小学奥数周期问题(五年级)

合集下载

一起学奥数-周期问题(五年级)

一起学奥数-周期问题(五年级)
理解带余数的除法中各数的意义
例2、将100个小球放入依次排列的36个盒子中,如果任意相邻的5个盒子中的小球均为14,且第1个盒子中有2 个小球。求第36个盒子中小球的个数。
……
【分析】任意相邻的5个盒子中的小球数均为14,把36个盒子依次按5个一组分组
因为 36÷5=7……1
所以36个盒子可以分成7组,余1个。
一起学奥数-周期问题(五年级)
ቤተ መጻሕፍቲ ባይዱ
教育目标
了解许多事物的变化都有周期性 掌握事物变化的周期,并能灵活运用周期变化规律解决实际问题 通过对周期问题的探究并总结出利用数学思想解决实际周期问题
教育重点
掌握周期的规律,并能解决简单的周期问题
教育难点
采用什么样的手段得到周期的循环数
第一课 基础部分
例1、把2/7化为循环小数,问小数点后第2014个数字是几?这2014个数字和是多少? 【分析】把分数2/7化为小数是0.285●714 ● 这是一个循环小数,循环节为285714,六个数字。 2014÷6=335……4,即小数点后的2014个数字,由335个循环节和一个循环节的前4个数字组成。 所以,第2014个数字是7。这2014个数字和为: 335×(2+8+5+7+1+4)+(2+8+5+7)=9067







1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

小学奥数周期问题

小学奥数周期问题

周期问题典型例解[例1]把围棋里的黑白棋子按一定的规律排列着,其中第90颗是什么棋?第101颗是什么棋?●●○●●○●●○…【分析】仔细观察图中棋的排列,不难发现棋的排列规律是:2颗黑棋,1颗白棋,2颗黑棋,1颗白棋,也就是按“两颗黑棋,一颗白棋”的次序循环出现,因此,这道题的周期为3。

再看看90,101里包含有几个这样的周期,若正好有整数个周期,结果为周期里的最后一个,若是有整数个周期多几个,结果就为下一个周期里的第几个。

解答 90÷3=30,正好有30个周期。

101÷3=33……2,有33个周期还多2个。

所以,第90颗棋是白棋,第101颗棋是黑棋。

答:第90颗是白棋,第101颗是黑棋[举一反三1]①有一列数:5、6、2、4、5、6、2、4…第129个数是多少?②有同样大小的黑、白、红珠子共180个,按5个红珠,4个白珠,3个黑珠排列,第158个珠子是什么颜色?这158个珠子中有多少个黑珠?③△△○△△○△△○…其中第99个是什么图形?[例2]720277777⨯⨯⨯⨯⨯⨯积的个位数字是几?相乘为1个周期。

202个7相乘中含有多少个这样的周期?余数是几?如果余数是1,那么积的个位数字是7;如果余数是2,那么积的个位数字是9;如果余数是3,那么积的个位数字是3;如果没有余数,那么积的个位数字是1。

[解答]202÷4=50(周)……2(个)答:202个7连乘,积的个位数字是9。

[举一反三2]①2100122222个⨯⨯⨯⨯的积的个位数字是几?②42003444个⨯⨯⨯积的个位数字是几?③9201199999个⨯⨯⨯⨯⨯的积的个位数字是几?[例3]25÷74的商的小数点后面第80位是几?小数点后面前80个数字之和是多少?[分析]先找出25÷74的商,25÷74=0.3378378378…,从小数点后第二个数字开始,3,7,8这三个数字依次重复不断地出现,即循环节有三个数字组成:3,7,8,即25÷74=0.3378,显然这道题的周期是3(3,7,8)。

五年级奥数周期问题练习题

五年级奥数周期问题练习题

五年级奥数周期问题练习题问题1:某个班级有30个学生,其中15个是男生,剩下的是女生。

男生和女生一起组成了几对?请在下面作答:解答1:班级有30个学生,其中15个是男生,剩下的是15个女生。

男生和女生是一对一配对的,所以有15对。

问题2:在一个奥数比赛中,一支队伍需要有4个人。

有9个学生报名参赛。

请问一共有多少种不同的组队方式?请在下面作答:解答2:从9个学生中选出4个来组成一支队伍,可以使用组合的方法来计算。

C(9, 4) = 9! / (4! * (9-4)!) = 126所以一共有126种不同的组队方式。

问题3:一个街区有10幢房子,每幢房子都有不同的颜色。

现在有4个人,每个人都要住在不同颜色的房子里。

请问一共有多少种不同的安排方式?请在下面作答:解答3:第一个人有10种选择,第二个人有9种选择,第三个人有8种选择,第四个人有7种选择。

所以一共有10 * 9 * 8 * 7 = 5040种不同的安排方式。

问题4:某个月有31天,现在要将这31天分成3个连续的周期(每个周期可以不完整)。

请问一共有多少种不同的分法?请在下面作答:解答4:将31天分成3个周期,可以使用组合的方法来计算。

C(31+3-1, 3-1) = C(33, 2) = 33! / (2! * (33-2)!) = 528所以一共有528种不同的分法。

问题5:一个四位数的各位数字互不相同,且是4个奇数。

请问一共有多少个满足条件的四位数?请在下面作答:解答5:个位数字只能是1、3、5、7、9中的一个。

百位数字只能是1、3、5、7、9中的一个,并且不能和个位数字相同,所以有4种选择。

千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字相同,所以有3种选择。

千位数字只能是1、3、5、7、9中的一个,并且不能和个位数字、百位数字、千位数字相同,所以有2种选择。

所以一共有5 * 4 * 3 * 2 = 120个满足条件的四位数。

人教版五年级数学奥数专题第11讲 周期问题(基础卷+提高卷)

人教版五年级数学奥数专题第11讲 周期问题(基础卷+提高卷)

人教版五年级奥数专题第11讲周期问题(基础卷+提高卷)姓名:________ 班级:________ 成绩:________小朋友,带上你一段时间的学习成果,一起来做个自我检测吧,相信你一定是最棒的!一、计算题1 . 怎样简便就怎样算.(1)1989×1999-1988×2000(2)8642×2468-8644×24662 . (11×18)×(11×18)×…×(11×18)一共有115个(11×18)积的尾数是多少?二、解答题3 . 正方形操场四周栽了一圈树,四个角上都栽了树,每两棵树相隔5米.甲、乙从一个角上同时出发,向不同的方向走去(如下图),甲的速度是乙的2倍,甲在拐了两个弯之后的第5棵树与乙相遇(把角上的树看作第一棵树).操场四周栽了多少棵树?4 . 2002年的6月1日是星期六,那么这一年的10月1日是星期几呢?5 . 如下图,把1~8八个号码摆成一个圆圈,现有一个小球,第一天从1号开始按顺时针方向前进329个位置,第二天接着按逆时针方向前进485个位置,第三天又顺时针前进329个位置,第四天再逆时针前进485个位置……如此继续下去,问至少经过几天,小球又回到原来的1号位置?6 . 奥运会就要到了,京京特意做了一些“北京欢迎你”的条幅,这些条幅连起来就成了:“北京欢迎你北京欢迎你北京欢迎你……”依次排列,第28个字是什么字?7 . 8 个格子排成一个正方形,依次编号(如图所示),小玲将棋子放在 3 号格子上,顺时针方向前进 245个格子后又倒退一个格子,这时棋子应在几号格子上?8 . 小倩有一串彩色珠子,按红、黄、蓝、绿、白五种颜色排列.⑴第73颗是什么颜色的?⑵第10颗黄珠子是从头起第几颗?⑶第8颗红珠子与第11颗红珠子之间(不包括这两颗红珠子)共有几颗珠子?9 . 今天是星期三,那么从明天起第365天是星期几?10 . 甲乙丙丁四个小朋友玩报数游戏,规定,甲报1乙报2丙报3丁报4甲报5乙报6丙报7……,问报2012的那个人是谁?11 . 把从1到100的自然数如图3排列。

五年级奥数专题:周期性问题(含答案)

五年级奥数专题:周期性问题(含答案)

周期性问题在日常生活中,有一些现象按照一定的规律不断重复出现。

如:人调查十二生肖:鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪;一年有春夏秋冬四个季节;一个星期有七天等。

像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题。

这类问题一般要利用余数的知识来解决。

在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,如果正好有个整数周期,结果为周期里的最后一个;如果不是从第一个开始循环,利用除法算式求出余数,最后根据余数的大小得出正确的结果。

一、例题与方法指导例1. 某年的二月份有五个星期日,这年六月一日是星期_____.思路导航:因为7⨯4=28,由某年二月份有五个星期日,所以这年二月份应是29天,且2月1日与2月29日均为星期日,3月1日是星期一,所以从这年3月1日起到这年6月1日共经过了 31+30+31+1=93(天).因为93÷7=13…2,所以这年6月1日是星期二.例2. 1989年12月5日是星期二,那么再过十年的12月5日是星期_____.思路导航:依题意知,这十年中1992年、1996年都是闰年,因此,这十年之中共有365⨯10+2=3652(天)因为(3652+1)÷7=521…6,所以再过十年的12月5日是星期日.[注]上述两题(题1—题2)都是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数才是闰年.例3. 按下面摆法摆80个三角形,有_____个白色的.……思路导航:从图中可以看出,三角形按“二黑二白一黑一白”的规律重复排列,也就是这一排列的周期为6,并且每一周期有3个白色三角形.因为80÷6=13…2,而第十四期中前两个三角形都是黑色的,所以共有白色三角形13⨯3=39(个).例4. 节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说,从第一盏白灯起,每一盏白灯后面都紧接着有3盏彩灯,小明想第73盏灯是_____灯.思路导航:依题意知,电灯的安装排列如下:白,红,黄,绿,白,红,黄,绿,白,……这一排列是按“白,红,黄,绿”交替循环出现的,也就是这一排列的周期为4.由73÷4=18…1,可知第73盏灯是白灯.例5. 时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_____.思路导航:分针旋转一周为1小时,旋转1991周为1991小时.一天24小时,1991÷24=82…23,1991小时共82天又23小时.现在是14时正,经过82天仍然是14时正,再过23小时,正好是13时.[注]在圆面上,沿着圆周把1到12的整数等距排成一个圈,再加上一根长针和一根短针,就组成了我们天天见到的钟面.钟面虽然是那么的简单平常,但在钟面上却包含着十分有趣的数学问题,周期现象就是其中的一个重要方面.二、巩固训练列,那么数“1992”在_____列. 2. 把分数7化成小数后,小数点第110位上的数字是_____. 3. 循环小数7992511.0 与74563.0 .这两个循环小数在小数点后第_____位,首次同时出现在该位中的数字都是7.4. 一串数: 1,9,9,1,4,1, 4,1,9,9,1,4,1,4,1,9,9,1,4,……共有1991个数.(1)其中共有_____个1,_____个9_____个4;(2)这些数字的总和是_____.10. 7⨯7⨯7⨯……⨯7所得积末位数是_____.50个答案:6. 3仔细观察题中数表.1 2 3 4 5 (奇数排)第一组 9 8 7 6 (偶数排)10 11 12 13 14 (奇数排)第二组 18 17 16 15 (偶数排)19 20 21 22 23 (奇数排)第三组 27 26 25 24 (偶数排)可发现规律如下:(1)连续自然数按每组9个数,且奇数排自左往右五个数,偶数排自右往左四个数的规律循环排列;(2)观察第二组,第三组,发现奇数排的数如果用9除有如下规律:第1列用9除余数为1,第2列用9除余数为2,…,第5列用9除余数为5.(3)10÷9=1…1,10在1+1组,第1列19÷9=2…1,19在2+1组,第1列因为1992÷9=221…3,所以1992应排列在(221+1)=222组中奇数排第3列数的位置上. 7. 774=0.57142857…… 它的循环周期是6,具体地六个数依次是5,7,1,4,2,8110÷6=18 (2)因为余2,第110个数字是上面列出的六个数中的第2个,就是7.8. 35 因为0.1992517的循环周期是7,0.34567的循环周期为5,又5和7的最小公倍数是35,所以两个循环小数在小数点后第35位,首次同时出现在该位上的数字都是7.9. 853,570,568,8255.不难看出,这串数每7个数即1,9,9,1,4,1,4为一个循环,即周期为7,且每个周期中有3个1,2个9,2个4.因为1991÷7=284…3,所以这串数中有284个周期,加上第285个周期中的前三个数1,9,9.其中1的个数是:3⨯284+1=853(个),9的个数是2⨯284+2=570(个),4的个数是2⨯284=568(个).这些数字的总和为1⨯853+9⨯570+4⨯568=8255.三、拓展提升1. 紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8⨯9=72,在9后面写2,9⨯2=18,在2后面写8,……得到一串数字:1 9 8 92 8 6……这串数字从1开始往右数,第1989个数字是什么?2. 1991个1990相乘所得的积与1990个1991相乘所得的积,再相加的和末两位数是多少?3. 设n =2⨯2⨯2⨯……⨯2,那么n 的末两位数字是多少?1991个4.在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?答案:11. 依照题述规则多写几个数字:1989286884286884……可见1989后面的数总是不断循环重复出现286884,每6个一组,即循环周期为6.因为(1989-4)÷6=330…5,所以所求数字是8.12. 1991个1990相乘所得的积末两位是0,我们只需考察1990个1991相乘的积末两. . . .位数即可.1个1991末两位数是91,2个1991相乘的积末两位数是81,3个1991相乘的积末两位数是71,4个至10个1991相乘的积的末两位数分别是61,51,41,31,21,11,01,11个1991相乘积的末两位数字是91,……,由此可见,每10个1991相乘的末两位数字重复出现,即周期为10.因为1990÷10=199,所以1990个1991相乘积的末两位数是01,即所求结果是01.13. n 是1991个2的连乘积,可记为n =21991,首先从2的较低次幂入手寻找规律,列表如下: n n 的十位数字 n 的个位数字 n n 的十位数字 n 的个位数字21 0 2 212 9 622 0 4 213 9 223 0 8 214 8 424 1 6 215 6 825 3 2 216 3 626 6 4 217 7 227 2 8 218 4 428 5 6 219 8 829 1 2 220 7 6210 2 4 221 5 2211 4 8 222 0 4观察上表,容易发现自22开始每隔20个2的连乘积,末两位数字就重复出现,周期为20.因为1990÷20=99…10,所以21991与211的末两位数字相同,由上表知211的十位数字是4,个位数字是8.所以,n 的末两位数字是48.14. 因为100能被5整除,所以自右至左染色也就是自左至右染色.于是我们可以看作是从同一端点染色.6与5的最小公倍数是30,即在30厘米的地方,同时染上红色,这样染色就会出现循环,每一周的长度是30厘米,如下图所示.由图示可知长1厘米的短木棍,每一周期中有两段,如第1周期中,6-5=1,5⨯5-6⨯4=1.剩余10厘米中有一段.所以锯开后长1厘米的短木棍共有7段.综合算式为:2⨯[(100-10)÷30]+1=2⨯3+1=7(段)[注]解决这一问题的关键是根据整除性把自右向左每隔5厘米的染色,转化为自左向右的染色,便于利用最小公倍数发现周期现象,化难为易.. . . . . . 6 12 18 24 30 5 10 15 20 25 95 96 100 . 90。

五年级奥数:周期问题

五年级奥数:周期问题

五年级奥数:周期问题专题简析:在日常生活中,有一些现象按照一定的规律不断重复出现,例如,人的生肖、每周的七天等等。

我们把这种特殊的规律性问题称为周期问题。

解答周期问题的关键是找规律,找出周期。

确定周期后,用总量除以周期,如果正好有整数个周期,结果为周期里的最后一个;如果比整数个周期多n个,那么为下个周期里的第n个;如果不是从第一个开始循环,可以从总量里减掉不是特球的个数后,再继续算。

例1:你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组第20个图形分别是什么。

(1)□△□△□△□△……(2)□△△□△△□△△……分析与解答:第(1)题排列规律是“□△”两个图形重复出现,20÷2=10,即“□△”重复出现10次,所以第20个图形是△。

第(2)题的排列规律是“□△△”三个图形重复出现,20÷3=6…2,即“□△△”重复出现6次后又出现了两个图形“□△”,所以第20个图形是△。

例2:有一列数,按5、6、2、4、5、6、2、4…排列。

(1)第129个数是多少?(2)这129个数相加的和是多少?分析与解答:(1)从排列可以看出,这组数是按“5、6、4、2”一个循环依次重复出现进行排列,那么一个循环就是4个数,则129÷4=32…1,可知有32个“5、6、4、2”还剩一个。

所以第129个数是5。

(2)每组四个数之和是5+6+4+2=17,所以,这129个数相加的和是17×32+5=549。

例3:假设所有的自然数排列起来,如下所示39应该排在哪个字母下面?88应该排在哪个字母下面?A B C D1 2 3 45 6 7 89…分析与解答:从排列情况可以知道,这些自然数是按从小到大4个数一个循环,我们可以根据这些数除以4所得的余数来分析。

39÷4=9…3 88÷4=22所以,39应排在第10个循环的第三个字母C下面,88应排在第22个循环的第四个字母D下面。

小学奥数周期问题

小学奥数周期问题
特点:一定规律、重复出现
【例1】小兔和小松鼠做游戏,他们把黑、白两色小球按下面的规律排列, 你知道它们所排列的这些小球中,第90个是什么球?第100个又是什么球 呢?
●●●●●●●●… 解析: 周期=3 ÷3=30(组) 100÷3=33(组)······1(个) 答:第90个是 黑 球,第100个又是 白 球。
2. 解析:仔细分析可得,规律是1分,2分,5分。
3. 100 ÷ 3=33(组)··· ···1(个) 周期=3
① 1+2=5=8(分) ② × 33+1=265(分)
4. 265分=2.65元
5. 答:第100枚是1分硬币,前100枚硬币一共是2.65元。
【例3】 24个2相乘,积末位数字是几?
2008年1月1日是星期二。
答:……………………………………………………………… ………
课堂小结
找规律:确定周期和总数 除周期:总数(总个数,总天数···)除以周期 对余数:余数是几对应周期中的第几个
○ 没有余数,对应周期最后一个
【例2】有一列数按“”排列,那么第48个数字是多少?前48个 数字之和是多少?
解析:观察例题数列,重复出现的循环是1、2、5、6、9。
÷5=9(组)······3(个)
周期=5
1+2+5+6+9=23
×9+1+2+5=215
答:第48个数字是5,前48个数字之和是215。
1. 巩固练习:小明和小华做游戏,将存钱罐里的硬币拿出来,按一枚1分硬币,一 枚2分硬币,一枚5分硬币,再一枚1分硬币,一枚2分硬币,一枚5分硬币......, 这样的顺序往下摆,请你算一算第100枚是几分硬币?前100枚硬币一共是多少元?

五年级奥数第10讲-周期问题(教)

五年级奥数第10讲-周期问题(教)

学科教师辅导讲义学员编号:年级:五年级课时数:3学员姓名:辅导科目:奥数学科教师:授课主题第10讲——周期问题授课类型T同步课堂P实战演练S归纳总结教学目标①学会对一个周期问题进行分析、推理;②利用我们的规律来解决一些较简单的问题;③通过学生解决问题的过程,激发学生的创新思维,培养学生学习的主动性和坚韧不拔、勇于探索的意志品质。

授课日期及时段T(Textbook-Based)——同步课堂一、周期问题在日常生活中,有一些按照一定的规律不断重复的现象,如:人的十二生肖,一年有春夏秋冬四个季节,一个星期七天等等。

像这样日常生活中常碰到的有一定周期的问题,我们称为简单周期问题。

这类问题一般要利用余数的知识来解答。

二、解题策略在研究这些简单周期问题时,我们首先要仔细审题,判断其不断重复出现的规律,也就是找出循环的固定数,然后利用除法算式求出余数,最后根据余数得出正确的结果。

考点一:一般周期问题例1、小丁把同样大小的红、白、黑珠子按先2个红的、后1个白的、再3个黑的的规律排列(如下图),请你算一算,第32个珠子是什么颜色?【解析】从上图可以看出,珠子是按“两红一白三黑”的规律重复排列,即6个珠子为一周期。

32÷6=5典例分析知识梳理P(Practice-Oriented)——实战演练实战演练➢课堂狙击1、“数学趣味题数学趣味题……”依次重复排列,第2010个字是什么?【解析】2010÷5=402所以第2010个字是第402循环周期的最后一个字,是“题”。

2、盼望祖国早日统一盼望祖国早日统一盼望祖国早日统一…第2001个字是什么字?【解析】2001÷8=250 (1)所以第2001个字是“盼”。

3、2001年8月1日是星期三,8月28日是星期几?【解析】28-1等于27天,27除以7等于3个星期余六天那么往后退六天正好是星期二,所以是星期二。

4、100个2相乘,积的个位数字是几?【解析】5个2相乘等于32,那么5个32相乘个位数也是2因此25个2相乘个位数是2。

小学五年级奥数周期问题及答案

小学五年级奥数周期问题及答案

小学五年级奥数周期问题及答案例1:有249朵花,按5朵红花,9朵黄花,13朵绿花地顺序轮流排列,最后一朵是什么颜色地花?这249朵花中,红花、黄花、绿花各有多少朵?249÷(5+9+13)=9(组)……6(朵)这六朵花,前5朵是红花,最后1朵应是黄花。

红花:5×9+5=50(朵)黄花:9×9+1=82(朵)绿花:13×9=117(朵)答:最后一朵是黄花。

这249朵花中,红花有50朵,黄花有82朵,绿花有117朵。

模拟练习:1、有红、白、黑三种纸牌共158张,按5张红色,3张白色,4张黑色的顺序排列下去,最后一张是什么颜色?第140张是什么颜色?158÷(5+3+4)=13(组)......2(张)140÷(5+3+4)=11(组)......8(张)答:最后一张是红色。

第140张是白色。

2、有47盏彩灯,按二盏红灯、四盏蓝灯、三盏黄灯地顺序排列着。

最后一盏灯是什么颜色?三种颜色地灯各占总数地几分之几?47÷(2+4+3)=5(组)......2(盏)红灯有2×5+2=12(盏)蓝灯有4×5=20(盏)黄灯有3×5=15(盏)答:最后一盏是红灯。

红灯占总数的12/47,蓝灯占总数的20/47;黄灯占总数的15/47。

例2:2002年元旦是星期二,那么,2003年1月1日是星期几?2002年是平年,365+1=366(天)366÷7=52(周)......2(天)答:每个周期的第一天是星期二,所以,2003年1月1日就是星期三。

模拟练习:1、2008年8月8日是星期五,那么,2008年10月8日星期几?24+30+8=62(天)62÷7=8(周)......6(天)答:2008年10月8日星期三。

2、2001年10月1日是星期一,那么,2002年1月1日是星期几?31+30+31+1=93(天)93÷7=13(周)……2(天)答:2002年1月1日是星期二。

小学五年级奥数小升初必考题周期问题及答案

小学五年级奥数小升初必考题周期问题及答案

例1:有249朵花,按5朵红花,9朵黄花,13朵绿花地顺序轮流排列,最后一朵是什么颜色地花?这249朵花中,红花、黄花、绿花各有多少朵?249÷(5+9+13)=9(组)……6(朵)红花:5×9+5=50(朵)黄花:9×9+1=82(朵)绿花:13×9=117(朵)答:最后一朵是黄花。

这249朵花中,红花有50朵,黄花有82朵,绿花有117朵。

模拟练习:1、有红、白、黑三种纸牌共158张,按5张红色,3张白色,4张黑色的顺序排列下去,最后一张是什么颜色?第140张是什么颜色?158÷(5+3+4)=13(组)......2(张)140÷(5+3+4)=11(组)......8(张)答:最后一张是红色。

第140张是白色。

2、有47盏彩灯,按二盏红灯、四盏蓝灯、三盏黄灯地顺序排列着。

最后一盏灯是什么颜色?三种颜色地灯各占总数地几分之几?47÷(2+4+3)=5(组)......2(盏)红灯:2×5+2=12(盏)蓝灯:4×5=20(盏)黄灯:3×5=15(盏)答:最后一盏是红灯。

红灯占总数的12/47,蓝灯占总数的20/47;黄灯占总数的15/47。

例2:2002年元旦是星期二,那么,2003年1月1日是星期几?2002年是平年,365+1=366(天)366÷7=52(周)......2(天)答:每个周期的第一天是星期二,所以,2003年1月1日就是星期三。

模拟练习:1、2008年8月8日是星期五,那么,2008年10月8日星期几?24+30+8=62(天) 62÷7=8(周)......6(天)答:2008年10月8日星期三。

2、2001年10月1日是星期一,那么,2002年1月1日是星期几?31+30+31+1=93(天)93÷7=13(周)……2(天)答:2002年1月1日是星期二。

2022-2023学年小学五年级奥数(全国通用)测评卷04《周期性问题》(解析版)

2022-2023学年小学五年级奥数(全国通用)测评卷04《周期性问题》(解析版)

【五年级奥数举一反三—全国通用】测评卷04《周期性问题》试卷满分:100分考试时间:100分钟一.选择题(共8小题,满分16分,每小题2分)1.(2分)三天打鱼,两天晒网(即前三天打鱼,后两天晒网),按照这种方式,在104天内,打鱼的天数是()A.60B.61C.62D.63【解答】解:1045204÷=⋯,⨯=(天);∴在104天内,打鱼的天数是21363故选:D。

2.(2分)2014年2月6日是星期四,小胖决定从这天起(含2月6日)练习计算,一直练习到2月17日,(含2月17日)开学为止.但是中间如果遇到周六和周日,小胖还是决定休息一下,不做练习.已知他第一天做1道题,第二天做3道题,第三天做5道题,依此变化做下去,那么小胖这段时间一共做了()道计算练习题.A.144B.100C.81D.64【解答】解:依题意可知:从2月6日到2月17日为止,一共有176112-+=(天);其中有2个星期六,星期日.工作了1248-=(天);共完成1357911131564+++++++=(题);故选:D。

3.(2分)张老师每周的周一、周六和周日都跑步锻炼20分钟,而其余日期每日都跳绳20分钟.某月他总跑步5小时,那么这个月的第10天是()A.周日B.周六C.周二D.周一【解答】解:他总跑步5小时,说明有5个周一、周六和周日,÷=周3⋯天,3174说明了这个月的1号是星期六,所以8号又是周六,10号是周一.故选:D。

4.(2分)将“OPQRST”连续写下去可得到:“OPQRSTOPQRST⋯”,从左至右第2015个字母应该是()A.S B.Q C.O D.T【解答】解:201563355÷=⋯,所以第2015个字母是第336周期的第5个字母,是S;故选:A。

5.(2分)6月份有30天,如果这个月有5个星期一和5个星期二,那么“六一”儿童节是星期() A.二B.四C.五D.一【解答】解:因为有5个星期一和5个星期二,所以从第1个星期一到第5个星期一,共29天.6月份共有30天,剩下的一天只可能在第5个星期二,所以这年的6月1日是星期一.故选:D。

五年级数学奥数题周期问题练习题带答案

五年级数学奥数题周期问题练习题带答案

1、1÷7=0.142857142857......小数点后面第100位是多少?
答案:100÷6=16(组)......4(个)
答:小数点后面第100位是8。

2、0.53728937289......间,小数点后面第2000位上的数字是多少? 前2000位上的数字之和是多少?
答案:(2000-1)÷5=399(组)......4(个)
3+7+2+8+9=29
29×399+3+7+2+8+5=11596
答:小数点后面第2000位上的数字是8,前2000位上的数字之和是11596。

3、请同学们伸出左手,如下图所示那样,从大拇指开始依次数数字,.. 问数到2014时,你数在哪个手指上?
答案:2014÷8=251(组)......6(个)
答:无名指。

4、如下图所示,每列上、下一个字和一一个字母组成一一组,例如:
第一组是(我、A),第二组是(们、B),那么第62组是什么?
我们爱科学我们爱科学...
A B C D E F G A B C ...
如下图所示,每列上、下一个字和一一个字母组成一一组,例如:第一组是(我、A),第二组是(们、B),那么第62组是什么?
答案:62÷5=12(组)......2(个)们
62÷7=8(组)......6(个) F
答:第62个数是“们、F”。

5、7×7×7×......×7积的个位数字是几?
202个7
答案:202÷4=50(组)……2(个)
答:积的个位数字是9。

一起学奥数-周期问题(五年级)PPT课件

一起学奥数-周期问题(五年级)PPT课件

【分析】是否发现这题与例3类似,请同学们回忆下,并说出相同点和不同点
我们同样先按题目条件进行操作,以找出周期性规律。 (2014-1)÷5=402……3 1+3=4
所以第2014个小朋友放完后,A盒中放的球与 第4次放的球一样多,为6个。
盒子 编号 初始状态 第一次操作后 第二次操作后 第三次操作后 第四次操作后 第五次操作后 第六次操作后 第七次操作后 第八次操作后
【分析】本例是操作题,找到操作题的做好方法,就是按题目要求一步步做操作。
做到第三次操作的时候,5个数字是连续自然数
做到第8次操作的时候,出现的数字,不仅与第三次出现 的一致,而且顺序也一样。按照同样的规律,后续操作 将做有规律的循环。 请说出操作过程中的规律
剔除前两次操作,以后每5次操作,小球在 五个盒子中的状态(数量和位置)循环出现
(50-2)÷5=9……3
即小球在盒子中的状态与2+3次的状态一致 所以,A=4 B=5 C=3 D=2 E=6
盒子 编号 初始状态 第一次操作后 第二次操作后 第三次操作后 第四次操作后 第五次操作后 第六次操作后 第七次操作后 第八次操作后
A BC DE 9 5321 8 4215 7 3154 6 2543 5 6432 4 5326 3 4265 2 3654 6 2543
……
【分析】任意相邻的5个盒子中的小球数均为14,把36个盒子依次按5个一组分组
因为 36÷5=7……1 所以36个盒子可以分成7组,余1个。 所以,第36个盒子中的小球的个数为2个。
100-7×14=2
思路二:请一位学生按照我画的图,将出来。
……
第1个盒子里的球与第6个相同,同理,第6个盒子中的与第11个相同。可以发现一个规律 ,每五个的第一个盒子的小球数是一样的

小学奥数周期性问题

小学奥数周期性问题

小学奥数——周期性问题例1. 某年的二月份有五个星期日,这年六月一日是星期_____【解析】因为7X4=28,由某年二月份有五个星期日,所以这年二月份应是29天,且2月1日与2月29日均为星期日,3月1日是星期一,所以从这年3月1日起到这年6月1日共经过了 31+30+31+1=93(天).因为93¸7=13…2,所以这年6月1日是星期二.本题是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依据每周为七天循环的规律,运用周期性解答.在计算天数时,要根据“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只要是4的倍数就是闰年,公历年数为整百数时,必须是400的倍数才是闰年.例2 时针现在表示的时间是14时正,那么分针旋转1991周后,时针表示的时间是_____.【解析】分针旋转一周为1小时,旋转1991周为1991小时.一天24小时,1991 X 24=82…23,1991小时共82天又23小时.现在是14时正,经过82天仍然是14时正,再过23小时,正好是13时.小贴士在圆面上,沿着圆周把1到12的整数等距排成一个圈,再加上一根长针和一根短针,就组成了我们天天见到的钟面.钟面虽然是那么的简单平常,但在钟面上却包含着十分有趣的数学问题,周期现象就是其中的一个重要方面.仔细观察题中数表. 1 2 3 4 5 (奇数排)第一组 9 8 7 6 (偶数排)10 11 12 13 14 (奇数排)第二组 18 17 16 15 (偶数排)19 20 21 22 23 (奇数排)第三组 27 26 25 24 (偶数排)可发现规律如下:(1)连续自然数按每组9个数,且奇数排自左往右五个数,偶数排自右往左四个数的规律循环排列;(2)观察第二组,第三组,发现奇数排的数如果用9除有如下规律:第1列用9除余数为1,第2列用9除余数为2,…,第5列用9除余数为5.(3)10÷9=1…1,10在1+1组,第1列19÷9=2…1,19在2+1组,第1列因为1992÷9=221…3,所以1992应排列在(221+1)=222组中奇数排第3列数的位置上.例4 在一根长100厘米的木棍上,自左至右每隔6厘米染一个红点,同时自右至左每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,那么长度是1厘米的短木棍有多少根?【解析】因为100能被5整除,所以自右至左染色也就是自左至右染色.于是我们可以看作是从同一端点染色.6与5的最小公倍数是30,即在30厘米的地方,同时染上红色,这样染色就会出现循环,每一周的长度是30厘米,如下图所示.由图示可知长1厘米的短木棍,每一周期中有两段,如第1周期中,6-5=1,5X5-6X4=1.剩余10厘米中有一段.所以锯开后长1厘米的短木棍共有7段.综合算式为:2X[(100-10)÷30]+1=2X3+1=7(段)例5 紧接着1989后面一串数字,写下的每个数字都是它前面两个数字的乘积的个位数.例如8X9=72,在9后面写2,9X2=18,在2后面写8,……得到一串数字:1 9 8 9 2 8 6……这串数字从1开始往右数,第1989个数字是什么?【解析】依照题述规则多写几个数字:1989286884286884……可见1989后面的数总是不断循环重复出现286884,每6个一组,即循环周期为6.因为(1989-4)÷6=330…5,所以所求数字是8.。

小学五年级奥数精品专项训练-数阵_周期问题

小学五年级奥数精品专项训练-数阵_周期问题

一、数阵一、知识要点填“幻方”是同学们比较熟悉的一种数学游戏,由幻方演变出来的数阵问题,也是一类比较常见的填数问题。

这里,和同学们讨论一些数阵的填法。

解答数阵问题通常用两种方法:一是待定数法,二是试验法。

待定数法就是先用字母(或符号)表示满足条件的数,通过分析、计算来确定这些字母(或符号)应具备的条件,为解答数阵问题提供方向。

试验法就是根据题中所给条件选准突破口,确定填数的可能范围。

把分析推理和试验法结合起来,再由填数的可能情况,确定应填的数。

二、精讲精练【例题1】把5、6、7、8、9五个数分别填入下图的五个方格里,如图a 使横行三个数的和与竖行三个数的和都是21。

【思路导航】先把五格方格中的数用字母A、B、C、D、E来表示,根据题意可知:A+B+C+D+E=35,A+E+B+C+E+D=21×2=42。

把两式相比较可知,E=42-35=7,即中间填7。

然后再根据5+9=6+8便可把五个数填进方格,如图b。

练习1:1.把1——10各数填入“六一”的10个空格里,使在同一直线上的各数的和都是12。

2.把1——9各数填入“七一”的9个空格里,使在同一直线上的各数的和都是13。

3.将1——7七个自然数分别填入图中的圆圈里,使每条线上三个数的和相等。

【答案】1.7、1、5、6、2、10、3、9、4、8(答案不唯一)2.1、2、3、8、5、4、9、6、7(答案不唯一)3.2、6、4、1、5、3、7(答案不唯一)【例题2】将1——10这十个数填入下图小圆中,使每个大圆上六个数的和是30。

【思路导航】设中间两个圆中的数为a、b,则两个大圆的总和是1+2+3+……+10+a+b=30×2.即55+a+b=60,a+b=5。

在1——10这十个数中1+4=5,2+3=5。

当a和b是1和4时,每个大圆上另外四个数分别是(2.6,8,9)和(3.5,7,10);当a和b是2和3时,每个大圆上另外四个数分别为(1.5,9,10)和(4,6,7,8)。

五年级上册奥数

五年级上册奥数

五年级上册奥数第一讲 循环与周期1、你能找出下面每组图形的排列规律吗?根据发现的规律,算出每组的第20个图形是什(1)○△○△○△○△○△……(2)○□□○□□○□□○……(3)○○◇◇○○◇◇○○……2、流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后再次5红,4黄,3绿,2黑,1白,……继续下去,第2000个小球是什么颜色?3、有一列数:5、6、2、4、5、6、2、4……(1)第129个数是多少?(2)这129个数相加的和是多少?7、把1/7化为循环小数,问小数点后第1999个数字是几?这1999个数字总和是几?9、(1)求19943的尾数。

(2)求1001100210033719⨯⨯的尾数。

(3)求13712131712+-的尾数。

10、(1)求111……111(1994个1)除以13所得的余数是多少?(2)已知a=19911991……1991,则a除以13所得的余数是多少?1993除以7所得的余数是多少?11、求1994第二讲容斥原理1、502班学生报名参加课外活动小组,每人都报名参加。

统计的结果是:参加作文小组的有39人,参加数学小组的有32人,作文、数学小组都参加的有26人。

那么这个班共有学生多少人?2、503班在期末考试中语文得优秀的有12人,数学得优秀的有18人,老师请行优秀的同学都举手,数了数,只有25人。

两科都得优秀的有多少人?3、一个车间有80个工人,其中每个工人或者会骑自行车,或者会游泳,或者两样都会。

现在知道会骑自行车的有65人,会骑自行车又会游泳的有30人,问会游泳的有多少人?4、501班有48名学生,在一节自修课上,做完语文作业的有30人,做完数学作业的有20人,语文、数学都做完的有6人。

求语文、数学都没做完的有多少人?5、在1~1000的1000个自然数中,能被5或7整除的共有多少个?6、505班参加体育活动的学生有25人,参加音乐活动的有26人,参加美术活动的有24人,同时参加体育、音乐活动的有16人,同时参加音乐、美术活动的有15人,同时参加美术、体育活动的有14人,三个活动都参加的有5人。

五年级奥数专题周期性问题

五年级奥数专题周期性问题

八周期性问题 (A)年级班姓名得分一、填空题1. 某年的二月份有五个星期日,这年六月一日是星期_____.2.1989 年 12 月 5 日是星期二 ,那么再过十年的 12 月 5 日是星期 _____.3.按下面摆法摆 80 个三角形 ,有 _____个白色的 .4.节日的校园内挂起了一盏盏小电灯,小明看出每两个白灯之间有红、黄、绿各一盏彩灯.也就是说 ,从第一盏白灯起 ,每一盏白灯后边都紧接着有 3 盏彩灯 ,小明想第 73 盏灯是 _____ 灯.5.时针现在表示的时间是 14 时正 ,那么分针旋转 1991 周后 ,时针表示的时间是 _____.6.把自然数 1,2,3,4,5 如表依次排列成 5 列,那么数“ 1992在”_____列.第一列第二列第三列第四列第五列1 2 3 4 59 8 7 610 11 12 13 1418 17 16 157.把分数4化成小数后,小数点第 110 位上的数字是 _____. 78. 循环小数与 .这两个循环小数在小数点后第_____位,首次同时出现在该位中的数字都是 7.9. 一串数 : 1,9,9,1,4,1, 4,1,9,9,1,4,1,4,1,9,9,1,4, 共有 1991 个数 .(1)其中共有 _____个 1,_____个 9_____个 4;(2)这些数字的总和是 _____.10. 7 7 7 ... 7所得积末位数是 _____.50个二、解答题11. 紧接着 1989 后边一串数字,写下的每个数字都是它前面两个数字的乘积的个位数. 比方 8 9=72,在 9 后边写 2,9 2=18,在 2 后边写 8, 获取一串数字 :1 9 8 92 8 6这串数字从 1 开始往右数,第1989 个数字是什么?12.1991 个 1990 相乘所得的积与 1990 个 1991 相乘所得的积,再相加的和末两位数是多少?13. 设n 2 2 2 ... 2,那么 n 的末两位数字是多少?1991 个14.在一根长 100 厘米的木棍上,自左至右每隔 6 厘米染一个红点,同时自右至左每隔5 厘米也染一个红点,尔后沿红点处将木棍逐段锯开,那么长度是 1 厘米的短木棍有多少根?八周期性问题 (B)年级班姓名得分一、填空题1. 1992 年 1 月 18 日是星期六,再过十年的 1 月 18 日是星期 _____.2.黑珠、白珠共 102 颗,穿成一串,排列以以下列图:这串珠子中,最后一颗珠子应该是_____色的 ,这类颜色的珠子在这串中共有_____颗 .3.流水线上生产小木珠涂色的序次是 :先 5 个红 ,再 4 个黄 ,再 3 个绿 ,再 2 个黑 ,再 1 个白 , 尔后再依次是 5 红,4 黄 ,3 绿 ,2 黑,1 白 , 连续下去第 1993 个小珠的颜色是 _____色.学好料迎下4. 把珠子一个一个地以下按序往返不断投入A、B、C、 D、E、F 袋中 .第 1992 粒珠子投在 _____袋中 .17 18 ⋯16 15 14⋯12137 8 9 10 116 5 4 3 2 15.将数列 1,4,7,10,13 依⋯次如排列成 6 行 ,若是把最左的一列叫做第一列 ,从左到右依次号 ,那么数列中的数 349 排在第 _____行第 _____列.1 4 7101328 25 22 19 163134 37 40 4358 55 52 4946⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6.分数9化成小数后,小数点后边第1993 位上的数字是 _____.137.3化成小数后 ,小数点后边 1993 位上的数字是 _____.148.在一个循小数 0.1234567 中 ,若是要使个循小数第 100 位的数字是 5,那么表示循的两个小点 ,分在 _____和_____两个数字上 .9.1991 个 9 与 1990 个 8 与 1989 个 7 的乘的个位数是 _____.10. 算式 (367367+762762)123123的得数的尾数是 _____.二、解答题11.乘 1 2 3 4 ⋯⋯ 1990 1991 是一个多位数,而且尾端有多零,从右到左第一个不等于零的数是多少?12.有串自然数,已知第一个数与第二个数互,而且第一个数的5恰巧是第二个数的1,6 4从第三个数开始,每个数字正好是前两个数的和,串数的第 1991 个数被 3 除所得的余数是几?共产党好共产党好共产党好13.社会主义好社会主义好社会主义好上表中,将每列上下两个字组成一组,比方第一组为(共社),第二组为(产会),那么第 340 组是 _____.14.甲、乙二人对一根 3 米长的木棍涂色 .第一 ,甲从木棍端点开始涂黑 5 厘米 ,间隔 5 厘米不涂色 ,接着再涂黑 5 厘米 ,这样交替做终究 .尔后 ,乙从木棍同一端点开始留出 6 厘米不涂色 ,接着涂黑 6 厘米 ,再间隔 6 厘米不涂色 ,交替做终究 .最后 ,木棍上没有被涂黑部分的长度总和为_____厘米 .———————————————答案——————————————————————1. 二由于 7 4=28,由某年二月份有五个星期日,因此这年二月份应是29天,且 2月 1日与2 月 29 日均为星期日, 3 月 1 日是星期一,因此从这年 3 月 1 日起到这年 6 月 1 日共经过了31+30+31+1=93(天).由于 93 7=13 2,因此这年 6 月 1 日是星期二 .2.日依题意知,这十年中1992 年、 1996 年都是闰年,因此,这十年之中共有36510+2=3652(天)由于( 3652+1)7=521 6,因此再过十年的12 月 5 日是星期日 .[注 ]上述两题(题1—题2)都是推断若干天、若干月或若干年后某一天为星期几,解答这类问题主要依照每周为七天循环的规律,运用周期性解答.在计算天数时,要依照“四年一闰,整百不闰,四百年才又一闰”的规定,即公历年份不是整百数时,只若是 4 的倍数就是闰年,公历年数为整百数时,必定是400 的倍数才是闰年.3.39从图中能够看出 ,三角形按“二黑二白一黑一白”的规律重复排列,也就是这一排列的周期为 6,而且每一周期有 3 个白色三角形 .由于 80 6=13 2,而第十四期中前两个三角形都是黑色的,因此共有白色三角形133=39(个) .4.白依题意知 ,电灯的安装排列以下 :白,红 ,黄,绿,白 ,红,黄,绿 ,白, 这一排列是按“白,红,黄,绿”交替循环出现的,也就是这一排列的周期为 4.由 73 4=18 1,可知第 73 盏灯是白灯 .5.13 时.分针旋转一周为 1 小时 ,旋转 1991 周为 1991 小时 .一天 24 小时 ,1991 24=82 23,1991 小时共 82 天又 23 小时 .现在是 14 时正 ,经过 82 天依旧是 14 时正 ,再过 23 小时 ,正好是 13 时.[注 ]在圆面上,沿着圆周把 1 到 12 的整数等距排成一个圈,再加上一根长针和一根短针,就组成了我们每天见到的钟面.钟面诚然是那么的简单平常,但在钟面上却包含着十分幽默的数学问题,周期现象就是其中的一个重要方面.6. 3仔细察看题中数表 .1 2 3 4 5 (奇数排 )第一组9 8 7 6 (偶数排 )10 11 12 13 14 (奇数排 )第二组18 17 16 15 (偶数排 )19 20 21 22 23 (奇数排 )第三组27 26 25 24 (偶数排 )可发现规律以下 :(1)连续自然数按每组 9 个数 ,且奇数排自左往右五个数 ,偶数排自右往左四个数的规律循环排列;(2)察看第二组 ,第三组 ,发现奇数排的数若是用9 除有以下规律 :第 1 列用 9 除余数为 1,第2 列用 9 除余数为 2, ,第 5 列用 9 除余数为 5.(3)10 9=1 1, 10 在 1+1 组,第 1 列19 9=2 1,19 在 2+1 组,第 1 列由于 1992 9=221 3,因此 1992 应排列在(221+1)=222 组中奇数排第 3 列数的地址上 .7.747它的循环周期是6,详细地六个数依次是5,7,1,4,2,8110 6=18 2由于余 2,第 110 个数字是上面列出的六个数中的第 2 个,就是 7.8. 35.. ..由于 0.1992517 的循环周期是 7,0.34567 的循环周期为 5,又 5 和 7 的最小公倍数是 35,因此两个循环小数在小数点后第 35 位,首次同时出现在该位上的数字都是 7.9.853,570,568,8255.不难看出 ,这串数每 7 个数即 1,9,9,1,4,1,4为一个循环 ,即周期为 7,且每个周期中有 3 个 1,2 个 9,2 个 4.由于 1991 7=284 3,因此这串数中有 284 个周期,加上第 285 个周期中的前三个数1,9,9.其中 1 的个数是 :3 284+1=853(个),9 的个数是 2 284+2=570(个),4 的个数是2 284=568(个).这些数字的总和为1 853+9 570+4 568=8255.10.9先找出积的末位数的变化规律:71末位数为 7,72末位数为 9,73末位数为 3, 74末位数 1;75=74+1末位数为 7,76=74+2末位数为 9,77=74+3末位数为 3, 78= 74 2末位数为 1因此可知,积的末位依次为7,9,3,1,7,9,3,1,以4为周期循环出现.由于 50 4=12 2,即 750= 74 12 2,因此 750与 72末位数相同,也就是积的末位数是9.11.依照题述规则多写几个数字 :可见 1989 后边的数总是不断循环重复出现286884,每 6 个一组,即循环周期为 6.由于(1989-4) 6=330 5,因此所求数字是 8.12. 1991 个 1990 相乘所得的积末两位是0,我们只需察看1990 个 1991 相乘的积末两位数即可 .1 个 1991 末两位数是 91,2 个 1991 相乘的积末两位数是81,3 个 1991 相乘的积末两位数是 71,4 个至 10 个 1991 相乘的积的末两位数分别是 61,51,41,31,21,11,01,11个 1991 相乘积的末两位数字是 91,,因此可知,每 10 个 1991 相乘的末两位数字重复出现,即周期为10.由于 1990 10=199,因此 1990 个 1991 相乘积的末两位数是 01,即所求结果是 01.13.n 是 1991 个 2 的连乘积 ,可记为 n=21991,第一从 2 的较低次幂下手搜寻规律 ,列表以下 :n n 的十n 的个nn 的十n 的个位数字位数字位数字位数字21 2120 2 9 622 0 4 213 9 223 0 8 214 8 424 1 6 215 6 825 3 2 216 3 626 6 4 217 7 227 2 8 218 4 428 5 6 219 8 829 1 2 220 7 6210 2 4 221 5 2211 4 8 222 0 4察看上表 ,简单发现自 22开始每隔 20 个 2 的连乘积 ,末两位数字就重复出现,周期为 20.因为 1990 20=99 10,因此 21991与 211的末两位数字相同,由上表知 211的十位数字是 4,个位数字是 8.因此 ,n 的末两位数字是 48.14. 由于 100 能被 5 整除 ,因此自右至左染色也就是自左至右染色 .于是我们能够看作是从同一端点染色 .6 与 5 的最小公倍数是 30,即在 30 厘米的地方 ,同时染上红色 ,这样染色就会出现循环 ,每一周的长度是 30 厘米 ,以以下列图所示 .6 12. 18 24 30.96100. . . . .5 10 15 20 25 90 95由图示可知长 1 厘米的短木棍 ,每一周期中有两段 ,如第 1 周期中 ,6-5=1,5 5-6 4=1.节余 10 厘米中有一段 .因此锯开后长 1 厘米的短木棍共有 7 段 .综合算式为 :2 [(100-10) 30]+1=2 3+1=7(段)[ 注 ]解决这一问题的要点是依照整除性把自右向左每隔 5 厘米的染色 ,转变为自左向右的染色,便于利用最小公倍数发现周期现象,化难为易 .———————————————答案——————————————————————1.五在这十年中有 3 个闰年 ,因此这 10 年的总天数是 3657 除的余数是 (13-7=)6,因此 10 年后的 1 月 18 日是星期五2. 黑,26 .10+3,365被7 除余1,因此总天数被依照图示可知 ,若去掉第一颗白珠后它们的排列是按“一黑三色”交替循环出现的,也就是这一排列的周期为 4.由 (102-1) 4=25 1,可知循环 25 个周期,最后一颗珠子是黑色的 .黑色珠子共有 125+1=26(颗).3.黑小木球是依次按 5 红,4 黄 ,3 绿,2 黑和 1 白的规律涂色的 ,把它看作周期性问题 ,每个周期为15.由 1993 15=132 13 知,第 1993 个小球是第 133 周期中的第 13 个,按规律涂色应该是黑色,因此第 1993 个小球的颜色是黑色 .4. B经过察看能够发现 ,第 11 次到第 20 次投进的袋子依次与第 1 次到第 10 次投进的袋子相同,即当投的次数被 10 除余 1,2,3, ,8,9,0,分别投进 A,B,C, D,C,B 袋中, 1992 被10 除余 2,因此第 1992 粒珠子投在 B 袋中 .5.24,2这个数列从第 2 项起 ,每一项都比前一项多3,(349-1)3+1=117,因此 349 是这列数中的第117个数 .从排列能够看出 ,每两排为一个周期 ,每一周期有 10 个数 .由于 117 10=11 7,因此数“349是”第 11 个周期的第 7 个数,也就是在第24 行第 2 列.6. 69=13它的循环周期是 6,由于 1993=6 332+1,因此化成小数后 ,其小数点后边第 1993位上的数字是 6.7.73=14它的循环周期是 6,由于 (1993-1) 6=332,则循环节“142857恰”好重复出现 332 次 .因此小数点后边第 1993 位上的数字是 7.8.3,7表示循环小数的两个小圆点中,后一个小圆点显然应加在7 的上面,且数字“5肯”定包含在循环节中,设前一个小圆点加在“5的”上面,这时循环周期是3,(100-4)3=32,第100 位数字是 7.设前一个小圆点加在“4的”上面,这时循环周期是 4,( 100-3) 4=24 1,第 100 位数字是4.设前一个小圆点加在“3的”上面,这时的循环周期是5,(100-2)5=19 3,第100 位数字正好是 5.[ 注 ]拿到本题后简单看出后一个小圆点应加在7 的上面 ,但前一个圆点应加在哪个数字上,一下子难以确定 ,怎么办 ?唯一的方法就是5,就从数字 5 开始试 .渐渐向前搬动,直到成功为止 .这就像我们在迷宫中行走 ,不知道该走哪条道才能走出迷宫 ,唯一的方法就是研究 :先试一试这条 ,再试一试那条 .9. 2由特例不难概括出 :(1)9 的连乘积的个位数字按 9,1 循环出现 ,周期为 2;(2)8 的连乘积的个位数字按 8,4,2,6 循环出现 ,周期为 4; (3)7 的连乘积的个位数字按 7,9,3,1 循环出现 ,周期为 4.由于 1991=995 2+1,因此 1991 个 9 的连乘积的个位数字是 9;由于 1990=497 4+2,因此 1990 个 8 的连乘积的个位数字是 4;由于 1989=497 4+1,因此 1989 个 7 的连乘积的个位数字是 7.9 4 7 的个位数字是 2,即 1991 个 9 与 1990 个 8 与 1989 年 7 的连乘积的个位数字 是 2.10. 97 的连乘积 ,尾数 (个位数字 )以 7,9,3,1 循环出现 ,周期为 4.由于 367 4=91 3,因此,367367的尾数为 3.2 的连乘积 ,尾数以 2,4,8,6 循环出现 ,周期为 4.由于 762 4=190 2,因此,762762 的尾数为 4.3 的连乘积 ,尾数以 3,9,7,1 循环出现 ,周期为 4.1234 =30 3,因此, 123123 的尾数为 7.因此 ,(367367+762762) 123123的尾数为 (3+4) 7=49 的尾数 ,所求答案为 9.11. 从 1 开始 ,将每 10 个数分为一组 ,每一组 10 个数从右到左第一个不等于零的数字是乘积 1 2 3 4 5 6 7 8 9 10=3628800从右到左第一个不等于零的数字是 8,1~1991 可分为 1~10,11~20,21~30, ,1981~1990,1991;8 的连乘积末位数字 8、4,2,6 重复出现,199 4=49 3,因此 199 个 8 相乘的末位数字是 2,1991 个位数字是 1,因此,乘积 1 2 31990 1991 从右到左第一个不等于零的数字是 2.12. 由于第一个数5=第二个数1,因此第一个数:第二个数 = 1 : 5=3:10.又两数互6 446质,因此第一个数为 3,第二个数为 10,进而这串数为:3,10,13,23,36,59,95,154,249,403,652,1055 被 3 除所得的余数为:0,1,1,2,0,2,2,1,0,1,1,2, 按“0,1,1,2,0,2, 2,1”循环,周期 为 8.由于 1991 8=248 7,因此第 1991 个数被 3 除所得余数应是第 249 周期中的第 7 个数, 即 2.[注 ]解答本题应注意以下两个问题 :(1) 由于两个数互质 ,因此这两个数只能是最简整数比的两个数;(2) 求出这串数被 3 除所得的余数后 ,找出余数变化的周期 ,但这其实不是这串数的周期 .一般来说 ,一些有 规律的数串 ,被某一个整数逐个去除,所得的余数也拥有周期性.13. 由于 “共产党好 ”四个字, “社会主义好 ”五个字,4 与5 的最小公倍数是 20,因此在连续写完 5 个“共产党好 ”与 4 个“社会主义好 ”此后,将重复重新写起,出现周期现象,而且每个周期是 20 组数 .由于 340 20=17,因此第 340 组正好写完第 17 个周期 ,第 340 组是 (好,好 ).[ 注 ]本题从题面上看是一个文字游戏,其实质是一个周期的问题:四个四个地数0 1 2 3 4 5 6 7 8 9 10五个五个地数14.依照题意甲、乙从同一端点开始涂色,甲按黑、白,黑、白交替进行;乙按白、黑,白、黑交替进行,以以下列图所示 .60cm甲乙1cm 3cm 5cm 4cm 2cm由上图可知 ,甲黑、乙白从同一端点起,到再一次甲黑、乙白同时出现,应是小公倍数的 2 倍,即 5 6 2=60 厘米,也就是它们按60 厘米为周期循环出现周期中没有涂色的部分是1+3+5+4+2=15(厘米 )因此 ,在 3 米的木棍上没有涂黑色的部分长度总和是15 (300 60)=75(厘米 )5与6的最.而且在每一个[ 注 ]请注意这里的周期是 5 与6 最小公倍数的 2 倍 ,而不是 5 与6 的最小公倍数.这是同学们简单犯的错误 .。

五年级下册数学试题-奥数专题练习:周期性问题(无答案)全国通用

五年级下册数学试题-奥数专题练习:周期性问题(无答案)全国通用

周期性问题 年级 班 姓名 得分 一、填空题 1、1992年1月18日是星期六,再过十年的1月18日是星期_____.2、黑珠、白珠共102颗,穿成一串,排列如下图:……这串珠子中,最后一颗珠子应该是_____色的,这种颜色的珠子在这串中共有_____颗.3、流水线上生产小木珠涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑再1个白,然后再依次是5红,4黄,3绿,2黑,1白,……继续下去第1993个小珠的颜色是_____色.4、把珠子一个一个地如下图按顺序往返不断投入A 、B 、C 、D 、E 、F 袋中.第1992粒珠子投在_____袋中.5、数列1,4,7,10,13…依次如图排列成6行,如果把最左边的一列叫做第一列,从左到右依次编号,那么数列中的数349应排在第_____行第_____列. 1 4 7 10 1328 25 22 19 1631 34 37 40 4358 55 52 49 46………………………………………………………………6、数139化成小数后,小数点后面第1993位上的数字是_____. 7、成小数后,小数点后面1993位上的数字是_____.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18……8、一个循环小数0.1234567中,如果要使这个循环小数第100位的数字是5,那么表示循环节的两个小圆点,应分别在_____和_____这两个数字上.9、991个9与1990个8与1989个7的连乘积的个位数是_____.10、式(367367+762762) ⨯123123的得数的尾数是_____.二、解答题11、乘积1⨯2⨯3⨯4⨯……⨯1990⨯1991是一个多位数,而且末尾有许多零,从右到左第一个不等于零的数是多少?12、有串自然数,已知第一个数与第二个数互质,而且第一个数的65恰好是第二个数的41,从第三个数开始,每个数字正好是前两个数的和,问这串数的第1991个数被3除所得的余数是几?上表中,将每列上下两个字组成一组,例如第一组为(共社),第二组为(产会),那么第340组是_____.14、甲、乙二人对一根3米长的木棍涂色.首先,甲从木棍端点开始涂黑5厘米,间隔5厘米不涂色,接着再涂黑5厘米,这样交替做到底.然后,乙从木棍同一端点开始留出6厘米不涂色,接着涂黑6厘米,再间隔6厘米不涂色,交替做到底.最后,木棍上没有被涂黑部分的长度总和为_____厘米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

周期问题一、知识要点周期问题是指事物在运动变化的发展过程中,某些特征循环往复出现,其连续两次出现所经过的时间叫做周期。

在数学上,不仅有专门研究周期现象的分支,而且平时解题时也常常碰到与周期现象有关的问题。

这些数学问题只要我们发展某种周期现象,并充分加以利用,把要求的问题和某一周期的等式相对应,就能找到解题关键。

二、精讲精练【例题1】流水线上生产小木球涂色的次序是:先5个红,再4个黄,再3个绿,再2个黑,再1个白,然后又依次5红、4黄、3绿、2黑、1白……如此涂下去,到2001个小球该涂什么颜色?【思路导航】根据题意可知,小木球涂色的次序是5红、4黄、3绿、2黑、1白,即5+4+3+2+1=15个球为一个周期,不断循环。

因为2001÷15=133……6,也就是经过133个周期还余6个,每个周期中第6个是黄的,所以第2001个球涂黄色。

练习1:1.跑道上的彩旗按“三面红、两面绿、一面黄”的规律插下去,第50面该插什么颜色?2.有一串珠子,按4个红的,3个白的,2个黑的顺序重复排列,第160个是什么颜色?3.1/7=0.142857142857……,小数点后面第100个数字是多少?- 1 -【例题2】有47盏灯,按二盏红灯、四盏蓝灯、三盏黄灯的顺序排列着。

最后一盏灯是什么颜色的?三种颜色的灯各占总数的几分之几?【思路导航】(1)我们把二盏红灯、四盏蓝灯、三盏黄灯这9盏灯看作一组,47÷9=5(组)……2(盏),余下的两盏是第6组的前两盏灯,是红灯,所以最后一盏灯是红灯;(2)由于47÷9=5(组)……2(盏),所以红灯共有2×5+2=12(盏),占总数的12/47;蓝灯共有4×5=20(盏),占总数的20/47;黄灯共有3×5=15(盏),占总数的15/47。

练习2:1.有68面彩旗,按二面红的、一面绿的、三面黄的排列着,这些彩旗中,红旗占黄旗的几分之几?2.黑珠和白珠共2000颗,按规律排列着:○●○○○●○○○●○○……,第2000颗珠子是什么颜色的?其中,黑珠共有多少颗?3.在100米长的跑道两侧每隔2米站着一个同学。

这些同学以一端开始,按先两个女生,再一个男生的规律站立着。

这些同学中共有多少个女生?【例题3】 2001年10月1日是星期一,那么,2002年1月1日是星期几?【思路导航】一个星期是7天,因此7天为一个周期。

10月1日是星期一,是第一个周期的第一天,再过7天即10月8日也是星期一。

计算天数时为了方便,我们采用“算尾不算头”的方法,例如10月8日就用(8-1)÷7=1.没有余数说明8号仍是星期一。

题中说从2001年10月1日到2002年1月1日,要经过92天,92÷7=13……1.余1天就是从星期一往后数一天,即星期二。

- 2 -- 3 -练习3:1.2002年1月1日是星期二,2002年的六月一日是星期几?2.如果今天是星期五,再过80天是星期几?3.以今天为标准,算一算今年自己的生日是星期几?【例题4】 将奇数如下图排列,各列分别用A 、B 、C 、D 、E 为代表,问:2001所在的列以哪个字母为代表?【思路导航】这列数按每8个数一组有规律排列着。

2001是这一列数中的第1001个数,1001÷8=125……1.即2001是这列数中第126组的第一个数,所以它所在的那一列是以字母B 为代表的。

练习4:1.将偶数2、4、6、8、……按下图依次排列,2014出现在哪一列?2.把自然数按下列规律排列,865排在哪一列?A B C D E1 3 5 7 15 13 11 917 19 21 23 31 29 27 25… … … … … … … …A B C D E 8 6 4 210 12 14 16 24 22 20 1826 28 30 32 … … … …… … … …A B C D 1 2 36 5 478 912 11 10 … … …… … …【例题5】 888……8[100个8]÷7,当商是整数时,余数是几?【思路导航】从竖式中可以看出,被除数除以7,每次除得的余数以1、4、6、5、2、0不断重复出现。

我们可以用100除以6,观察余数就知道所求问题了。

100÷6=16 (4)余数是4说明当商是整数时,余数是1、4、6、5、2、0中的第4个数,即5。

练习5:1.444……4[100个4]÷3当商是整数时,余数是几?2.444……4[100个4]÷6当商是整数时,余数是几?- 4 -课后作业思考题- 5 -第12讲盈亏问题一、知识要点盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。

例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。

小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。

盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。

一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。

解题时我们可以记住:1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。

二、精讲精练【例题1】某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。

乒乓球队共有多少名学生?【思路导航】(1)由“少一个女生,增加一个男生,则男生为总人数的一半”可知:女生比男生多2人;(2)“少一个男生,增加一个女生”后,女生就比男生多2+2=4人,这时男生为女生人数的一半,即现在女生有4×2=8人。

原来女生有8-1=7人,男生有7-2=5人,共有7+5=12人。

练习1:1.学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。

学校买来两种粉笔各多少盒?2.操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。

两堆货物一共有多少吨?【例题2】幼儿园老师拿出苹果发给小朋友。

如果平均分给小朋友,则少4个;如果每个小朋友只发给4个,则老师自己也能留下4个。

有多少个小朋友?共有多少个苹果?- 6 -【思路导航】如果平均分给小朋友,则少4个,说明小朋友人数大于4;如果每个小朋友只发给4个,则教师也能留下4个,说明每人少拿若干个,就少拿4+4=8个苹果。

因为小朋友人数大于4,所以,一定是每人少拿1个,有8÷1=8个小朋友,有8×4+4=36个苹果。

练习2:1.给小朋友分梨,如果每人分4个,则多9个;如果每人分5个,则少6个。

有多少个小朋友?有多少个梨?2.老把一些铅笔奖给三好学生。

每人5支则多4支,每人7支则少4支。

老师有多少支铅笔?奖给多少个三好学生?【例题3】幼儿园老师将一筐苹果分给小朋友。

如果分给大班的学生每人5个余10个;如果分给小班的学生每人8个缺2个。

已知大班比小班多3人,这筐苹果有多少个?【思路导航】如果大班减少3人,则大班和小班的人数同样多。

这样,大班每人5个就多余3×5+10=25个。

由于两班人数相等,小班每人多分3个就要多分(25+2)个苹果,用(25+2)÷(8-5)就能得到小班同学的人数是9人,再用9×8-2就求出了这筐苹果有多少个。

练习3:1.一些学生搬一批砖,每人搬4块,其中5人要搬两次;如果每人搬5块,就有两人没有砖可搬。

这些学生有多少人?这批砖有多少块?2.老师给幼儿园小朋友分糖,每人3块还多10块;如果减少2个小朋友再分,每人4块还多7块。

原来有多少个小朋友?有多少块糖?【例题4】幼儿园教师把一箱饼干分给小班和中班的小朋友,平均每人分得6块;如果只分给中班的小朋友,平均每人可以多分得4块。

如果只分给小班的小朋友,平均每人分得多少块?【思路导航】这箱饼干分给小班和中班的小朋友,平均每人分得6块,如果只分给中班的小朋友,平均每人可多分4块。

说明中班的人数是小班人数的6÷4=1.5倍。

因此,这箱饼干分给小班的小朋友,每位小朋友可多分到6×1.5=9块,一共可分到6+9=15块饼干。

练习4:1.老师把一批书借给甲组同学,平均每人借4本。

如果只借给甲组的女同学,每人可借6本。

如果只借给甲组的男生,平均每人借到几本?- 7 -2.甲、乙两组同学做红花,每人做8朵,正好送给五年级每个同学一朵。

如果把这些红花让甲组同学单独做,每人要多做4朵。

如果把这些红花让乙组同学单独做,每人要做几朵?【例题5】全班同学去划船,如果减少一条船,每条船正好坐9个同学;如果增加一条船,每条船正好坐6个同学。

这个班有多少个同学?【思路导航】根据题意可知:每船坐9人,就能减少一条船,也就是少9个同学;每船坐6人,就要增加一条船,也就是多出6个同学。

因此,每船坐9人比每船坐6人可多坐9+6=15人,15里面包含5个(9-6),说明有5条船。

知道了有5条船,就可以求全班人数:9×(5-1)=36人。

练习5:1.老师把一篮苹果分给小班的同学,如果减少一个同学,每个同学正好分得5个;如果增加一个同学,正好每人分得4个。

这篮苹果一共有多少个?2.五年级同学去划船,如果增加一只船,正好每只船上坐7人;如果减少一只船,正好每只船上价8人。

五年级共有多少人?课后作业- 8 -思考题- 9 -第13讲长方体和正方体(一)一、知识要点在数学竞赛中,有许多有关长方体、正方体的问题。

解答稍复杂的立体图形问题要注意几点:1.必须以基本概念和方法为基础,同时把构成几何图形的诸多条件沟通起来;2.依赖已经积累的空间观念,观察经过割、补后物体的表面积或体积所发生的变化;3.求一些不规则的物体体积时,可以通过变形的方法来解决。

二、精讲精练【例题1】一个零件形状大小如下图:算一算,它的体积是多少立方厘米?表面积是多少平方厘米?(单位:厘米)【思路导航】(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80×2=160(立方厘米);(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。

相关文档
最新文档