五年级奥数专题-不规则图形面积计算含解析
五年级奥数题解第二讲《不规则图形面积的计算(二)》[1]
第二讲不规则图形面积的计算(二)不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和“容斥原理”合并使用才能解决。
例1:如下图(1),在一个正方形内,以正方形的三条边为直径向内作三个半圆,求阴影部分的面积。
(1)(2)解法一:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到图(2)。
这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等。
所以上图中阴影部分的面积等于正方形面积的一半。
解法二:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如图(3)所示。
阴影部分的面积是正方形面积的一半。
(3)(4)解法三:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如图(4)所示。
阴影部分的面积是正方形的一半。
例2:如下图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。
解:由容斥原理,S阴影=S扇形ACB+S扇形ACD-S正方形ABCD=4π×AB2×2-AB2=4π×42×2-42=16×(2π-1)≈16×2214.3-=9.12(平方厘米)。
例3:如下图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半径CB=4厘米。
求阴影部分的面积。
EB解:S阴景=S扇形ABE+S扇形CBF-S矩形ABCD=41×π×62+41×π×42-6×4=41×π(36+16)-24=13π-24=15(平方厘米)(取π=3)例4:如下图,直角三角形ABC中,AB是圆的直径,且AB=20厘米,如果阴影(1)的面积比阴影(2)的面积大7平方厘米,求BC长。
五年级奥数专题-不规则图形面积计算含解析
不规则图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算般我们称这样的图形为不规则图形那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
一、例题与方法指导例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10 厘米和12 厘米.求阴影部分的面积。
思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白三角形(△ ABG、△ BDE、△ EFG)的面积之和。
例2 如右图,正方形ABCD的边长为6 厘米,△ABE、△ADF 与四边形AECF的面积彼此相等,求三角形AEF的面积.思路导航:∵△ ABE、△ ADF与四边形AECF的面积彼此相等,∴四边形AECF的面积与△ ABE、△ ADF的面积都等于正方形1 ABCD的1。
3在△ ABE中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=,2∴△ ECF的面积为2×2÷ 2=2。
所以S△AEF=S四边形AECF-S△ ECF=12-2=1(0 平方厘米)。
例3两块等腰直角三角形的三角板,直角边分别是10 厘米和6 厘米。
如右图那样重合.求重合部分(阴影部分)的面积思路导航:在等腰直角三角形ABC中∵AB=10∵EF=BF=AB-AF=10-6=,4∴阴影部分面积=S△ ABG-S△BEF=25-8=1(7 平方厘米)例4 如右图,A 为△ CDE的DE边上中点,BC=CD,若△ ABC阴影部分)面积为5平方厘米.求△ ABD及△ ACE的面积.思路导航:取BD 中点F,连结AF.因为△ ADF、△ ABF和△ ABC等底、等高,所以它们的面积相等,都等于5平方厘米.∴△ ACD的面积等于15 平方厘米,△ ABD的面积等于10平方厘米。
五年级不规则图形面积计算
五年级不规则图形面积计算之欧侯瑞魂创作我们曾学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
一、例题与方法指导例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积. 思路导航:∵△ABE 、△ADF 与四边形AECF 的面积彼此相等,∴四边形 AECF 的面积与△ABE 、△ADF 的面积都等于正方形ABCD 的13。
在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2,∴△ECF 的面积为2×2÷2=2。
所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平方厘米)。
例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
思路导航:在等腰直角三角形ABC 中∵AB=10∵EF=BF=AB-AF=10-6=4, ∴阴影部分面积=S △ABG-S △BEF=25-8=17(平方厘米)。
例4 如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC (阴影部分)面积为5平方厘米.BC求△ABD及△ACE的面积.思路导航:△ADF、△ABF和△ABC等底、等高,所以它们的面积相等,都等于5平方厘米.∴△ACD的面积等于15平方厘米,△ABD的面积等于10平方厘米。
又由于△ACE与△ACD等底、等高,所以△ACE的面积是15平方厘米。
小学奥数训练专题 不规则图形的面积
4-2-6.不规则图形的面积例题精讲本讲主要通过求一些不规则图形的面积,体会一种转化思想,重点在于把不规则图形转化为规则图形的方法,包括平移、旋转、割补、差不变原理,通过这些方法的学习,让学生体会求面积的技巧,提高学生的观察能力、动手操作能力、综合运用能力.【例1】你有什么好的方法计算所给图形的面积呢?(单位:厘米)4993499349934993图1图2图3【巩固】如图是学校操场一角,请计算它的面积(单位:米)40303020【巩固】如右图所示,图中的ABEFGD是由一个长方形ABCD及一个正方形CEFG拼成的,线段的长度如图所示(单位:厘米),求ABEFGD的周长和面积.A D410A D410HFEGCFEGCB10【巩固】求图中五边形的面积.B103645【例2】这是一个楼梯的截面图,高280厘米,每级台阶的宽和高都是20厘米.问,此楼梯截面的面积是多少?【巩固】如图是一个楼梯的截面图,每级台阶的宽和高都是20厘米.这楼梯的截面积是多少平方厘米?【例3】有一块菜地长16米,宽8米,菜地中间留了宽2米的路,把菜地平均分成四块,每一块地的面积是多少?2米2米8米2米2米8米16米16米2【例4】有10张长3厘米,宽2厘米的纸片,将它们按照下图的样子摆放在桌面上,那么这10张纸片所盖住的桌面的面积是多少平方厘米?【例5】下图(单位:厘米)是两个相同的直角梯形重叠在一起,求阴影部分的面积.20-55820820【巩固】两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积.ADBO32ECF【例6】如图,李大伯给一块长方形田地喷药,喷药器所能喷洒的范围是以李大伯的落脚点为中心,边长2米的正方形区域,他从图中的A 点出发,沿最短路线(图中虚线)走,走过88米到达B 点,恰好把这块田地全部喷完,这块田地的面积是多少平方米?A1米1米B【例7】右图中甲的面积比乙的面积大__________平方厘米.4厘米乙8厘米甲6厘米【例8】右图中,矩形ABCD的边AB为4厘米,BC为6厘米,三角形ABF比三角形EDF的面积大9平方厘米,求ED的长.A FED【巩固】如图所示,CA=AB=4厘米,求CD的长为多少厘米?△ABE比△CDE的面积小2平方厘米,D CEA BB C【巩固】如图,平行四边形ABCD种,BC=10cm,直角三角形ECB的边EC=8cm,已知阴影部分的总面积比三角形EFG的面积大10cm2,求平行四边形ABCD的面积.4EAFG DBC【例9】如图,ABCD 是7⨯4的长方形,DEFG 是10⨯2的长方形,求BCO 与EFO 的面积差.ABA BD GC O E FD C OE F【例10】有一个长方形菜园,如果把宽改成50米,长不变,那么它的面积减少680平方米,如果使宽为60米,长不变,那么它的面积比原来增加2720平方米,原来的长和宽各是多少米?G5060680平方米2720平方米【巩固】有一个长方形,如果宽减少2米,或长减少3米,则面积均减少24平方米,求这个长方形的面积?23【例11】一块长方形铁板,长15分米,宽12分米,如果长和宽各减少2分米,面积比原来减少多少平方分米?12215【例12】一个长方形,如果长减少5厘米,宽减少2厘米,那么面积就减少66平方厘米,这时剩下的部分恰好成为一个正方形,求原来长方形的面积?52【巩固】一块长方形纸片,在长边剪去5cm ,宽边剪去2cm 后(如图),得到的正方形面积比原长方形面积少31cm 2.求原长方形纸片的面积.52×552A22BC【巩固】一个正方形,如果把它的相邻两边都增加6厘米,就可以得到一个新正方形,新正方形的面积比原正方形大120平方厘米.求原正方形的面积?6厘米6厘米6厘米6厘米6【例13】一块正方形的钢板,先截去一个宽5分米的长方形,又截去一个宽8分米的长方形(如图),面积就比原来正方形减少181平方分米.原正方形的边长是多少分米?58【巩固】一张长方形纸片,先把长剪去8厘米,这时面积减少了72平方厘米,又把宽剪去5厘米,这时面积又减少了60平方厘米,原来这张长方形纸片的面积是多少平方厘米?长5宽8【巩固】如右图所示,在一个正方形上先截去宽11分米的长方形,再截去宽7分米的长方形,所得图形的面积比原正方形减少301平方分米.原正方形的边长是______分米.711【例14】如图长方形被分成两部分,已知阴影面积比空白部分面积大34平方厘米,求阴影部分的面积.10cm18cm【例 15】一张长方形纸片,把它的右上角往下折叠(如图甲),阴影部分面积占原纸片面积2的;再把左下角往上折叠(如图乙),乙图中阴影部分面积占原纸片面积的7________(答案用分数表示).甲乙【巩固】折叠后,原平行四边形面积是折叠后图形面积的1.5倍.已知阴影部分面积之和为1,则重叠部分(即空白部分)的面积是多少?【巩固】如图,一张长方形纸片,长7厘米,宽5厘米.把它的右上角往下折叠,再把左下角往上折叠,未盖住的阴影部分的面积是多少平方厘米?758【例16】如图,大正方形的边长为10厘米.连接大正方形的各边中点得小正方形,将小正方形每边三等分,再将三等分点与大正方形的中心和一个顶点相连,那么图中阴影部分的面积总和等于多少平方厘米?【例17】如图所示,直角三角形中有一个长方形,求长方形的面积?AD644B6F C 64【例18】一个边长为20厘米的正方形,依次连接四边中点得到第二个正方形,这样继续下去可得到第三个、第四个、第五个正方形.求第五个正方形的面积??【巩固】如图是由5个大小不同的正方形叠放而成的,如果最小的正方形(阴影部分)的周长是8,那么最大的正方形的边长是.第6题【巩固】图中有6个正方形,较小的正方形都由较大的正方形的4边中点连接而成.已知最大的正方形的边长为16厘米,那么最小的正方形的面积等于多少平方厘米?【例19】已知图中大正方形的面积是22平方厘米,小正方形面积是多少平方厘米?【巩固】如图所示,外侧大正方形的边长是10cm ,在里面画两条对角线、一个圆、两个正方形,阴影的总面积为26cm 2,最小的正方形的边长为多少厘米?A BCZ Y X D10【例20】有一个边长为16厘米的正方形,连接每边的中点构成第二个正方形,再连接每边的中点构成第三个正方形,第四个正方形.求图中阴影部分的面积?【例21】如图,边长为10的正方形中有一等宽的十字,其面积(阴影部分)为36,则十字中央的小正方形面积为.第2题【例22】下图大小两个正方形有一部分重合,两块没有重合的阴影部分面积相差是多少?(单位:厘米)663【巩固】如图所示,四个相叠的正方形,边长分别是5、7、9、11.问灰色区与黑色区的面积的差是多少?11975【例23】甲、乙、丙三个正方形,它们的边长分别是6、8、10厘米,乙的一个顶点在甲的中心上,丙的一个顶点在乙的中心上.这三个正方形的覆盖面积是多少平方厘米?甲6甲6乙8丙10乙8丙【巩固】将20张边长为10厘米的正方形纸片,按顺序一张一张地摆放在地板上,摆的时候,要求后摆的纸片必须有一个顶点与前一张的中心重合,且每一张只与其前一张和后一张有重合部分(右图表示已经摆好的5张).地板被这20张纸片所覆盖部分的面积是多少?10【例24】有2个大小不同的正方形A 和B .如下左图所示的那样,在将B 正方形的对角线的交点与A1正方形的一个顶点相重叠时,相重叠部分的面积为A 正方形面积的.求A 与B 的边长之9比.如果当按下右图那样,将A 和B 反向重叠的话,所重叠部分的面积是B 的几分之几?BAABAB左图右图【例25】有一个正方形水池(图中阴影部分),在它的周围修一个宽是8米的草地,草地的面积为480平方米,求水池的边长?888812【巩固】一块长方形草坪(图中阴影部分)长是宽的2倍,它的四周围的总面积是34平方米的1米宽的小路.求草坪的面积是多少平方米?A C BA CB A【例26】如图所示,一个长方形广场的正中央有一个长方形的水池.水池长8米、宽3米.水池周围用边长为1米的方砖一圈一圈地向外铺.恰好铺了若干圈,共用了152块方砖,那么共铺了圈.A水池【例27】用四个相同的长方形拼成一个面积为100cm 2的大正方形,每个长方形的周长是多少平方厘米?【巩固】如图所示,4个相同的长方形和一个小正方形拼成一个大的正方形,大正方形的面积是100平方分米,小正方形的面积是36平方分米,求一个小长方形的面积及周长.【例28】四个完全相同的长方形拼成右图,大正方形的面积是l00平方分米,小正方形的面积是l6平方分米,求每个长方形的面积是多少?长方形的短边是多少分米?16【巩固】如图,4个相同的长方形和1个小正方形拼成一个大正方形,已知其中小正方形的面积为4平方厘米,大正方形的面积为400平方厘米,则其中长方形的长为厘米,宽厘米.第19题【例29】街心花园里有一个正方形花坛,四周有一条宽1米的甬道(如图),如果甬道的面积是12平方米,那么中间花坛的面积是多少平方米?1米【巩固】在一个正方形的小花园周围,环绕着宽5米的水池,水池面积为300平方米,那么正方形花园的面积是多少平方米?514【巩固】有大、小两个长方形(如图),对应边的距离均为1cm ,已知两个长方形之间部分的面积是16cm 2,且小长方形的长是宽的2倍,求大长方形的面积.AB【例30】已知大正方形比小正方形边长多4厘米,大正方形面积比小正方形面积大96平方厘米.问大、小正方形面积各是多少?44ABC4D 4【巩固】两个正方形的面积相差9cm 2,边长相差1cm .求两个正方形的面积和.C AB【巩固】有一大一小两个正方形,它们的周长相差20厘米,面积相差55平方厘米.小正方形的面积是多少平方厘米?【例31】在一个正方形中放入一个四个顶点与大正方形相接的一个小正方形(如图),如果两个正方形的周长相差16厘米,面积相差96平方厘米,求小正方形的面积是多少平方厘米?c a(1)b c(2)【例32】用两块长方形纸片和一块正方形纸片拼成一个大正方形,长方形纸片面积分别为44平方厘米与28平方厘米,原正方形纸片面积是多少平方厘米?【例33】计划修建一个正方形的花坛,并在花坛周围种上3米宽的草坪,草坪的面积为300平方米,那么修建这个花坛需要占地多少平方米?【巩固】有大、小两个长方形(右图),对应边的距离均为1厘米,已知两个长方形之间部分的面积是16平方厘米,且小长方形的长是宽的2倍,求大长方形的面积.(1)(2)【巩固】一块长方形的草坪(见图中阴影部分),长是宽的2倍,它的四周围的总面积是34平方米的1米宽的小路,求草坪的总面积是多少平方米?ACA BB ACA16【例34】一块正方形的苗圃(如右图实线所示),若将它的边长各增加30米(如图虚线所示),则面积增加9900平方米,问原来这块正方形苗圃的面积是多少平方米?3030【例35】从一块正方形的玻璃板上锯下宽为0.5米的一个长方形玻璃条后,剩下的长方形的面积为5平方米,请问锯下的长方形玻璃条的面积等于多少?0.55【巩固】从一个正方形的木板上锯下宽1m的一个长方形木条后,剩下的长方形面积为6m2,问锯下的长方形木条面积是多少?【巩固】从一块正方形木板锯下宽为积是多少平方米?165米的一个木条以后,剩下的面积是平方米.问锯下的木条面218【例36】图中,甲、乙两个正方形的边长的和是20厘米,甲正方形比乙正方形的面积大40平方厘米.求乙正方形的面积.【例37】有一大一小两块正方形试验田,他们的周长相差40米,面积相差220平方米,那么小正方形试验田的面积是多少平方米?图a【例38】如图,边长是整数的四边形AFED 的面积是48平方厘米,FB 为8厘米.那么,正方形ABCD的面积是平方厘米.F 8A B图b48CED18【例39】如图,一个正方形被分成4个小长方形,它们的面积分别是米和113平方米、平方米、平方101052平方米.已知图中的阴影部分是正方形,那么它的面积是多少平方米?5【例40】长方形ABCD的周长是30厘米,以这个长方形的每一条边为边长向外画正方形.已知这四个正方形的面积之和为290平方厘米,那么长方形ABCD的面积是多少平方厘米?E1D1EDC1CBA1A【巩固】如图,长方形ABCD的周长是16厘米,在它的每一条边上各画一个以该边为边长的正方形,已知这四个正方形的面积和是68平方厘米,求长方形ABCD的面积?IA DHDGFAB C B C E【例41】一条白色的正方形手帕,它的边长是18厘米,手帕上横竖各有二道黑条,黑条宽都是2厘米,这条手帕白色部分的面积是多少?【例42】用同样大小的瓷砖铺一个正方形地面,两条对角线上铺黑色的,其它地方铺白色的,如图所示.如果铺满这块地面共用101块黑色瓷砖,那么白色瓷砖用了多少块?图1图2【例43】7个完全相同的长方形拼成了图中阴影部分,图中空白部分的面积是多少平方厘米?24【巩固】如图所示,7个完全相同的长方形拼成了图中的阴影部分,图中空白部分的面积是多少平方厘米?【例44】如右图所示,在长方形ABCD中,放入六个形状大小相同的长方形(尺寸如图),图中阴影部分的面积是__________.20D C6A14B【例45】若干同样大小的长方形小纸片摆成了如图所示的图形.已知小纸片的宽是12厘米,问阴影部分的总面积是多少平方厘米?【例46】一个大长方形若能分割成若干个大小不同的小正方形,则称为完美长方形.下面一个长方形是由9个小正方形组成的完美长方形.图中正方形A 和B 的边长分别是7厘米和4厘米,那么这个完美长方形的面积分别是多少平方厘米?DABE A HBFCG【巩固】如图:有一个矩形可以被分割为11个正方形,其中最小的正方形(阴影部分)面积为81cm 2,请问这个矩形之面积为多少平方厘米?jg ehc a bif d第2题【巩固】图中的长方形被分割成6个正方形,已知中央小正方形的面积是1平方厘米,求原来长方形的面积.【巩固】9个边长分别为1、4、7、8、9、10、14、15、18的正方形拼成一个长方形,问这个长方形的长和宽是多少?并请画出这个长方形的拼接图.1518710414819【例47】图中数字分别表示两个长方形和一个直角三角形的面积,另一个三角形的面积是.?15125A 15125【例48】如图,一个矩形被分成八个小矩形,其中有五个矩形的面积如图中所示(单位:平方厘米),问大矩形的面积是多少平方厘米?22G 36A1612G 36S1C B F20E30DA16S 212C B F20E30S 3D【巩固】阳阳用四块小长方形恰好拼成了一个大的长方形,如图所示.现在知道其中三块长方形的面积分别为48平方厘米、24平方厘米、30平方厘米,那么,阴影部分的面积是多少?482430【巩固】如图,矩形ABCD 被分割成9个小矩形.其中有5个小矩形的面积如图所示.矩形ABCD 的面积为.D A122416BC【例49】有红、黄、绿三块大小一样的正方形纸片,放在一个底面为正方形的盒内,它们之间相互叠合(见下图).已知露在外面的部分中,红色面积是20,黄色面积是14,绿色面积是10.求正方形盒底的面积.黄黄红红绿绿【例50】如图所示,在正方形ABCD 内,红色、绿色正方形的面积分别是48和12,且红、绿两个正方形有一个顶点重合.黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一个顶点位于绿色正方形两条对角线的交点.那么黄色正方形的面积是.A红黄绿B312DC【巩固】如图所示,在正方形ABCD中,红色,绿色正方形的面积分别是52和13,且红、绿两个正方形有一个顶点重合.黄色正方形的一个顶点位于红色正方形两条对角线的交点,另一个顶点位于绿色正方形两条对角线的交点,求黄色正方形面积.A红黄D绿CB【例51】如图,三个一样大小的正方形放在一个长方形的盒内,A和B是两个正方形的重叠部分,C、D、E是空出的部分,每一部分都是矩形,它们的面积比是A:B:C:D:E=1:2:3:4:5,那么这个长方形的长与宽之比是________.【例52】如图如果长方形的面积为56平方厘米,且MD=2厘米、QC=3厘米、CP=5厘米、BN=6厘米,那么请你求出四边形MNPQ的面积是多少厘米?D2MQ3C5PA N6BD2M33Q3C5PA N6B24【巩固】长方形的广告牌长为10米,宽为8米,A ,B ,C ,D 分别在四条边上,并且C 比A 低5米,D 在B 的左边2米,四边形ABCD 的面积是平方米.DDACBCBA【例53】直角三角形PQR 的直角边为5厘米,9厘米,问:图中三个正方形的面积之和比4个三角形的面积之和大多少?BCACFQEBAG N EP 5R 9P 5R 9H Q MFDD【例54】如图所示,甲、乙、丙、丁四个长方形拼成一个正方形EFGH ,中间阴影为正方形.已知甲、乙、丙、丁四个长方形面积的和是32cm 2,四边形ABCD 的面积是20cm 2.⑴求正方形EFGH 的边长?⑵求甲、乙、丙、丁四个长方形周长的总和?E B 乙丙FC甲丁DGAHE BDAHa bhgcfGFCde图1图2图3【例55】如图,平面上CDEF 是正方形,ABCD 是等腰梯形,它的上底AD =23厘米,下底BC =35厘米.求三角形ADE 的面积.。
小学奥数知识点趣味学习---之不规则图形面积计算
小学奥数趣味知识点学习——之不规则图形面积计算1.梯形的上底长12cm,高15cm。
阴影面积是15cm2,求梯形的面积。
解答:15cm2=12为底、15为高的大三角形面积-阴影左边的小三角形面积所以,小三角形面积=(1/2)×12×15-15=75cm2小三角形的高=75×2/12=12.5cm阴影部分的高=15×2/12.5=2.4cm所以,梯形下底=12+2.4=14.4cm梯形面积=(1/2)×(12+14.4)×15=198cm²答:略。
2.如下图,三角形ABC中,G是AC的中点,D、E、F是BC边上的四等分点,AD与BG交于M,AF与BG交于N,已知三角形ABD的面积比四边形FCGN的面积大6平方厘米,则三角形ABC的面积是多少平方厘米?解答:很显然三角形AFC与三角形ABD的面积相等,所以三角形ANG的面积等于6平方厘米。
现在知道局部一块三角形ANG的面积,要求整体三角形ABC的面积,思路就是看整体是局部的几倍或者由局部直接推出整体的面积!连接CN,设三角形FCN的面积为a平方厘米,则三角形BFN的面积为3a平方厘米。
由燕尾定理可知,三角形ABN的面积为4a平方厘米。
现在我们要求a的值,需要找一个等量关系来,再利用一次燕尾定理,三角形ABN的面积是三角形ANC的3倍,即4a=12×3,所以a=9,故整个三角形ABC的面积等于8a+12=84(平方厘米)3. 例3. 求下面图形中空白部分的面积(单位:厘米)。
解答这个图形看上去很复杂,由于我们还没有学过圆的知识,要计算该图空白部分的面积,根据图中箭头所指,把阴影部分的面积剪下填入空白部分,我们就很快得到空白部分的面积,实际上就是等腰直角三角形的面积,故所求面积为3×3÷2=4.5(平方厘米)。
【思维拓展】数学五年级思维拓展之不规则图形面积的计算1(附答案) 必考知识点
五年级奥数不规则图形面积的计算(一)我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
例1如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
解:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
练习题1.如右图,正方形ABCD的边长为6厘米,△ABE、△ADF与四边形AECF的面积彼此相等,求三角形AEF的面积.2.两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
C3如右图,A 为△CDE 的DE 边上中点,BC=CD,若△ABC(阴影部分)面积为5平方厘米.求△ABD 及△ACE 的面积.4如右图,在正方形ABCD 中,三角形ABE 的面积是8平方厘米,它是三角形DEC 的面积的45,求正方形ABCD 的面积。
5如右图,已知:S△ABC=1,AE=ED,BD=23BC.求阴影部分的面积。
6如右图,正方形ABCD 的边长是4厘米,CG=3厘米,矩形DEFG 的长DG 为5厘米,求它的宽DE 等于多少厘米?D7如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.8如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.参考答案1解:∵△ABE、△ADF与四边形AECF的面积彼此相等,∴四边形AECF的面积与△ABE、△ADF的面积都等于正方形ABCD的1 3。
五年级不规则图形面积计算
五年级不规则图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
一、例题与方法指导例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF 与四边形AECF的面积彼此相等,求三角形AEF的面积.思路导航:∵△ABE 、△ADF 与四边形AECF 的面积彼此相等,∴四边形 AECF 的面积与△ABE 、△ADF 的面积都等于正方形ABCD 的13。
在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF 的面积为2×2÷2=2。
所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平方厘米)。
例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
思路导航:在等腰直角三角形ABC 中∵AB=10∵EF=BF=AB-AF=10-6=4,∴阴影部分面积=S △ABG-S △BEF=25-8=17(平方厘米)。
例4 如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC (阴影部分)面积为5平方厘米.求△ABD 及△ACE 的面积.B C思路导航:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,所以它们的面积相等,都等于5平方厘米.∴△ACD的面积等于15平方厘米,△ABD的面积等于10平方厘米。
五年级奥数竞赛试题-不规则图形面积的计算
五年级奥数竞赛试题第二讲不规则图形面积的计算(二)不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时还常要和“容斥原理”(即:集合A与集合B之间有:S A∪B=S A+S B-S A∩B)合并使用才能解决。
例1 如图,在一个正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积。
解法1:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到右图.这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等.所以上图中阴影部分的面积等于正方形面积的一半。
解法2:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如右图所示.阴影部分的面积是正方形面积的一半。
解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示.阴影部分的面积是正方形的一半.例2 如图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。
解:由容斥原理S阴影=S扇形ACB+S扇形ACD-S正方形ABCD例3 如图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。
解:S阴影=S扇形ABE+S扇形CBF-S矩形ABCD=13π-24=15(平方厘米)(取π=3)。
例4 如图,直角三角形ABC中,AB是圆的直径,且AB=20厘米,如果阴影(Ⅰ)的面积比阴影(Ⅱ)的面积大7平方厘米,求BC长。
分析已知阴影(Ⅰ)比阴影(Ⅱ)的面积大7平方厘米,就是半圆面积比三角形ABC面积大7平方厘米;又知半圆直径AB=20厘米,可以求出圆面积.半圆面积减去7平方厘米,就可求出三角形ABC的面积,进而求出三角形的底BC的长.解:BC的长=[3.14×(20/2)2÷2-7] ×2÷20=(157-7)×2÷20=15(厘米)。
优选2021-2022学年五年级奥数专题精讲精练-----不规则图形面积计算(附答案)
优选2021-2022学年五年级奥数专题精讲精练----不规则图形面积计算姓名:___________班级:___________考号:___________一、解答题1.如图,在一个正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积。
2.如下图,正方形ABCD的边长为4,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积.3.如图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半径CB=4厘米,求阴影部分的面积。
(π=3.14)4.如图,直角三角形ABC中,AB是圆的直径,且AB等于20cm,阴影甲的面积比阴影乙的面积大7平方厘米,求BC的长.5.如下图,两个正方形边长分别是10厘米和6厘米,求阴影部分的面积.6.如下图,将直径AB为3厘米的半圆绕A逆时针旋转60°,此时AB到达AC的位置,求阴影部分的面积(取π=3).7.如图,ABCD是正方形,且FA=AD=DE=1,求阴影部分的面积.(取π=3)8.如图,三角形ABC是等腰直角三角形,D是圆周的中点,BC是半圆的直径,已知AB=BC=10厘米,求阴影部分的面积.试题答案1.阴影部分的面积是正方形的一半.【解题过程】解法1:把原图靠下边的半圆换成(面积与它相等)右边的半圆,得到下图:这时,图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等.所以原图中阴影部分的面积等于正方形面积的一半。
解法2:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如下图所示:阴影部分的面积是正方形面积的一半。
解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如下图所示:阴影部分的面积是正方形面积的一半。
2.9.12【分析】由题可知,图中阴影部分是两个扇形重叠的部分,我们可以利用容斥原理从图形整体上考虑来求阴影部分面积;同样,我们也可以通过作辅助线直接求阴影部分的面积.【解题过程】解法一:把两个扇形放在一起得到1个正方形的同时还重叠了一块阴影部分.则阴影部分的面积为=12π42-4×4=9.12; 解法二:连接AC ,我们发现阴影部分面积的一半就是扇形减去三角形的面积,所以阴影部分面积=212π44429.124⨯⋅⋅-⨯÷=(). 3.16.82平方厘米【解题过程】S 阴影=S 扇形ABE +S 扇形CBF -S 矩形ABCD =14×π×62+14×π×42-6×4 =13π-24=16.82(平方厘米)4.15cm【解题过程】由阴影甲的面积比阴影乙面积大7平方厘米,可知半圆的面积比直角三角形ABC 的面积大7平方厘米,设BC 长度为x 厘米,3.14×(20÷2)2÷2-20x÷2=7 3.14×100÷2-10x=7157-10x=710x=150x=15答:BC 的长为15cm .5.40.26平方厘米【分析】连接BD ,AE ,则阴影部分的面积等于三角形ABD 的面积+扇形EBD 的面积﹣三角形EBD 的面积,所以根据等底等高的三角形的面积相等,得出三角形ABD 的面积等于三角形ABE的面积,进而根据三角形的面积公式与圆的面积公式解决问题.关键是将阴影部分的面积进行分割,再利用相应的公式分别求出各个部分的面积即可.【解题过程】如图连接BD,AE,因为三角形ABD与三角形AEB等底等高,所以三角形ABD的面积是:10×6÷2=30平方厘米,三角形BED的面积是:6×6÷2=18平方厘米,扇形EBD的面积是:×3.14×62,=3.14×9,=28.26平方厘米,阴影部分的面积:30+28.26﹣18=40.26平方厘米,答:阴影部分的面积是40.26平方厘米,故答案为40.26平方厘米.6.4.5【分析】根据阴影部分的面积=以AC为直径的半圆的面积+扇形ABC的面积﹣以AB为直径的半圆的面积=扇形ABC的面积.即可求解.【解题过程】阴影部分的面积=以AC为直径的半圆的面积+扇形ABC的面积﹣以AB为直径的半圆的面积=扇形ABC的面积.则S阴影==4.5,答:阴影部分的面积是4.5.7.【分析】由图意可知:整个图形的面积为:圆面积的,加上一个正方形的面积,加上一个等腰直角三角形的面积,然后扣除一个等腰直角三角形的面积,一个圆,一个45度的扇形的面积.那么最终效果就等于一个正方形扣除一个45度的扇形的面积.【解题过程】阴影部分的面积:1×1﹣,=1﹣,=;答:阴影部分的面积是.8.32.125平方厘米【分析】连接BD、OD、OA,由于DO⊥BC,AB⊥BC,所以DO∥AB,则S△AOD=S△BOD,而阴影部分的面积=S△AOB+S扇形BOD﹣S△AOD=S△AOB+S扇形BOD﹣S△BOD;据此利用三角形和扇形的面积公式即可解答.【解题过程】连接BD、OD、OA,由于DO⊥BC,AB⊥BC,所以DO∥AB,则S△AOD=S△BOD,而阴影部分的面积=S△AOB+S扇形BOD﹣S△AOD,=S△AOB+S扇形BOD﹣S△BOD,=×10×10÷2+×π×﹣××,=25+19.625﹣12.5,=32.125(平方厘米).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不规则图形面积计算我们曾经学过的三角形、长方形、正方形、平行四边形、梯形、菱形、圆和扇形等图形,一般称为基本图形或规则图形.我们的面积及周长都有相应的公式直接计算.如下表:实际问题中,有些图形不是以基本图形的形状出现,而是由一些基本图形组合、拼凑成的,它们的面积及周长无法应用公式直接计算.一般我们称这样的图形为不规则图形。
那么,不规则图形的面积及周长怎样去计算呢?我们可以针对这些图形通过实施割补、剪拼等方法将它们转化为基本图形的和、差关系,问题就能解决了。
一、例题与方法指导例1 如右图,甲、乙两图形都是正方形,它们的边长分别是10厘米和12厘米.求阴影部分的面积。
思路导航:阴影部分的面积等于甲、乙两个正方形面积之和减去三个“空白”三角形(△ABG、△BDE、△EFG)的面积之和。
例2 如右图,正方形ABCD的边长为6厘米,△ABE、△ADF 与四边形AECF的面积彼此相等,求三角形AEF的面积.思路导航:∵△ABE 、△ADF 与四边形AECF 的面积彼此相等,∴四边形 AECF 的面积与△ABE 、△ADF 的面积都等于正方形ABCD 的13。
在△ABE 中,因为AB=6.所以BE=4,同理DF=4,因此CE=CF=2, ∴△ECF 的面积为2×2÷2=2。
所以S △AEF=S 四边形AECF-S △ECF=12-2=10(平方厘米)。
例3 两块等腰直角三角形的三角板,直角边分别是10厘米和6厘米。
如右图那样重合.求重合部分(阴影部分)的面积。
思路导航:在等腰直角三角形ABC 中∵AB=10∵EF=BF=AB-AF=10-6=4,∴阴影部分面积=S △ABG-S △BEF=25-8=17(平方厘米)。
例4 如右图,A 为△CDE 的DE 边上中点,BC=CD ,若△ABC (阴影部分)面积为5平方厘米.求△ABD 及△ACE 的面积.B C思路导航:取BD中点F,连结AF.因为△ADF、△ABF和△ABC等底、等高,所以它们的面积相等,都等于5平方厘米.∴△ACD的面积等于15平方厘米,△ABD的面积等于10平方厘米。
又由于△ACE与△ACD等底、等高,所以△ACE的面积是15平方厘米。
二、巩固训练1. 如右图,在正方形ABCD中,三角形ABE的面积是,求正方形8平方厘米,它是三角形DEC的面积的45ABCD的面积。
解:过E作BC的垂线交AD于F。
在矩形ABEF中AE是对角线,所以S△ABE=S△AEF=8.在矩形CDFE中DE是对角线,所以S△ECD=S△EDF。
BC.求阴影部分的面积。
2. 如右图,已知:S△ABC=1,AE=ED,BD=23解:连结DF。
∵AE=ED,D∴S△AEF=S△DEF;S△ABE=S△BED3. 如右图,正方形ABCD的边长是4厘米,CG=3厘米,矩形DEFG的长DG为5厘米,求它的宽DE等于多少厘米?解:连结AG,自A作AH垂直于DG于H,在△ADG中,AD=4,DC=4(AD上的高).∴S△AGD=4×4÷2=8,又DG=5,∴S△AGD=AH×DG÷2,∴AH=8×2÷5=3.2(厘米),∴DE=3.2(厘米)。
4. 如右图,梯形ABCD的面积是45平方米,高6米,△AED的面积是5平方米,BC=10米,求阴影部分面积.解:∵梯形面积=(上底+下底)×高÷2即45=(AD+BC)×6÷2,45=(AD+10)×6÷2,∴AD=45×2÷6-10=5米。
∴△ADE的高是2米。
△EBC的高等于梯形的高减去△ADE的高,即6-2=4米,5. 如右图,四边形ABCD和DEFG都是平行四边形,证明它们的面积相等.证明:连结CE,ABCD的面积等于△CDE面积的2倍,而DEFG的面积也是△CDE面积的2倍。
∴ABCD的面积与DEFG的面积相等。
(一)不规则图形面积计算(2)不规则图形的另外一种情况,就是由圆、扇形、弓形与三角形、正方形、长方形等规则图形组合而成的,这是一类更为复杂的不规则图形,为了计算它的面积,常常要变动图形的位置或对图形进行适当的分割、拼补、旋转等手段使之转化为规则图形的和、差关系,同时=S A+S b-S A 还常要和“容斥原理”(即:集合A与集合B之间有:S A∪B)合并使用才能解决。
∩B一、例题与方法指导例1 . 如右图,在一个正方形内,以正方形的三条边为直径向内作三个半圆.求阴影部分的面积。
解法1:把上图靠下边的半圆换成(面积与它相等)右边的半圆,得到右图.这时,右图中阴影部分与不含阴影部分的大小形状完全一样,因此它们的面积相等.所以上图中阴影部分的面积等于正方形面积的一半。
解法2:将上半个“弧边三角形”从中间切开,分别补贴在下半圆的上侧边上,如右图所示.阴影部分的面积是正方形面积的一半。
解法3:将下面的半圆从中间切开,分别贴补在上面弧边三角形的两侧,如右图所示.阴影部分的面积是正方形的一半.例2. 如右图,正方形ABCD的边长为4厘米,分别以B、D为圆心以4厘米为半径在正方形内画圆,求阴影部分面积。
解:由容斥原理S阴影=S扇形ACB+S扇形ACD-S正方形ABCD例3 如右图,矩形ABCD中,AB=6厘米,BC=4厘米,扇形ABE半径AE=6厘米,扇形CBF的半CB=4厘米,求阴影部分的面积。
例4. 如右图,直角三角形ABC中,AB是圆的直径,且AB=20厘米,如果阴影(Ⅰ)的面积比阴影(Ⅱ)的面积大7平方厘米,求BC长。
分析已知阴影(Ⅰ)比阴影(Ⅱ)的面积大7平方厘米,就是半圆面积比三角形ABC面积大7平方厘米;又知半圆直径AB=20厘米,可以求出圆面积.半圆面积减去7平方厘米,就可求出三角形ABC的面积,进而求出三角形的底BC的长.二、巩固训练1. 如右图,两个正方形边长分别是10厘米和6厘米,求阴影部分的面积。
分析阴影部分的面积,等于底为16、高为6的直角三角形面积与图中(I)的面积之差。
而(I)的面积等于边长为6的正方形的面积减以6为半径的圆的面积。
去142. 如右图,将直径AB为3的半圆绕A逆时针旋转60°,此时AB到达AC的位置,求阴影部分的面积(取π=3).解:整个阴影部分被线段CD分为Ⅰ和Ⅱ两部分,以AB为直径的半圆被弦AD分成两部分,设其中AD右侧的部分面积为S,由于弓形AD是两个半圆的公共部分,去掉AD弓形后,两个半圆的剩余部分面积相等.即Ⅱ=S,由于:3. 如右图,ABCD是正方形,且FA=AD=DE=1,求阴影部分的面积.4. 如下页右上图,ABC是等腰直角三角形,D是半圆周上的中点,BC是半圆的直径,且AB=BC=10,求阴影部分面积(π取3.14)。
解:∵三角形ABC是等腰直角三角形,以AC为对角线再作一个全等的等腰直角三角形ACE,则ABCE为正方形(利用对称性质)。
总结:对于不规则图形面积的计算问题一般将它转化为若干基本规则图形的组合,分析整体与部分的和、差关系,问题便得到解决.常用的基本方法有:一、相加法:这种方法是将不规则图形分解转化成几个基本规则图形,分别计算它们的面积,然后相加求出整个图形的面积.例如,右图中,要求整个图形的面积,只要先求出上面半圆的面积,再求出下面正方形的面积,然后把它们相加就可以了.二、相减法:这种方法是将所求的不规则图形的面积看成是若干个基本规则图形的面积之差.例如,右图,若求阴影部分的面积,只需先求出正方形面积再减去里面圆的面积即可.三、直接求法:这种方法是根据已知条件,从整体出发直接求出不规则图形面积.如下页右上图,欲求阴影部分的面积,通过分析发现它就是一个底是2,高为4的三角形,面积可直接求出来。
四、重新组合法:这种方法是将不规则图形拆开,根据具体情况和计算上的需要,重新组合成一个新的图形,设法求出这个新图形面积即可.例如,欲求右图中阴影部分面积,可以把它拆开使阴影部分分布在正方形的4个角处,这时采用相减法就可求出其面积了.五、辅助线法:这种方法是根据具体情况在图形中添一条或若干条辅助线,使不规则图形转化成若干个基本规则图形,然后再采用相加、相减法解决即可.如右图,求两个正方形中阴影部分的面积.此题虽然可以用相减法解决,但不如添加一条辅助线后用直接法作更简便.六、割补法:这种方法是把原图形的一部分切割下来补在图形中的另一部分使之成为基本规则图形,从而使问题得到解决.例如,如右图,欲求阴影部分的面积,只需把右边弓形切割下来补在左边,这样整个阴影部分面积恰是正方形面积的一半.七、平移法:这种方法是将图形中某一部分切割下来平行移动到一恰当位置,使之组合成一个新的基本规则图形,便于求出面积.例如,如右图,欲求阴影部分面积,可先沿中间切开把左边正方形内的阴影部分平行移到右边正方形内,这样整个阴影部分恰是一个正方形。
八、旋转法:这种方法是将图形中某一部分切割下来之后,使之沿某一点或某一轴旋转一定角度贴补在另一图形的一侧,从而组合成一个新的基本规则的图形,便于求出面积.例如,欲求图(1)中阴影部分的面积,可将左半图形绕B点逆时针方向旋转180°,使A与C重合,从而构成如右图(2)的样子,此时阴影部分的面积可以看成半圆面积减去中间等腰直角三角形的面积.九、对称添补法:这种方法是作出原图形的对称图形,从而得到一个新的基本规则图形.原来图形面积就是这个新图形面积的一半.例如,欲求右图中阴影部分的面积,沿AB在原图下方作关于AB为对称轴的对称扇形ABD.弓形CBD的面积的一半就是所求阴影部分的面积。
十、重叠法:这种方法是将所求的图形看成是两个或两个以上图形的重叠部分,然后运用“容斥原理”(SA∪B=SA+SB-SA∩B)解决。
例如,欲求右图中阴影部分的面积,可先求两个扇形面积的和,减去正方形面积,因为阴影部分的面积恰好是两个扇形重叠的部分.综合检测例1小两个正方形组成下图所示的组合图形。
已知组合图形的周长是52厘米,DG=4厘米,求阴影部分的面积。
例2两个相同的直角三角形如下图所示(单位:厘米)重叠在一起,求阴影部分的面积。
例3 下页上图中,ABCD是7×4的长方形,DEFG是10×2的长方形,求三角形BCO与三角形EFO的面积之差。
例4在右图中,AB=8厘米,CD=4厘米,BC=6厘米,三角形AFB比三角形EFD的面积大18厘米2。
求ED的长。
例5左下图是由大、小两个正方形组成的,小正方形的边长是4厘米,求三角形ABC的面积。
2.割补法在组合图形中,除了多边形外,还有由圆、扇形、弓形与三角形、矩形、平行四边形、梯形等图形组合而成的不规则图形,为了计算它们的面积,常常需要变动图形的位置或对图形进行分割、旋转、拼补,使它变成可以计算出面积的规则图形。