2017年中科院数学分析考研试题
中科大历年考研数学真题
则向量组 α1 + α2, α2 + α3, α3 + α4, α4 + α1 的秩等于
.
5. 在 3 维实向量空间 R3 中,设 α1 = (−1, 1, 1)T , α2 = (1, −1, 0)T , α3 = (1, 0, −1)T , β =
(−4, 3, 4)T , 则 beta在基 α1, α2, α3 下的坐标是
1.4 中科大 2012 年研究生入学考试试题线性代数与解析几何
–6–
1.4 中科大 2012 年研究生入学考试试题线性代数与解 析几何
一. 填空题 (每题 5 分)
1. 在 R3 中,直线 x = y = z 与平面 z = x − y 的夹角的余弦值等于
2. 在 R3 中, 方程 xy − yz + zx = 1 所表示的二次曲面类型为
−2
x2 + 2x3 + 2x4 + 6x5 = 5 5x1 + 4x2 + 3x3 + 3x4 − x5
=
0
1.2 中科大 2010 年研究生入学考试试题线性代数与解析几何
–3–
2.
设空间上有直线 l1
:
x−1 3
=
y 1
=
z 0
和 l2 √
: (x, y, z) = (3 + 2t, t, 3t − 3). 设平面 π 与
为 α1 = (1, 0, −1), α2 = (?, ?, ?), 求矩阵 A 以及使 A 对角化的矩阵 P 7. A 是复方阵,线性变换 T → AX + XA, 证明:如果 A 可对角化,那么 T 也可以对
角化。 8. A 是复方阵,定义 eA = ∑ +∞ Ak ,证明:det(eA) = etr(A)
中国科学技术大学2017年线性代数与解析几何考研试题及解答
2.
设直线
l:
1−x 3
=y+1=
3−z 2
在平面
x−y+z
=2
上的投影为
l1,
则
l1
的方程为
,l
绕 l1 旋转所得的曲面方程是 .
101
3. 矩阵 1 1 = −1 1
3 + a1b1 a1b2
,
行列式
det
a2b1
3 + a2b2
a1b3
a2b3
=
.
a3b1
a3b2 3 + a3b3
3 −2 1
2. (15分) 考虑二阶复方阵 M (C) 组成的复线性空间, 方阵 A = 7 2 以及线性变换 B : 37
M2(C) → M2(C) 满足 B(X) = AX − XA, 其中 X 为任意 2 阶方阵, 试证明: B 是可对角 化的线性变换.
3. (20分) 设 V 是由次数不超过 3 的实系数多项式组成的线性空间. 对于任意的 f (x), g(x) ∈
解得
a
=
3 5
.
2. 设 l 与平面的交点为 (1 − 3t, t − 1, 3 − 2t), 由交点在平面上得 1 − 3t − t + 1 + 3 − 2t = 2, 解得
t
=
1 2
,
于是交点为
−
1 2
,
−
1 2
,
2
. l1 的一个方向向量为 (−3, 1, −2) × (1, −1, 1) × (1, −1, 1) =
就马上得到结论. 至于上面例题的证明可以翻书查阅, 书上给了两种证明, 第二种证明与证 明惯性定理类似.
考研数学二真题及答案分析精选文档
证明:
若 ,求方程组 的通解。
【答案】(I)略;(II)通解为
【解析】
(I)证明:由 可得 ,即 线性相关,
因此, ,即A的特征值必有0。
又因为A有三个不同的特征值,则三个特征值中只有1个0,另外两个非0.
且由于A必可相似对角化,则可设其对角矩阵为
(15)(本题满分10分)求极限
【答案】
【解析】 ,令 ,则有
(16)(本题满分10分)设函数 具有2阶连续偏导数, ,求 ,
【答案】
【解析】
结论:
(17)(本题满分10分)求
【答案】
【解析】
(18)(本题满分10分)已知函数 由方程 确定,求 的极值
【答案】极大值为 ,极小值为
【解析】
两边求导得:【答案】 Nhomakorabea【解析】
(11) _______
【答案】1
【解析】
(12)设函数 具有一阶连续偏导数,且 , ,则
【答案】
【解析】 故
,
因此 ,即 ,再由 ,可得
【答案】
【解析】
(13)
【答案】 .
【解析】交换积分次序:
.
(14)设矩阵 的一个特征向量为 ,则
【答案】-1
【解析】设 ,由题设知 ,故
故 .
三、解答题:15—23小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明过程或演算步骤.
【解析】 在 处连续 选A.
(2)设二阶可导函数 满足 且 ,则()
【答案】B
【解析】
为偶函数时满足题设条件,此时 ,排除C,D.
取 满足条件,则 ,选B.
2017年考研数学三真题与解析
2017年考研数学三真题与解析2017年考研数学三真题一、选择题 1—8小题.每小题4分,共32分. 1.若函数1cos 0(),0xx f x b x ->=⎪≤⎩在0x =处连续,则(A )12ab =(B )12ab =-(C )0ab =(D )2ab = 【详解】0001112lim ()lim lim 2x x x xx f x ax ax a+++→→→-===,0lim ()(0)x f x b f -→==,要使函数在0x =处连续,必须满足1122b ab a =⇒=.所以应该选(A ) 2.二元函数(3)z xy x y =--的极值点是( )(A )(0,0) (B )03(,) (C )30(,) (D )11(,)【详解】2(3)32zy x y xy y xy y x∂=---=--∂,232z x xxyy ∂=--∂,2222222,2,32z z z zy x x x y x y y x∂∂∂∂=-=-==-∂∂∂∂∂∂解方程组22320320zy xy y x zx x xy y∂⎧=--=⎪∂⎪⎨∂⎪=--=∂⎪⎩,得四个驻点.对每个驻点验证2AC B -,发现只有在点11(,)处满足230AC B-=>,且20A C ==-<,所以11(,)为函数的极大值点,所以应该选(D ) 3.设函数()f x 是可导函数,且满足()()0f x f x '>,则(A )(1)(1)f f >- (B )11()()f f <- (C )11()()f f >- (D )11()()f f <-【详解】设2()(())g x f x =,则()2()()0g x f x f x ''=>,也就是()2()f x 是单调增加函数.也就得到()()22(1)(1)(1)(1)f f f f >-⇒>-,所以应该选(C )4. 若级数211sin ln(1)n k n n ∞=⎡⎤--⎢⎥⎣⎦∑收敛,则k =( ) (A )1 (B )2 (C )1-(D )2- 【详解】ivn →∞时22221111111111sin ln(1)(1)22k k k o k o n n n n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫--=---+=++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭显然当且仅当(1)0k +=,也就是1k =-时,级数的一般项是关于1n 的二阶无穷小,级数收敛,从而选择(C ). 5.设α为n 单位列向量,E 为n 阶单位矩阵,则(A )TE αα-不可逆 (B )TE αα+不可逆(C )2TE αα+不可逆 (D )2TE αα-不可逆【详解】矩阵Tαα的特征值为1和1n -个,从而,,2,2T T T TE E E E αααααααα-+-+的特征值分别为0,1,1,1L ;2,1,1,,1L ;1,1,1,,1-L ;3,1,1,,1L .显然只有TE αα-存在零特征值,所以不可逆,应该选(A ). 6.已知矩阵200021001A ⎛⎫⎪= ⎪⎪⎝⎭,210020001B ⎛⎫⎪= ⎪⎪⎝⎭,100020002C ⎛⎫⎪= ⎪⎪⎝⎭,则(A ),A C 相似,,B C 相似 (B ),A C 相似,,B C 不相似(C ),A C 不相似,,B C 相似 (D ),A C 不相似,,B C不相似【详解】矩阵,A B 的特征值都是1232,1λλλ===.是否可对解化,只需要关心2λ=的情况. 对于矩阵A ,0002001001E A ⎛⎫⎪-=- ⎪⎪⎝⎭,秩等于 1 ,也就是矩阵A 属于特征值2λ=存在两个线性无关的特征向量,也就是可以对角化,也就是~A C . 对于矩阵B ,010*******E B -⎛⎫ ⎪-= ⎪⎪⎝⎭,秩等于 2 ,也就是矩阵A 属于特征值2λ=只有一个线性无关的特征向量,也就是不可以对角化,当然,B C 不相似故选择(B ).7.设,A B ,C 是三个随机事件,且,A C 相互独立,,B C 相互独立,则A B U 与C 相互独立的充分必要条件是( )(A ),A B 相互独立 (B ),A B 互不相容 (C ),AB C 相互独立 (D ),AB C 互不相容 【详解】(())()()()()()()()()()P A B C P AC AB P AC P BC P ABC P A P C P B P C P ABC =+=+-=+-U()()(()()())()()()()()()()P A B P C P A P B P AB P C P A P C P B P C P AB P C =+-=+-U显然,A B U 与C 相互独立的充分必要条件是()()()P ABC P AB P C =,所以选择(C ).8.设12,,,(2)nX X Xn ≥L 为来自正态总体(,1)N μ的简单随机样本,若11nii X X n ==∑,则下列结论中不正确的是( )(A )21()ni i Xμ=-∑服从2χ分布 (B )()212n XX -服从2χ分布(C )21()nii XX =-∑服从2χ分布 (D )2()n X μ-服从2χ分布解:(1)显然22()~(0,1)()~(1),1,2,ii X N X i nμμχ-⇒-=L 且相互独立,所以21()nii Xμ=-∑服从2()n χ分布,也就是(A )结论是正确的;(2)222221(1)()(1)~(1)n ii n S XX n S n χσ=--=-=-∑,所以(C )结论也是正确的;(3)注意221~(,)()~(0,1)()~(1)X N n X N n X n μμμχ⇒-⇒-,所以(D )结论也是正确的; (4)对于选项(B):221111()~(0,2)~(0,1)()~(1)22n n n X X N N X X χ-⇒⇒-,所以(B )结论是错误的,应该选择(B )二、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上)9.322(sin )x x dx πππ-+-=⎰ .解:由对称性知332222(sin )22x x dx x dx ππππππ--=-=⎰⎰.10.差分方程122tt t y y +-=的通解为 .【详解】齐次差分方程120t t yy +-=的通解为2xy C =;设122tt t yy +-=的特解为2ttyat =,代入方程,得12a =; 所以差分方程122tt t yy +-=的通解为12 2.2tty C t =+11.设生产某产品的平均成本()1QC Q e -=+,其中产量为Q ,则边际成本为 . 【详解】答案为1(1)QQ e -+-.平均成本()1QC Q e -=+,则总成本为()()QC Q QC Q Q Qe -==+,从而边际成本为()1(1).Q C Q Q e -'=+-12.设函数(,)f x y 具有一阶连续的偏导数,且已知(,)(1)y y df x y ye dx x y e dy=++,(0,0)0f =,则(,)f x y =【详解】(,)(1)()y yydf x y ye dx x y e dy d xye =++=,所以(,)yf x y xyeC=+,由(0,0)0f =,得0C =,所以(,)yf x y xye =.13.设矩阵101112011A ⎛⎫ ⎪= ⎪⎪⎝⎭,123,,ααα为线性无关的三维列向量,则向量组123,,A A A ααα的秩为 . 【详解】对矩阵进行初等变换101101101112011011011011000A ⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=→→ ⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,知矩阵A 的秩为2,由于123,,ααα为线性无关,所以向量组123,,A A A ααα的秩为2.14.设随机变量X 的概率分布为{}122P X =-=,{}1P X a ==,{}3P X b==,若0EX =,则DX = .【详解】显然由概率分布的性质,知112a b ++= 12133102EX a b a b =-⨯+⨯+⨯=+-=,解得11,44a b == 29292EX a b =++=,229()2DX EXE X =-=.三、解答题15.(本题满分10分) 求极限03lim t x x te dt x+→-⎰【详解】令x t u -=,则,t x u dt du =-=-,0tx u x te dt ue du--=⎰⎰33300002limlim limlim 332t x u u x x x x x x te dt e ue du ue du xe xxxx ++++---→→→→-====⎰⎰⎰16.(本题满分10分) 计算积分3242(1)Dy dxdy x y ++⎰⎰,其中D 是第一象限中以曲线y x=与x 轴为边界的无界区域. 【详解】33242242002424200220(1)(1)1(1)4(1)11121411282x Dx y y dxdy dx dy x y x y d x y dx x y dx x x π+∞+∞+∞=++++++=++⎛⎫⎛⎫=-=- ⎪ ⎪ ⎪++⎝⎭⎝⎭⎰⎰⎰⎰⎰17.(本题满分10分)求21lim ln 1nn k k k n n→∞=⎛⎫+ ⎪⎝⎭∑ 【详解】由定积分的定义120111201lim ln 1lim ln 1ln(1)11ln(1)24nn n n k k k k k k x x dx nn n n n x dx →∞→∞==⎛⎫⎛⎫+=+=+ ⎪ ⎪⎝⎭⎝⎭=+=∑∑⎰⎰18.(本题满分10分)已知方程11ln(1)k x x-=+在区间(0,1)内有实根,确定常数k 的取值范围.【详解】设11(),(0,1)ln(1)f x x x x =-∈+,则 22222211(1)ln (1)()(1)ln (1)(1)ln (1)x x x f x x x x x x x ++-'=-+=++++令22()(1)ln (1)g x x x x =++-,则2(0)0,(1)2ln21g g ==-2()ln (1)2ln(1)2,(0)0g x x x x g ''=+-+-=2(ln(1))()0,(0,1)1x x g x x x+-''=<∈+,所以()g x '在(0,1)上单调减少,由于(0)0g '=,所以当(0,1)x ∈时,()0)0g x g ''<=,也就是()g x ()g x '在(0,1)上单调减少,当(0,1)x ∈时,()(0)0g x g <=,进一步得到当(0,1)x ∈时,()0f x '<,也就是()f x 在(0,1)上单调减少.00011ln(1)1lim ()lim lim ln(1)ln(1)2x x x x x f x x x x x +++→→→⎛⎫-+=-== ⎪++⎝⎭,1(1)1ln 2f =-,也就是得到111ln 22k -<<.19.(本题满分10分)设011111,0,()(1,2,3),1n n n a a a na a n n +-===+=+L ,()S x 为幂级数0n n n a x ∞=∑的和函数(1)证明0n n n a x ∞=∑的收敛半径不小于1.(2)证明(1)()()0((1,1))x S x xS x x '--=∈-,并求出和函数的表达式. 【详解】(1)由条件11111()(1)1n n n n n n a na a n a na a n +-+-=+⇒+=++也就得到11(1)()()n n n n n aa a a +-+-=--,也就得到111,1,2,1n n n n aa n aa n +--=-=-+L1112110112101(1)(1)!nn n n n n n n n n n a a a a a a a a a a a a a a a a n ++--------=⨯⨯⨯=-----+L也就得到111(1),1,2,(1)!n n n aa n n ++-=-=+L111121121()()()(1)!nk n n n n n k a a a a a a a a k +++-==-+-++-+=-∑L111lim12!3!!nnnn n n n a e n ρ→∞=≤+++≤=L ,所以收敛半径1R ≥(2)所以对于幂级数0nn n a x ∞=∑, 由和函数的性质,可得11()n n n S x na x ∞-='=∑,所以11111101111111(1)()(1)(1)((1))()n n nn n n n n n nnn n n n nn n n nn n n n n n n n x S x x na xna xna x n a x na x a n a na x a x a xx a x xS x ∞∞∞--===∞∞+==∞+=∞∞∞+-==='-=-=-=+-=++-====∑∑∑∑∑∑∑∑∑也就是有(1)()()0((1,1))x S x xS x x '--=∈-.解微分方程(1)()()0x S x xS x '--=,得()1xCe S x x-=-,由于0(0)1S a==,得1C =所以()1xe S x x-=-.20.(本题满分11分)设三阶矩阵()123,,A ααα=有三个不同的特征值,且3122.ααα=+(1)证明:()2r A =; (2)若123,βααα=+,求方程组Ax β=的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以A 是非零矩阵,也就是()1r A ≥.假若()1r A =时,则0r =是矩阵的二重特征值,与条件不符合,所以有()2r A ≥,又因为31220ααα-+=,也就是123,,ααα线性相关,()3r A <,也就只有()2r A =.(2)因为()2r A =,所以0Ax =的基础解系中只有一个线性无关的解向量.由于31220ααα-+=,所以基础解系为121x ⎛⎫⎪= ⎪ ⎪-⎝⎭;又由123,βααα=+,得非齐次方程组Ax β=的特解可取为111⎛⎫ ⎪ ⎪ ⎪⎝⎭;方程组Ax β=的通解为112111x k ⎛⎫⎛⎫⎪ ⎪=+ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭,其中k 为任意常数.21.(本题满分11分) 设二次型222123123121323(,,)2282f x x x xx ax x x x x x x =-++-+在正交变换x Qy =下的标准形为221122yy λλ+,求a 的值及一个正交矩阵Q .【详解】二次型矩阵21411141A a -⎛⎫ ⎪=- ⎪⎪-⎝⎭因为二次型的标准形为221122y y λλ+.也就说明矩阵A 有零特征值,所以0A =,故 2.a =114111(3)(6)412E A λλλλλλλ---=+=+---令0E A λ-=得矩阵的特征值为1233,6,0λλλ=-==.通过分别解方程组()0iE A x λ-=得矩阵的属于特征值13λ=-的特征向量11131ξ⎛⎫⎪=-⎪⎪⎭,属于特征值特征值26λ=的特征向量21021ξ-⎛⎫⎪=⎪⎪⎭,3λ=的特征向量31261ξ⎛⎫⎪=⎪⎪⎭,所以()123326,,036326Q ξξξ⎛ == ⎝为所求正交矩阵.22.(本题满分11分) 设随机变量,X Y相互独立,且X的概率分布为{}10{2}2P X P X ====,Y 的概率密度为2,01()0,y y f y <<⎧=⎨⎩其他. (1)求概率P Y EY ≤();(2)求Z X Y =+的概率密度. 【详解】(1)1202()2.3Y EY yf y dy y dy +∞-∞===⎰⎰所以{}230242.39P Y EY P Y ydy ⎧⎫≤=≤==⎨⎬⎩⎭⎰(2)Z X Y =+的分布函数为{}{}{}{}{}{}{}[](),0,20,2,211{}2221()(2)2Z Y Y F z P Z z P X Y z P X Y z X P X Y z X P X Y z P X Y z P Y z P Y z F z F z =≤=+≤=+≤=++≤===≤+=≤-=≤+≤-=+-故Z X Y =+的概率密度为[]1()()()(2)2,012,230,Z Z f z F z f z f z z z z z '==+-≤≤⎧⎪=-≤<⎨⎪⎩其他23.(本题满分11分)某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量μ是已知的,设n 次测量结果12,,,nX X X L 相互独立且均服从正态分布2(,).N μσ该工程师记录的是n 次测量的绝对误差,(1,2,,)ii ZX i n μ=-=L ,利用12,,,nZ Z Z L 估计参数σ.(1)求iZ 的概率密度;(2)利用一阶矩求σ的矩估计量; (3)求参数σ最大似然估计量. 【详解】(1)先求iZ 的分布函数为{}{}()i Z i i X z F z P Z z P X z P μμσσ⎧-⎫=≤=-≤=≤⎨⎬⎩⎭当0z <时,显然()0ZF z =;当0z ≥时,{}{}()21i Z i i X z zF z P Z z P X z P μμσσσ⎧-⎫⎛⎫=≤=-≤=≤=Φ-⎨⎬⎪⎝⎭⎩⎭;所以iZ 的概率密度为222,0()()20,0z Z Z z f z F z z σπσ-⎧≥⎪'==⎨⎪<⎩. (2)数学期望2220()22z iEZ z f z dz ze dz σπσπ-+∞+∞===⎰⎰令11nii EZ Z Z n ===∑,解得σ的矩估计量122ni i Z Z ππσ===.(3)设12,,,nZ Z Z L 的观测值为12,,,nz z z L .当0,1,2,iz i n>=L 时似然函数为221121()(,)(2)ni i n nz i ni L f z σσσπσ=-=∑==∏,取对数得:2211ln ()ln 2ln(2)ln 22ni i n L n n z σπσσ==---∑令231ln ()10n i i d L n z d σσσσ==-+=∑,得参数σ最大似然估计量为211n i i z n σ==∑。
中科大数学分析历年期末考试卷
:
(3)
2
1
大学生数学竞赛及考研:122307834
7.
15
a, b ax, −π < x < 0; bx, 0 ≤ x < π.
f (x) =
(1) (2)
f (x) f (x) (a)
Fourier Fourier
∞ ∑ (−1)n , 2 n + 1 n=0
(b)
∞ ∑ n=0
0 0
π 2 π 2
n=1 n = 1.
3.
x = sin t. ∫ 1 √ ∫ 2 2 x 1 − x dx = 2
−1
1
x
π 2
2
sin2 t cos2 t dt
1 = 2 4. ∫
0 +∞ √
∫
0
0
1 sin 2t dt = 4
2
1 (1 − cos 4t) dt = . 8 ∫ +
e dt − x
n+1
n→+∞ n
sin x dx x
n→+∞ 0
e x dx
x n
n→∞
lim
1 1 1 + + ··· + n+1 n+2 n+n
)
n→∞
lim ∫
n! n ( 5 ) 2. ∫ 1− x2 dx (x + y )dx + xdy = 0.
∞ ∑ (√ n=1
√
1
∫
x ln x dx
3.
ex xn ≤ exn , x ∈ [0, 1],
n→∞ 0
∫1 e 0 ≤ 0 ex xn dx ≤ n+1 . ∫ 1 lim ex xn dx = 0.
2017年全国硕士研究生入学统一考试数学三真题及答案解析 .doc
2017年全国硕士研究生入学统一考试数学三真题及答案解析一、选择题(本题共8小题,每小题4分,满分32分)(1)若函数⎪⎩⎪⎨⎧≤>-=0,,0,cos 1)(x b x axxx f 在0=x 处连续,则( ) )(A 21=ab 。
)(B 21-=ab 。
)(C 0=ab 。
D (2=ab 。
【答案】)(A【解】aax x f x 21cos 1lim)00(0=-=++→,b f f =-=)00()0(,因为)(x f 在0=x 处连续,所以)00()0()00(-==+f f f ,从而21=ab ,应选)(A 。
(2)二原函数)3(y x xy z--=的极值点为( ))(A )0,0(。
)(B )3,0(。
)(C )0,3(。
)(D )1,1(。
【答案】)(D【解】由⎪⎩⎪⎨⎧=--='=--='023,02322x xy x z y xy y z yx 得⎩⎨⎧==0,0y x ⎩⎨⎧==1,1y x ⎩⎨⎧==3,0y x ⎩⎨⎧==0,3y x y z xx 2-='',y x z xy 223--='',x z yy 2-='',当)0,0(),(=y x 时,092<-=-B AC ,则)0,0(不是极值点;当)1,1(),(=y x 时,032>=-B AC 且02<-=A ,则)1,1(为极大点,应选)(D 。
(3)设函数)(x f 可导,且0)()(>'⋅x f x f ,则( ))(A )1()1(->f f 。
)(B )1()1(-<f f 。
)(C |)1(||)1(|->f f 。
)(D |)1(||)1(|-<f f 。
【答案】)(C 【解】若0)(>x f ,则0)(>'x f ,从而0)1()1(>->f f ;若0)(<x f ,则0)(<'x f ,从而0)1()1(<-<f f ,故|)1(||)1(|->f f ,应选)(C 。
中国科学院数学研究院数学分析试题及答案
中国科学院数学与系统科学研究院20XX 年硕士研究生招生初试试题参考解答数学分析1、求a,b 使下列函数在x=0处可导:2,1,ax b y x +≥⎧=⎨+⎩当x 0;当x<0.解:由于函数在x=0处可导,从而连续,由(00),(00)1f b f +=-=,得到b=1;又由(0),(0)0f a f +-==,得到a=0.即得。
2、 1110,,.1n n n a ∞∞==>+∑∑n n 1已知级数发散求证级数也发散a a 证明: 用反证法。
由0n a >知,1n ∞=∑n 1级数a ,111n ∞=+∑na 均为正项级数。
假设级数111n ∞=+∑n a 收敛,则1lim 01n →∞=+n a ,于是有11lim lim lim 1111111n n n n n n a a a →∞→∞→∞===-+++n n 1a a , 从而由正项级数的比较判别法知级数1n ∞=∑n1a 收敛,矛盾,从而得证。
3、 1(1).nx dx ≥-⎰m设m,n 0为整数,求积分x 的值解:1(1),nx dx -⎰m 设I(m,n)=x 则由分部积分法有11111n101I(m,n)=(1-x)(1)|(1)(1)0111m m m n n x x x d x n x dx m m m +++-=----+++⎰⎰(1,1)1nI m n m =+-+, 从而1(,)(1,1)(2,2)112n n n I m n I m n I m n m m m -=+-=+-+++11(,0)12n n I m n m m m n -==++++!1!!()!1(1)!!n m n m n m n m n m ==+++++,即得解。
4 、0().a aa dx f x dx -=⎰⎰xf(x)设a>0,f(x)是定义在[-a,a]上的连续的偶函数,则1+e 证明:由f(x)是定义在[-a,a]上的连续的偶函数知()()f x f x -=,从而令x t =-有 ()()()11a aat t t aa af t e f t dx dt dt e e -----=-=++⎰⎰⎰xf(x)1+e 从而1()1()()212aaaat t a a aae f t dx dx dt f x dx e ----=+=+⎰⎰⎰⎰x x f(x)f(x)1+e 1+e 0000011[()()][()()]()22aaaaa f x dx f x dx f x dx f x dx f x dx -=+=+=⎰⎰⎰⎰⎰, 得证。
2017年全国硕士研究生入学统一考试数学(二)真题及解析
【解析】
为偶函数时满足题设条件,此时 ,排除C,D.
取 满足条件,则 ,选B.
(3)设数列 收敛,则()
当 时, 当 时,
当 时, 当 时,
【答案】D
【解析】特值法:(A)取 ,有 ,A错;
取 ,排除B,C.所以选D.
(4)微分方程的特解可设为
(A) (B)
(C) (D)
【答案】C
【解析】特征方程为:
故特解为: 选C.
(5)设 具有一阶偏导数,且对任意的 ,都有 ,则
(A) (B) (C) (D)
【答案】D
【解析】 是关于 的单调递增函数,是关于 的单调递减函数,
所以有 ,故答案选D.
(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m)处,图中实线表示甲的速度曲线 (单位: ),虚线表示乙的速度曲线 ,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为 (单位:s),则()
(1)
令 得
对(1)式两边关于x求导得 (2)
将 代入原题给的等式中,得 ,
将 代入(2)得
将 代入(2)得
故 为极大值点, ; 为极小值点,
(19)(本题满分10分)设函数 在区间 上具有2阶导数,且 ,证明:
方程 在区间 内至少存在一个实根;
方程 在区间 内至少存在两个不同实根。
【答案】
【解析】
2017年全国硕士研究生入学统一考试数学二试题
一、选择题:1~8小题,每小题4分,共32分。下列每题给出的四个选项中,只有一个选项是符合题目要求的.
(1)若函数 在x=0连续,则
(A) (B) (C) (D)
(2)设二阶可到函数 满足 且 ,则
《数学分析》I-2017-2018-1 期中考试 试题参考答案
《数学分析》I-2017-2018-1期中考试试题参考答案一题,填空题(每空3分,共15分)1.lim$→$&f x≠A的定义为:∃ε->0,∀δ>0,∃x′,0<x′−x-<δ,有f x′−A≥ε-2.设f(x)在0点可导,则lim8→09:;<=>8;9(-)8?=:Af′(0)3.函数y=sgn(sin x) 的间断点为:kπ,k∈Z4.若lim$→∞$NO$;O$=9,则a=ln35.若函数f x=cos x;$?,x≠0a,x=0在x=0处连续,则a=1二题,选择题(每题3分,共15分)1.(D)2.(D)3.(D)4.(A)5.(C)三题、计算题(每题5分,共30分)1.lim$→0O V NW V NX VYZV(a>0,b>0,c>0)lim$→-a$+b$+c$3:$=lim$→-1+a$−1+b$−1+c$−13:$因为lim$→-a$−1+b$−1+c$−13x=13ln abc所以有:lim$→-O V NW V NX VYZV=abc^2.设x_N:=x_+2,x:=2,证明该数列收敛,并求其极限。
首先证明有界性,因为x:=2<2,假设x_<2,则有x_N:=x_+2<2。
由归纳法知该数列有界。
下证该数列单调递增:x_N:−x_=x_+2−x_;:+2=x_−x_;:x_+2+x_;:+2所以该数列单调,因为x:<x A,所以该数列单调递增。
由单调有界定理,该数列收敛。
假设极限为A,则有:A=A+2→A=23.设y=f(x+y),其中f具有二阶导数,且f′≠1,求b?cb$?y d=f d x+y1+y dy dd=f dd x+y1+y d A+f d x+y y′′所以有:y′′=f′′x+y1+y′A 1−f′x+y其中:y d=f d x+y/(1−f′(x+y)) 4.设y=sin A x,求y(_)解:y=sin A x=1−cos2x2y(-)=1−cos2x2n ≥1,有y_=1−cos 2x 2_=−122_cos 2x +nπ25. 设x =ln 1+t Ay =arctan t,求b ?c b$?d Ay dx A =d dx dy dx =d dx 11+t A 2t 1+t A =d dt 12t dt dx =−12t A 1+t A 2t =1+t A−4t Y6. 利用微分计算sin 30-30′(30d =lYm-≈0.0087)sin 30-30d 30d =π360≈0.0087=sin π6+π360≈sin π6+cos π6π360≈12+32π360四.证明题(本题10分)证明:五.论述题(每小题5分,共10分)1. 指出函数:$−:$的间断点,并指出其类型。
2017年考研数学三真题与解析
考研数学真题及解析= = - ∂z n =2 2017 年考研数学三真题一、选择题 1—8 小题.每小题 4 分,共 32 分.⎧1- co 1. 若函数 f (x ) = ⎪, x > 0在 x = 0 处连续,则 ⎨ ax ⎩⎪ b , x ≤ 0 (A ) ab = 1 (B ) ab = - 1(C ) ab = 0 (D ) ab = 2【详解】 lim 2 f (x ) = lim2 1 x = lim 2 =1 , limf (x ) = b = f (0) ,要使函数在 x = 0 处连续, x →0+x →0+ ax x →0+ ax 2a x →0-1必须满足 2a = b ⇒ ab = 1 .所以应该选(A ) 22. 二元函数 z = xy (3 - x - y ) 的极值点是()(A ) (0, 0)(B ) (0, 3)(C ) (3, 0)(D ) (1,1)【详解】∂z= y (3 - x - y ) - xy = 3y - 2xy - y 2 , ∂z= 3x - x 2 - 2xy ,∂2z = - ∂x 2∂x 2 y , ∂2 z∂y 2 = -2x ,∂2 z ∂x ∂y∂y ∂2 z ∂y ∂x 3 2x⎧∂z= 3y - 2xy - y 2 = 0 ⎪∂x 解方程组 ⎨⎪ = 3x - x 2 - 2xy = 0⎪⎩∂y,得四个驻点.对每个驻点验证 AC - B 2,发现只有在点(1,1) 处满足AC - B 2 = 3 > 0 ,且 A = C = -2 < 0 ,所以(1,1) 为函数的极大值点,所以应该选(D )3. 设函数 f (x ) 是可导函数,且满足 f (x ) f '(x ) > 0 ,则(A ) f (1) > f (-1)(B ) f (1) < f (-1) (C ) f (1) > f (-1)(D ) f (1) < f (-1)【详解】设 g (x ) = ( f (x ))2 ,则 g '(x ) = 2 f (x ) f '(x ) > 0 ,也就是 ( f (x ))2是单调增加函数.也就得到( f (1))2> ( f (-1))2⇒ f (1) > f (-1) ,所以应该选(C )∞⎡ 1 1 ⎤ 4.若级数∑ ⎢⎣sin n - k ln(1- n )⎥⎦ 收敛,则k = ( )(A )1(B ) 2(C ) -1(D ) -2s x 1- cos x⎝ ⎭ ⎝ ⎭⎝ ⎭ ⎝ ⎭⎪ ⎝ ⎭1 1 1 ⎛ 1 1 ⎛ 1 ⎫2⎫ ⎛ 1 ⎫ 1 k 1 ⎛ 1 ⎫【详解】iv n → ∞ 时sin n - k ln(1- n ) = n - k - - ⎪ ⎪ + o n 2 ⎪ = (1+ k ) + 2 o n 2 ⎪ ⎝n 2 ⎝ n ⎭ ⎭ ⎝ ⎭ 1n 2 n ⎝ ⎭ 显然当且仅当(1+ k ) = 0 ,也就是 k = -1 时,级数的一般项是关于 n(C ).5. 设α 为n 单位列向量, E 为n 阶单位矩阵,则的二阶无穷小,级数收敛,从而选择(A ) E - αα T不可逆(B ) E + αα T不可逆(C ) E + 2αα T不可逆(D ) E - 2αα T不可逆【详解】矩阵αα T的特征值为1和 n -1个 0 ,从而 E - αα T, E + αα T, E - 2αα T, E + 2αα T的特征值分别为0,1,1, 1; 2,1,1, ,1 ; -1,1,1, ,1; 3,1,1, ,1 .显然只有 E - αα T存在零特征值,所以不可逆, 应该选(A ).6.已知矩阵 A = ⎪ 0 0 1 ⎪ ⎪ 0 0 1 ⎪,则 0 0 2 ⎪(A ) A , C 相似, B , C 相似(B ) A , C 相似, B , C 不相似(C ) A , C 不相似, B , C 相似(D ) A , C 不相似, B , C 不相似【详解】矩阵 A , B 的特征值都是λ1 = λ2 = 2, λ3 = 1.是否可对解化,只需要关心λ = 2 的情况.⎛ 0 0 0 ⎫ 对于矩阵 A , 2E - A =0 0 -1⎪ ,秩等于 1 ,也就是矩阵 A 属于特征值λ = 2 存在两个线性无关的⎪ 0 0 1 ⎪ 特征向量,也就是可以对角化,也就是 A ~ C .⎛ 0 -1 0 ⎫对于矩阵 B , 2E - B = 0 0 0 ⎪ ,秩等于 2 ,也就是矩阵 A 属于特征值λ = 2 只有一个线性无关的0 0 1 ⎪ 特征向量,也就是不可以对角化,当然 B , C 不相似故选择(B ).7. 设 A , B , C 是三个随机事件,且 A , C 相互独立, B , C 相互独立,则 A B 与C 相互独立的充分必要条件是( )(A ) A , B 相互独立(B ) A , B 互不相容(C ) AB , C 相互独立 (D ) AB , C 互不相容【详解】⎛ 2 0 0 ⎫ ⎛ 2 1 0 ⎫ ⎛ 1 0 0 ⎫0 2 1 ⎪ , B = 0 2 0 ⎪ , C =0 2 0 ⎪ ⎪≥ μ = n ∑ n 1 π ππt +1 t t +1 t 3π nP (( A B )C ) = P ( AC + AB ) = P ( AC ) + P (BC ) - P ( ABC ) = P ( A )P (C ) + P (B )P (C ) - P ( ABC )P ( A B )P (C ) = (P ( A ) + P (B ) - P ( AB ))P (C ) = P ( A )P (C ) + P (B )P (C ) - P ( AB )P (C )显然, A B 与C 相互独立的充分必要条件是 P ( ABC ) = P ( AB )P (C ) ,所以选择(C ).1 n8.设 X 1, X 2 , , X n (n 2) 为来自正态总体 N ( ,1) 的简单随机样本,若 X X i ,则下列结论中不i =1正确的是()(A ) ∑( X i - μ) i =1服从χ 2 分布 (B ) 2 ( X - X )2服从χ 2 分布n(C ) ∑( X i i =1- X )2服从χ 2分布 (D ) n ( X - μ)2服从 χ 2分布解:(1)显然 ( X i - μ) ~ N (0,1) ⇒ ( X i - μ)2~ χ 2(1), i = 1, 2, n 且相互独立,所以∑( X i =1- μ)2服从χ 2 (n ) 分布,也就是(A )结论是正确的;n22(n -1)S 22(2) ∑( X i - X ) i =1= (n -1)S =σ 2~ χ (n -1) ,所以(C )结论也是正确的;(3)注意 X ~ N (μ, 1) ⇒ nn ( X - μ) ~ N (0,1) ⇒ n ( X - μ)2 ~ χ 2 (1) ,所以(D )结论也是正确的;(4)对于选项(B ): ( X - X ) ~ N (0, 2) ⇒X n - X 1 ~ N (0,1) ⇒ 1( X - X )2 ~ χ 2 (1) ,所以(B )结n1论是错误的,应该选择(B )2 n 1二、填空题(本题共 6 小题,每小题 4 分,满分 24 分. 把答案填在题中横线上) 9.⎰-π(sin 3 x + π 2 - x 2 )dx = .解:由对称性知⎰-π(sin x +)dx = 2⎰03 dx = .210.差分方程 y - 2 y = 2t的通解为.【详解】齐次差分方程 y - 2 y = 0 的通解为y = C 2x;设 y t +1 - 2 y t = 2t的特解为 y = at 2t,代入方程,得a = 1 ; 2所以差分方程 y t +1 - 2 y t= 2t 的通解为 y = C 2t + 1 t 2t . 211.设生产某产品的平均成本C (Q ) = 1+ e-Q,其中产量为Q ,则边际成本为.n2π 2 - x 2π 2 - x 2t2i⎝ ⎭ ⎪ ⎪ ⎪ ⎝ ⎭ ⎝ ⎭ ⎝ ⎭lim = 0⎰ 【详解】答案为1+ (1- Q )e -Q .平均成本C (Q ) = 1+ e-Q,则总成本为C (Q ) = QC (Q ) = Q + Qe-Q,从而边际成本为C '(Q ) = 1+ (1- Q )e -Q .12.设函数 f (x , y ) 具有一阶连续的偏导数,且已知 df (x , y ) = ye y dx + x (1+ y )e y dy , f (0, 0) = 0 ,则f (x , y ) =【详解】df (x , y ) = ye ydx + x (1+ y )e ydy = d (xye y) ,所以 f (x , y ) = xye y+ C ,由 f (0, 0) = 0 ,得C = 0 ,所以 f (x , y ) = xye y .⎛ 1 0 1 ⎫ 13 . 设矩阵 A = 1 1 2 ⎪ , α ,α ,α 为线性无关的三维列向量, 则向量组 A α , A α, A α 的秩⎪ 0 1 1 ⎪为.1 2 3⎛ 1 0 1 ⎫ ⎛ 1 0 1⎫ ⎛ 1 0 1 ⎫123【详解】对矩阵进行初等变换 A = 1 1 2 ⎪ → 0 1 1⎪ → 0 1 1 ⎪ ,知矩阵 A 的秩为 2,由于0 1 1 ⎪ 0 1 1⎪ 0 0 0 ⎪ α1,α2 ,α3 为线性无关,所以向量组 A α1, A α2 , A α3 的秩为 2.14.设随机变量 X 的概率分布为 P {X = -2} = 1, P {X = 1} = a , P {X = 3} = b ,若 EX = 0 ,则2DX = .【详解】显然由概率分布的性质,知a + b + 1= 12EX = -2 ⨯ 1 +1⨯ a + 3⨯ b = a + 3b -1 = 0 ,解得a = 1 , b = 12 4 4EX 2 = 2 + a + 9b = 9 , DX = EX 2 - E 2 ( X ) = 9.2 2三、解答题15.(本题满分 10 分)求极限 lim⎰0x →0+x - te t dt x 3【详解】令 x - t = u ,则t = x - u , dt = -du ,⎰x - te t dt = ⎰ xue x -u du lim⎰0x - t e t dt e x = limue -u du = lim ⎰0 ue -udu = xe - x 2 x →0+x →0+x →0+x →0+3 x 32x 3x 3x 3x xx x xx ⎰⎰D∑ n 1 1 1y 3计算积分24 2dxdy ,其中 D 是第一象限中以曲线 y 与 x 轴为边界的无界区域.D【详解】y 3+∞xy 3⎰⎰ (1+ x2+ y 4 )2dxdy = ⎰dx ⎰0(1+ x 2+ y 4 )2dy1 +∞x d (1+ x 2 + y 4)4 ⎰0dx ⎰0(1+ x 2+ y 4 )2 = 1 +∞ ⎛ 1 -1 ⎫dx = π ⎛1- 2 ⎫ 4 ⎰0 1+ x 2 1+ 2x 2 ⎪8 2 ⎪17.(本题满分 10 分)⎝ ⎭ ⎝ ⎭nk⎛ k ⎫求 lim n →∞ k =1 n 2 ln 1+ ⎪ ⎝ ⎭【详解】由定积分的定义lim ∑k ln ⎛1+ k ⎫ = lim 1 ∑nk ln ⎛1+ k ⎫ =x ln(1+ x )dxn →∞n2n⎪ n →∞n nn ⎪⎰k =1⎝⎭k =1⎝⎭ = 1 ⎰1 ln(1+ x )dx 2 = 118.(本题满分 10 分)112 0 4已知方程ln(1+ x ) - = k 在区间(0,1) 内有实根,确定常数k 的取值范围. x【详解】设 f (x ) =- , x ∈(0,1) ,则 ln(1+ x ) x' 1 1(1+ x ) ln 2 (1+ x ) - x 2f (x ) = - + (1+ x ) l n 2(1+ x ) x 2x 2(1+ x ) ln 2 (1+ x )令 g (x ) = (1+ x ) ln 2(1+ x ) - x 2,则 g (0) = 0, g (1) = 2 ln 22 -1g '(x ) = ln 2 (1+ x ) - 2 ln(1+ x ) - 2x , g '(0) = 0 g '(x ) =2(ln(1+ x ) - x )< 0, x ∈(0,1) ,所以 g '(x ) 在(0,1) 上单调减少,1+ x由于 g '(0) = 0 ,所以当 x ∈(0,1) 时,g '(x ) < g '0) = 0 ,也就是 g (x ) g '(x ) 在(0,1) 上单调减少,当 x ∈(0,1)时, g (x ) < g (0) = 0 ,进一步得到当 x ∈(0,1) 时, f '(x ) < 0 ,也就是 f (x ) 在(0,1) 上单调减少.lim f (x ) = lim ⎛1- 1 ⎫ = lim x - ln(1+ x ) = 1 , f (1) =1 -1 ,也就是得到 1 -1 < k < 1 .++ ⎪ +x →0x →0 ⎝ ln(1+ x ) x ⎭ x →0 x ln(1+ x ) 2ln 2 ln 2 2 = n=∞ (1)证明∑ a x 的收敛半径不小于1.nnnn ∞∞∞a = 1, a = 0, a= 1 (na + a )(n = 1, 2, 3 ), S (x ) ∑ a x n设 01n +1 n +1n n -1 , 为幂级数n n =0的和函数∞n n n =0(2)证明(1- x )S '(x ) - xS (x ) = 0(x ∈(-1,1)) ,并求出和函数的表达式.【详解】(1)由条件a n +1 =1(na n +1n + a n -1 ) ⇒ (n +1)a n +1 = na n + a n -1 也就得到(n +1)(a - a ) = -(a - a ) ,也就得到a n +1 - a n = - 1, n = 1, 2, n +1 n n n -1 a - a n +1a n +1 - a n = a n +1 - a n ⨯a n - a n -1 n n -1⨯ ⨯ a 2 - a 1 = (-1)n 1a 1 - a 0 a n - a n -1 a n -1 - a n -2 a 1 - a 0(n +1)!也就得到a n +1 - a n = (-1)n +11 (n +1)!, n = 1, 2,nk +11a n +1 = (a n +1 - a n ) + (a n - a n -1 ) + + (a 2 - a 1 ) + a 1 = ∑(-1)k =2ρ = lim n →∞ ≤ lim n →∞ ≤ lim n →∞= 1 ,所以收敛半径 R ≥ 1∞∞(2)所以对于幂级数∑ a xn, 由和函数的性质,可得 S '(x ) =∑ n a xn -1,所以n n =0nn =1(1- x )S '(x ) = (1- x )∑ n a xn -1 = ∑ n a xn -1 - ∑ n a x nn =1n =1 ∞∞n =1= ∑(n +1)a + x n - ∑ n a x nn =0∞n 1nn =1= a 1 + ∑((n +1)a n +1 n =1- na )x n= ∑ a x n = ∑ a x n +1 = x ∑ a x n = xS (x )n =1n -1n =0nnn =0也就是有(1- x )S '(x ) - xS (x ) = 0(x ∈(-1,1)) .'Ce- x 解微分方程(1- x )S (x ) - xS (x ) = 0 ,得 S (x ) = 1- x,由于 S (0) = a 0 = 1 ,得C = 1e - x 所以 S (x ) =.1- x∞∞∞ na n n1 + 1 + 2! 3! + 1 n ! n e k !⎪ -1 1 -1 1 ⎪ ⎪ 设三阶矩阵 A = (α1,α2 ,α3 ) 有三个不同的特征值,且α3 = α1 + 2α2 . (1)证明: r ( A ) = 2 ;(2)若 β = α1 + α2 ,α3 ,求方程组 Ax = β 的通解.【详解】(1)证明:因为矩阵有三个不同的特征值,所以 A 是非零矩阵,也就是r ( A ) ≥ 1.假若 r ( A ) = 1 时, 则 r = 0 是矩阵的二重特征值, 与条件不符合, 所以有 r ( A ) ≥ 2 , 又因为α3 - α1 + 2α2 = 0 ,也就是α1 ,α2 ,α3 线性相关, r ( A ) < 3 ,也就只有 r ( A ) = 2 .(2)因为r ( A ) = 2 ,所以 Ax = 0 的基础解系中只有一个线性无关的解向量.由于α3 - α1 + 2α2 = 0 ,所⎛ 1 ⎫以基础解系为 x = 2 ⎪;⎪ ⎝ ⎭又由 β = α + α ,α ⎛1⎫ ,得非齐次方程组 Ax = β 的特解可取为 1⎪ ;123⎪ ⎪ ⎝ ⎭⎛ 1 ⎫ ⎛1⎫方程组 Ax = β 的通解为 x = k 2 ⎪ + 1⎪,其中k 为任意常数.⎪ ⎪ ⎝ ⎭ ⎝ ⎭21.(本题满分 11 分)设 二 次 型 f (x , x , x ) = 2x 2- x 2+ ax 2+ 2x x - 8x x + 2x x在 正 交 变 换 x = Qy下 的 标 准 形 为1231231 21 32 3λ y 2 + λ y 2 ,求a 的值及一个正交矩阵Q .1 12 2⎛ 2 1-4 ⎫ 【详解】二次型矩阵 A =1 -1 1 ⎪⎪ -4 1 a ⎪ ⎝ ⎭因为二次型的标准形为λ y 2 + λ y 2.也就说明矩阵 A 有零特征值,所以 A = 0 ,故a = 2.1 12 2λ -1 -1 4λ E - A = 1 λ +11 = λ(λ + 3)(λ - 6)4-1λ - 2令 λ E - A = 0 得矩阵的特征值为λ1 = -3, λ2 = 6, λ3 = 0 .1 ⎪1 ⎪ 1 ⎪ ⎨ ⎩⎩ =通过分别解方程组(λ E - A )x = 0 得矩阵的属于特征值λ = -3 的特征向量ξ =⎛ 1 ⎫ 1 -1⎪ ,属于特征值特 i⎛ -1⎫ 1 1⎛ 1 ⎫3 ⎪ ⎝ ⎭ 征值λ = 6 的特征向量ξ = 1 0 ⎪, λ = 0 的特征向量ξ =1 2 ⎪ ,2 2 2 ⎪ 3⎝ ⎭ 36 ⎪ ⎝ ⎭⎛ 1 - 11 ⎫ 32 6 ⎪ ⎪ 所以Q = (ξ ,ξ ,ξ ) = -10 2 ⎪为所求正交矩阵. 1 2 3 36 ⎪⎪ 1 1 1 ⎪ 3 2 6 ⎪ ⎝⎭22.(本题满分 11 分)设随机变量 X ,Y 相互独立, 且 X 的概率分布为 P {X = 0} = P {X = 2} = 1, Y 的概率密度为2f ( y ) = ⎧2 y , 0 < y < 1.⎨0, 其他(1) 求概率 P (Y ≤ EY );(2)求 Z = X + Y 的概率密度. 【详解】(1) EY = +∞122 yf ( y )dy2 y dy = . ⎰-∞ Y⎰0 3 ⎧ 2 ⎫24 所以 P {Y ≤ EY } = P ⎨Y ≤ ⎬ = ⎰ 32 ydy = .⎩ 3 ⎭ 09 (2) Z = X + Y 的分布函数为F Z (z ) = P {Z ≤ z } = P {X + Y ≤ z } = P {X + Y ≤ z , X = 0} + P {X + Y ≤ z , X = 2}= P {X = 0,Y ≤ z } + P {X = 2,Y ≤ z - 2}= 1 P {Y ≤ z } + 1P {Y ≤ z - 2} 2 2 = 1[F (z ) + F (z - 2)]2 YY故 Z = X + Y 的概率密度为f (z ) = F '(z ) = 1[ f (z ) + f (z - 2)] Z Z2⎧z , 0 ≤ z ≤ 1 = ⎪z - 2, 2 ≤ z < 3 23.(本题满分 11 分)⎪0, 其他 某工程师为了解一台天平的精度,用该天平对一物体的质量做了n 次测量,该物体的质量 μ 是已知的,设X i - μX i - μ 2π 2π Z n1 ∑ n z2 ii =1 1 2 nZ= = n ∑ σ σ = 2σ2 2σ nn nn 次测量结果 X , X , , X 相互独立且均服从正态分布 N (μ,σ 2). 该工程师记录的是 n 次测量的绝对误差 Z i = X i - μ , (i = 1, 2, , n ) ,利用 Z 1 , Z 2 , , Z n 估计参数σ .(1) 求 Z i 的概率密度;(2) 利用一阶矩求σ 的矩估计量; (3) 求参数σ 最大似然估计量.【详解】(1)先求 Z i 的分布函数为F (z ) = P {Z ≤ z } = P { X- μ ≤ z } = P⎧ ≤z ⎫Zii⎨σσ ⎬当 z < 0 时,显然 F Z (z ) = 0 ;⎩⎭⎧ z ⎫ ⎛ z ⎫当 z ≥ 0 时, F Z (z ) = P {Z i ≤ z } = P { X i - μ ≤ z } = P ⎨ σ ≤ σ ⎬ = 2Φ σ⎪ -1 ; ⎩ ⎭ ⎝ ⎭ ⎧ - z 2 所以 Z 的概率密度为 f (z ) = F ' (z ) = ⎪⎩+∞+∞2σ 2, z ≥ 0 . 0, z < 02-z 22σ(2)数学期望 EZ i = ⎰ z f (z )dz = ⎰ ze 2σ 2dz = ,0 01 n令 EZ Z Z i ,解得 的矩估计量 i =1 ∑ Z i . i =1(3)设 Z 1, Z 2 , , Z n 的观测值为 z 1 , z 2 , , z n .当 z i > 0, i = 1, 2, n 时n12似然函数为 L (σ ) = ∏ f (z i ,σ ) = i =1 - 2 ∑ z ii =1 ,n 1 n 2取对数得: ln L (σ ) = n ln 2 - ln(2π ) - n ln σ - 2 ∑ z ii =1d ln L (σ )n 1n2令= - + d σσ σ 3 ∑ z ii =1 = 0 ,得参数σ 最大似然估计量为σ = .2πσ 2πσ 2π ( 2πσ )n2n。
2017年硕士研究生入学考试之数学二真题与答案解析
)
1 2
(B) ab
1 2
(C) ab 0
(D) ab 2
【答案】 A
1 x 1 cos x 1 1 1 2 lim , f ( x) 在 x 0 处连续 b ab . 选 A. 【解析】 lim x 0 x 0 ax ax 2a 2a 2
t0
0
v2 (t) v1 (t)dt 10 ,当 t0 25 时满足,故选 C.
0 1 1 (7) 设 A 为三阶矩阵, 使得 P AP 则 A(, P (1 , 2 , 3 ) 为可逆矩阵, 1, 2) 3 , 2
(A) 1 2 ( B) 2 23 ( C) 2 3 (D ) 1 2 2
故特解为: y y1 y2 Ae
* * *
2x
xe2 x ( B cos 2 x C sin 2 x), 选 C.
(5)设 f ( x, y ) 具有一阶偏导数,且对任意的 ( x, y ) ,都有
f ( x, y) f ( x, y) 0, 0 ,则 x y
(A) f (0,0) f (1,1) ( B) f (0,0) f (1,1) (C) f (0,1) f (1,0) (D) f (0,1) f (1,0) 【答案】C 【解析】
【答案】 A 【解析】特征方程为: 4 8 0 1,2 2 2i
2
* * f ( x) e2 x (1 cos 2 x) e2 x e2 x cos 2 x y1 Ae2 x , y2 xe2 x ( B cos 2 x C sin 2 x),
因此 B 正确。
中国科学技术大学2017年数学分析考研试题及解答
(1) 求证:
∂2f ∂2f ∂x2 + ∂x2 = 0.
∂f −f (x, y)
dx + f (x, y) ∂f
dy
⩾
0.
L
∂y
∂x
1
微信公众号
中国科学技术大学 2017 年数学分析试题参考解答
小花爱数学
(2) 若 f 在 L 上恒为常数 c, 求证: f 在 D 上也恒为常数 c.
8. (15 分) 设 f : [0, +∞) → [0, +∞) 是一致收敛的, α ∈ (0, 1]. 求证: 函数 g(x) = f α(x) 也在 [0, +∞) 上一致收敛.
∂x
∂y
(2)
若
∂f ∂x
=
∂f ∂y
,
且
f (x, 0)
>
0
对于任意的
x
∈
R
都成立,
证明:
对于任意的
(x, y)
∈
R2,
都有
f (x, y) > 0.
6. (15 分) 证明: 条件收敛.
+∞
sin(x2) dx
0
7. (15 分) 设 D 是光滑封闭曲线 L 所围的区域, 函数 f (x, y) 在 D¯ 上有二阶连续偏导数, 且满足
9. (15 分) 设 F (u, v) ∈ C1(R2), 且 F
x
−
z y
,
y
−
z x
= 0. 证明:
∂z ∂z
(xFu + yFv)
xy + z − x − y ∂x ∂y
= 0.
10. (15 分) 设区间 I = [0, 1], fn(x) 与 f (x) 均是 I 上的连续函数, n = 1, 2, . . . . 且 fn(x) ⩾ fn+1(x), limn→∞ fn(x) = f (x), ∀x ∈ [0, 1]. 求证:
中科院数学分析试题答案
中国科学院数 数学分析试题1求a,b 使下列函数在x=0处可导:21ax b y x +≥⎧=⎨+⎩当x 0;当x<0.解:由于函数在x=0处可导,从而连续,由(00),(00)1f b f +=-=得到b=1;又由(0),(0)0f a f +-==得到a=0.即得。
2 1110,,.1n n n a ∞∞==>+∑∑n n1已知级数发散求证级数也发散a a证明: 用反证法。
由0n a >知1n ∞=∑n 1级数a ,111n ∞=+∑n a 均为正项级数。
假设级数111n ∞=+∑n a 收敛,则1lim 01n →∞=+na ,于是有11lim lim lim 1111111n n n n n n a a a →∞→∞→∞===-+++n n 1a a ,从而由正项级数的比较判别法知级数1n ∞=∑n 1a 收敛,矛盾,从而得证。
3 1(1).n x dx ≥-⎰m 设m,n 0为整数,求积分x 的值解:111111n100(1),1I(m,n)=(1-x)(1)|(1)(1)(1,1).01111n m m m n n x dx x x x n d x n x dx I m n m m m m +++--=----=+-++++⎰⎰⎰m 设I(m,n)=x 则由分部积分法有从而111(,)(1,1)(2,2)(,0)11212n n n n n I m n I m n I m n I m n m m m m m m n--=+-=+-==+++++++!1!!()!1(1)!!n m n m n m n m n m ==+++++即得解。
4 0().aaa dx f x dx -=⎰⎰xf(x)设a>0,f(x)是定义在[-a,a]上的连续的偶函数,则1+e证明:由f(x)是定义在[-a,a]上的连续的偶函数知()()f x f x -=,从而令x t =-有()()()11a a at t t a a af t e f t dx dt dt e e -----=-=++⎰⎰⎰x f(x)1+e 从而1()1()()212aaaat t a a aae f t dx dx dt f x dx e ----=+=+⎰⎰⎰⎰x x f(x)f(x)1+e 1+e 0000011[()()][()()]()22aaaaa f x dx f x dx f x dx f x dx f x dx -=+=+=⎰⎰⎰⎰⎰得证。
2017年中科院数学分析考研试题
2017年中科院数学分析考研试题中国科学院大学2017年招收攻读硕士学位研究生入学统一考试试题科目名称:数学分析考生须知:1.本试卷满分为150分,全部考试时间总计180分钟;2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。
————————————————————————————————————————1.(10分)计算极限lim x !1x 32(p 2+x 2p 1+x +p x ):2.(10分)已知a n +1(a n +1)=1;a 0=0,证明数列的极限存在,并且求出极限值.3.(15分)f (x )三次连续可微,令u (x;y;z )=f (xyz ),求(t )=@3u @x@y@z的具体表达式,其中t =xyz .4.(15分)求Z dx 1+x 4:5.(15分)已知f (x )在[0;1]上二阶连续可微,并且j f (x )j ?a ,j f 00(x )j ?b ,证明f 0(x )?2a +b 2.6.(15分)已知f (x )有界且可微,假设lim x !1f 0(x )存在,求证lim x !1f 0(x )=0.7.(15分)求二重积分“D j x 2+y 2 1j dxdy ,其中D =f (x;y )j 0?x ?1;0?y ?1g .8.(15分)已知a n =n X k =1ln (k +1),证明1X n =11a n 发散.9.(15分)已知n 为整数,a 为常数,I n (a )=Z10dx 1+nx a.(1)试讨论a 对敛散性的影响;(2)当a 在使积分收敛的情况下,求lim n !1I n (a ).10.(15分)在[a;b ]上(0Zb a (x 2+1)e x 2dx e a 2 e b 2:11.(10分)求f (x )=e x +e x +2cos x 的极值.考试科目:数学分析整理人:Xiongge ,思念第1页共1页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中国科学院大学
2017年招收攻读硕士学位研究生入学统一考试试题科目名称:数学分析
考生须知:
1.本试卷满分为150分,全部考试时间总计180分钟;
2.所有答案必须写在答题纸上,写在试题纸上或草稿纸上一律无效。
————————————————————————————————————————
1.(10分)计算极限lim x !1
x 32
(p 2+x 2p 1+x +p x ):2.(10分)已知a n +1(a n +1)=1;a 0=0,证明数列的极限存在,并且求出极限值.
3.(15分)f (x )三次连续可微,令u (x;y;z )=f (xyz ),求 (t )=@3u @x@y@z
的具体表达式,其中t =xyz .
4.(15分)求Z dx 1+x 4
:5.(15分)已知f (x )在[0;1]上二阶连续可微,并且j f (x )j Äa ,j f 00(x )j Äb ,证明f 0(x )Ä
2a +b 2
.6.(15分)已知f (x )有界且可微,假设lim x !1f 0(x )存在,求证lim x !1
f 0(x )=0.7.(15分)求二重积分“
D j x 2+y 2 1j dxdy ,其中D =f (x;y )j 0Äx Ä1;0Äy Ä1g .
8.(15分)已知a n =n X k =1
ln (k +1),证明1X n =11a n 发散.9.(15分)已知n 为整数,a 为常数,I n (a )=Z
10dx 1+nx a
.(1)试讨论a 对敛散性的影响;
(2)当a 在使积分收敛的情况下,求lim n !1
I n (a ).10.(15分)在[a;b ]上(0<a <b ),证明下面的不等式成立
Z
b a (x 2+1)e x 2dx e a 2 e b 2
:11.(10分)求f (x )=e x +e x +2cos x 的极值.
考试科目:数学分析整理人:Xiongge ,思念第1页共1页。