“希望杯”数学竞赛.doc

合集下载

希望杯数学竞赛试卷初二

希望杯数学竞赛试卷初二

一、选择题(每题3分,共15分)1. 下列哪个数是质数?A. 17B. 16C. 18D. 192. 下列哪个数是合数?A. 7B. 8C. 9D. 103. 下列哪个数既是偶数又是奇数?A. 2B. 3C. 4D. 54. 下列哪个数是正数?A. -5B. 0C. 3D. -35. 下列哪个数是负数?A. 4B. 5C. -6D. 7二、填空题(每题4分,共16分)6. 3的平方根是_________。

7. 5的立方根是_________。

8. (-2)的平方是_________。

9. (-3)的立方是_________。

10. 12除以3的商是_________。

三、解答题(每题10分,共30分)11. (1)计算下列各数:a. 8 - 5b. 6 × 4c. 9 ÷ 3(2)判断下列各数是否为质数,并说明理由:a. 13b. 20c. 2912. (1)计算下列各数的平方和:a. 2的平方b. 3的平方c. 4的平方(2)计算下列各数的立方和:a. 1的立方b. 2的立方c. 3的立方13. (1)计算下列各数的乘积:a. 2 × 3b. 4 × 5c. 6 × 7(2)计算下列各数的商:a. 12 ÷ 3b. 18 ÷ 6c. 24 ÷ 8四、应用题(每题15分,共30分)14. 小明有若干个苹果,他先吃掉了一半,又吃掉了3个,最后还剩下8个苹果。

请问小明原来有多少个苹果?15. 一辆汽车从A地出发,以每小时60公里的速度行驶,3小时后到达B地。

然后汽车以每小时80公里的速度返回A地,用了2小时。

请问A地到B地的距离是多少公里?答案:一、选择题1. A2. D3. D4. C5. A二、填空题6. ±27. √58. 49. -2710. 4三、解答题11. (1)a. 3b. 24c. 3(2)a. 是质数,因为13只能被1和13整除。

(完整word版)希望杯数学竞赛小学三年级试题

(完整word版)希望杯数学竞赛小学三年级试题

希望杯数学竞赛(小学三年级)赛前训练题1.观察图1的图形的变化进行填空.2.观察图2的图形的变化进行填空.3.图3中,第个图形与其它的图形不同.4.将图4中A图折起来,它能构成B图中的第个图形.5.找出下列各数的排列规律,并填上合适的数.(1)1,4,8,13,19,().(2)2,3,5,8,13,21,().(3)9,16,25,36,49,().(4)1,2,3,4,5,8,7,16,9,().(5)3,8,15,24,35,().6.寻找图5中规律填数.7.寻找图6中规律填数.8.(1)如果“访故”变成“放诂”,那么“1234”就变成.(2)寻找图7中规律填空.9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是.10.图9、图10分别是由汉字组成的算式,不同的汉字代表不同的数字,请你把它们翻译出来.11.在图11、图12算式的空格内,各填入一个合适的数字,使算式成立.12.已知两个四位数的差等于8765,那么这两个四位数和的最大值是.13.中午12点放学的时候,还在下雨.已经连续三天下雨了,大家都盼着晴天,再过36小时会出太阳吗?14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是星期几?15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是.16.小李,小王,小赵分别是海员、飞行员、运动员,已知:(1)小李从未坐过船;(2)海员年龄最大;(3)小赵不是年龄最大的,他经常与飞行员散步.则是海员,是飞行员,是运动员.17.用凑整法计算下面各题:(1)1997+66 (2)678+104 (3)987-598 (4)456-307 18.用简便方法计算下列各题:(1)634+(266-137)(2)2011-(364+611)(3)558-(369-342)(4)2010-(374-990-874)19.用基准法计算: 108+99+93+102+97+105+103+94+95+10420.用简便方法计算:899999+89999+8999+899+8921.求100以内的所有正偶数的和是多少?22.有一数列3,9,15,…,153,159.请问:(1)这组数列共有多少项?(2)第15项是多少?(3)111是第几项的数?23.有10只盒子,54只乒乓球,把这54只乒乓球放到10只盒子中,要求每个盒子中最少放1只乒乓球,并且每只盒子中的乒乓球的只数都不相同,如果能放,请说出放的方法;如果不能放,请说明理由.24.如图13有一个宝塔算式,从上向下数,第一层的和为1,第二层的和为5第三层的和为15,…,第十层的和为多少?25.甲、乙、丙三位同学参加希望杯数学竞赛的平均成绩是75分,甲、丙的平均成绩是71分,那么乙得了多少分?26. 6名同学在一起打乒乓球,两人轮流上;从上午9点打到上午11点;他们平均休息多少分钟?27.已知七个自然数的和是154,求这七个连续自然数各是什么数?28.张红、王莉、李月、赵兰四人的平均身高是158厘米,再加上刘辉,五人的平均身高是160厘米. 求刘辉的身高.29.从北京到上海的特快列车,中途要停靠7个大站. 这样,有几种不同价格的车票?30.1个五元纸币,2个五角硬币,3个一元硬币,一共可以组成多少种人民币值?31.从图14中O点出发又回到O点,每条线段不能重复走,共有几条不同路线?32.布袋里有五个彩色玻璃球,每次最多只能拿走一个或2个,可分多次取出.问取完五个球,有多少种不同的取法?33.简便计算下列各题.(1)125165 3 (2)1257322534.简便计算下列各题.(1)5432 5 (2)3895 5 (3)9928 (4)10013735.简便计算下列各题.(1)(49+28+56)7 (2)(43+35+20)7(3)(96-33-39) 3 (4)3637+643736.简便计算下列各题.(1)625(255)(2)45025 2 (3)225(94)(4)430459 37.算式()9=13…()中,最大、最小的被除数分别是多少?38.30()=()…6中,除数和商各是多少?39.小胡在计算除法时,把除数87写成78,结果商是64,还余54,正确的商应该是多少?40.149除以一个两位数,余数是5,请写出所有这样的两位数。

希望杯竞赛数学试题详解(1-10题)

希望杯竞赛数学试题详解(1-10题)

题1 已知y x a b b y b b a x b a ,,,,0则--=-+=<<的大小关系是 .(第十一届高二第一试第11题)解法1 b b a a b b a x ++=-+=,ab b aa b b y -+=--=.y x a b b b b a b a <∴-+>++∴<<,,0 .解法2bb a ab b a b b b b a y x ++-+=---+=,y x y x a b b a <∴<∴->+,1, . 解法3a ab b a b b a ab b b b a y x -+-++=----+=-1111 =y x yx a a b b a <∴>-∴>--+,011,0.解法4 原问题等价于比较a b b a -++与b 2的大小.由,2)(222y x y x +≥+得b a b b a a b b a 4)(2)2=-++≤-++(,b a b b a 2≤-++∴.y x b a b b a a b b a <∴<-++∴-≠+,2, .解法5 如图1,在函数x y =的图象上取三个不同的点A(a b -,a b -)、B (b ,b )、C (b a +,b a +).由图象,显然有AB BC k k <,即)()(a b b ab b b b a b b a ----<-+-+, 即a b b b b a --<-+,亦即y x <.解法6 令()f t a t t =+-,tt a at f ++=)( 单调递减,而a b b ->,)()(a b f b f -<∴,即a b b b b a --<-+,y x <∴.解法7 考虑等轴双曲线)0(22>=-x a y x . 如图2,其渐近线为x y =.在双曲线上取两点 A (b ,a b -)、B (a b +,b ). 由图形,显然有1>AB k ,即1>-+--bb a ab b ,从而y x <.ABCxyO b-a b b+a图1ABOxyb 图2a ab +解法8 如图3.在Rt △ABC 中,∠C 为直角,BC=a ,AC=b ,BD=b ,则AB=b a +,DC=a b -. 在△ABD 中,AB-AD<BD ,即-+b a AD b <,从而-+b a AD-DC<-b DC ,即a b b b b a --<-+,故y x <.评析 比较大小是中学代数中的常见内容.其最基本的方法是作差比较法、作商比较法、利用函数的单调性.解法1通过分子有理化(处理无理式常用此法)将问题转化成比较两个分母的大小.解法2直接作商与1比较大小,顺理成章,也很简洁.要注意的是:0,>b a 时,1aa b b>⇔>;0,<b a 时,1aa b b>⇔<.此题直接作差难以确定差与0的大小,解法3对y x ,的倒数作差再与0比较大小,使得问题顺利获解,反映了思维的灵活性.解法6运用函数的单调性解题,构造一个什么样的函数是关键.我们认为构造的函数应使得y x ,恰为其两个函数值,且该函数还应是单调的(最起码在包含y x ,对应的自变量值的某区间上是单调的).解法5与解法7分别构造函数与解几模型,将y x ,的大小关系问题转化成斜率问题加以解决,充分沟通了代数与几何之间的内在联系,可谓创新解法.解法8充分挖掘代数式的几何背景,构造平面图形,直观地使问题得到解决,这也是解决大小关系问题和证明不等式的常用方法.有人对此题作出如下解答:取,2,1==b a 则12112,23123+=-=+=-=y x ,322+>10+>,.,121231y x <∴+<+可再取两组特殊值验证,都有y x <.故答案为y x <.从逻辑上讲,取2,1==b a ,得y x <.即使再取无论多少组值(也只能是有限组值)验证,都得y x <,也只能说明y x >或y x ≥作为答案是错误的,而不能说明y x <一定是正确的,因为这不能排除x y =的可能性.因此答案虽然正确,但解法是没有根据的.当然,如果将题目改为选择题:已知y x a b b y b b a x b a ,,,,0则--=-+=<<的大小关系是 ( ) A 、y x > B 、y x ≥ C 、y x = D 、y x <此时用上述解法,且不用再取特殊值验证就可选D ,并且方法简单,答案一定正确.总而言之,特殊值法在解许多选择题时显得特别简捷,那是因为选择支中的正确答案是唯一的,从而通过特殊值排除干扰支,进而选出正确答案.但特殊值法只能排除错误结论,而不能直接肯定正确答案,因此,用此法解填空题(少数特例除外)与解答题是没有根据的.当然,利用特殊值指明解题方向还是十分可取的.题2 设c b a >>N n ∈,,且11na b b c a c+≥---恒成立,则n 的最大值为 ( ) A 、2 B 、3 C 、4 D 、5(第十一届高二第一试第7题) 解法1 原式n c b c a b a c a ≥--+--⇔.mina c a c n ab bc --⎡⎤∴≤+⎢⎥--⎣⎦.而b a c a --+c b c a -- ABDCb图3 a a b +b a -b=b ac b b a --+-+b c a bb c-+--=2+b a c b --+c b b a --≥4,且当b ac b --=c b b a --,即b c a 2=+时取等号.mina c a c ab bc --⎡⎤∴+⎢⎥--⎣⎦4=.4n ∴≤.故选C . 解法2 c b a >>,0,0,0>->->-∴c a c b b a ,已知不等式化为()()()2a c n a b b c -≤--.由()()()()22242a c a c ab bc a b b c --≥=---+-⎛⎫⎪⎝⎭,即()()()4min2=⎥⎦⎤⎢⎣⎡---c b b a c a ,故由已知得4≤n ,选C .解法3 由c b a >>,知0,0,0>->->-c a c b b a ,有()⎪⎭⎫⎝⎛-+--≤c b b a c a n 11.又()()()[]()41111112=+≥⎪⎭⎫ ⎝⎛-+--+-=⎪⎭⎫⎝⎛-+--c b b a c b b a c b b a c a ,即()411min=⎥⎦⎤⎢⎣⎡⎪⎭⎫⎝⎛-+--c b b a c a ,由题意,4≤n .故选C .解法4 c b a >>,0,0,0>->->-∴c a c b b a .∴已知不等式可变形为()()()2a c n a b b c -≤--.记()()()2a c k ab bc -=--, 则()()[]()()()()[]()()4222=----≥---+-=c b b a c b b a c b b a c b b a k .由题意,4≤n .故选C .解法5 c b a >>110,0.a b b c∴>>--于是 ()()ca cb b ac b b a -=-+-≥-+-4411.比较得4≤n .故选C . 评析 由已知,可得()⎪⎭⎫⎝⎛-+--≤c b b a c a n 11恒成立.根据常识“若()a f x ≤恒成立,则()min x f a ≤;若()x f a ≥恒成立,则()max a f x ≥,”()⎪⎭⎫ ⎝⎛-+--c b b a c a 11的最小值就是所求n 的最大值,故问题转化为求()⎪⎭⎫⎝⎛-+--c b b a c a 11的最小值,上述各种解法都是围绕这一中心的,不过采用了不同的变形技巧,使用了不同的基本不等式而已.解法1运用了2,,baa b R ab++≥∈“”;解法2运用了”“22⎪⎭⎫⎝⎛+≤b a ab ;解法3运用了()”“411≥⎪⎭⎫ ⎝⎛++b a b a ;解法4运用了()”“+∈≥+R b a ab b a ,2;解法5运用了()”“+∈+≥+R b a ba b a ,411.虽解法异彩纷呈,但却殊途同归. 此题使我们联想到最新高中数学第二册(上)P 30第8题: 已知c b a >>,求证:0111>-+-+-ac c b b a . 证:令()0,0,>>=-=-y x y c b x b a ,则y x c a +=-.()22111111x y xya b b c c a x y x y xy x y ++∴++=+-=---++.0,0x y >> , 0111>-+-+-∴ac c b b a . 此证法通过换元将分母中的多项式改写成单项式,使得推证更简单了.运用这一思路,又可得本赛题如下解法:设()0,0,>>=-=-y x y c b x b a ,则y x c a +=-.ca nc b b a -≥-+-11恒成立,就是y x ny x +≥+11恒成立.也就是()⎪⎪⎭⎫ ⎝⎛++≤y x y x n 11恒成立.()411≥⎪⎪⎭⎫ ⎝⎛++y x y x 恒成立, ∴由题意得4≤n .故选C .再看一个运用这一思想解题的例子.例 设+∈R c b a ,,,求证:2222cb a b ac a c b c b a ++≥+++++. (第二届“友谊杯”国际数学竞赛题)证明 设,,,z b a y a c x c b =+=+=+则()()0,,21>++=++z y x z y x c b a . ()()()02222≥+-=++-+y x xy bx ay y x b a y b x a ,()222a b a b x y x y+∴+≥+ ①, ()()()()222222222a b a b c a b c a b c c a b c x y z x y z x y z a b c +++++++∴++≥+≥==+++++,即 2222cb a zc y b x a ++≥++,2222c b a b a c a c b c b a ++≥+++++∴. 本赛题还可直接由下面的命题得解.命题 若021>>>>n a a a ,则()nn n a a n a a a a a a --≥-++-+--12132211111 . 证明 021>>>>n a a a ,n n a a a a a a ---∴-13221,,, 都大于0.反复运用①式,可得: “若,(1,2,,)i i x y R i n +∈= ,则22111n i ni i ni iii x x y y ===⎛⎫⎪⎝⎭≥∑∑∑,当且仅当1212n n x x x y y y === 时取等号”.故有()()22122311223111111111n n n n nn a a a a a a a a a a a a a a --+++-+++≥=----+-++-- .也可以这样证明:021>>>>n a a a ,12231,,,0n n a a a a a a -∴---> .故由柯西不等式,得()()()1223112231111()n n n n a a a a a a a a a a a a --+++-+-++-⎡⎤⎣⎦--- ()()211111n -≥+++ 个 ()21n =-,即()()21132211)111(-≥--++-+--n a a a a a a a a n nn .01>-n a a ,()nn n a a n a a a a a a --≥-++-+-∴-12132211111 . 由此可得本赛题的如下解法:c b a >>,0,0,0>->->-∴c a c b b a ,()ca cb b ac b b a -=-+-+≥-+-∴411112.由 题意,4≤n .故选C .由此命题还可直接解决第七届高二培训题第8题:设1232000200a a a a a >>>>> ,并且122320002001111m a a a a a a =+++--- ,200116104a a n -⨯=,则m 与n 的大小关系是 ( ) A 、n m < B 、n m > C 、n m ≥ D 、n m ≤ 解 12320002001a a a a a >>>>> ,2001162001121042000a a a a m -⨯=-≥∴.故选C . 题3 设实数y x n m ,,,满足a n m =+22,b y x =+22,则ny mx +的最大值为 ( )A 、21()b a +B 、2122b a + C 、222b a + D 、ab(第十一届高二培训题第5题)解法1 设,sin ,cos ααa n a m ==,sin ,cos ββb y b x ==则,)cos(sin sin cos cos ab ab ab ab ny mx ≤-=+=+βαβαβα即)(ny mx +max =ab .故选D .解法2 b n a b m a b a n m =+⇒=+2222,又b y x =+22,+=+∴mx abny mx a b )( ≤ny ab 22222222()()()()222b b b m x n y m n x y a a a ++++++==.2b b a a b=+⋅nymx +∴,ab ab b =≤当且仅当b m x a =且,b n y a=即my nx =时取等号,max )ny mx +∴(.ab = 解法3 2222222222222()2mx ny m x mxny n y m x m y n x n y +=++≤+++()()2222,m n x y ab =++=,mx ny ab ∴+≤当且仅当my nx =时取等号,故()max mx ny ab +=.解法4 设()(),,,,p m n q x y →→==则cos ,p q p q p q θ→→→→→→⋅=⋅⋅≤⋅222,p q p q →→→→∴⋅≤⋅()()222mx ny m n+≤+即()22,xyab +=当且仅当,p q →→共线,即my nx =时取等号,故()max mx ny ab +=.解法5 若设mx ny k +=,则直线mx ny k +=与圆22x y b +=有公共点,于是22k b m n≤+,即()max ,k mx ny ab mx ny ab =+≤∴+=.解法6 设12,z m ni z x yi =+=-,则()()()()12,z z m ni x yi mx ny nx my i =+⋅-=++-∴()()()2221212,z z mx ny nx my mx ny mx ny mx ny mx ny z z ⋅=++-≥+=+≥+∴+≤12z z =⋅2222,m n x y ab =+⋅+=当且仅当my nx =时取等号,故()max mx ny ab +=.解法7 构造函数()()()222222f X m n X mx ny X x y =+++++,则()()()220.f X mX x nX y =+++≥故()()()2222244mx ny m nxy ∆=+-++()2440,mx ny ab =+-≤即()max .mx ny ab mx ny +≤∴+.ab =解法8 由2222,m n a x y b +=+=还可构造图形(如图),其中90AC B AD B ︒∠=∠=,bA C m a=,bB Cna= ,,BD x AD y AB b ===为圆的直径,由托勒密定BCDA理,AD BC BD AC ⋅+⋅2,AB CD AB =⋅≤得,b b m x n y b a a⋅+⋅≤,从而得mx ny ab +≤,当且仅当my nx =且0mx >时取等号.()max mx ny ab ∴+=.评析 解法1抓住已知条件式的结构特征,运用三角代换法,合情合理,自然流畅,也是解决此类型问题的通法之一.解法2运用基本不等式222b a ab +≤将ny mx +放大为关于22n m +与22y x +的式子,再利用条件求出最大值.值得注意的是,稍不注意,就会得出下面的错误解法:()()()22222222max ,22222m n x y m x n y a b a bmx ny mx ny ++++++++≤+==∴+=.故选A .错误的原因就在于用基本不等式求最值时未考虑等号能否取到.上述不等式取等号的条件是x a =①且y b =②,而若①,②式同时取得,则2222m n x y +=+,即,a b =这与题设矛盾!即当a b ≠时,mx ny +取不到2a b+.解法2是避免这种错误的有效方法. 由于向量与复数的模的平方是平方和形式,与已知形式一致,故解法4与解法6分别运用了构造向量与构造复数的方法,新颖而简洁.解法5设k ny mx =+后,将其看作动直线,利用该直线与定圆b y x =+22有公共点,则圆心到直线的距离小于等于半径,得ab ny mx k ≤+=,充分体现了等价转化的解题功能.解法7运用的是构造函数法.为什么构造函数()()()2222f X m n X mx ny X =+++2x +2y +呢?主要基于两点:①()f X 为非负式(值大于等于0),②由于()0≥X f ,故有0≤∆,而∆沟通了已知与未知的关系,故使问题得到解决.解法8抓住已知两条件式的特征,构造了两个有公共边的直角三角形,利用托勒密定理及圆的弦小于等于半径使问题获解,充分揭示了这一代数问题的几何背景.拓展 此题可作如下推广 若2222221212,,n n a a a p b b b q +++=+++= 则()1122max n n a b a b a b +++pq =(当且仅当()1,2,,i i qa b i n p== 时取得最大值). 证明 2222221212n n q q q a a a p a a a p p p ⎛⎫⎛⎫⎛⎫+++=⇒+++ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.q = 1122a b a b ∴+++ 1122n n n n p qqqa b a b a b a b q p pp ⎛⎫=⋅+⋅++⋅ ⎪ ⎪⎝⎭p q ≤2222221122222n n q q q a b a b a b p p p ⎡⎤⎛⎫⎛⎫⎛⎫⎢⎥+++ ⎪ ⎪⎪⎢⎥⎝⎭⎝⎭⎝⎭+++⎢⎥⎢⎥⎢⎥⎣⎦=(),22222222122221pq q p p q q p b b b a a a pq q p n n=⎪⎪⎪⎪⎭⎫⎝⎛+⋅=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++++++ 当且仅当()().,,2,1m a x2211pq b a b a b a n i b a pqn n i i =+++∴== 时取等号,本推广实际就是由著名的Cauchy (柯西)不等式()()()222212222122211n n n n b b b a a a b a b a b a +++⋅+++≤+++ (当且仅当nn b a b a b a ===2211时取等号)直接得到的一个结论.推广有十分广泛的应用,现举一例:例 已知123,,,,,,234,8.a b c x y z R a b c x y z +∈++=++=且求23a b cx y z++最大值. 解 ()()()222123234234,8a b c a b cx y z ++=⇒++=++=2212x y ⎛⎫⎛⎫⇒+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭23z ⎛⎫+ ⎪ ⎪⎝⎭=8.由推广知23a b c x y z ++123234842,a b c x y z =⋅+⋅+⋅≤⨯=当且仅当81,4a x =82832,3,44b c y z==即12ax by cz ===时取等号.max23a b c x y z ⎛⎫∴++= ⎪ ⎪⎝⎭.24 题4 对于1≤m 的一切实数m ,使不等式221(1)x m x ->-都成立的实数x 的取值范围是____(第十三届高二培训题第63题)解法1 题设等价于⎪⎩⎪⎨⎧--<>-1120122x x m x 或⎪⎩⎪⎨⎧--><-1120122x x m x 或⎩⎨⎧>-=-012012x x ,即⎪⎩⎪⎨⎧--<>-11210122x x x 或⎪⎩⎪⎨⎧-->-<-11210122x x x 或⎩⎨⎧>-=-012012x x ,所以21<<x 或113<<-x 或1=x ,即)2,13(-∈x .解法2 已知不等式即()()01212<---x m x ,令()()121)(2---=x m x m f ,则当012≠-x ,即1±≠x 时,)(m f 是m 的一次函数,因为1≤m ,即11≤≤-m 时不等式恒成立,所以)(m f 在[]1,1-上的图象恒在m 轴的下方,故有⎩⎨⎧<+--=<+-+-=-0121)1(0121)1(22x x f x x f ,即⎩⎨⎧<->-+0202222x x x x ,解得213<<-x )1(≠x .又当1=x 时,1)(-=m f ,适合题意,当1-=x 时,()3f m =不合题意. 故x 的取值范围是213<<-x .评析 解决本题的关键是如何根据条件构建关于x 的不等式或不等式组.解法1运用分离参数法,为了达到分离参数的目的,又对12-x 分大于0、小于0、等于0三类情形分别构建关于x 的不等式组,从而通过解不等式组解决了问题.解法2则转换思维角度,把已知不等式看成关于m 的不等式,从而将原问题转化为函数()()121)(2---=x m x m f 在[]1,1-上的图象恒在m 轴下方的问题.这种方法称为变更主元法.用此方法,使得此题的解决显得既简捷,又直观易懂.题5 当0x a <<时,不等式2)(1122≥-+x a x 恒成立,则a 的最大值是________. (第十一届高二培训题第45题)解法 1 当0x a <<时, 2≥-+-x a x x x a ①,又有2)()(2222≥-+-x a x x x a ②, ②+①×2,得6)(222222≥--+-x a x ax x x a ,6)()(122222≥---+-x a x a a x a ,8)(2222≥-+x a a x a ,即2228)(11a x a x ≥-+.由282≥a ,得02a <≤,2max =∴a . 解法2 2222)11()11()(112x a x x a x x a x--+-+=⎥⎦⎤⎢⎣⎡-+ , 又 =-+x a x 11 +a 4(1a 2)x a x x x a ---, 222)4()(112a x a x ≥⎥⎦⎤⎢⎣⎡-+∴, 即2228)(11a x a x ≥-+, 当且仅当xa xx x a -=- 且x a x -=11, 即 2a x = 时取等号. 2)(1122≥-+x a x 恒成立,∴282,02a a ≥<≤. 于是2max =a .解法3 原不等式等价于12)(1122≥-+x a x ,由 0x a <<,可知10,x >10a x >-. 由 “两个正数的平方平均值不小于它们的调和平均值”, 可知只需1)(2≥-+x a x , 即2≤a 即可, 故02a <≤, 于是2max =a .解法422)(11x a x -+2≥ 即 2)(112222≥⎥⎦⎤⎢⎣⎡--++x x a x x ①成立,又 2122≥+x x 恒成立, ∴a 只要满足22)(1x x a --0≥②就能使①恒成立.由②式,得2x 2)(x a -1≤,1)(≤-x a x ,012≤-+-ax x ③.由于对称轴),0(2a ax ∈=,由二次函数的性质,当),0(a x ∈时,要③式恒成立,则24002a a ∆=-≤∴<≤ 2max =∴a .解法5 设αα22sin ,cos =-=a x a a x (0x a <<),则22)(11x a x -+=α42cos 1a + α42sin 1a ==+⋅αααα44442cos sin cos sin 1a =-⋅αα2sin 1612sin 2111422aαα2sin 2sin 28422-⋅a . )22(sin 2+αα2(sin 2-1)0≤,即2-αα2sin 2sin 42≥,则αα2s i n 2s i n 242-1≥)12s i n (2时取等号当=α,于是2228)(11ax a x ≥-+,由已知,得282,02,a a ≥∴<≤2max =∴a . 解法6 设11,(0,0),X Y X Y x a x==>>-则 2为222X Y +≥表示在XOY 坐标系第一象限内以原点为圆心,半径的圆及其外部.由11,,X Y x a x==-得,aXY X Y =+又aXY X Y =+,4,22a XY XY ≥∴≥它表示双曲线24a XY =位于第一象限内的一支及其上方部分.依题意,双曲线2224(0)200XY X X Y X Y a=>+=>>与圆弧(,)相切或相离,从而282≥a ,即02a <≤ 2max =∴a .2O解法7 运用结论“如果),,2,1(,n i R y x i i =∈+,则≥+++nn y x y x y x 2222121),()(21221*++++++nn y y y x x x 当且仅当k y x y xy x n n ==== 2211(常数)时取等号.” 0x a <<,∴0.a x ->由柯西不等式,有22222)11())(11)(11(x a x x a x -+≥-++①,由)(*得x a x -+11a 4≥②.故,)4())(11(2222a x a x ≥-+得2228)(11ax a x ≥-+,当且仅当2a x =时取等号,由282≥a ,得02a <≤ 2max =∴a .解法8 运用结论“212122311111(1),,n n n n n a a a a a a a a a a a -->>>+++≥---- 若则当且仅当n a a a ,,,21 成等差数列时取等号.”2222111122()(0)()x a x x a x ⎡⎤⎡⎤+=+≥⎢⎥⎢⎥---⎣⎦⎣⎦2110x a x ⎛⎫+ ⎪--⎝⎭222160)13(a a =⎥⎦⎤⎢⎣⎡--≥.∴2228)(11a x a x ≥-+,当且仅当x a x -=,即2a x =时取等号.令282≥a ,得02a <≤ 2max =∴a . 评析2)(1122≥-+x a x 恒成立,∴2)(11min 22≥⎥⎦⎤⎢⎣⎡-+x a x.故问题的实质就是求22)(11x a x -+的最小值(关于a 的式子)大于等于2的解.因而在0x a <<的条件下,如何求22)(11x a x -+的最小值成了问题的关键.解法1运用“两个互为倒数的正数的和大于等于2”, 解法2运用配方再放缩, 解法3运用均值不等式及“两个正数的平方平均值不小于它们的调和平均值”,解法5运用三角代换,解决了这一关键问题.解法4巧妙地将原问题转化为一个含参(a )一元二次不等式恒成立,求参数的范围问题,从而运用二次函数的性质解决问题.解法6将原问题转化为解析几何问题处理.解法7、8则是运用一些现成的结论(读者可自己证明),各种解法异彩纷呈,都值得细细品味.拓展 此题可作如下推广:推广 1 若1210n x x x a -<<<<< ,则≥-++-+-2121221)(1)(11n x a x x x 23a n ,当且仅当a x x x n ,,,,121- 成等差数列时取等号.证明 由已知,1210n x x x a -<<<<< ,则12x x -0>,23x x -0>,, 1--n x a 0>.根据柯西不等式及解法7运用的不等式(*),有⎥⎦⎤⎢⎣⎡-++-+-2121221)(1)(11n x a x x x n ≥21211111n x x x a x -⎛⎫+++≥ ⎪--⎝⎭ 2242,n n a a ⎛⎫= ⎪⎝⎭故≥-++-+-2121221)(1)(11n x a x x x 23a n . 当且仅当a x x x n ,,,,121- 成等差数列时取等号.推广2 若1210n x x x a -<<<<< ,,),,,2,1(++∈=∈N k n i R b i 则++kk x b 111kk n k n k n k k a b b b x a b x x b 121111212)()()(+-+++++≥-++- ,当且仅当∑==ni ii i b ab a 1时取等号. 证明 不妨设112211,,,--=-==n n x a a x x a x a ,=M ,)(11+=∑k ni i b 由已知得i a 0>且),,2,1(n i =,1a a ni i =∑=令a a c i i =,则∑=ni i c 1=111=∑=ni i a a .由均值不等式,++k i k i c b 1≥+++个k i i i Mc Mc Mc ,)1(11+++k k ik b M k 即kik i c b 1+k n i b b b k kMc ))(1(21++++≥+ i b ⋅,则11111(1)()k nn nk i i i ki i i i b kM c k b c ++===+≥+∴∑∑∑1111()k nn k i i k i i i b b c ++==≥∑∑,即11k nki k i ib a a +=≥∑11()n k i i b +=∑,11111()nk k i ni i k k n i ii i b b a a ++===≥⎛⎫ ⎪⎝⎭∑∑∑,当且仅当=i a ∑∑∑====⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n i i i i n i i n i i b ab b b a 111时取等号. ∴++kk x b 111++kk x b 212kn kn x a b )(1--+ k k n a b b b 121)(++++≥ . 题6 已知()⎪⎭⎫ ⎝⎛∈=2,0,log sin πθθx x f ,设⎪⎭⎫ ⎝⎛+=2cos sin θθf a , ()θθcos sin ⋅=fb ,⎪⎭⎫⎝⎛+=θθθcos sin 2sin f c ,那么c b a 、、的大小关系是 ( )A 、b c a ≤≤B 、a c b ≤≤C 、a b c ≤≤D 、c b a ≤≤(第八届高二第一试第10题) 解法1 设p =θsin ,q =θcos .pq qp ≥+2,而()x f 是减函数,()pq fq p f ≤⎪⎭⎫ ⎝⎛+∴2,即b a ≤.2qp pq +≤,()2pq q p pq +≤∴, pq qp pq≤+2.()pq fq p pq f ≥⎪⎪⎭⎫⎝⎛+∴2,即b c ≥.故c b a ≤≤.选D.解法2 由题意,令6πθ=,则21s i n =θ,3cos 2θ=,4312cos sin +=+θθ ,23cos sin 4=θθ,233cos sin cos sin 2cos sin 2sin -=+=+θθθθθθθ,()1,021sin ∈=θ ,()x f ∴是减函数,又233234314->>+,()⎪⎭⎫⎝⎛+<<⎪⎭⎫⎝⎛+∴θθθθθθθcos sin 2sin cos sin 2cos sin f ff ,即c b a <<.故选D.评析 这是一个比较函数值大小的问题,通常利用函数的单调性.若函数()x f 单调递增(减),则当21x x <时,()()()()()2121x f x f x f x f ><,当21x x >时,()()21x f x f >()()()21x f x f <.因此解决问题的关键有两个:一是确定函数的单调性,二是确定自变量的大小关系.解法1就是这样解决问题的.因为正确答案应对一切⎪⎭⎫ ⎝⎛∈2,0πθ都正确,故又可以运用特殊值法.对⎪⎭⎫⎝⎛2,0π内的某个角不正确的选择支都是错误的,由正确选择支的唯一性,也可选出正确答案.解法2便是取特殊值6πθ=,排除了A 、B 、C 、而选D 的.当然,此题也可用作差比较法来解:⎪⎭⎫⎝⎛∈2,0πθ ,()1,0sin ∈∴θ,()x f ∴是单调减函数,0sin >θ,0cos >θ.=⋅-+=-∴θθθθθθcos sin log 2cos sin log sin sin b a01log cos sin 2cos sin log sin sin =≤⋅+θθθθθθ,b a ≤∴.又-⋅=-θθθcos sin log sin c b 01log cos sin 2cos sin log cos sin cos sin 2cos sin log cos sin 2sin log sin sin sin sin =≤+=+⋅=+θθθθθθθθθθθθθθθθθ,即c b ≤,c b a ≤≤∴.选D.题7 已知21=a ,不等式49321log <⎪⎭⎫⎝⎛-x a的解是 .(第三届高二第二试第13题)解 原不等式即2l o g 32321-⎪⎭⎫⎝⎛<⎪⎭⎫⎝⎛-x a. 指数函数x⎪⎭⎫⎝⎛32是减函数,21=a ,∴原不等式化为2log 121->-x ,即22121121lo glo g -⎪⎪⎭⎫⎝⎛->x .又 对数函数12log x 是减函数,2211-⎪⎭⎫ ⎝⎛<-∴x ,即21<-x ,解得31<<-x . 对数函数121log -x 的定义域是1≠x 的实数,∴原不等式的解是11<<-x 或31<<x .评析 此题涉及到指数不等式、对数不等式、绝对值不等式的解法.解指数不等式与对数不等式的基本方法是同底法,即先将不等式两边的指数式或对数式化成底数相同的指数式或对数式,然后根据底数所属区间是()1,0或()+∞,1,确定以该底数为底的指数函数或对数函数的单调性,再去掉底数或对数符号,转化成别的不等式.主要依据如下:⑴若01a <<,则()()()()f x g x a a f x g x <⇔>;⑵若1a >,则()()()()f x g x aa f x g x <⇔<;⑶若01a <<,则()()()()log log 0f x g x a a f x g x <⇔>>;⑷若1a >,则()()()()log log 0f x g x aa f x g x <⇔<<.有时需要将常数化为指数式或对数式,其化法如下: ⑴ac ca log =(,0,0>>c a 且1≠c );(化为指数式)⑵log a c a c =(,0>c 且1≠c ).(化为对数式) 例如,23log 32=将常数2化为3为底的指数式,233log 2=将常数2化为3为底的对数式.解指数不等式不需检验,但解对数不等式必须保证解使得对数式有意义,这点常被忽略. 若一个指数不等式的指数部分是对数式,常常采用取对数法求解. 例 不等式()x x x>lg的解集是 .(第十一届高二培训题第40题)解 两边取常用对数,得()x xlg lg 2>,即0lg ,0lg 4lg ,0lg lg 4122<>->-x x x x x 或10,4lg <<∴>x x 或410>x .故所求解集是()()+∞,101,04 .应当指出,两边取对数后,不等号的方向变不变,关键看取的是什么底数.如果底数大于1,则不等号方向不变,如果底数大于0且小于1,则不等号方向改变.关于绝对值不等式,主要是根据绝对值的几何意义求解.下列结论应当理解并熟记(a 为常数).⑴()0≤<a a x 的解集是φ; ⑵()0><a a x 的解集是()a a ,-; ⑶()0<>a a x 的解集是R ;⑷()0x a a >>的解集是()()+∞-∞-,,a a . 下列题目供练习:⑴已知常数⎪⎭⎫⎝⎛∈4,0πθ,则不等式()()8103cot tan 2--->x x x θθ的解集是 .(第八届高二第一试第16题)⑵若函数()⎪⎭⎫ ⎝⎛⋅⎪⎭⎫ ⎝⎛=4222log log x xx f 的定义域是不等式211222log 7log 30x x ⎛⎫++≤ ⎪⎝⎭的解集,则()x f 的最小值= ;最大值= .(第十届高二第一试第23题)⑶不等式22222log 2log x x x x x x ++>的解集是 .(第九届高二培训题第23题)⑷不等式1323>--x 的解是 ( )(A )6>x 或232<≤x (B )6>x 或2<x (C )6>x (D )2<x答案 ⑴(]⎪⎭⎫⎢⎣⎡-∞-1374,52, ⑵43 ;2 ⑶⎪⎭⎫⎝⎛2,21 ⑷A题8 不等式t x x +≥-21 的解集是∅ ,实数t 的取值范围(用区间形式)是 .(第一届高二第一试第18题)解法1 由t x x +=-21两边平方并整理得012222=-++t tx x ,此方程无实根,故()084184222<+-=--=∆t t t ,22>t .又0>t ,2>∴t .故填()+∞,2.解法2 作出函数21x y -=的图象(即图中的半圆)及函直线应数t x y +=的图象(即图中斜率为1的直线系).由题意,距在半圆的上方,由图象可知直线t x y +=在y 轴上的截2>t .故填()+∞,2.解法3 由012≥-x ,得11≤≤-x .故设θc o s =x ,[]πθ,0∈,则已知不等式就是yx122- -11 ot +≥θθcos sin ,即θθcos sin -≤t .⎪⎭⎫ ⎝⎛-=-4sin 2cos sin πθθθ ,又⎥⎦⎤⎢⎣⎡-∈⎪⎭⎫ ⎝⎛-43,44πππθ,()sin cos [1,2]θθ∴-∈-.由题意得2>t .故填()+∞,2.评析 这是一道蕴含着丰富数学思想方法的好题.解法1﹑2﹑3分别运用方程思想﹑数形结合思想﹑化归转换思想,从不同的角度解决了问题,体现了这道题的丰富内涵.解法2揭示了本题的几何背景.解法3的依据是:不等式t x x +≥-21 的解集是∅等价于不等式x x t -->21恒成立.有人认为不等式t x x +≥-21 的解集是∅等价于不等式x x t -->21有解,这种观点是错误的.事实上,21=t 时,不等式x x t -->21就有解(比如53=x 就是其一个解),而21=t 时,不等式t x x +≥-21即2112+≥-x x 的解集却不是∅ (比如0就是它的一个解).拓展 通过上面的分析,并作进一步的研究,我们便有下面的 结论 已知t 为参数, ()f x 的值域是[],a b . (1) 若()t f x ≤恒成立,则t a ≤. (2) 若()t f x ≥恒成立,则t b ≥. (3) 若()t f x ≤的解集是∅,则t b >. (4) 若()t f x ≥的解集是∅,则t a <. (5) 若()t f x ≤有解,则t b ≤. (6) 若()t f x ≥有解,则t a ≥.若将()f x 的值域改为[),a b 、(],a b 、(),a b 等,也会有相应的结论,限于篇幅,不再一一列出. 根据这一结论,请回答下列问题:1.不等式213x x t -≥+的解集是∅,则实数t 的取值范围是 .2.不等式213x x t -≤+的解集是∅,则实数t 的取值范围是 .3.不等式213x x t -≥+有解,则实数t 的取值范围是 .4.不等式213x x t -≤+有解,则实数t 的取值范围是 .5.不等式213x x t ->+恒成立,则实数t 的取值范围是 .6.不等式213x x t -<+恒成立,则实数t 的取值范围是 .答案 1. ()2,+∞ 2.(),3-∞- 3.)3,⎡-+∞⎣4.(],2-∞5.(),3-∞- 6.()2,+∞题9 不等式03422≥+---x x x 的解集是 ( )A 、⎥⎦⎤⎢⎣⎡++255,253 B 、⎥⎦⎤⎢⎣⎡+-255,253C 、⎪⎪⎭⎫⎢⎣⎡+∞+⎥⎦⎤ ⎝⎛+∞-,255253, D 、⎥⎦⎤⎢⎣⎡+-253,255 (第十三届高二第二试第8题)解法 1 当0342≥+-x x ,即1≤x 或3≥x 时,原不等式就是,03422≥-+--x x x 即0552≤+-x x ,解得2553.255255+≤≤∴+≤≤-x x . 当2430,13x x x -+<即<<时,原不等式就是,03422≥+-+-x x x 即,0132≥+-x x 解得253-≤x 或3535322x x ++≥∴≤<,. 综上,所求解集为3555,33,,22⎡⎫⎡⎤++⎪⎢⎢⎥⎪⎣⎭⎣⎦即⎥⎦⎤⎢⎣⎡++255,253.故选A. 解法2 如图,作函数2-=x y 和342+-=x x y 的图象.要求的解集就是21y y ≥,即1y 在2y 上方时x 的区间,即图中线段AB 上的点所对应的横坐标所组成的区间[]B A x x ,.又(),1234222--=+-=x x x y 当32<<x 时,().2122--=x y 由()2212-=--x x 可解得253+=A x .当3>x 时,(),1222--=x y 由()2122-=--x x 可解得255+=Bx ,∴所求不等式的解集为⎥⎦⎤⎢⎣⎡++255,253,故选A.解法 3 同解法2画出图形后,可知解集为一个闭区间[]b a ,,且()3,2∈a ,对照选择支.可知选A.解法4 当5.1=x 时,03422<+---x x x 时,故1.5不是原不等式的解,从而排除含1.5的B 、1 3A BC 、D ,故选A.评析 解含绝对值的不等式,一般是先去掉绝对值符号,然后再求解.解法1正是运用分类讨论思想这样解决问题的,也是一种通法.我们知道,方程()()x g x f =的解就是函数()x f y =与()x g y =的图象交点的横坐标;若图象无交点,则方程无解.而不等式()()x g x f >的解集则是函数()x f y =的图象在()x g y =的图象上方部分的点的横坐标的集合;若()x f y =的图象都不在()x g y =的图象的上方,则不等式无解.解法2正是运用这种数形结合思想解决问题的.许多超越不等式的近似解或解的所属范围也都运用此法解决. 选择题的正确答案就在选择支中,只是要求我们把它选出来而已.因此,不是非要求出答案再对照选择支选择答案不可的.基于此,解法3运用估算的方法选出了正确答案(注意:估算能力是高考明确要求要考查的能力之一).而解法4则运用特殊值排除了干扰支,进而选出了正确答案.类似这种不等式(方程)的解集是什么的选择题几乎都可用这种方法解,而且十分方便.值得注意的是,特殊值只能否定错误结论,根据正确选择支的唯一性才能肯定正确答案.另外,如何选取特殊值也是很有讲究的,读者可在解题实践中体会并加以总结.题10 不等式199920003224>-+-x x 的解集是 . (第十一届高二培训题第41题)解 设y=x x -+-3224 ,由⎩⎨⎧≥-≥-03024x x ,得定义域为[21,3].1999200010,106144410)3)(24(4)3(42422>≥∴≥-+-+=--+-+-=y x x x x x x y 即原不等式在定义域内恒成立,故所求解集为[21,3]. 评析 解无理不等式,通常是通过乘方去掉根号,化为有理不等式后再解.但从此题中不等式右边的数可以想象该有多么复杂,若将题目改为“276.571623.93224+>-+-πx x 的解集是 ”,还会有谁想通过平方化为有理不等式去解呢?显然,常规方法已难以解决问题,怎么办呢?考虑到不等式中的x ∈[21,3],从而左边1999200010>≥,故解集就是定义域,这就启示我们,当常规思维受阻或难以奏效时,就应积极开展非常规思维,另辟蹊径,寻求解决问题的新方法.拓展 根据上面的分析,并加以拓广,我们可得结论 设a,b,c 是常数,若[,],()[,],()[,]x a b f x m n g x p q ∈∈∈,则 当m c >时,不等式()f x c >的解集是[,],()a b f x c ≤的解集是φ; 当n c <时, 不等式()f x c ≥的解集是φ,()f x c <的解集是[,]a b ; 当n p >时, 不等式()()f x g x ≥的解集是φ, ()()f x g x <的解集是[,]a b ; 当m q >时,不等式()()f x g x >的解集是[,]a b ,()()f x g x ≤的解集是φ. 根据这一结论,不难求得下列不等式的解集:1、 2sinx+3cosx>4;2、 322163-->-x x ;3、 x x x -<-+-433)1(log 4;4、 sinx-cosx<32+x .答案:1、φ 2、[2,+∞) 3、φ 4、R。

希望杯初三数学竞赛试卷

希望杯初三数学竞赛试卷

一、选择题(每题5分,共25分)1. 若一个数的平方根是2,那么这个数是()A. 4B. -4C. 8D. -82. 在直角坐标系中,点A(2,3)关于原点对称的点是()A. (-2,-3)B. (2,-3)C. (-2,3)D. (3,-2)3. 若a、b、c是等差数列,且a+b+c=0,则a²+b²+c²的值为()A. 0B. 3C. 6D. 94. 已知函数f(x)=x²-2x+1,那么f(2x)的值为()A. 4x²-4x+1B. 4x²-8x+1C. 4x²-8x+4D. 4x²-4x+45. 在等腰三角形ABC中,AB=AC,且∠B=40°,则∠C的度数为()A. 40°B. 50°C. 60°D. 70°二、填空题(每题5分,共25分)6. 若a=√2+√3,b=√2-√3,则a+b的值为______。

7. 在直角坐标系中,点P(-2,3)关于y轴对称的点是______。

8. 已知等差数列{an}的首项为2,公差为3,那么第10项an的值为______。

9. 若函数f(x)=ax²+bx+c的图像开口向上,且a>0,b=0,则函数的对称轴为______。

10. 在等腰三角形ABC中,AB=AC,且∠B=30°,则∠C的度数为______。

三、解答题(每题10分,共30分)11. 已知数列{an}的通项公式为an=2n-1,求前n项和S_n。

12. 在直角坐标系中,点A(-2,3)关于直线y=x的对称点为B,求点B的坐标。

13. 已知等差数列{an}的首项为3,公差为2,求第10项an的值。

四、应用题(每题10分,共20分)14. 小明骑自行车从A地到B地,已知A、B两地的距离为10km,小明以每小时15km的速度匀速行驶,求小明从A地到B地所需的时间。

希望杯数学竞赛试题

希望杯数学竞赛试题

希望杯数学竞赛试题一、选择题(每题3分,共15分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 32. 如果一个数的平方等于81,那么这个数是多少?A. 9B. -9C. 81D. 9 或 -93. 一个圆的半径是5厘米,那么它的周长是多少?A. 10π厘米B. 20π厘米C. 30π厘米D. 40π厘米4. 一个等差数列的首项是2,公差是3,第5项是多少?A. 10B. 11C. 14D. 175. 一个直角三角形的两条直角边分别是3和4,斜边的长度是多少?A. 5B. 6C. 7D. 8二、填空题(每题4分,共20分)6. 一个数的平方根是4,那么这个数是________。

7. 一个长方体的长、宽、高分别是2厘米、3厘米和4厘米,它的体积是________立方厘米。

8. 如果一个数的绝对值是5,那么这个数可以是________或________。

9. 一个等比数列的首项是2,公比是2,第4项是________。

10. 一个圆的面积是π,那么它的半径是________。

三、简答题(每题10分,共30分)11. 解释什么是素数,并给出前5个素数。

12. 描述如何使用勾股定理来解决直角三角形的问题。

13. 给出一个例子,说明如何使用代数方法解决实际问题。

四、解答题(每题15分,共30分)14. 一个农场主有一块长方形土地,长是宽的两倍。

如果这块土地的周长是100米,求这块土地的面积。

15. 一个班级有40名学生,其中30名学生喜欢数学,20名学生喜欢英语。

假设没有学生同时喜欢数学和英语,求喜欢数学但不喜欢英语的学生人数。

五、证明题(每题20分,共20分)16. 证明:在一个直角三角形中,斜边的中点到三个顶点的距离相等。

结束语希望杯数学竞赛试题旨在考察学生的数学基础知识、逻辑推理能力以及解决实际问题的能力。

通过这样的练习,学生不仅能够提高自己的数学水平,还能够培养解决问题的兴趣和信心。

全国四年级希望杯数学竞赛全部试题与答案

全国四年级希望杯数学竞赛全部试题与答案

全国四年级希望杯数学竞赛全部试题与答案一、竞赛介绍“希望杯”是全国小学生奥数竞赛之一,自1996年创办以来,已经成为小学生数学竞赛中最有影响力的赛事之一。

本次比赛是面向四年级的“希望杯”数学竞赛,包含两个考试科目:数学(含应用题)和口算。

这个文档将介绍全部试题和答案。

二、数学试题试题一下列哪一个数是偶数?A. 1B. 3C. 5D. 2答案D. 2试题二根据下列算式,1 + 2 + 3 + 4 + 5 + 6 = ?A. 15B. 18C. 20D. 21答案D. 21试题三张三一周的零花钱是12元,他每天都要花1元,那么他一周之后还剩下多少钱?A. 5元B. 6元C. 7元D. 8元B. 6元试题四计算:(1 + 2 - 3)× 5A. 0B. 5C. 10D. 15答案B. 5试题五根据下列数字,找到其中的三个连续数字使它们的和最大。

{3, 6, 8, 2, 7, 1, 9, 0}A. 3, 6, 8B. 8, 2, 7C. 1, 9, 0D. 6, 8, 2答案B. 8, 2, 7三、口算试题试题一计算:1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10答案55试题二计算:9 × 5答案45计算:16 ÷ 4答案4试题四计算:47 - 23答案24试题五计算:200 ÷ 8答案25四、以上是全国四年级希望杯数学竞赛的全部试题和答案。

经过这次竞赛的练习,寻找方法和答案的过程不仅能够锻炼孩子们的思维能力和逻辑思维能力,同时也是对他们平时所学知识的一种回顾和检验。

希望这份文档能够对您有所帮助。

希望杯数学竞赛试题

希望杯数学竞赛试题

希望杯数学竞赛试题一、选择题1.下列哪个数是2的倍数? A. 3 B. 4 C. 5 D. 62.请计算:$(3 + 4) \\times 2 - 5 = ?$ A. 4 B. 9 C. 11 D. 143.三个数相加等于18,如果其中一个数是6,另一个数是8,那么第三个数是? A. 4 B. 8 C. 10 D. 124.若x=2,则下列哪个等式是正确的? A. 2x=4 B. x+2=4 C. x−2=0 D. 2x+5=9二、填空题1.一年有\_\_个月。

2.一个直角三角形的两条直角边分别为\\和\\。

3.根据费马小定理:对于任意整数a和质数p,若p不能整除a,则$a^{p-1} \\equiv \\_\\_ \\, \\, (\\text{mod} \\, p)$。

三、解答题1.计算:1+2+3+4+5=?解答:将这些数字相加,得到15。

2.解方程:2x+3=7解答:首先将方程中的常数项移到等号的另一边:2x=7−3然后计算:2x=4最后将x的系数化为1:$x = \\frac{4}{2}$所以x=2。

四、应用题小明有16块巧克力,想要将它们平均分给4个朋友,每人可以分到几块?解答:由于小明有16块巧克力,而要分给4个朋友,所以每人可以分到的巧克力数量为:$\\frac{16}{4} = 4$所以,每人可以分到4块巧克力。

五、思考题某班级有30个学生,其中有5个学生同时喜欢数学和语文,7个学生只喜欢数学,8个学生只喜欢语文,剩下的学生都不喜欢数学和语文。

问有多少个学生既不喜欢数学也不喜欢语文?解答:首先计算喜欢数学或语文的学生数量:喜欢数学的学生:7+5=12喜欢语文的学生:5+8=13然后计算不喜欢数学和语文的学生数量:总学生数:30不喜欢数学和语文的学生数量:30−12−13=5所以,有5个学生既不喜欢数学也不喜欢语文。

以上是希望杯数学竞赛的试题,包括选择题、填空题、解答题、应用题和思考题。

2021年第17届全国希望杯数学竞赛试题(Word可编辑版)

2021年第17届全国希望杯数学竞赛试题(Word可编辑版)

2021年第17届全国希望杯数学竞赛试题
(最新版)
-Word文档,下载后可任意编辑和处理-
第十七届“希望杯”全国数学邀请赛
高一第1试
2021年3月19日上午8:00至10:00
一、选择题(每小题4分,共40分)以下每题的4个选项中仅有一个是正确的,请将表示正确答案的英文字母写在下面的表格内。

题号
1
2
3
4
5
6
7
8
9
10
共得分
答案
1.设则()
(A) (B) (C) (D)
2.若的定义域为A,的定义域为B,那么()(A) (B) AB(C)(D)3.已知
(A)(B)(C)(D)的符号不确定4.设则
(A)16(B)4(C)2(D)5.已知,函数的图像关于原点对称的充要条件是()
(A)(B)(C)(D)
6.若三条边的长依次为,则三内角A,B,C的大小顺序为()(A)(B)(C)(D)
7.若实数满足
(A)(B)31(C)(D)或
8.区间所得的象集区间为,若区间的长度比区间
的长度大5,则=()
(A)5(B10(C)2.5(D)1
10.函数在区间上的最大值为-3,则a的值是()
(A)(B)
(C)(D)。

小学四年级希望杯历年数学竞赛试题和答案解析1_14届[最新[全套](完整版)]

小学四年级希望杯历年数学竞赛试题和答案解析1_14届[最新[全套](完整版)]

第一届小学“希望杯”全国数学邀请赛(第1试)四年级第1试1.下边三个图中都有一些三角形,在图A中,有个;在图B中,有个;在图C中,有个。

2.写出下面等式右边空白处的数,使等式能够成立:0.6+0.06+0.006+…=2002÷。

3.观察1,2,3,6,12,23,44,x,164的规律,可知x =。

4.如图,将一个三角形(有阴影)的两条边分别延长2倍,得到一个大三角形,这个大三角形的面积是原三角形面积的______倍。

5.如果规定a※b =13×a-b÷8,那么17※24的最后结果是。

6.气象局对部分旅游景区的某一天的气温预报如下表:其中,温差最小的景区是,温差最大的景区是。

7.AOB是三角形的纸,OA=OB,图中的虚线是折痕,至少折次就可以得到8个相同的三角形。

8.有的两位数,加48,就变成3位数;减48,就变成1位数,这样的两位数有,它们的和等于。

9.甲、乙、丙、丁四个学习小组共有图书280本,班主任老师提议让四个组的书一样多,得到拥护,于是从甲调14本给乙,从乙调15本给丙,从丙调17本给丁,从丁调18本给甲。

这时四个组的书一样多。

这说明甲组原来有书本。

10.幼儿园老师给几组小朋友分苹果,每组分7个,少3个;每组分6个,则多4个,苹果有个,小朋友共组。

11.在 a=20032003×2002和 b=20022003×2003中,较大的数是,它比较小的数大。

12.小明的家离学校2千米,小光的家离学校3千米,小明和小光的家相距千米。

13.甲、乙、丙三人中只有1人会开汽车。

甲说:“我会开。

”乙说:“我不会开。

”丙说:“甲不会开。

”三人的话只有一句是真话。

会开车的是。

14.为了支援西部,1班班长小明和2班班长小光带了同样多的钱买了同一种书44本,钱全部用完,小明要了26本书,小光要了18本书。

回校后,小明补给小光28元。

小明、小光各带了元,每本书价元。

【精编范文】希望杯数学竞赛试题-word范文模板 (9页)

【精编范文】希望杯数学竞赛试题-word范文模板 (9页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==希望杯数学竞赛试题篇一:最全希望杯数学竞赛真题及答案“希望杯”全国数学竞赛(第1-23届)第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题........................................ 003-0052.希望杯第一届(1990年)初中一年级第二试试题........................................ 010-0123.希望杯第二届(1991年)初中一年级第一试试题........................................ 018-0204.希望杯第二届(1991年)初中一年级第二试试题........................................ 024-0265.希望杯第三届(1992年)初中一年级第一试试题........................................ 032-0326.希望杯第三届(1992年)初中一年级第二试试题........................................ 038-0407.希望杯第四届(1993年)初中一年级第一试试题........................................ 048-0508.希望杯第四届(1993年)初中一年级第二试试题........................................ 056-0589.希望杯第五届(1994年)初中一年级第一试试题........................................ 064-066题 ..................................... 071-07311.希望杯第六届(1995年)初中一年级第一试试题 ...................................... 078-080 12希望杯第六届(1995年)初中一年级第二试试题 ...................................... 085-08713.希望杯第七届(1996年)初中一年级第一试试题 ...................................... 096-09814.希望杯第七届(1996年)初中一年级第二试试题 ...................................... 103-10515.希望杯第八届(1997年)初中一年级第一试试题 ...................................... 111-11316.希望杯第八届(1997年)初中一年级第二试试题 ...................................... 118-12017.希望杯第九届(1998年)初中一年级第一试试题 ...................................... 127-12918.希望杯第九届(1998年)初中一年级第二试试题 ...................................... 136-13819.希望杯第十届(1999年)初中一年级第二试试题 ...................................... 145-14720.希望杯第十届(1999年)初中一年级第一试试题 ...................................... 148-15121.希望杯第十一届(201X年)初中一年级第一试试题 .................................. 159-16122.希望杯第十一届(201X年)初中一年级第二试试题 .................................. 167-16923.希望杯第十二届(201X年)初中一年级第一试试题 .................................. 171-17424.希望杯第十二届(201X年)初中一年级第二试试题 .................................. 176-17825.希望杯第十三届(201X年)初中一年级第一试试题 .................................. 182-184题 .................................. 186-18927.希望杯第十四届(201X年)初中一年级第一试试题 .................................. 193-19628.希望杯第十四届(201X年)初中一年级第二试试题 .................................. 198-20029.希望杯第十五届(201X年)初中一年级第一试试题 (203)30.希望杯第十五届(201X年)初中一年级第二试试题 (204)31.希望杯第十六届(201X年)初中一年级第一试试题 .................................. 213-21832.希望杯第十六届(201X年)初中一年级第二试试题 (204)33.希望杯第十七届(201X年)初中一年级第一试试题 .................................. 228-23334.希望杯第十七届(201X年)初中一年级第二试试题 .................................. 234-23835.希望杯第十八届(201X年)初中一年级第一试试题 .................................. 242-24626.希望杯第十八届(201X年)初中一年级第二试试题 .................................. 248-25137.希望杯第十九届(201X年)初中一年级第一试试题 .................................. 252-25638.希望杯第十九届(201X年)初中一年级第二试试题 .................................. 257-26239.希望杯第二十届(201X年)初中一年级第一试试题 .................................. 263-26620.希望杯第二十届(201X年)初中一年级第二试试题 .................................. 267-271。

希望杯数学竟赛试试题

希望杯数学竟赛试试题

希望杯数学竟赛试试题希望杯数学竞赛试题一、选择题1. 下列哪个选项是等式x^2 - 49 = 0的解?A. x = -7B. x = 7C. x = 6D. x = -62. 在直角三角形ABC中,已知∠B = 90°,AB = 5 cm,BC = 12 cm,求AC的长度。

A. 13 cmB. 7 cmC. 17 cmD. 8 cm3. 已知一组数据:2、4、6、8、10,求这组数据的平均数。

A. 4B. 5C. 6D. 74. 若a = 2,b = 4,c = 6,d = 8,则(a + b) × (c + d)的值为:A. 30B. 48C. 56D. 645. 现有一组数据:12、15、17、19、21,将其从小到大排列后,第3个数是:A. 15B. 17C. 19D. 21二、填空题1. 下列哪个数是16的因数?___(答案:1、2、4、8、16)2. 若x = 2^2 + 3^3 - √25,则x的值为___(答案:25)3. 在矩形中,长是宽的2倍,若长为12 cm,则宽为___(答案:6 cm)4. 若a = 2,b = 5,则a的平方加b的平方等于___(答案:29)5. 在数轴上,点P的坐标为-3,点Q的坐标为2,则P和Q之间的距离为___(答案:5)三、解答题1. 有10个人比赛,比赛结束后,每个人站在不同的台阶上,已知站在第1个台阶和第10个台阶的是同一个人,请问站在第5个台阶的人有几种可能性?解答:由题意可知,第5个台阶的人只能是从第4个台阶上或者第6个台阶上来,所以有2种可能性。

2. 面积为24 cm²的矩形,长是宽的3倍,求矩形的长和宽。

解答:设矩形的长为3x,宽为x,则根据题意可得:3x * x = 24解方程得 x = 2所以矩形的长为3 * 2 = 6 cm,宽为2 cm。

3. 小明用一根绳子测量房间的周长,发现绳子正好绕房间走了2圈,绳子的长度为18 m。

数学难题“希望杯”竞赛试题.doc

数学难题“希望杯”竞赛试题.doc

1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.1.有一百名小运动员所穿运动服的号码恰是从1到100这一百个自然数,问从这100名运动员中至少要选出多少人,才能使在被选出的人中必有两人,他们运动服的号码数相差9?请说明你的理由.2.少年科技组制成一台单项功能计算器,对任意两个整数只能完成求差后再取绝对值的运算,其运算过程是:输入第一个整数x1,只显示不运算,接着再输入整数x2后则显示|x1-x2|的结果,此后每输入一个整数都是与前次显示的结果进行求差取绝对值的运算,现小明将从1到1991这一千九百九十一个整数随意地一个一个地输入,全部输入完毕之后显示的最后结果设为p.试求出p的最大值,并说明理由.4.若P=a2+3ab+b2,Q=a2-3ab+b2,则代入到代数式P-[Q-2P-(-P-Q)]中,化简后,是______.7.小华写出四个有理数,其中每三数之和分别为2,17,-1,-3,那么小华写出的四个有理数的乘积等于______.10.在下图所示的每个小方格中都填入一个整数:并且任意三个相邻格子中所填数之和都等于5,则x y zxyz++=__________.1.将分别写有数码1,2,3,4,5,6,7,8,9的九张正方形卡片排成一排,发现恰是一个能被11整除的最大的九位数.请你写出这九张卡片的排列顺序,并简述推理过程.2.一个自然数a,若将其数字重新排列可得一个新的自然数b.如果a恰是b的3倍,我们称a是一个“希望数”.(1)请你举例说明:“希望数”一定存在.(2)请你证明:如果a,b都是“希望数”,则ab一定是729的倍数.若a>0,在-a与a之间恰有1993个整数,则a的取值范围是______.甲、乙两个火车站相距189公里,一列快车和一列慢车分别从甲、乙两个车站同时出发,相向而行,经过1.5小时,两车相遇,又相距21公里,若快车比慢车每小时多行12公里,则慢车每小时行______公里.有人问一位老师:他教的班有多少学生.老师说:“一半学生在学数学,四分之一的学生在学音乐,七分之一的学生在念外语,还剩不足六位学生正在操场踢足球.”则这个“特长班”共有学生______人.设a=1÷2÷3÷4,b=1÷(2÷3÷4),c=1÷(2÷3)÷4,d=1÷2÷(3÷4),则(b÷a)÷(c÷d)=______.某次竞赛满分为100分,有六个学生的得分彼此不等,依次按高分到低分排列名次.他们六个人的平均分为91分,第六名的得分是65分.则第三名的得分至少是______分.有甲、乙、丙、丁四位同学去林中采蘑菇.平均每个采得蘑菇的个数约是一个十位数字为3的两位数,又知甲采的数量是乙的45,乙采的数量是丙的32倍,丁比甲多采了3个蘑菇,则丁采蘑菇______ 个.1.如图28,十三个边长为正整数的正方形纸片恰好拼成一个大矩形(其中有三个小正方形的边长已标出字母x,y,z).试求满足上述条件的矩形的面积最小值.2.你能找到三个整数a,b,c,使得关系式(a+b+c)(a-b-c)(a-b+c)(b+c-a)=3388成立吗?如果能找到,请举一例,如果找不到,请说明理由.在自然数中,从小到大地数,第15个质数是N,N的数字和是a,数字积是b,则22 a bN的值是________.已知a,b是互为相反数,c,d是互为负倒数,x的绝对值等于它的相反数的2倍,则x3+abcdx+a-bcd的值是______.某缝纫师做成一件衬衣、一条裤子、一件上衣所用的时间之比为1∶2∶3.他用十个工时能做成2件衬衣、3条裤子和4件上衣.那么他要做成14件衬衣、10条裤子和2件上衣,共需______工时.若p,q都是质数,以x为未知数的方程px+5q=97的根是1,则p2-q=______.1.在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图9所示.试求图中阴影部分的总面积(写出分步求解的简明过程)2.(1)现有一个19°的“模板”(图10),请你设计一种办法,只用这个“模板”和铅笔在纸上画出1°的角来.(2)现有一个17°的“模板”与铅笔,你能否在纸上面画出一个1°的角来?(3)用一个21°的“模板”与铅笔,你能否在纸上画出一个1°的角来?对(2)、(3)两问,如果能,请你简述画法步骤,如果不能,请你说明理由.某市举行环城自行车比赛,跑的路线一圈是6千米,甲车速是乙车速的,在出发后1小时10分钟时,甲、乙二人恰在行进中第二次相遇,则乙车比甲车每分钟多走_____千米.如图8,两条线段AB、CD将大长方形分成四个小长方形,其中S1面积是8,S2的面积是6,S3的面积是5.则阴影三角形的面积是_____.1.某班参加校运动会的19名运动员的运动服号码恰是1~19号,这些运动员随意地站成一个圆圈,则一定有顺次相邻的某3名运动员,他们运动服号码数之和不小于32,请你说明理由.2.已知ax+by=7,ax2+by2=49,ax3+by3=133,ax4+by4=406,试求1995(x+y)+6xy-17(a+b )的值.2如图3,某公园的外轮廓是四边形ABCD,被对角线AC、BD分为四个部分,△AOB的面积是1平方千米,△BOC的面积是2平方千米,△COD的面积是3平方千米,公园陆地的总面积是6.92平方千米,那么人工湖的面积是______平方千米.快慢两列火车的长分别是150米和200米,相向行驶在平行轨道上.若坐在慢车上的人见快车驶过窗口的时间是6秒,那么坐在快车上的人见慢车驶过窗口所用的时间是______秒.一次数学测验满分是100分,全班38名学生平均分是67分.如果去掉A、B、C、D、E五人的成绩,其余人的平均分是62分,那么在这次测验中,C的成绩是______分.21.(1)请你写出不超过30的自然数中的质数之和.(2)请回答,千位数是1的四位偶自然数共有多少个?(3)一个四位偶自然数的千位数字是1,当它分别被四个不同的质数去除时,余数也都是1,试求出满足这些条件的所有自然数,其中最大的一个是多少?22.(1)用1×1,2×2,3×3三种型号的正方形地板砖铺设23×23的正方形地面,请你设计一种辅设方案,使得1×1的地板砖只用一块.(2)请你证明:只用2×2,3×3两种型号的地板砖,无论如何铺设都不能铺满23×23的正方形地面而不留空隙.初一“数学晚会”上,有10个同学藏在10个大盾牌后面.男同学的盾牌前面写的是一个正数,女同学的盾牌前面写的是一个负数,这10个盾牌如下所示.则盾牌后面的同学中有女同学______人;男同学______人.83023(5)(1)83(30),,0.1,,,8,2,,4(2),51,(25)19971997(3)a ---+---⨯-⨯---- 《数理天地》(初中版)月刊,全年共出12期,每期定价2.50元,某中学初一年级组织集体订阅,有些学生订半年而另一些学生订全年,共需订费1320元,若订全年的同学都改订半年,而订半年的同学均改订全年时,共需订费1245元,则该中学初一年级订阅《数理天地》(初中版)的学生共有______人.21.已知一个七位自然数62xy427是99的倍数(其中x 、y 是阿拉伯数字),试求950x +24y +1之值,简写出求解过程.22.用24个面积为1的单位正三角形拼成如图5所示的正六边形,我们把面积为4的正三角形称为“希望形”.(1)请你回答,图中共可数出多少个不同的“希望形”?(2)将1~24这24个自然数填入24个单位正三角形中(每个里只填1个数).我们依次对所有“希望形”中的4个单位正三角形中填的数同时加上一个相同的自然数称为一次操作,问能否经过有限次操作员后,使图中24个单位正三角形中都变为相同的自然数?如果能,请给出一种填法,如果不能,请简述理由.甲、乙两列客车的长分别为150米和200米,它们相向行驶在平行的轨道上,已知甲车上某乘客测得乙车在他窗口外经过的时间是10秒,那么乙车上的乘客看见甲车在他窗口外经过的时间是_________秒.某人以4千米/时的速度步行由甲地到乙地,然后又以6千米/时的速度从乙地返回甲地,那么某人往返一次的平均速度是______千米/时.21.23个不同的正整数的和是4845,问:这23个数的最大公约数可能达到的最大值是多少?写出你的结论,并说明理由.22.(a )请你在平面上画出6条直线(没有三条共点),使得它们中的每条直线都恰与另三条直线相交,并简单说明画法.(b )能否在平面上画出7条直线(任意3条都不共点),使得它们中的每条直线都恰与另3条直线相交?如果能,请画出一例,如果不能,请简述理由.A 、B 两个港口相距300公里.若甲船顺水自A 驶向B,乙船同时自B 逆水驶向A,两船在C 处相遇.若乙船顺水自A 驶向B,甲船同时自B 逆水驶向A,则两船于D 处相遇,C 、D 相距30公里.已知甲船速度为27公里/小时,则乙船速度是______公里/ 小时.甲、乙、丙、丁、戊五名同学参加推铅球比赛,通过抽签决定出赛顺序. 在未公布顺序前每人都对出赛顺序进行了猜测.甲猜:乙第三,丙第五;乙猜: 戊第四,丁第五;丙猜:甲第一,戊第四;丁猜:丙第一,乙第二;戊猜:甲第三,丁第四. 老师说每人的出赛顺序都至少被一人所猜中,则出赛顺序中,第一是______, 第三是______,第五是_______.21.一个长方形如图所示恰分成六个正方形,其中最小的正方形面积是1 平方厘米.求这个长方形的面积.22.已知一组两两不等的四位数,它们的最大公约数是42, 最小公倍数是90090.问这组四位数最多能有多少个?它们的和是多少?某种出租汽车的车费是这样计算的:路程在4公里以内(含4公里)为10元4角,达到4公里以后,每增加1公里加1元6角;达到15公里后,每增加1公里加2元4角,增加不足1公里时按四舍五入计算,则乘坐15公里该种出租车应交车费________元,某乘客乘坐该种出租车交了车费95元2角,则这个乘客乘该出租车行驶的路程为________公里。

希望杯七年级数学竞赛试卷

希望杯七年级数学竞赛试卷

一、选择题(每题5分,共25分)1. 下列各数中,是正整数的是()A. -3.5B. 0.2C. -2D. 32. 已知a=2,b=-3,则a²+b²的值为()A. 7B. 5C. 1D. 133. 下列各组数中,成等差数列的是()A. 1, 3, 5, 7B. 2, 4, 6, 8C. 3, 6, 9, 12D. 1, 4, 7, 104. 若方程2x-3=5的解为x,则x+3的值为()A. 2B. 3C. 4D. 55. 下列函数中,是反比例函数的是()A. y=x+1B. y=2xC. y=3/xD. y=2x²二、填空题(每题5分,共25分)6. 3的平方根是______,-3的立方根是______。

7. 若一个数的平方等于9,则这个数是______。

8. 在直角三角形中,若两直角边的长度分别为3和4,则斜边的长度是______。

9. 等差数列{an}中,首项a1=1,公差d=2,则第10项an的值为______。

10. 若函数y=kx+b的图像经过点(2,3),则k和b的值分别是______。

三、解答题(每题15分,共60分)11. (15分)已知函数y=2x-3,求:(1)当x=4时,y的值;(2)当y=5时,x的值。

12. (15分)已知等差数列{an}中,a1=2,公差d=3,求:(1)第n项an的表达式;(2)前n项和Sn的表达式。

13. (15分)已知直角三角形的两条直角边分别为3和4,求:(1)斜边的长度;(2)该三角形的面积。

14. (15分)已知函数y=kx²+bx+c的图像经过点(1,2)和(-1,2),求:(1)函数的解析式;(2)当x=0时,y的值。

四、附加题(每题20分,共40分)15. (20分)已知数列{an}的前n项和为Sn,且满足条件:a1=1,an=an-1+2n-1(n≥2),求:(1)数列{an}的通项公式;(2)数列{an}的前n项和Sn的表达式。

历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)

历届(1-23)希望杯数学竞赛初一七年级真题及答案(最新整理WORD版)

“希望杯”全国数学竞赛(第1-23届)初一年级/七年级第一/二试题目录1.希望杯第一届(1990年)初中一年级第一试试题............................................. 003-0052.希望杯第一届(1990年)初中一年级第二试试题............................................. 010-0123.希望杯第二届(1991年)初中一年级第一试试题............................................. 016-0204.希望杯第二届(1991年)初中一年级第二试试题............................................. 022-0265.希望杯第三届(1992年)初中一年级第一试试题............................................. 029-0326.希望杯第三届(1992年)初中一年级第二试试题............................................. 034-0407.希望杯第四届(1993年)初中一年级第一试试题............................................. 043-0508.希望杯第四届(1993年)初中一年级第二试试题............................................. 050-0589.希望杯第五届(1994年)初中一年级第一试试题............................................. 057-06610.希望杯第五届(1994年)初中一年级第二试试题 .......................................... 063-07311.希望杯第六届(1995年)初中一年级第一试试题 ........................................... 070-080 12希望杯第六届(1995年)初中一年级第二试试题........................................... 077-08713.希望杯第七届(1996年)初中一年级第一试试题........................................... 086-09814.希望杯第七届(1996年)初中一年级第二试试题............................................. 91-10515.希望杯第八届(1997年)初中一年级第一试试题............................................. 99-11316.希望杯第八届(1997年)初中一年级第二试试题........................................... 106-12017.希望杯第九届(1998年)初中一年级第一试试题........................................... 114-12918.希望杯第九届(1998年)初中一年级第二试试题........................................... 123-13819.希望杯第十届(1999年)初中一年级第二试试题........................................... 130-14720.希望杯第十届(1999年)初中一年级第一试试题........................................... 148-15121.希望杯第十一届(2000年)初中一年级第一试试题....................................... 143-16122.希望杯第十一届(2000年)初中一年级第二试试题....................................... 150-16923.希望杯第十二届(2001年)初中一年级第一试试题....................................... 154-17424.希望杯第十二届(2001年)初中一年级第二试试题....................................... 158-17825.希望杯第十三届(2002年)初中一年级第一试试题....................................... 164-18426.希望杯第十三届(2001年)初中一年级第二试试题....................................... 168-18927.希望杯第十四届(2003年)初中一年级第一试试题....................................... 175-19628.希望杯第十四届(2003年)初中一年级第二试试题....................................... 179-20029.希望杯第十五届(2004年)初中一年级第一试试题 (183)30.希望杯第十五届(2004年)初中一年级第二试试题 (184)31.希望杯第十六届(2005年)初中一年级第一试试题....................................... 213-21832.希望杯第十六届(2005年)初中一年级第二试试题 (184)33.希望杯第十七届(2006年)初中一年级第一试试题....................................... 228-23334.希望杯第十七届(2006年)初中一年级第二试试题....................................... 234-23835.希望杯第十八届(2007年)初中一年级第一试试题....................................... 242-246 26.希望杯第十八届(2007年)初中一年级第二试试题....................................... 248-25137.希望杯第十九届(2008年)初中一年级第一试试题....................................... 252-25638.希望杯第十九届(2008年)初中一年级第二试试题....................................... 257-26239.希望杯第二十届(2009年)初中一年级第一试试题....................................... 263-26620.希望杯第二十届(2009年)初中一年级第二试试题....................................... 267-27121.希望杯第二十一届(2010年)初中一年级第一试试题 ................................... 274-27622.希望杯第二十二届(2011年)初中一年级第二试试题 ................................... 285-28823.希望杯第二十三届(2012年)初中一年级第二试试题 ................................... 288-301希望杯第一届(1990年)初中一年级第1试试题一、选择题(每题1分,共10分)1.如果a ,b 都代表有理数,并且a +b=0,那么 ( )A .a ,b 都是0.B .a ,b 之一是0.C .a ,b 互为相反数.D .a ,b 互为倒数.2.下面的说法中正确的是 ( )A .单项式与单项式的和是单项式.B .单项式与单项式的和是多项式.C .多项式与多项式的和是多项式.D .整式与整式的和是整式.3.下面说法中不正确的是 ( )A. 有最小的自然数. B .没有最小的正有理数.C .没有最大的负整数.D .没有最大的非负数.4.如果a ,b 代表有理数,并且a +b 的值大于a -b 的值,那么( ) A .a ,b 同号. B .a ,b 异号.C .a >0. D .b >0.5.大于-π并且不是自然数的整数有( ) A .2个. B .3个.C .4个. D .无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是 ( )A .0个.B .1个.C .2个.D .3个.7.a 代表有理数,那么,a 和-a 的大小关系是 ( )A .a 大于-a .B .a 小于-a .C .a 大于-a 或a 小于-a .D .a 不一定大于-a .8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )A .乘以同一个数.B .乘以同一个整式.C .加上同一个代数式.D .都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )A .一样多.B .多了.C .少了.D .多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )A .增多.B .减少.C .不变.D .增多、减少都有可能.二、填空题(每题1分,共10分)1. 21115160.01253(87.5)(2)4571615⨯-⨯-÷⨯+--= ______. 2.198919902-198919892=______.3.2481632(21)(21)(21)(21)(21)21+++++-=________. 4. 关于x 的方程12148x x +--=的解是_________. 5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-24125时,代数式(3x 3-5x 2+6x -1)-(x 3-2x 2+x -2)+(-2x 3+3x 2+1)的值是____. 7.当a=-0.2,b=0.04时,代数式272711()(0.16)()73724a b b a a b --++-+的值是______. 8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的13.如果工作4天后,工作效率提高了15,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案与提示一、选择题1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).10.在4时整,时针与分针针夹角为120°即希望杯第一届(1990年)初中一年级第2试试题一、选择题(每题1分,共5分)以下每个题目里给出的A,B,C,D四个结论中有且仅有一个是正确的.请你在括号填上你认为是正确的那个结论的英文字母代号.1.某工厂去年的生产总值比前年增长a%,则前年比去年少的百分数是( )A.a%.B.(1+a)%. C.1100aa+D.100aa+2.甲杯中盛有2m毫升红墨水,乙杯中盛有m毫升蓝墨水,从甲杯倒出a毫升到乙杯里, 0<a<m,搅匀后,又从乙杯倒出a毫升到甲杯里,则这时( )A.甲杯中混入的蓝墨水比乙杯中混入的红墨水少.B.甲杯中混入的蓝墨水比乙杯中混入的红墨水多.C.甲杯中混入的蓝墨水和乙杯中混入的红墨水相同.D.甲杯中混入的蓝墨水与乙杯中混入的红墨水多少关系不定.3.已知数x=100,则( )A.x是完全平方数.B.(x-50)是完全平方数.C.(x-25)是完全平方数.D.(x+50)是完全平方数.4.观察图1中的数轴:用字母a,b,c依次表示点A,B,C对应的数,则111,,ab b a c-的大小关系是( )A.111ab b a c<<-; B.1b a-<1ab<1c; C.1c<1b a-<1ab; D.1c<1ab<1b a-.5.x=9,y=-4是二元二次方程2x2+5xy+3y2=30的一组整数解,这个方程的不同的整数解共有( )A.2组.B.6组.C.12组.D.16组.二、填空题(每题1分,共5分)1.方程|1990x-1990|=1990的根是______.2.对于任意有理数x,y,定义一种运算*,规定x*y=ax+by-cxy,其中的a,b,c表示已知数,等式右边是通常的加、减、乘运算.又知道1*2=3,2*3=4,x*m=x(m≠0),则m 的数值是______.3.新上任的宿舍管理员拿到20把钥匙去开20个房间的门,他知道每把钥匙只能开其中的一个门,但不知道每把钥匙是开哪一个门的钥匙,现在要打开所有关闭着的20个房间,他最多要试开______次.4.当m=______时,二元二次六项式6x2+mxy-4y2-x+17y-15可以分解为两个关于x,y 的二元一次三项式的乘积.5.三个连续自然数的平方和(填“是”或“不是”或“可能是”)______某个自然数的平方.三、解答题(写出推理、运算的过程及最后结果.每题5分,共15分)1.两辆汽车从同一地点同时出发,沿同一方向同速直线行驶,每车最多只能带24桶汽油,途中不能用别的油,每桶油可使一辆车前进60公里,两车都必须返回出发地点,但是可以不同时返回,两车相互可借用对方的油.为了使其中一辆车尽可能地远离出发地点,另一辆车应当在离出发地点多少公里的地方返回?离出发地点最远的那辆车一共行驶了多少公里?2.如图2,纸上画了四个大小一样的圆,圆心分别是A,B,C,D,直线m通过A,B,直线n通过C,D,用S表示一个圆的面积,如果四个圆在纸上盖住的总面积是5(S-1),直线m,n之间被圆盖住的面积是8,阴影部分的面积S1,S2,S3满足关系式S3=13S1=13S2,求S.3.求方程11156x y z++=的正整数解.答案与提示一、选择题1.D 2.C 3.C 4.C 5.D提示:1.设前年的生产总值是m,则去年的生产总值是前年比去年少这个产值差占去年的应选D.2.从甲杯倒出a毫升红墨水到乙杯中以后:再从乙杯倒出a毫升混合墨水到甲杯中以后:乙杯中含有的红墨水的数量是①乙杯中减少的蓝墨水的数量是②∵①=②∴选C.∴x-25=(10n+2+5)2可知应当选C.4.由所给出的数轴表示(如图3):可以看出∴①<②<③,∴选C.5.方程2x2+5xy+3y2=30可以变形为(2x+3y)(x+y)=1·2·3·5∵x,y是整数,∴2x+3y,x+y也是整数.由下面的表可以知道共有16个二元一次方程组,每组的解都是整数,所以有16组整数组,应选D.二、填空题提示:1.原方程可以变形为|x-1|=1,即x-1=1或-1,∴x=2或0.2.由题设的等式x*y=ax+by-cxy及x*m=x(m≠0)得a·0+bm-c·0·m=0,∴bm=0.∵m≠0,∴b=0.∴等式改为x*y=ax-cxy.∵1*2=3,2*3=4,解得a=5,c=1.∴题设的等式即x*y=5x-xy.在这个等式中,令x=1,y=m,得5-m=1,∴m=4.3.∵打开所有关闭着的20个房间,∴最多要试开4.利用“十字相乘法”分解二次三项式的知识,可以判定给出的二元二次六项式6x2+mxy-4y2-x+17y-15中划波浪线的三项应当这样分解:3x -52x +3现在要考虑y,只须先改写作然后根据-4y2,17y这两项式,即可断定是:由于(3x+4y-5)(2x-y+3)=6x2+5xy-4y2-x+17y-15就是原六项式,所以m=5.5.设三个连续自然数是a-1,a,a+1,则它们的平方和是(a-1)2+a2+(a+1)2=3a2+2,显然,这个和被3除时必得余数2.另一方面,自然数被3除时,余数只能是0或1或2,于是它们可以表示成3b,3b+1,3b+2(b是自然数)中的一个,但是它们的平方(3b)2=9b2(3b+1)2=9b2+6b+1,(3b+2)2=9b2+12b+4=(9b2+12b+3)+1被3除时,余数要么是0,要么是1,不能是2,所以三个连续自然数平方和不是某个自然数的平方.三、解答题1.设两辆汽车一为甲一为乙,并且甲用了x升汽油时即回返,留下返程需的x桶汽油,将多余的(24-2x)桶汽油给乙.让乙继续前行,这时,乙有(24-2x)+(24-x)=48-3x桶汽油,依题意,应当有48-3x≤24,∴x≥8.甲、乙分手后,乙继续前行的路程是这个结果中的代数式30(48-4x)表明,当x的值愈小时,代数式的值愈大,因为x≥8,所以当x=8时,得最大值30(48-4·8)=480(公里),因此,乙车行驶的路程一共是2(60·8+480)=1920(公里).2.由题设可得即2S-5S3=8……②∴x,y,z都>1,因此,当1<x≤y≤z时,解(x,y,z)共(2,4,12),(2,6,6),(3,3,6),(3,4,4)四组.由于x,y,z在方程中地位平等.所以可得如下表所列的15组解.希望杯第二届(1991年)初中一年级第1试试题一、选择题(每题1分,共15分)以下每个题目的A,B,C,D四个结论中,仅有一个是正确的,请在括号内填上正确的那个结论的英文字母代号.1.数1是( )A.最小整数.B.最小正数.C.最小自然数.D.最小有理数.2.若a>b,则( )A.11a b; B.-a<-b.C.|a|>|b|.D.a2>b2.3.a为有理数,则一定成立的关系式是( )A.7a>a.B.7+a>a.C.7+a>7.D.|a|≥7.4.图中表示阴影部分面积的代数式是( )A.ad+bc.B.c(b-d)+d(a-c).C.ad+c(b-d).D.ab-cd.5.以下的运算的结果中,最大的一个数是( )A.(-13579)+0.2468; B.(-13579)+1 2468;C.(-13579)×12468; D.(-13579)÷124686.3.1416×7.5944+3.1416×(-5.5944)的值是( ) A.6.1632. B.6.2832.C.6.5132.D.5.3692.7.如果四个数的和的14是8,其中三个数分别是-6,11,12,则笫四个数是( )A.16. B.15. C.14. D.13.8.下列分数中,大于-13且小于-14的是( )A.-1120; B.-413; C.-316; D.-617.9.方程甲:34(x-4)=3x与方程乙:x-4=4x同解,其根据是( )A.甲方程的两边都加上了同一个整式x.B.甲方程的两边都乘以43x;C. 甲方程的两边都乘以43; D. 甲方程的两边都乘以34.10.如图: ,数轴上标出了有理数a,b,c的位置,其中O是原点,则111,,a b c的大小关系是( ) A.111a b c>>; B.1b >1c >1a ; C. 1b >1a >1c ; D. 1c >1a >1b .11.方程522.2 3.7x =的根是( ) A .27. B .28. C .29. D .30. 12.当x=12,y=-2时,代数式42x y xy -的值是( )A .-6.B .-2.C .2.D .6.13.在-4,-1,-2.5,-0.01与-15这五个数中,最大的数与绝对值最大的那个数的乘积是( )A .225.B .0.15.C .0.0001.D .1.14.不等式124816x x x xx ++++>的解集是( ) A .x <16. B .x >16.C .x <1. D.x>-116. 15.浓度为p%的盐水m 公斤与浓度为q%的盐水n 公斤混合后的溶液浓度是 ( ) A.%2p q +; B.()%mp nq +; C.()%mp nq p q ++;D.()%mp nq m n++.二、填空题(每题1分,共15分)1. 计算:(-1)+(-1)-(-1)×(-1)÷(-1)=______. 2. 计算:-32÷6×16=_______. 3. 计算:(63)36162-⨯=__________.4. 求值:(-1991)-|3-|-31||=______. 5. 计算:1111112612203042-----=_________. 6.n 为正整数,1990n -1991的末四位数字由千位、百位、十位、个位、依次排列组成的四位数是8009.则n 的最小值等于______.7. 计算:19191919199191919191⎛⎫⎛⎫--- ⎪ ⎪⎝⎭⎝⎭=_______.8. 计算:15[(-1989)+(-1990)+(-1991)+(-1992)+(-1993)]=________.9.在(-2)5,(-3)5,512⎛⎫-⎪⎝⎭,513⎛⎫-⎪⎝⎭中,最大的那个数是________.10.不超过(-1.7)2的最大整数是______.11.解方程21101211,_____. 3124x x xx-++-=-=12.求值:355355113113355113⎛⎫---⎪⎝⎭⎛⎫- ⎪⎝⎭=_________.13.一个质数是两位数,它的个位数字与十位数字的差是7,则这个质数是______.14.一个数的相反数的负倒数是119,则这个数是_______.15.如图11,a,b,c,d,e,f均为有理数.图中各行,各列、两条对角线上三个数之和都相等,则ab cd efa b c d e f+++++++=____.答案与提示一、选择题1.C 2.B 3.B 4.C 5.C 6.B 7.B 8.B 9.C 10.B 11.D 12.A 13.B 1 4.A 15.D提示:1.整数无最小数,排除A;正数无最小数,排除B;有理数无最小数,排除D.1是最小自然数.选C.有|2|<|-3|,排除C;若2>-3有22<(-3)2,排除D;事实上,a>b必有-a<-b.选B.3.若a=0,7×0=0排除A;7+0=7排除C|0|<7排除D,事实上因为7>0,必有7+a>0+a=a.选B.4.把图形补成一个大矩形,则阴影部分面积等于ab-(a-c)(b-d)=ab-[ab-ad-c(b-d)]=ab-ab+ad+c(b-d)=ad+c(b-d).选C.5.运算结果对负数来说绝对值越小其值越大。

小学希望杯数学竞赛试卷

小学希望杯数学竞赛试卷

一、选择题(每题5分,共20分)1. 下列哪个数是质数?A. 25B. 27C. 29D. 302. 一个长方形的长是6厘米,宽是4厘米,它的周长是多少厘米?A. 16B. 20C. 24D. 283. 下列哪个图形是轴对称图形?A. 矩形B. 正方形C. 三角形D. 梯形4. 3个苹果的重量是2千克,那么5个苹果的重量是多少千克?A. 1B. 2C. 3D. 45. 下列哪个数是偶数?A. 17B. 18C. 19D. 20二、填空题(每题5分,共20分)6. 7 + 8 = ______7. 12 - 5 = ______8. 3 × 6 = ______9. 24 ÷ 4 = ______10. 15 + 15 = ______三、解答题(每题10分,共20分)11. 小明有25个苹果,他每天吃掉3个,连续吃了5天后,他还剩下多少个苹果?12. 小华的年龄是小红的3倍,小红比小华小2岁,请问小红和小华各多少岁?四、应用题(每题10分,共20分)13. 小明有5个球,小红比小明多2个球,那么小红有多少个球?14. 小刚骑自行车去公园,他每小时可以骑8千米,公园距离他家12千米,请问小刚需要多少小时才能到达公园?五、附加题(每题10分,共10分)15. 下列哪个数是奇数?A. 14B. 15C. 16D. 1716. 一个长方形的长是8厘米,宽是4厘米,它的面积是多少平方厘米?答案:一、选择题1. C2. B3. B4. B5. D二、填空题6. 157. 78. 189. 610. 30三、解答题11. 小明连续吃了5天,每天吃掉3个苹果,共吃掉15个苹果,所以他还剩下25 - 15 = 10个苹果。

12. 小华的年龄是小红的3倍,设小红的年龄为x岁,则小华的年龄为3x岁。

根据题意,小红比小华小2岁,所以3x - x = 2,解得x = 2,所以小红2岁,小华6岁。

四、应用题13. 小明有5个球,小红比小明多2个球,所以小红有5 + 2 = 7个球。

希望杯初中数学竞赛试卷

希望杯初中数学竞赛试卷

一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. 0.333...(循环小数)B. √2C. 3D. -1/42. 已知a、b、c是三角形的三边,且a+b>c,b+c>a,c+a>b,则下列结论正确的是()A. a=b=cB. a、b、c都是正数C. a、b、c都是整数D. 无法确定3. 一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的面积是()A. 24cm²B. 32cm²C. 36cm²D. 40cm²4. 若x²-5x+6=0,则x的值为()A. 2或3B. 1或4C. 1或2D. 3或45. 下列函数中,是奇函数的是()A. f(x) = x²B. f(x) = |x|C. f(x) = x³D. f(x) = x⁴6. 在平面直角坐标系中,点A(-2,3)关于原点对称的点B的坐标是()A. (-2,-3)B. (2,-3)C. (2,3)D. (-2,3)7. 下列各数中,绝对值最小的是()A. -3B. 0C. 1/2D. -1/28. 一个数的平方根是-5,那么这个数是()A. 25B. -25C. 0D. 无法确定9. 下列各数中,不是正数的是()A. 0.001B. -0.001C. 0.01D. -0.0110. 下列各数中,有最小正整数解的是()A. 2x+1=0B. 3x-2=0C. 4x-3=0D. 5x-4=0二、填空题(每题5分,共50分)11. 若a、b、c是等差数列的连续三项,且a+b+c=24,则b的值为______。

12. 已知函数f(x) = 2x+3,则f(-1)的值为______。

13. 在平面直角坐标系中,点P(2,-3)到原点的距离是______。

14. 若x²-4x+4=0,则x的值为______。

15. 下列函数中,是偶函数的是______。

希望杯数学竞赛七年级试卷

希望杯数学竞赛七年级试卷

一、选择题(每题5分,共50分)1. 下列各数中,不是有理数的是()A. 3.14B. √2C. -1/3D. 02. 若a、b、c是三角形的三边,且a+b>c,则下列结论一定正确的是()A. a-b>cB. a-b<cC. a-b≥cD. a-b≤c3. 已知等差数列{an}的首项为2,公差为3,则第10项an等于()A. 29B. 30C. 31D. 324. 下列函数中,是奇函数的是()A. y=x^2B. y=x^3C. y=|x|D. y=x^45. 在平面直角坐标系中,点P(2,3)关于原点的对称点是()A.(-2,-3)B.(2,-3)C.(-2,3)D.(2,3)6. 下列各式中,不是等式的是()A. 2x+1=5B. 3x-2=0C. x^2=4D. 2x=37. 若等比数列{an}的首项为3,公比为2,则第n项an等于()A. 3×2^(n-1)B. 3×2^nC. 3×2^(n+1)D. 3×2^(n-2)8. 下列图形中,是轴对称图形的是()A. 正方形B. 等腰三角形C. 平行四边形D. 长方形9. 已知一元二次方程x^2-5x+6=0的解为x1、x2,则x1+x2等于()A. 5B. -5C. 6D. -610. 下列各数中,属于无理数的是()A. √9B. √16C. √25D. √36二、填空题(每题5分,共50分)11. 已知等差数列{an}的首项为a1,公差为d,则第n项an=______。

12. 若函数y=kx+b(k≠0)的图象过点(2,3),则k=______,b=______。

13. 在平面直角坐标系中,点A(1,2)关于x轴的对称点是______。

14. 若等比数列{an}的首项为a1,公比为q,则第n项an=______。

15. 已知一元二次方程x^2-4x+4=0的解为x1、x2,则x1+x2=______。

希望杯数学竞赛题试卷小学

希望杯数学竞赛题试卷小学

一、选择题(每题5分,共20分)1. 下列哪个数是质数?A. 15B. 17C. 18D. 202. 一个长方形的长是8厘米,宽是5厘米,它的周长是多少厘米?A. 15厘米B. 20厘米C. 23厘米D. 28厘米3. 小明有5个苹果,小华有3个苹果,他们一共有多少个苹果?A. 8个B. 9个C. 10个D. 12个4. 一个三角形的三边长分别是3厘米、4厘米、5厘米,这个三角形是?A. 直角三角形B. 等腰三角形C. 等边三角形D. 不规则三角形5. 一个数的十分位上是7,百分位上是5,这个数是多少?A. 75B. 76C. 77D. 78二、填空题(每题5分,共25分)6. 12加8的和是______。

7. 7减去3的差是______。

8. 4乘以5的积是______。

9. 36除以6的商是______。

10. 1米等于______分米。

11. 0.5加上0.25的和是______。

12. 0.75减去0.25的差是______。

13. 12的倍数有:12,24,36,______,______。

14. 下列哪个图形是轴对称图形?(A. 正方形 B. 矩形 C. 三角形 D. 梯形)15. 下列哪个数是奇数?A. 22B. 23C. 24D. 25三、解答题(每题10分,共30分)16. 小华有10个橘子,她吃掉了3个,还剩多少个橘子?17. 一个长方形的长是7分米,宽是4分米,求这个长方形的面积。

18. 小明有8个铅笔,小华有12个铅笔,他们一共有多少个铅笔?四、应用题(每题10分,共20分)19. 小明去图书馆借了5本书,每天看3页,他需要几天才能看完整本书?20. 一个水池,每天注入的水量是30立方米,水池原有水量是60立方米,需要几天才能把水池注满?答案:一、选择题1. B2. D3. A4. A5. A二、填空题6. 207. 48. 209. 610. 1011. 0.7512. 0.513. 48,6014. A15. B三、解答题16. 小华还剩7个橘子。

希望杯数学竞赛题小学试卷

希望杯数学竞赛题小学试卷

希望杯数学竞赛题小学试卷一、选择题(每题2分,共10分)1. 如果一个数的平方等于它本身,那么这个数可能是:A. 0B. 1C. -1D. 0或12. 下列哪个数是质数?A. 2B. 4C. 6D. 83. 一个班级有40名学生,如果每5名学生组成一个小组,那么可以组成多少个小组?A. 8B. 7C. 6D. 54. 如果一个等腰三角形的两个底角相等,那么这个三角形的三个内角之和是多少度?A. 90度B. 180度C. 360度D. 270度5. 一个长方形的长是10厘米,宽是5厘米,它的周长是多少厘米?A. 30厘米B. 20厘米C. 15厘米D. 25厘米二、填空题(每题2分,共20分)6. 一个数的立方等于它自身,这个数是________。

7. 一个数加上它的相反数等于________。

8. 如果一个数的绝对值是5,那么这个数可能是________或________。

9. 一个圆的半径是3厘米,那么它的直径是________厘米。

10. 一个数除以它自己等于________。

三、计算题(每题5分,共15分)11. 计算下列各题:(1) 36 × 25(2) 48 ÷ 6 + 24 × 212. 一个数的5倍加上12等于42,求这个数。

13. 一个长方形的长是宽的2倍,如果它的面积是48平方厘米,求长和宽各是多少厘米。

四、解答题(每题10分,共30分)14. 一个班级有45名学生,如果每3名学生组成一个小组,那么可以组成多少个小组?如果有2名学生生病了,那么现在可以组成多少个小组?15. 一个数的平方加上这个数的两倍等于19,求这个数。

16. 一个直角三角形的两条直角边分别是3厘米和4厘米,求这个三角形的斜边长度。

五、应用题(每题15分,共30分)17. 一个水果店有苹果和橙子两种水果,苹果的价格是每千克5元,橙子的价格是每千克8元。

如果小明买了3千克苹果和2千克橙子,他需要支付多少钱?18. 一个工厂生产了一种零件,每个零件的成本是15元,如果工厂希望获得20%的利润,那么每个零件的售价应该是多少?19. 一个班级有50名学生,如果每名学生需要准备10张纸,那么班级总共需要准备多少张纸?如果每张纸的价格是0.1元,那么班级总共需要支付多少钱?六、附加题(每题5分,共5分)20. 一个数列的前5项是1, 1, 2, 3, 5,这个数列的下一个数是多少?请注意,以上题目仅供练习使用,实际竞赛题目可能会有所不同。

(word版)希望杯数学竞赛三年级试题

(word版)希望杯数学竞赛三年级试题

希望杯数学竞赛〔小学三年级〕赛前训练题1.观察图1的图形的变化进行填空.2.观察图2的图形的变化进行填空.3.图3中,第个图形与其它的图形不同.4.将图4中A图折起来,它能构成 B图中的第个图形.5.找出以下各数的排列规律,并填上适宜的数.〔1〕1,4,8,13,19,〔〕.2〕2,3,5,8,13,21,〔〕.3〕9,16,25,36,49,〔〕.〔4〕1,2,3,4,5,8,7,16,9,〔〕.〔5〕3,8,15,24,35,〔〕.6.寻找图5中规律填数.7.寻找图6中规律填数.第1页共10页8.〔1〕如果“访故〞变成“放诂〞,那么“1234〞就变成.〔2〕寻找图7中规律填空.9.用0、1、2、3、4、5、6、7、8、9十个数字组成图8的加法算式,每个数字只用一次,现已写出三个数字,那么这个算式的结果是.10.图9、图10分别是由汉字组成的算式,不同的汉字代表不同的数字,请你把它们翻译出来.11.在图11、图12算式的空格内,各填入一个适宜的数字,使算式成立.12.两个四位数的差等于8765,那么这两个四位数和的最大值是.13.中午12点放学的时候,还在下雨.已经连续三天下雨了,大家都盼着晴天,再过36小时会出太阳吗?第2页共10页14.某年4月份,有4个星期一、5个星期二,问4月的最后一天是星期几?15.张三、李四、王五三位同学中有一个人在别人不在时为集体做好事,事后老师问谁做的好事,张三说是李四,李四说不是他,王五说也不是他.它们三人中只有一个说了真话,那么做好事的是.16.小李,小王,小赵分别是海员、飞行员、运发动,:〔1〕小李从未坐过船;〔2〕海员年龄最大;〔3〕小赵不是年龄最大的,他经常与飞行员散步.那么是海员,是飞行员,是运发动.17.用凑整法计算下面各题:〔1〕1997+66〔2〕678+104〔3〕987-598〔4〕456-30718.用简便方法计算以下各题:〔1〕634+〔266-137〕〔2〕2021-〔364+611〕〔3〕558-〔369-342〕〔4〕2021-〔374-990-874〕19.用基准法计算:108+99+93+102+97+105+103+94+95+10420.用简便方法计算:899999+89999+8999+899+8921.求100以内的所有正偶数的和是多少?22.有一数列3,9,15,,153,159.请问:〔1〕这组数列共有多少项?〔2〕第15项是多少?〔3〕111是第几项的数?23.有10只盒子,54只乒乓球,把这54只乒乓球放到10只盒子中,要求每个盒子中最少放1只乒乓球,并且每只盒子中的乒乓球的只数都不相同,如果能放,请说出放的方法;如果不能放,请说明理由.第3页共10页24.如图13有一个宝塔算式,从上向下数,第一层的和为1,第二层的和为5第三层的和为15,,第十层的和为多少?25.甲、乙、丙三位同学参加希望杯数学竞赛的平均成绩是75分,甲、丙的平均成绩是71分,那么乙得了多少分?26.6名同学在一起打乒乓球,两人轮流上;从上午9点打到上午11点;他们平均休息多少分钟?27.七个自然数的和是154,求这七个连续自然数各是什么数?28.张红、王莉、李月、赵兰四人的平均身高是158厘米,再加上刘辉,五人的平均身高是160厘米.求刘辉的身高.29.从北京到上海的特快列车,中途要停靠7个大站.这样,有几种不同价格的车票?30.1个五元纸币,2个五角硬币,3个一元硬币,一共可以组成多少种人民币值?31.从图14中O点出发又回到O点,每条线段不能重复走,共有几条不同路线?32.布袋里有五个彩色玻璃球,每次最多只能拿走一个或2个,可分屡次取出.问取完五个球,有多少种不同的取法?33.简便计算以下各题.〔1〕125 165 3〔2〕1257 322534.简便计算以下各题.〔1〕54325〔2〕38955〔3〕9928〔4〕100137第4页共10页35.简便计算以下各题.〔1〕〔49+28+56〕7〔2〕〔43+35+20〕7〔3〕〔96-33-39〕3〔4〕3637+643736.简便计算以下各题.1〕625〔255〕〔2〕450252〔3〕225〔94〕〔4〕43045937.算式〔〕9=13〔〕中,最大、最小的被除数分别是多少?38.30〔〕=〔〕6中,除数和商各是多少?39.小胡在计算除法时,把除数87写成78,结果商是64,还余54,正确的商应该是多少?40.149除以一个两位数,余数是5,请写出所有这样的两位数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1990第二试
一、选择题
1、等腰三角形周长是24cm ,一腰中线将周长分成5:3的两部分,那么这个三角形的底边长是( )A 、7.5 B 、12 C 、4 D 、12或 4
2、已知:()2198911991199019891988-++⨯⨯⨯=p ,那么P 的值是( )
A 、1987
B 、1988
C 、1989
D 、1990
3、a >b >c,x >y >z,M = ax + by + cz ,N = az + by + cx,P = ay + bz + cx , Q = az + bx + cy ,则有( )
A 、M >P >N 且 M >Q >N
B 、N >P >M 且N >Q >M
C 、P >M >Q 且 P >N >Q
D 、Q >M >P 且 Q >N >P
4、凸四边形ABCD 中,∠DAB = ∠BCD = 90°,∠CDA: ∠ABC = 2:1,AD : CB = 1:3,∠BDA 的度数是( )A 、30° B 、45° C 、60° D 、不能确定
5、把一个边长为1的正方形分割成面积相等的四部分,使得在其中的一部分内存在三个点,以这三个点为顶点可以组成一个边长大于1的正三角形,满足上述性质的分割( ) A 、是不存在的 B 、恰有一种 C 、有有限多种,但不止一种 D 、有无穷多种
二、填空题
6、△ABC 中,∠CAB - ∠B = 90°,∠C 的平分线与AB 交于L ,∠C 的外角平分线与BA 的延长线交于N ,已知CL = 3,则CN = ( )。

7、若()0212=-+-ab a ,那么()()
()()1990199011111+++++++b a b a ab Λ的值是( )
8、已知a,b,c 满足a + b + c = 0,abc = 8 ,则c 的取值范围是( ).
9、△ABC 中,∠B = 30°,AB = 5,BC = 3,三个两两互相外切的圆全在△ABC 中,这三个圆面积之和的最大值的整数部分是( )
10、设a,b,c 是非零实数,那么abc
abc bc bc ac ac ab ab c c b b a a ++++++的值是( )
三、解答题
11、从自然数1,2,3…,354中任取178个数,试证:其中必有两个数,它们的差是177。

12、平面上有两个边长相等的正方形ABCD 和A ´B ´C ´D ´,且正方形A ´B ´C ´D ´的顶点 A ´在正方形ABCD 的中心。

当正方形A ´B ´C ´D ´饶A ´转动时,两个正方形的重合部分的面积必然是一个定值。

这个结论对吗?证明你的判断。

13、用1、9、9、0四个数码组成的所有可能的四位数中,每一个这样是四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列
Λππππ4321n n n n ,试求:21n n ⋅的值。

12、平面上有两个边长相等的正方形ABCD 和A ´B ´C ´D ´,且正方形A ´B ´C ´D ´的顶点 A ´在正方形ABCD 的中心,当正方形A ´B ´C ´D ´绕A ´转动时,两个正方形的重合部分的面积必然是一个定值,这个结论对吗?证明你的判断。

13、用1,9,9,0四个数码组成的所有可能的四位数中,每一个这样的四位数与自然数n 之和被7除余数都不为1,将所有满足上述条件的自然数n 由小到大排成一列,4321Λππππn n n n 试求:21n n ⋅之值。

相关文档
最新文档