获得总利润为R (x )万元,则R (x )=40x -y =40x -x 25+48x -8 000=-x 25+88x -8 000=-15(x -220)2+1 680(0≤x ≤210).∵R (x )在[0,210]上是增函数, ∴x =210时,R (x )有最大值为-15(210-220)2+1 680=1 660.∴年产量为210吨时,可获得最大利润,最大利润是1 660万元.[课下提升考能]第Ⅰ组:全员必做题1.设甲、乙两地的距离为a (a >0),小王骑自行车以匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又以匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y 和其所用的时间x 的函数图像为( )解析:选D 注意到y 为“小王从出发到返回原地所经过的路程”而不是位移,用定性分析法不难得到答案为D.2.某电视新产品投放市场后第一个月销售100台,第二个月销售200台,第三个月销售400台,第四个月销售790台,则下列函数模型中能较好地反映销量y 与投放市场的月数x 之间关系的是( )A .y =100xB .y =50x 2-50x +100C .y =50×2xD .y =100log 2x +100解析:选C 根据函数模型的增长差异和题目中的数据可知,应为指数型函数模型. 3.一水池有两个进水口,一个出水口,每个水口的进、出水速度如图甲、乙所示.某天0点到6点,该水池的蓄水量如图丙所示.给出以下3个论断:①0点到3点只进水不出水;②3点到4点不进水只出水;③4点到6点不进水不出水,则一定正确的是( )A .①B .①②C .①③D .①②③解析:选A 由甲、乙两图知,进水速度是出水速度的12,所以0点到3点不出水,3点到4点也可能一个进水口进水,一个出水口出水,但总蓄水量降低,4点到6点也可能两个进水口进水,一个出水口出水,一定正确的是①.4.某种新药服用x 小时后血液中的残留量为y 毫克,如图所示为函数y =f (x )的图像,当血液中药物残留量不小于240毫克时,治疗有效.设某人上午8:00第一次服药,为保证疗效,则第二次服药最迟的时间应为( )A .上午10:00B .中午12:00C .下午4:00D .下午6:00解析:选C 当x ∈[0,4]时,设y =k 1x , 把(4,320)代入,得k 1=80,∴y =80x .当x ∈[4,20]时,设y =k 2x +b .把(4,320),(20,0)代入得⎩⎪⎨⎪⎧4k 2+b =320,20k 2+b =0.解得⎩⎪⎨⎪⎧k 2=-20,b =400.∴y =400-20x .∴y =f (x )=⎩⎪⎨⎪⎧80x ,0≤x ≤4,400-20x ,4<x ≤20.由y ≥240,得⎩⎪⎨⎪⎧ 0≤x ≤4,80x ≥240,或⎩⎪⎨⎪⎧4<x ≤20,400-20x ≥240.解得3≤x ≤4或4<x ≤8, ∴3≤x ≤8.故第二次服药最迟应在当日下午4:00.故选C.5.某大楼共有12层,有11人在第1层上了电梯,他们分别要去第2至第12层,每层1人.因特殊原因,电梯只允许停1次,只可使1人如愿到达,其余10人都要步行到达所去的楼层.假设乘客每向下步行1层的“不满意度”增量为1,每向上步行1层的“不满意度”增量为2,10人的“不满意度”之和记为S .则S 最小时,电梯所停的楼层是( )A .7层B .8层C .9层D .10层解析:选C 设所停的楼层为n 层,则2≤n ≤12,由题意得:S =2+4+…+2(12-n )+1+2+3+…+(n -2)=(12-n )(26-2n )2+(n -2)[1+(n -2)]2=32n 2-532n +157,其对称轴为n =536∈(8,9),又n ∈N *且n 离9的距离较近,故选C.6.一高为H ,满缸水量为V 的鱼缸截面如图所示,其底部破了一个小洞 ,满缸水从洞中流出.若鱼缸水深为h 时的水的体积为v ,则函数v =f (h )的大致图像可能是图中的________.解析:当h =0时,v =0可排除①、③;由于鱼缸中间粗两头细,∴当h 在H2附近时,体积变化较快;h 小于H 2时,增加越来越快;h 大于H2时,增加越来越慢.答案:②7.如图,书的一页的面积为600 cm 2,设计要求书面上方空出2 cm 的边,下、左、右方都空出1 cm 的边,为使中间文字部分的面积最大,这页书的长、宽应分别为________.解析:设长为a cm ,宽为b cm ,则ab =600 cm ,则中间文字部分的面积S =(a -2-1)(b -2)=606-(2a +3b )≤606-26×600=486,当且仅当2a =3b ,即a =30,b =20时,S 最大=486 cm 2.答案:30 cm,20 cm8.某商家一月份至五月份累计销售额达3 860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x %,八月份销售额比七月份递增x %,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7 000万元,则x 的最小值是________.解析:七月份的销售额为500(1+x %),八月份的销售额为500(1+x %)2,则一月份到十月份的销售总额是3 860+500+2 [500(1+x %)+500(1+x %)2],根据题意有3 860+500+2[500(1+x %)+500(1+x %)2]≥7 000, 即25(1+x %)+25(1+x %)2≥66, 令t =1+x %,则25t 2+25t -66≥0, 解得t ≥65或者t ≤-115(舍去),故1+x %≥65,解得x ≥20. 答案:209.(2013·昆明质检)某地近年来持续干旱,为倡导节约用水,该地采用了“阶梯水价”计费方法,具体方法:每户每月用水量不超过4吨的每吨2元;超过4吨而不超过6吨的,超出4吨的部分每吨4元;超过6吨的,超出6吨的部分每吨6元.(1)写出每户每月用水量x (吨)与支付费用y (元)的函数关系; (2)该地一家庭记录了去年12个月的月用水量(x ∈N *)如下表:请你计算该家庭去年支付水费的月平均费用(精确到1元);(3)今年干旱形势仍然严峻,该地政府号召市民节约用水,如果每个月水费不超过12元的家庭称为“节约用水家庭”,随机抽取了该地100户的月用水量作出如下统计表:据此估计该地“节约用水家庭”的比例. 解:(1)y 关于x 的函数关系式为 y =⎩⎪⎨⎪⎧2x ,0≤x ≤4,4x -8,4<x ≤6,6x -20,x >6.(2)由(1)知:当x =3时,y =6; 当x =4时,y =8;当x =5时,y =12; 当x =6时,y =16;当x =7时,y =22. 所以该家庭去年支付水费的月平均费用为 112(6×1+8×3+12×3+16×3+22×2)≈13(元). (3)由(1)和题意知:当y ≤12时,x ≤5,所以“节约用水家庭”的频率为77100=77%,据此估计该地“节约用水家庭”的比例为77%.10.已知某物体的温度θ(单位:摄氏度)随时间t (单位:分钟)的变化规律是θ=m ·2t +21-t(t ≥0,并且m >0).(1)如果m =2,求经过多长时间,物体的温度为5摄氏度; (2)若物体的温度总不低于2摄氏度,求m 的取值范围.解:(1)若m =2,则θ=2·2t +21-t =2⎝⎛⎭⎫2t +12t , 当θ=5时,2t +12t =52,令2t =x (x ≥1),则x +1x =52,即2x 2-5x +2=0,解得x =2或x =12(舍去),此时t =1.所以经过1分钟,物体的温度为5摄氏度. (2)物体的温度总不低于2摄氏度,即θ≥2恒成立, 亦m ·2t +22t ≥2恒成立,亦即m ≥2⎝⎛⎭⎫12t -122t 恒成立. 令12t =y ,则0<y ≤1, ∴m ≥2(y -y 2)恒成立, 由于y -y 2≤14,∴m ≥12.因此,当物体的温度总不低于2摄氏度时,m 的取值范围是⎣⎡⎭⎫12,+∞. 第Ⅱ组:重点选做题1.(2014·威海高三期末)对于函数f (x ),如果存在锐角θ,使得f (x )的图像绕坐标原点逆时针旋转角θ,所得曲线仍是一函数,则称函数f (x )具备角θ的旋转性,下列函数具备角π4的旋转性的是( )A .y =xB .y =ln xC .y =⎝⎛⎭⎫12xD .y =x 2解析:选C 函数f (x )的图像绕坐标原点逆时针旋转角π4,相当于x 轴、y 轴绕坐标原点顺时针旋转角π4,问题转化为直线y =x +k 与函数f (x )的图像不能有两个交点,结合图像可知y =⎝⎛⎭⎫12x 与直线y =x +k 没有两个交点,故选C.2.一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x (x ∈N *)件.当x ≤20时,年销售总收入为(33x -x 2)万元;当x >20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y 万元,则y (万元)与x (件)的函数关系式为________,该工厂的年产量为________件时,所得年利润最大.(年利润=年销售总收入-年总投资).解析:当x ≤20时,y =(33x -x 2)-x -100=-x 2+32x -100;当x >20时,y =260-100-x =160-x .故y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20.(x ∈N *).当0<x ≤20时,y =-x 2+32x -100=-(x -16)2+156,x =16时,y max =156.而当x >20时,160-x <140,故x =16时取得最大年利润.答案:y =⎩⎪⎨⎪⎧-x 2+32x -100,0<x ≤20,160-x ,x >20.(x ∈N *) 16。

正比例函数

正比例函数

正比例函数一.选择题(共9小题)1.下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y=C.y=D.y=2.函数y=(a+1)x a﹣1是正比例函数,则a的值是()A.2 B.﹣1 C.2或﹣1 D.﹣23.下列问题中,是正比例函数的是()A.矩形面积固定,长和宽的关系B.正方形面积和边长之间的关系C.三角形的面积一定,底边和底边上的高之间的关系D.匀速运动中,速度固定时,路程和时间的关系4.在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.5.正比例函数y=2x的大致图象是()A.B.C.D.6.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣47.下列关于正比例函数y=﹣5x的说法中,正确的是()A.当x=1时,y=5 B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限8.若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A.(﹣3,﹣2)B.(2,3)C.(3,﹣2)D.(﹣2,3)9.正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0 B.k<0 C.k>1 D.k<1二.填空题(共6小题)10.已知函数y=2x2a+b+a+2b是正比例函数,则a=,b=.11.对于正比例函数y=m,y的值随x的值增大而减小,则m值为.12.如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为.13.写出一个实数k的值,使得正比例函数y=kx的图象在二、四象限.14.若函数y=kx(k≠0)的函数值y随x的增大而增大,则k的取值范围是.15.函数y=kx(k≠0)的图象过P(﹣3,3),则k=,图象过象限.三.解答题(共5小题)16.(2014春•高安市期末)已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.17.(2012秋•开平市校级月考)已知正比例函数y=kx图象经过点(3,﹣6),求:(1)求这个函数解析式.(2)画出这个函数图象.(3)判断点A(4,﹣2)、点B(﹣1.5,3)是否在这个函数图象上.(4)图象上的两点C(x1,y1)、D(x2,y2),如果x1>x2,比较y1、y2的大小.18.(2010秋•浦东新区期中)已知正比例函数y=kx经过点A,点A在第四象限,过点A 作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.19.已知正比例函数y=(2m+4)x.求:(1)m为何值时,函数图象经过一、三象限;(2)m为何值时,y随x的增大而减小;(3)m为何值时,点(1,3)在该函数图象上.20.在平面直角坐标系中,点A坐标为(1,0),在直线y=x上取点P,使△OPA是等腰三角形,求所有满足条件的点P坐标.初中数学一.选择题(共9小题)1.(2015•上海)下列y关于x的函数中,是正比例函数的为()A.y=x2 B.y=C.y=D.y=【解答】解:A、y是x的二次函数,故A选项错误;B、y是x的反比例函数,故B选项错误;C、y是x的正比例函数,故C选项正确;D、y是x的一次函数,故D选项错误;故选C.2.(2016春•武城县校级月考)函数y=(a+1)x a﹣1是正比例函数,则a的值是()A.2 B.﹣1 C.2或﹣1 D.﹣2【解答】解:∵函数y=(a+1)x a﹣1是正比例函数,∴a﹣1=1,且a+1≠0.解得a=2.故选:A.3.(2015春•高密市期末)下列问题中,是正比例函数的是()A.矩形面积固定,长和宽的关系B.正方形面积和边长之间的关系C.三角形的面积一定,底边和底边上的高之间的关系D.匀速运动中,速度固定时,路程和时间的关系【解答】解:A、∵S=ab,∴矩形的长和宽成反比例,故本选项错误;B、∵S=a2,∴正方形面积和边长是二次函数,故本选项错误;C、∵S=ah,∴三角形的面积一定,底边和底边上的高是反比例关系,故本选项错误;D、∵S=vt,∴速度固定时,路程和时间是正比例关系,故本选项正确.故选D.4.(2015春•澧县期末)在下列各图象中,表示函数y=﹣kx(k<0)的图象的是()A.B.C.D.【解答】解:∵k<0,∴﹣k>0,∴函数y=﹣kx(k<0)的值随自变量x的增大而增大,且函数为正比例函数,故选:C.5.(2014•铜仁地区)正比例函数y=2x的大致图象是()A.B.C.D.【解答】解:∵正比例函数的图象是一条经过原点的直线,且当k>0时,经过一、三象限.∴正比例函数y=2x的大致图象是B.故选:B.6.(2015•陕西)设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=()A.2 B.﹣2 C.4 D.﹣4【解答】解:把x=m,y=4代入y=mx中,可得:m=±2,因为y的值随x值的增大而减小,所以m=﹣2,故选B7.(2015•伊宁市校级一模)下列关于正比例函数y=﹣5x的说法中,正确的是()A.当x=1时,y=5B.它的图象是一条经过原点的直线C.y随x的增大而增大D.它的图象经过第一、三象限【解答】解:A、当x=1时,y=﹣5,错误;B、正比例函数的图象是一条经过原点的直线,正确;C、根据k<0,得图象经过二、四象限,y随x的增大而减小,错误;D、图象经过二四象限,错误;故选B.8.(2015•杭州模拟)若正比例函数的图象经过点(2,﹣3),则这个图象必经过点()A.(﹣3,﹣2)B.(2,3)C.(3,﹣2)D.(﹣2,3)【解答】解:设正比例函数的解析式为y=kx(k≠0),因为正比例函数y=kx的图象经过点(2,﹣3),所以﹣3=2k,解得:k=﹣,所以y=﹣x,把这四个选项中的点的坐标分别代入y=﹣x中,等号成立的点就在正比例函数y=﹣x的图象上,所以这个图象必经过点(﹣2,3).故选D.9.(2015•北海)正比例函数y=kx的图象如图所示,则k的取值范围是()A.k>0 B.k<0 C.k>1 D.k<1【解答】解:由图象知:∵函数y=kx的图象经过第一、三象限,∴k>0.故选A.二.填空题(共6小题)10.(2015•凉山州)已知函数y=2x2a+b+a+2b是正比例函数,则a=,b=﹣.【解答】解:根据题意可得:2a+b=1,a+2b=0,解得:a=,b=﹣.故答案为:;﹣.11.(2015春•柘城县期末)对于正比例函数y=m,y的值随x的值增大而减小,则m的值为﹣2.【解答】解:∵y的值随x的值增大而减小,∴m<0,∵正比例函数y=m,∴m2﹣3=1,∴m=﹣2,故答案为:﹣2.12.(2013•茂名)如图,三个正比例函数的图象分别对应表达式:①y=ax,②y=bx,③y=cx,将a,b,c从小到大排列并用“<”连接为a<c<b.【解答】解:根据三个函数图象所在象限可得a<0,b>0,c>0,再根据直线越陡,|k|越大,则b>c.则b>c>a,故答案为:a<c<b.13.(2015•金平区一模)写出一个实数k的值﹣2,使得正比例函数y=kx的图象在二、四象限.【解答】解:∵若正比例函数y=kx的图象在第二、四象限,∴k<0,∴符合要求的k的值是﹣2,故答案为:﹣2.14.(2015春•宜春期末)若函数y=kx(k≠0)的函数值y随x的增大而增大,则k的取值范围是k>0.【解答】解:由正比例函数y=kx(k≠0)的函数值y随x的增大而增大,可知k>0.故答案为:k>0.15.(2015春•伊春校级期末)函数y=kx(k≠0)的图象过P(﹣3,3),则k=﹣1,图象过二、四象限.【解答】解:∵函数y=kx(k≠0)的图象过P(﹣3,3),∴﹣3=3k,解得k=﹣1,∵k=﹣1<0,∴图象经过第二、四象限.故答案为:﹣1;二、四.三.解答题(共5小题)16.(2014春•高安市期末)已知正比例函数y=(m﹣1)的图象在第二、四象限,求m的值.【解答】解:∵正比例函数y=(m﹣1),函数图象经过第二、四象限,∴m﹣1<0,5﹣m2=1,解得:m=﹣2.17.(2012秋•开平市校级月考)已知正比例函数y=kx图象经过点(3,﹣6),求:(1)求这个函数解析式.(2)画出这个函数图象.(3)判断点A(4,﹣2)、点B(﹣1.5,3)是否在这个函数图象上.(4)图象上的两点C(x1,y1)、D(x2,y2),如果x1>x2,比较y1、y2的大小.【解答】解:(1)将点(3,﹣6)代入y=kx得,﹣6=3k,解得,k=﹣2,函数解析式为y=﹣2x;(2)如图:函数过(0,0),(1,﹣2).(3)将点A(4,﹣2)、点B(﹣1.5,3)分别代入解析式得,﹣2≠﹣2×4;3=﹣2×(﹣1.5);故点A不在函数图象上,点B在函数图象上.(4)由于k=﹣2<0,故y随x的增大而减小,可得y1<y2.18.(2010秋•浦东新区期中)已知正比例函数y=kx经过点A,点A在第四象限,过点A 作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的解析式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.【解答】解:(1)∵点A的横坐标为3,且△AOH的面积为3∴点A的纵坐标为﹣2,点A的坐标为(3,﹣2),∵正比例函数y=kx经过点A,∴3k=﹣2解得,∴正比例函数的解析式是;(2)∵△AOP的面积为5,点A的坐标为(3,﹣2),∴OP=5,∴点P的坐标为(5,0)或(﹣5,0).19.已知正比例函数y=(2m+4)x.求:(1)m为何值时,函数图象经过一、三象限;(2)m为何值时,y随x的增大而减小;(3)m为何值时,点(1,3)在该函数图象上.【解答】解:(1)∵函数图象经过一、三象,∴2m+4>0,解得m>﹣2;(2)∵y随x的增大而减小,∴2m+4<0,解得m<﹣2;(3)∵点(1,3)在该函数图象上,∴2m+4=3,解得m=﹣.20.在平面直角坐标系中,点A坐标为(1,0),在直线y=x上取点P,使△OPA是等腰三角形,求所有满足条件的点P坐标.【解答】解:如图所示:①在直线y=x上作OP=OA,可得符合条件的P1、P2点,P1坐标为(﹣,﹣),P2(,),②以A为圆心,1为半径作弧交直线y=x于点P3,点P3符合条件,P3坐标为(,),③线段OA的垂直平分线交直线y=x于点P4,点P4符合条件,P4点坐标为(,).故答案为:P1(﹣,﹣),P2(,),P3(,),P4(,).。

动态函数讲析例题

动态函数讲析例题

戴氏教育精品堂培训学校名校冲刺戴氏教 温馨提醒:书山有路勤为径,学海无涯苦作舟。

一份耕耘一份收获,只要肯动态几何与函数问题一、例题讲解【例1】如图①所示,直角梯形OABC 的顶点A 、C 分别在y 轴正半轴与x 轴负半轴上.过点B 、C 作直线l .将直线l 平移,平移后的直线l 与x 轴交于点D ,与y 轴交于点E.(1)将直线l 向右平移,设平移距离CD 为t (t≥0),直角梯形OABC 被直线l 扫过的面积(图中阴影部份)为s ,s 关于t 的函数图象如图②所示,OM 为线段,MN 为抛物线的一部分,NQ 为射线,且NQ 平行于x 轴,N 点横坐标为4,求梯形上底AB 的长及直角梯形OABC 的面积.(2)当24t <<时,求S 关于t 的函数解析式.【思路分析】M 点就表示当平移距离为2的时候整个阴影部分面积为8,相对的,N 点表示移动距离超过4之后阴影部分面积就不动了。

脑中模拟一下就能想到阴影面积固定就是当D 移动过了0点的时候.所以根据这么几种情况去作答就可以了。

第二问建立函数式则需要看出当24t <<时,阴影部分面积就是整个梯形面积减去△ODE 的面积,于是根据这个构造函数式即可。

动态几何连带函数的问题往往需要找出图形的移动与函数的变化之间的对应关系,然后利用对应关系去分段求解。

【解】(1)由图(2)知,M 点的坐标是(2,8)∴由此判断:24AB OA ==,; ∵N 点的横坐标是4,NQ 是平行于x 轴的射线, ∴4CO = ∴直角梯形OABC 的面积为:()()112441222AB OC OA +⋅=+⨯=..... (3分) (2)当24t <<时,阴影部分的面积=直角梯形OABC 的面积-ODE ∆的面积 (基本上实际考试中碰到这种求怪异图形面积的都要先想是不是和题中所给特殊图形有割补关系)∴1122S OD OE =-⋅∵142OD OD t OE ==-, ∴()24OE t =- .∴()()()21122441242S t t t =-⨯-⋅-=--284S t t =-+-.【例2】已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E . (1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少? (3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【思路分析】本题看似几何问题,但是实际上△AOE 和△FOB 这两个直角三角形的底边和高恰好就是E,F 点的横坐标和纵坐标,而这个乘积恰好就是反比例函数的系数K 。

中考数学专题检测专题《动态几何之双(多)动点形成的函数关系》(含解析)

中考数学专题检测专题《动态几何之双(多)动点形成的函数关系》(含解析)

专题24动态几何之双(多)动点形成的函数关系问题数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与"不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

动态几何形成的函数关系和图象问题是动态几何中的基本问题,包括单动点形成的函数关系和图象问题,双(多)动点形成的函数关系和图象问题,线动形成的函数关系和图象问题,面动形成的函数关系和图象问题。

本专题原创编写单动点形成的函数关系问题模拟题。

双动点和多动点问题就是在一些基本几何图形上,设计几个动点,并对这些点在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究。

解决点动问题常常用的是“类比法”,也就是通过对两个或几个相类似的数学研究对象的异同进行观察和比较,从一个容易探索的研究对象所具有的性质入手,去猜想另一个或几个类似图形所具有的类似性质,从而获得相关结论。

类比法大致可遵循如下步骤:(1)根据已知条件,先从动态的角度去分析观察可能出现的情况。

(2)结合某一相应图形,以静制动,运用所学知识(常见的有三角形全等、三角形相似等)得出相关结论。

(3)类比猜想并证明其他情况中的图形所具有的性质。

在中考压轴题中,双(多)动点形成的函数关系和图象问题命题形式主要有选择题和解答题。

其考点类型主要有两类,一是根据条件求出函数关系式,由函数关系式判断函数图象或求相应变量的值;二是根据条件研究动点的变化趋势(特殊位置)来判断函数图象。

动态几何中的函数问题--教师版

动态几何中的函数问题--教师版

在现实世界中,处处都有运动,我们常说“运动是绝对的,静止是相对的”。

在数学学习中我们也研究动态的几何问题。

运动的对象有点、线、角等几何图形;运动形式有平移、旋转、折叠等。

由于动态的几何问题有较强的综合性,近几年成为了中考试卷压轴题的热门。

例1、如图,在△ABC 中,AB=AC=5,BC=6。

点D 是边AB 上的点,DE//BC 交AC 于点E 。

(1)求△ABC 的面积;(2)若点D 在AB 上移动(D 不与A 、B 重合),以DE 为边,在点A 的下方作正方形DEFG 。

设AD=x ,△ABC 与正方形DEFG 重叠部分的面积为S ,试求S 关于x 的函数关系式,并写出定义域;(3)在(2)中,连结BG 。

当△BDG 是等腰三角形时,请直接写出AD 的长。

解:(1)12;(2)当0<x ≤2时,22536x S =; 当2<x<5时,22524524x x S -= (3)720,1125,73125反思:解第(1)题后,要砍柴,先磨刀,我们要观察背景图形,善于挖掘隐含条件,为后面解题做好铺垫。

本题中除了求出面积,进一步发现四个三边之比为3:4:5且相似的直角三角形。

(作高后)(2)先找了临界点即正方形的边FG 正好落在BC 上时,x=2,然后分情况讨论。

由于点D 的运动,造成一些图形的运动变化,某些数量关系发生了变化,但由于DE//BC 关系不变,因此,运动变化中DE=56x 始终不变。

在动态的几何问题中,我们要善于寻找到点的运动规律,从而建立函数关系式。

在求定义域的时候,除了考虑主动点的范围,还需考虑被动元素的条件限制,善于找到临界的位置,求出定义域;在动态的几何问题中,要把握图形动动的全过程,逐步形成范围意识。

(3)由于点D的运动,造成△BDG 的形状发生了改变,在某个瞬间,△BDG 有可能是等腰三角形。

但是由于每一条边都有可能是底边或者腰,所以进行分类讨论。

小结:例1是一个典型的几何动态问题,我们来梳理动态几何问题的基本题型结构以及相应解决问题的策略和方法。

动态函数例题

动态函数例题

如图,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-2,-4)、O(0,0)、B(2,0)三点.
(1)求抛物线y=ax2+bx+c的解析式;
(2)若点M是该抛物线对称轴上的一点,求AM+OM的最小值。

2.函数中因动点产生的特殊三角形问题:
如图,抛物线y=ax2+bx+c经过A(-1,0)、B(3, 0)、C(0 ,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的函数关系式;
(2)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
3.函数中因动点产生的特殊四边形问题:
如图,已知抛物线y=-x2+bx+c经过A(0, 1)、B(4, 3)两点.
(1)求抛物线的解析式;
(2)过点B作BC⊥x轴,垂足为C,在对称轴的左侧且平行于y轴的直线交线段AB于点N,交抛物线于点M,若四边形MNCB为平行四边形,求点M的坐标.
已知:如图,抛物线与轴交于点、点,与直线相交于点、点,直线与轴交于点.
(1)写出直线的解析式.
(2)求的面积.
(3)若点在线段上以每秒1个单位长度的速度从向运动(不与重合),同时,点在射线上以每秒2个单位长度的速度从向运动.设运动时间为秒,请写出的面积与的函数关系式,并求出点运动多少时间时,的面积最大,最大面积是多少?。

动态函数综合题(含答案)-

动态函数综合题(含答案)-

动态函数综合题命题人:新东陆教育培训中心贾琳1、运动题:如图,在垂直ABC中,角ACB=90度,AC=BC=6cm,正方形DEFG的边长为2cm,其一边EF在BC所在的直线L上,开始时点F与点C重合,让正方形DEFG沿直线L向右以每秒1cm的速度作匀速运动,最后点E与点B重合。

(1)请直接写出该正方形运动6秒时与垂直ABC重叠部分面积的大小;(2)设运动时间为x(秒),运动过程中正方形DEFG与垂直ABC重叠部分的面积为y(cm(^2)),①在该正方形运动6秒后至运动停止前这段时间内,求y与x之间的函数关系式;②在该正方形整个运动过程中,求x为何值时,y的值为0.5。

2、如图,等腰直角垂直MNQ与正方形ABCD中,角MNQ=90度,正方形ABCD的边长为4cm,MQ与AB在同一直线上,MQ=6cm,NQ、BC相交于点K,设垂直MNQ与正方形ABCD的面积分别为S[1]、S[2].(1)直接写出S[1]、S[2]的值;(2)当Q点在射线AB上平行移动时,垂直MNQ也随之移动,在上述平行移动过程中,试求垂直MNQ与正方形ABCD的重叠部分的面积y(cm(^2)) 与AQ长度x(cm)之间的函数关系式;(3) 当(2)中重叠部分面积最大时,将垂直MNQ沿MN翻折,使Q点落在Q'处,试求翻折后所得的垂直MNQ'与正方形ABCD的重叠部分的面积。

3、(2005年宿迁)已知:如图,△ABC 中,∠C =90°,AC =3厘米,CB =4厘米.两个动点P 、Q 分别从A 、C 两点同时按顺时针方向沿△ABC 的边运动.当点Q 运动到点A 时,P 、Q 两点运动即停止.点P 、Q 的运动速度分别为1厘米/秒、2厘米/秒,设点P 运动时间为t (秒).(1)当时间t 为何值时,以P 、C 、Q 三点为顶点的三角形的面积(图中的阴影部分)等于2厘米2;(2)当点P 、Q 运动时,阴影部分的形状随之变化.设PQ 与△ABC 围成阴影部分面积为S (厘米2),求出S 与时间t 的函数关系式,并指出自变量t 的取值范围;(3)点P 、Q 在运动的过程中,阴影部分面积S 有最大值吗?若有,请求出最大值;若没有,请说明理由.4、(2005年河南)如图1,Rt △PMN 中,∠P =90°,PM =PN ,MN =8cm ,矩形ABCD 的长和宽分别为8cm 和2cm ,C 点和M 点重合,BC 和MN 在一条直线上。

动态问题试题及答案

动态问题试题及答案

动态问题一、选择题1. (2016·湖北鄂州)如图,O是边长为4cm的正方形ABCD的中心,M是BC的中点,动点P由A开始沿折线A—B—M方向匀速运动,到M时停止运动,速度为1cm/s. 设P点的运动时间为t(s),点P的运动路径与OA、OP所围成的图形面积为S(cm2),则描述面积S(cm2)与时间t(s)的关系的图像可以是()【考点】动点函数的图像问题.【分析】分别判断点P在AB、在BM上分别运动时,点P的运动路径与OA、OP所围成的图形面积为S(cm2)的变化情况进行求解即可.【解答】解:点P在AB上分别运动时,围成的三角形面积为S(cm2)随着时间的增多不断增大,到达点B时,面积为整个正方形面积的四分之一,即4 cm2;点P在BM上分别运动时,点P的运动路径与OA、OP所围成的图形面积为S(cm2) 随着时间的增多继续增大,S=4+S△OBP;动点P由A开始沿折线A—B—M方向匀速运动,故排除C,D;到达点M时,面积为4 +2=6(cm2),故排除B.故选A.【点评】动点函数的图像问题. 解答此类题目应首先看清横轴和纵轴表示的量,然后根据实际求解. 注意排除法在本题中的灵活运用.2.(2016年浙江省台州市)如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6 B.2+1 C.9 D.【考点】切线的性质.【分析】如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,求出OP1,如图当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,由此不难解决问题.【解答】解:如图,设⊙O与AC相切于点E,连接OE,作OP1⊥BC垂足为P1交⊙O于Q1,此时垂线段OP1最短,P1Q1最小值为OP1﹣OQ1,∵AB=10,AC=8,BC=6,∴AB2=AC2+BC2,∴∠C=90°,∵∠OP1B=90°,∴OP1∥AC∵AO=OB,∴P1C=P1B,∴OP1=AC=4,∴P1Q1最小值为OP1﹣OQ1=1,如图,当Q2在AB边上时,P2与B重合时,P2Q2最大值=5+3=8,∴PQ长的最大值与最小值的和是9.故选C.3.(2016年浙江省温州市)如图,在△ABC中,∠ACB=90°,AC=4,BC=2.P是AB边上一动点,PD⊥AC于点D,点E在P的右侧,且PE=1,连结CE.P从点A出发,沿AB 方向运动,当E到达点B时,P停止运动.在整个运动过程中,图中阴影部分面积S1+S2的大小变化情况是()A.一直减小B.一直不变C.先减小后增大D.先增大后减小【考点】动点问题的函数图象.【分析】设PD=x,AB边上的高为h,想办法求出AD、h,构建二次函数,利用二次函数的性质解决问题即可.【解答】解:在RT△ABC中,∵∠ACB=90°,AC=4,BC=2,∴AB===2,设PD=x,AB边上的高为h,h==,∵PD∥BC,∴=,∴AD=2x,AP=x,∴S1+S2=•2x•x+(2﹣1﹣x)•=x2﹣2x+4﹣=(x﹣1)2+3﹣,∴当0<x<1时,S1+S2的值随x的增大而减小,当1≤x≤2时,S1+S2的值随x的增大而增大.故选C.4.(2016.山东省泰安市,3分)如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是()A.B.C.D.【分析】由△ABC是正三角形,∠APD=60°,可证得△BPD∽△CAP,然后由相似三角形的对应边成比例,即可求得答案.【解答】解:∵△ABC是正三角形,∴∠B=∠C=60°,∵∠BPD+∠APD=∠C+∠CAP,∠APD=60°,∴∠BPD=∠CAP,∴△BPD∽△CAP,∴BP:AC=BD:PC,∵正△ABC的边长为4,BP=x,BD=y,∴x:4=y:(4﹣x),∴y=﹣x2+x.故选C.【点评】此题考查了动点问题、二次函数的图象以及相似三角形的判定与性质.注意证得△BPD∽△CAP是关键.解答题1.(2016·山西)(本题14分)综合与探究如图,在平面直角坐标系中,已知抛物线8ax与x轴交于A,B两点,与y=bxy2-+轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D的坐标分别为(-2,0),(6,-8).(1)求抛物线的函数表达式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使FOE∆,若存在,请直接写出点F的坐标;∆≌FCE若不存在,请说明理由;(3)若点P是y轴负半轴上的一个动点,设其坐标为(0,m),直线PB与直线l交于点Q.试探究:当m为何值时,OPQ∆是等腰三角形.考点:求抛物线的解析式,求点坐标,全等构成,等腰三角形的构成分析:(1)将A,D的坐标代入函数解析式,解二元一次方程即可求出函数表达式点B坐标:利用抛物线对称性,求出对称轴结合A点坐标即可求出B点坐标点E坐标:E为直线l和抛物线对称轴的交点,利用D点坐标求出l表达式,令其横坐标为3=x,即可求出点E的坐标(2)利用全等对应边相等,可知FO=FC,所以点F肯定在OC的垂直平分线上,所以点F的纵坐标为-4,带入抛物线表达式,即可求出横坐标(3)根据点P在y轴负半轴上运动,∴分两种情况讨论,再结合相似求解解答:(1) 抛物线8ax经过点A(-2,0),D(6,-8),=bx+y2-⎩⎨⎧-=-+=--∴88636082a 4b a b 解得⎪⎩⎪⎨⎧-==321b a …………………………………(1分)∴抛物线的函数表达式为83212--=x x y ……………………………(2分)()225321832122--=--=x x x y ,∴抛物线的对称轴为直线3=x .又 抛物线与x 轴交于A ,B 两点,点A 的坐标为(-2,0).∴点B 的坐标为(8,0)…………………(4分)设直线l 的函数表达式为kx y =. 点D (6,-8)在直线l 上,∴6k =-8,解得34-=k .∴直线l 的函数表达式为x y 34-=………………………………………………………(5分)点E 为直线l 和抛物线对称轴的交点.∴点E 的横坐标为3,纵坐标为4334-=⨯-,即点E 的坐标为(3,-4)……………………………………………………………………(6分) (2)抛物线上存在点F ,使FOE ∆≌FCE ∆.点F 的坐标为(4,173--)或(4,173-+).……………………………………(8分) (3)解法一:分两种情况:①当OQ OP =时,OPQ ∆是等腰三角形.点E 的坐标为(3,-4),54322=+=∴OE ,过点E 作直线ME //PB ,交y 轴于点M ,交x 轴于点H ,则OQOEOP OM =,5==∴OE OM ……………………………………(9分)∴点M 的坐标为(0,-5).设直线ME 的表达式为51-=x k y ,∴4531-=-k ,解得311=k ,∴ME 的函数表达式为531-=x y ,令y =0,得0531=-x ,解得x =15,∴点H 的坐标为(15,0)…(10分)又 MH//PB ,∴OH OB OM OP =,即1585=-m ,∴38-=m ……………………………(11分) ②当QP QO =时,OPQ ∆是等腰三角形.当x =0时,883212-=--=x x y ,∴点C 的坐标为(0,-8), ∴5)48(322=-+=CE ,∴OE=CE ,∴21∠=∠,又因为QP QO =,∴31∠=∠, ∴32∠=∠,∴CE//PB ………………………………………………………………(12分)设直线CE 交x 轴于点N ,其函数表达式为82-=x k y ,∴4832-=-k ,解得342=k ,∴CE 的函数表达式为834-=x y ,令y =0,得0834=-x ,∴6=x ,∴点N 的坐标为(6,0)………………………………………………………………(13分) CN//PB ,∴ON OB OC OP =,∴688=-m ,解得332-=m ………………(14分) 综上所述,当m 的值为38-或332-时,OPQ ∆是等腰三角形.解法二:当x =0时,883212-=--=x x y ,∴点C 的坐标为(0,-8),∴点E 的坐标为 (3,-4),54322=+=∴OE ,5)48(322=-+=CE ,∴OE=CE ,∴21∠=∠,设抛物线的对称轴交直线PB 于点M ,交x 轴于点H .分两种情况: ① 当QP QO =时,OPQ ∆是等腰三角形.∴31∠=∠,∴32∠=∠,∴CE //PB ………………………………………(9分)又 HM //y 轴,∴四边形PMEC 是平行四边形,∴m CP EM --==8,∴5384)8(4=-=--=--+=+=BH m m EM HE HM , HM//y 轴,∴BHM ∆∽BOP ∆,∴BO BHOP HM =……………………………………………………(10分) ∴332854-=∴=---m mm ………………………………………………………(11分) ②当OQ OP =时,OPQ ∆是等腰三角形.y EH // 轴,∴OPQ ∆∽EMQ ∆,∴OPEMOQ EQ =,∴EM EQ =……………(12分) m m OP OE OQ OE EQ EM +=--=-=-==∴5)(5,)5(4m HM +-=∴,y EH // 轴,∴BHM ∆∽BOP ∆,∴BOBH OPHM =…………………………………………………(13分)∴38851-=∴=---m mm ………………(14分) ∴当m 的值为38-或332-时,OPQ ∆是等腰三角形.2.(2016·上海)如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.(1)求线段CD的长;(2)如果△AEC是以EG为腰的等腰三角形,求线段AE的长;(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.【考点】四边形综合题.【专题】综合题.【分析】(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,则DH=BC=12,CD=BH,再利用勾股定理计算出AH,从而得到BH和CD的长;(2)分类讨论:当EA=EG时,则∠AGE=∠GAE,则判断G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,通过证明Rt△AME∽Rt△AHD,利用相似比可计算出此时的AE长;当GA=GE时,则∠AGE=∠AEG,可证明AE=AD=15,(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,先利用勾股定理表示出DE=,再证明△EAG∽△EDA,则利用相似比可表示出EG=,则可表示出DG,然后证明△DGF∽△EGA,于是利用相似比可表示出x和y的关系.【解答】解:(1)作DH⊥AB于H,如图1,易得四边形BCDH为矩形,∴DH=BC=12,CD=BH,在Rt△ADH中,AH===9,∴BH=AB﹣AH=16﹣9=7,∴CD=7;(2)当EA=EG时,则∠AGE=∠GAE,∵∠AGE=∠DAB,∴∠GAE=∠DAB,∴G点与D点重合,即ED=EA,作EM⊥AD于M,如图1,则AM=AD=,∵∠MAE=∠HAD,∴Rt△AME∽Rt△AHD,∴AE:AD=AM:AH,即AE:15=:9,解得AE=;当GA=GE时,则∠AGE=∠AEG,∵∠AGE=∠DAB,而∠AGE=∠ADG+∠DAG,∠DAB=∠GAE+∠DAG,∴∠GAE=∠ADG,∴∠AEG=∠ADG,∴AE=AD=15,综上所述,△AEC是以EG为腰的等腰三角形时,线段AE的长为或15;(3)作DH⊥AB于H,如图2,则AH=9,HE=AE﹣AH=x﹣9,在Rt△ADE中,DE==,∵∠AGE=∠DAB,∠AEG=∠DEA,∴△EAG∽△EDA,∴EG:AE=AE:ED,即EG:x=x:,∴EG=,∴DG=DE﹣EG=﹣,∵DF∥AE,∴△DGF∽△EGA,∴DF:AE=DG:EG,即y:x=(﹣):,∴y=(9<x<).【点评】本题考查了四边形的综合题:熟练掌握梯形的性质等等腰三角形的性质;常把直角梯形化为一个直角三角形和一个矩形解决问题;会利用勾股定理和相似比计算线段的长;会运用分类讨论的思想解决数学问题.3.(2016·四川巴中)如图,在平面直角坐标系中,抛物线y=mx2+4mx﹣5m(m<0)与x轴交于点A、B(点A在点B的左侧),该抛物线的对称轴与直线y=x相交于点E,与x轴相交于点D,点P在直线y=x上(不与原点重合),连接PD,过点P作PF⊥PD交y 轴于点F,连接DF.(1)如图①所示,若抛物线顶点的纵坐标为6,求抛物线的解析式;(2)求A、B两点的坐标;(3)如图②所示,小红在探究点P的位置发现:当点P与点E重合时,∠PDF的大小为定值,进而猜想:对于直线y=x上任意一点P(不与原点重合),∠PDF的大小为定值.请你判断该猜想是否正确,并说明理由.【考点】二次函数综合题.【分析】(1)先提取公式因式将原式变形为y=m(x2+4x﹣5),然后令y=0可求得函数图象与x轴的交点坐标,从而可求得点A、B的坐标,然后依据抛物线的对称性可得到抛物线的对称轴为x=﹣2,故此可知当x=﹣2时,y=6,于是可求得m的值;(2)由(1)的可知点A、B的坐标;(3)先由一次函数的解析式得到∠PBF的度数,然后再由PD⊥PF,FO⊥OD,证明点O、D、P、F共圆,最后依据圆周角定理可证明∠PDF=60°.【解答】解:(1)∵y=mx2+4mx﹣5m,∴y=m(x2+4x﹣5)=m(x+5)(x﹣1).令y=0得:m(x+5)(x﹣1)=0,∵m≠0,∴x=﹣5或x=1.∴A(﹣5,0)、B(1,0).∴抛物线的对称轴为x=﹣2.∵抛物线的顶点坐标为为6,∴﹣9m=6.∴m=﹣.∴抛物线的解析式为y=﹣x2﹣x+.(2)由(1)可知:A(﹣5,0)、B(1,0).(3)如图所示:∵OP的解析式为y=x,∴∠AOP=30°.∴∠PBF=60°∵PD⊥PF,FO⊥OD,∴∠DPF=∠FOD=90°.∴∠DPF+∠FOD=180°.∴点O、D、P、F共圆.∴∠PDF=∠PBF.∴∠PDF=60°.4.(2016·湖北十堰)如图1,在平面直角坐标系xOy中,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式,并写出其顶点B的坐标;(2)①当P点运动到A点处时,计算:PO= 5 ,PH= 5 ,由此发现,PO = PH(填“>”、“<”或“=”);②当P点在抛物线上运动时,猜想PO与PH有什么数量关系,并证明你的猜想;(3)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC 相似?若存在,求出P点的坐标;若不存在,请说明理由.【考点】二次函数综合题.【分析】(1)利用待定系数法即可解决问题.(2)①求出PO、PH即可解决问题.②结论:PO=PH.设点P坐标(m,﹣ m2+1),利用两点之间距离公式求出PH、PO即可解决问题.(3)首先判断PH与BC,PO与AC是对应边,设点P(m,﹣ m2+1),由=列出方程即可解决问题.【解答】(1)解:∵抛物线y=ax2+1经过点A(4,﹣3),∴﹣3=16a+1,∴a=﹣,∴抛物线解析式为y=﹣x2+1,顶点B(0,1).(2)①当P点运动到A点处时,∵PO=5,PH=5,∴PO=PH,故答案分别为5,5,=.②结论:PO=PH.理由:设点P坐标(m,﹣ m2+1),∵PH=2﹣(﹣m2+1)=m2+1PO==m2+1,∴PO=PH.(3)∵BC==,AC==,AB==4∴BC=AC,∵PO=PH,又∵以P,O,H为顶点的三角形与△ABC相似,∴PH与BC,PO与AC是对应边,∴=,设点P(m,﹣ m2+1),∴=,解得m=±1,∴点P坐标(1,)或(﹣1,).【点评】本题考查二次函数综合题、待定系数法、相似三角形的判定和性质等知识,解题的关键是记住两点之间的距离公式,学会转化的思想,用方程去解决问题,属于中考压轴题.5.(2016.山东省青岛市)已知:如图,在矩形ABCD中,Ab=6cm,BC=8cm,对角线AC,BD交于点0.点P从点A出发,沿方向匀速运动,速度为1cm/s;同时,点Q从点D出发,沿DC方向匀速运动,速度为1cm/s;当一个点停止运动时,另一个点也停止运动.连接PO 并延长,交BC于点E,过点Q作QF∥AC,交BD于点F.设运动时间为t(s)(0<t<6),解答下列问题:(1)当t为何值时,△AOP是等腰三角形?(2)设五边形OECQF的面积为S(cm2),试确定S与t的函数关系式;:S△ACD=9:16?若存(3)在运动过程中,是否存在某一时刻t,使S五边形S五边形OECQF在,求出t的值;若不存在,请说明理由;(4)在运动过程中,是否存在某一时刻t,使OD平分∠COP?若存在,求出t的值;若不存在,请说明理由.【考点】四边形综合题.【分析】(1)根据矩形的性质和勾股定理得到AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,根据相似三角形的性质得到AP=t=,②当AP=AO=t=5,于是得到结论;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,根据全等三角形的性质得到CE=AP=t,根据相似三角形的性质得到EH=,根据相似三角形的性质得到QM=,FQ=,根据图形的面积即可得到结论,(3)根据题意列方程得到t=,t=0,(不合题意,舍去),于是得到结论;(4)由角平分线的性质得到DM=DN=,根据勾股定理得到ON=OM==,由三角形的面积公式得到OP=5﹣t,根据勾股定理列方程即可得到结论.【解答】解:(1)∵在矩形ABCD中,Ab=6cm,BC=8cm,∴AC=10,①当AP=PO=t,如图1,过P作PM⊥AO,∴AM=AO=,∵∠PMA=∠ADC=90°,∠PAM=∠CAD,∴△APM∽△ADC,∴,∴AP=t=,②当AP=AO=t=5,∴当t为或5时,△AOP是等腰三角形;(2)作EH⊥AC于H,QM⊥AC于M,DN⊥AC于N,交QF于G,在△APO与△CEO中,,∴△AOP≌△COE,∴CE=AP=t,∵△CEH∽△ABC,∴,∴EH=,∵DN==,∵QM∥DN,∴△CQM∽△CDN,∴,即,∴QM=,∴DG=﹣=,∵FQ ∥AC ,∴△DFQ ∽△DOC ,∴,∴FQ=,∴S 五边形OECQF =S △OEC +S 四边形OCQF =×5×+(+5)•=﹣t 2+t+12,∴S 与t 的函数关系式为S=﹣t 2+t+12;(3)存在,∵S △ACD =×6×8=24,∴S 五边形OECQF :S △ACD =(﹣t 2+t+12):24=9:16,解得t=,t=0,(不合题意,舍去),∴t=时,S 五边形S 五边形OECQF :S △ACD =9:16;(4)如图3,过D 作DM ⊥AC 于M ,DN ⊥AC 于N ,∵∠POD=∠COD ,∴DM=DN=,∴ON=OM==,∵OP •DM=3PD ,∴OP=5﹣t ,∴PM=﹣t , ∵PD 2=PM 2+DM 2,∴(8﹣t )2=(﹣t )2+()2,解得:t≈15(不合题意,舍去),t≈2.88,∴当t=2.88时,OD平分∠COP.6.(2016•江苏省扬州)如图1,二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1.(1)求这个二次函数的表达式;(2)点P在该二次函数的图象上,点Q在x轴上,若以A、B、P、Q为顶点的四边形是平行四边形,求点P的坐标;(3)如图3,一次函数y=kx(k>0)的图象与该二次函数的图象交于O、C两点,点T为该二次函数图象上位于直线OC下方的动点,过点T作直线TM⊥OC,垂足为点M,且M 在线段OC上(不与O、C重合),过点T作直线TN∥y轴交OC于点N.若在点T运动的过程中,为常数,试确定k的值.【考点】二次函数综合题.【分析】(1)利用待定系数法即可解决问题.(2)①当AB为对角线时,根据中点坐标公式,列出方程组解决问题.②当AB为边时,根据中点坐标公式列出方程组解决问题.(3)设T(m,m2﹣2m),由TM⊥OC,可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,求出点M、N坐标,求出OM、ON,根据列出等式,即可解决问题.【解答】解:(1)∵二次函数y=ax2+bx的图象过点A(﹣1,3),顶点B的横坐标为1,则有解得∴二次函数y=x2﹣2x,(2)由(1)得,B(1,﹣1),∵A(﹣1,3),∴直线AB解析式为y=﹣2x+1,AB=2,设点Q(m,0),P(n,n2﹣2n)∵以A、B、P、Q为顶点的四边形是平行四边形,①当AB为对角线时,根据中点坐标公式得,则有,解得或∴P(1+,2)和(1﹣,2)②当AB为边时,根据中点坐标公式得解得或∴P(1+,4)或(1﹣,4).(3)设T(m,m2﹣2m),∵TM⊥OC,∴可以设直线TM为y=﹣x+b,则m2﹣2m=﹣m+b,b=m2﹣2m+,由解得,∴OM==,ON=m•,∴=,∴k=时,=.∴当k=时,点T运动的过程中,为常数.。

2015试题

2015试题

2015试题一、单项选择题 (10小题,每小题 1分,共 10 分 )1. 所谓数据封装就是将一组数据和与这组数据有关操作组装在一起,形成一个实体,这实体也就是 ( )A. 类B. 对象C. 函数体D. 数据块2. 面向对象的程序设计语言必须具备的关键要素是 ( )A. 抽象和封装B. 抽象和多态性C. 抽象、封装、继承和多态性D. 抽象、封装和继承性3. 类的构造函数被自动调用执行的情况是在定义该类的 ( )A. 成员函数时B. 数据成员时C. 对象时D. 友元函数时4. 下列说法中正确的是 ( )A. 类定义中只能说明函数成员的函数头,不能定义函数体B. 类中的函数成员可以在类体中定义,也可以在类体之外定义C. 类中的函数成员在类体之外定义时必须要与类声明在同一文件中D. 在类体之外定义的函数成员不能操作该类的私有数据成员5. 若派生类的成员函数不能直接访问基类中继承来的某个成员,则该成员一定是基类中的 ( )A. 私有成员B. 公有成员C. 保护成员D. 保护成员或私有成员6. 对基类和派生类的关系描述中,错误的是 ( )A. 派生类是基类的具体化B. 基类继承了派生类的属性C. 派生类是基类定义的延续D. 派生类是基类的特殊化7. 类B 是类A 的公有派生类,类A 和类B 中都定义了虚函数func(),p 是一个指向类 A 对象的指针,则 p->A::func() 将 ( )A. 调用类 A 中的函数 func()B. 调用类 B 中的函数 func()C. 根据p 所指的对象类型而确定调用类A 中或类B 中的函数func()D. 既调用类 A 中函数,也调用类 B 中的函数8. 在类中说明的成员可以使用关键字( ) 进行修饰。

A. privateB. externC. autoD. register9. 定义析构函数时,应该注意( ) 。

A. 其名与类名完全相同B. 返回类型是void 类型C. 无形参,也不可重载D. 函数体中必须有delete 语句10. 在类中声明转换函数时不能指定( ) 。

动态函数试题及答案高中

动态函数试题及答案高中

动态函数试题及答案高中1. 函数f(x)=2x^2-4x+3的最小值是多少?答案:函数f(x)=2x^2-4x+3的最小值可以通过求导数并找到极值点来确定。

首先,求导数f'(x)=4x-4,令f'(x)=0得到x=1。

将x=1代入原函数得到f(1)=2(1)^2-4(1)+3=1,因此函数的最小值为1。

2. 已知函数g(x)=x^3-3x^2+4x,求g(2)的值。

答案:直接将x=2代入函数g(x)=x^3-3x^2+4x中,得到g(2)=2^3-3(2)^2+4(2)=8-12+8=4。

3. 函数h(x)=x^2-6x+8的图像与x轴交点的横坐标是多少?答案:要找到函数h(x)=x^2-6x+8与x轴的交点,我们需要解方程x^2-6x+8=0。

使用求根公式,得到x=(6±√((-6)^2-4(1)(8)))/2(1)=3±√1。

因此,交点的横坐标为x=3+√1和x=3-√1,即x=4和x=2。

4. 函数k(x)=x^2-2x+1的对称轴方程是什么?答案:函数k(x)=x^2-2x+1是一个二次函数,其对称轴的方程可以通过公式x=-b/2a得到,其中a和b是二次项和一次项的系数。

在这个函数中,a=1,b=-2,所以对称轴的方程是x=-(-2)/2(1)=1。

5. 函数m(x)=3x-2的反函数是什么?答案:函数m(x)=3x-2的反函数可以通过交换x和y并解出y来得到。

设y=3x-2,那么x=3y-2,解出y得到y=(x+2)/3。

因此,反函数是m^(-1)(x)=(x+2)/3。

6. 已知函数n(x)=x/(x-1),求n(2)的值。

答案:直接将x=2代入函数n(x)=x/(x-1)中,得到n(2)=2/(2-1)=2/1=2。

7. 函数p(x)=x^2-4x+3的顶点坐标是多少?答案:函数p(x)=x^2-4x+3的顶点可以通过公式(-b/2a, f(-b/2a))得到,其中a是二次项系数,b是一次项系数,f(x)是函数表达式。

2015中学考试压轴题系列26动态几何之面动形成地函数关系问题

2015中学考试压轴题系列26动态几何之面动形成地函数关系问题

《中考压轴题全揭秘》第二辑原创模拟预测题专题26:动态几何之面动形成的函数关系问题数学因运动而充满活力,数学因变化而精彩纷呈。

动态题是近年来中考的的一个热点问题,以运动的观点探究几何图形的变化规律问题,称之为动态几何问题,随之产生的动态几何试题就是研究在几何图形的运动中,伴随着出现一定的图形位置、数量关系的“变”与“不变”性的试题,就其运动对象而言,有点动、线动、面动三大类,就其运动形式而言,有轴对称(翻折)、平移、旋转(中心对称、滚动)等,就问题类型而言,有函数关系和图象问题、面积问题、最值问题、和差问题、定值问题和存在性问题等。

解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。

以动态几何问题为基架而精心设计的考题,可谓璀璨夺目、精彩四射。

动态几何形成的函数关系和图象问题是动态几何中的基本问题,包括单动点形成的函数关系和图象问题,双(多)动点形成的函数关系和图象问题,线动形成的函数关系和图象问题,面动形成的函数关系和图象问题。

本专题原创编写面动形成的函数关系问题模拟题。

面动问题就是在一些基本几何图形上,设计一个动面(包括平移和旋转),或由点动、线动形成面动,并对面在运动变化的过程中产生的等量关系、变量关系、图形的特殊状态、图形间的特殊关系等进行研究在中考压轴题中,面动形成的函数关系问题的重点和难点在于应用数形结合的思想准确地进行分类。

原创模拟预测题1.如图,点G、E、A、B在一条直线上,等腰直角△EFG从如图所示是位置出发,沿直线AB以1单位/秒向右匀速运动,当点G与B重合时停止运动。

已知AD=1,AB=2,设△EFG与矩形ABCD重合部分的面积为S平方单位,运动时间为t秒,则S与t的函数关系是。

【答案】()()()221t t 0t 121S 1<t 2219t 3t 2<t 322⎧-+≤≤⎪⎪⎪=≤⎨⎪⎪-+≤⎪⎩。

【考点】面动问题的函数图象,矩形和等腰直角三角形性质,数形结合思想和分类思想的应用。

动态函数试题及答案初中

动态函数试题及答案初中

动态函数试题及答案初中一、选择题(每题2分,共20分)1. 函数y=2x+1的值域是()A. {x|x≥0}B. {y|y≥1}C. {x|x≤0}D. {y|y≤1}2. 若函数f(x)=x^2-2x+1,则f(0)的值是()A. 0B. 1C. -1D. 23. 函数y=3x-2与直线y=-x+3平行,则下列哪个点不在函数y=3x-2的图像上()A. (1,1)B. (2,4)C. (3,7)D. (4,10)4. 函数y=x^2-4x+3的顶点坐标是()A. (2,-1)B. (2,1)C. (-2,1)D. (-2,-1)5. 函数y=|x-2|的图像是()A. 一条直线B. 一个V形C. 一个倒V形D. 一个U形6. 若函数f(x)=2x-3,则f(-1)的值是()A. -5B. -1C. 5D. 17. 函数y=x^3-3x+2的零点个数是()A. 0B. 1C. 2D. 38. 函数y=1/x的图像在()A. 第一象限和第三象限B. 第一象限和第四象限C. 第二象限和第四象限D. 第二象限和第三象限9. 函数y=2x^2-4x+3的图像开口方向是()A. 向上B. 向下C. 向左D. 向右10. 函数y=|x+1|+|x-2|的最小值是()A. 1B. 2C. 3D. 4二、填空题(每题3分,共30分)1. 函数y=4x+3的斜率是______。

2. 函数y=-3x+2与y轴的交点坐标是______。

3. 函数y=x^2-6x+9的最小值是______。

4. 函数y=1/x的图像在x=-2处的切线斜率是______。

5. 函数y=|x|的图像在x=0处的切线斜率是______。

6. 函数y=x^2-2x+1的顶点坐标是______。

7. 函数y=2x-1与直线y=x+2相交于点______。

8. 函数y=3x+1的图像经过的象限是______。

9. 函数y=x^2-4x+3可以重写为______。

高中函数试题动态图解及答案

高中函数试题动态图解及答案

高中函数试题动态图解及答案一、选择题1. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数是:A. 1B. 4C. -2D. 5答案:B2. 若y = 3x^3 - 2x^2 + x - 5,则y的二阶导数为:A. 27xB. 18x^2 - 4x + 1C. 9x^2 - 4xD. 18x - 4答案:B3. 函数g(x) = sin(x) + cos(x)的周期是:A. πB. 2πC. 4πD. 1答案:B二、填空题4. 若f(x) = x^3 + ax^2 + bx + c,且f(0) = 0,f'(0) = 1,f''(0) = 2,则a = ______,b = ______。

答案:a = 0,b = 15. 函数h(x) = 2x - 3在区间[1,4]上的平均变化率为:______。

答案:2三、解答题6. 已知函数f(x) = x^3 - 6x^2 + 9x + 2,求f(x)的极值点。

解:首先求导数f'(x) = 3x^2 - 12x + 9。

令f'(x) = 0,解得x = 1和x = 3。

然后计算f''(x) = 6x - 12,f''(1) < 0,f''(3) > 0,所以x = 1是极大值点,x = 3是极小值点。

7. 函数y = x^2 - 4x + 4在x轴上的截距是:解:令y = 0,解方程x^2 - 4x + 4 = 0,得到(x - 2)^2 = 0,所以x = 2。

因此,函数在x轴上的截距是(2, 0)。

8. 已知函数f(x) = 4x^3 - 3x^2 - 9x + 7,求f(x)的单调区间。

解:求导数f'(x) = 12x^2 - 6x - 9,因式分解得f'(x) = 3(2x+ 1)(2x - 3)。

令f'(x) > 0,解得x < -1/2或x > 3/2,所以f(x)在(-∞, -1/2)和(3/2, +∞)上单调递增。

动态一次函数问题

动态一次函数问题

动态一次函数问题动态一次函数相关问题1. 什么是动态一次函数?•动态一次函数是指任意一个函数都可以表示成一次函数。

•一次函数是指函数的最高次数为1的多项式函数。

2. 动态一次函数的特点有哪些?•最高次数为1,即函数的表达式是一个一次多项式。

•函数的图像是一条直线,斜率表示函数的变化率。

•函数的解析式可以用一次方程表达,形式为 y = kx + b。

3. 如何确定动态一次函数的解析式?•首先,需要知道函数的斜率k和截距b。

•斜率k表示函数图像的倾斜程度,可以通过两点的坐标计算得到:k = (y2 - y1) / (x2 - x1)。

•截距b表示函数图像与y轴的交点,可以通过与坐标轴的交点得到。

4. 动态一次函数的图像有哪些特点?•直线的斜率为正时,表示函数递增;斜率为负时,表示函数递减。

•斜率的绝对值越大,直线越陡峭;斜率的绝对值越小,直线越平缓。

•截距b表示直线与y轴的交点,即在x=0时的函数值。

5. 如何求解动态一次函数的零点?•动态一次函数的零点即为函数与x轴交点对应的x值。

•零点可以通过解一次方程得到,即令y=0,解出x的值。

•一次函数的解析式为 y = kx + b,令y=0得 kx + b = 0,解出x的值即为零点。

6. 动态一次函数有哪些应用?•在经济学中,动态一次函数可以用来描述市场供需关系的变化。

•在物理学中,动态一次函数可以用来描述匀速直线运动的位移与时间之间的关系。

•在工程领域中,动态一次函数可以用来描述随时间变化的电路电压和电流关系。

以上是关于动态一次函数的一些常见问题及解释说明,希望对您有所帮助。

动态一次函数问题(一)

动态一次函数问题(一)

动态一次函数问题(一)动态一次函数问题1. 什么是动态一次函数问题?动态一次函数问题是指涉及一次函数的一类数学问题,其中未知数在给定的条件下会发生变化。

一次函数,也称为线性函数,是一个形如y = ax + b的函数。

2. 相关问题•问题1:找出一次函数的斜率和截距描述:给定一次函数的表达式,需要确定其中的斜率(系数a)和截距(常数b)。

•问题2:根据函数图像求解一次函数的表达式描述:给定一次函数的图像,需要确定其中的表达式。

•问题3:求两个一次函数的交点描述:给定两个一次函数,需要求解它们的交点,即满足两个函数方程的共同解。

•问题4:一次函数的平行和垂直关系描述:给定两个一次函数,需要确定它们之间的平行或垂直关系。

•问题5:求函数图像在指定区间的最值描述:给定一次函数的表达式,需要确定它在指定区间内的最大值或最小值。

3. 解释说明•对于问题1,可以通过观察函数表达式,直接提取出斜率和截距的值。

例如,对于函数y = 2x + 3,斜率为2,截距为3。

•对于问题2,可以通过函数图像上的两个点,求解出斜率和截距,进而得到一次函数的表达式。

例如,图像上的两点为(1, 4)和(3, 10),可以计算出斜率为3和截距为1,因此函数的表达式为y = 3x + 1。

•对于问题3,可以通过解方程求解交点的坐标。

将两个一次函数的表达式相等,得到一个方程组,通过求解该方程组,可以确定交点的坐标。

•对于问题4,可以通过比较两个一次函数的斜率来判断它们的关系。

如果两个函数的斜率相等,则它们是平行的;如果一个函数的斜率是另一个函数斜率的相反数,则它们是垂直的。

•对于问题5,可以通过计算一次函数在指定区间的端点和极值点,来确定函数图像在该区间的最值。

通过解决这些相关问题,可以更好地理解和应用一次函数,帮助解决实际生活中的各类问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A
B
C
D
2. 在ΔABC中,BC=10,BC边上的高h=5,点E在AB 上,过点E作EF∥BC,交AC于F,D为BC上的一点, 连DE、DF.设E到BC的距离为x,则ΔDEF的面积为 S关于x的函数图象大致【 】
如图9,梯形ABCD中,AB∥DC,DE⊥AB, CF⊥AB,且AE = EF = FB = 5,DE = 12,动点P从 点A出发,沿折线AD-DC-CB以每秒1个单位长的速度 运动到点B停止.设运动时间为t秒,y = S△EPF,则y 与t的函数图象大致是( )
类型一:动态几ห้องสมุดไป่ตู้之点动问题
如图,在Rt △ABC中,∠C=900,AC=1cm,工 BC=2cm,点P从A出发,以1cm/s的速沿折线 AC→CB→ BA运动,最终回到A点. 设点P的运动时间 为x(s),线段AP的长度为y(cm),则能反映y与x 之间函数关系的图像大致是【 】
如图,在平面直角坐标系中,边长为1的正方形 ABCD中,AD边的中点处有一动点P,动点P沿 P→D→C→B→A→P运动一周,则P点的纵坐标y与点P 走过的路程s之间的函数关系用图象表示大致是( )
A
B
C
D
类型三:动态几何之面动问题
如图,边长分别为1和2的两个等边三角形,开始它们 在左边重合,大三角形固定不动,然后把小三角形自 左向右平移直至移出大三角形外停止.设小三角形移 动的距离为x,两个三角形重叠面积为y,则y关于x的 函数图象是【 】
如图,矩形的长和宽分别是4和3,等腰三角形的底 和高分别是3和4,如果此三角形的底和矩形的宽重合, 并且沿矩形两条宽的中点所在的直线自右向左匀速运 动至等腰三角形的底与另一宽重合.设矩形与等腰三 角形重叠部分(阴影部分)的面积为y,重叠部分图形 的高为x,那么y关于x的函数图象大致应为【 】
A.
C.
D.
如图,点G、E、A、B在一条直线上,Rt△EFG从如 图所示是位置出发,沿直线AB向右匀速运动,当点G 与B重合时停止运动.设△EFG与矩形ABCD重合部分 的面积为S,运动时间为t,则S与t的图象大致是【 】
类型二:动态几何之线动问题
如图,一根长为5米的竹竿AB斜立于墙AC的右侧, 底端B与墙角C的距离为3米,当竹竿顶端A下滑x米时, 底端B便随着向右滑行y米,反映y与x变化关系的大致 图象是【 】
如图,在平面直角坐标系中,四边形OBCD是边 长为4的正方形,平行于对角线BD的直线l从O出发, 沿x轴正方向以每秒1个单位长度的速度运动,运动到 直线l与正方形没有交点为止.设直线l扫过正方形 OBCD的面积为S,直线l运动的时间为t(秒),下列 能反映S与t之间函数关系的图象是( )
动态型函数问题
选择题9
数学因运动而充满活力,数学因变化而精彩 纷呈。动态题是近年来中考的的一个热点问题,以 运动的观点探究几何图形的变化规律问题,称之为 动态几何问题,随之产生的动态几何试题就是研究, 在几何图形的运动中,伴随着出现一定的图形位置、 数量关系的“变”与“不变”性的试题,就其运动 对象而言,有点动、线动、面动三大类,就其运动 形式而言,有轴对称(翻折)、平移、旋转(滚动) 等,就问题类型而言,有最值问题、面积问题、和 差问题、定值问题和存在性问题等。解这类题目要 “以静制动”,即把动态问题,变为静态问题来解, 而静态问题又是动态问题的特殊情况。以动态几何 问题为基架而精心设计的考题,可谓璀璨夺目、精 彩四射。
相关文档
最新文档