人教版人教版八年级数学关于动点问题的分析

合集下载

初二数学动点问题解题技巧

初二数学动点问题解题技巧

初二数学动点问题解题技巧初二数学中的动点问题是一个常见的考点,在考试中往往占据一定比例。

在解决这类问题时,需要掌握一些技巧和方法,下面是一些常见的解题技巧:1. 确定坐标系在解决动点问题时,首先需要确定直角坐标系,以方便分析和计算。

我们需要确定两个坐标轴,一般情况下可以选取x轴和y轴。

确定坐标系后,可以将物体的位置表示为一个点的坐标。

2. 分析物体的运动轨迹在动点问题中,物体的运动轨迹是一个关键的概念。

我们需要分析物体的运动,找出它的运动规律,从而确定它的轨迹。

在确定运动规律时,可以注意物体在不同时间的位置、速度和加速度等参数。

3. 确定物体运动的起点和方向在解决动点问题时,需要确定物体的起点和方向。

起点通常是物体的初始位置,方向则是物体运动的方向。

通常情况下,我们可以将起点作为坐标系的原点,方向则可以根据物体的运动方向确定。

4. 利用向量分析物体的运动在解决动点问题中,向量是一个非常有用的工具。

我们可以用向量表示物体的运动,从而更方便地分析和计算。

可以用向量表示物体的位移、速度、加速度等物理量。

向量计算可以用向量加减法和向量点乘等运算法则。

5. 利用几何图形分析物体的运动在解决动点问题时,几何图形也可以提供有用的信息。

特别是对于平面内的运动,可以用几何图形分析物体的位置和运动。

可以利用几何图形分析物体的速率、方向和加速度等物理量。

总之,在解决初二数学中的动点问题时,需要掌握一些基本的解题技巧和方法。

需要注意的是,解题过程中需要细心、认真,尤其是在涉及到向量和几何图形的计算时,需要注意计算细节,以免出现错误。

2024年人教版八年级上册数学第十二章全等三角形专题四 全等三角形中的动点问题

2024年人教版八年级上册数学第十二章全等三角形专题四 全等三角形中的动点问题
人教版 八年级上
第十二章 全等三角形
专题四 全等三角形中的动点问题
专题四
全等三角形中的动点问题
类型1 以 U 型框为背景的动点问题
1. [2024雅安月考]如图,做一个“U”字形框架
PABQ ,其中 AB =42 cm, AP , BQ 足够长, PA ⊥
AB , QB ⊥ AB ,点 M 从点 B 出发,向点 A 运动,
10厘米, BC =8厘米, CD =12厘米,∠ B =∠ C ,点 E
为 AB 的中点.如果点 P 在线段 BC 上以3厘米/秒的速度由
B 点向 C 点运动,同时,点 Q 在线段 CD 上由 C 点向 D 点
运动.(1)ຫໍສະໝຸດ 点 Q 的运动速度与点 P 的运动速度相等,经过1秒
后,△ BPE 与△ CQP 是否全等?请说明理由.
∴ BE =5厘米,∴ BE = PC ,
=,
在△ BPE 和△ CQP 中,ቐ∠=∠,
=,
∴△ BPE ≌△ CQP (SAS).
1
2
3
4
专题四
全等三角形中的动点问题
(2)当点 Q 的运动速度为多少时,能够使△ BPE 与△ CQP
全等?
【解】∵△ BPE 与△ CQP 全等,
∵∠ A =∠ B =90°,
∴使△ ACM 与△ BMN 全等,可分两种情况:
情况一:当 BM = AC , BN = AM 时,
∵ BN = AM , AB =42 cm,
∴4 t +3 t =42,解得 t =6,
∴ AC = BM =3×6=18(cm);
1
2
3
4
专题四
全等三角形中的动点问题

初二动点问题解题技巧

初二动点问题解题技巧

初二动点问题解题技巧初二动点问题是一个比较常见的数学问题,它涉及到运动和变化,需要学生运用数学知识和逻辑推理来解决。

以下是一些解题技巧,希望能帮助你更好地解决这类问题:1. 建立数学模型:首先,你需要将实际问题转化为数学模型。

这通常涉及到定义变量、建立方程或不等式,以及确定变量的取值范围。

2. 确定变量的关系:在动点问题中,你需要找出变量之间的关系,如距离、速度和时间的关系。

这些关系通常可以通过几何图形、物理定律或逻辑推理来得出。

3. 运用数学定理和公式:在解题过程中,你需要运用各种数学定理和公式,如勾股定理、三角函数、相似三角形等。

这些定理和公式可以帮助你解决各种复杂的数学问题。

4. 进行逻辑推理:动点问题往往涉及到多个因素和条件,你需要通过逻辑推理来分析它们之间的关系,并推断出正确的结论。

5. 进行计算和验证:最后,你需要进行计算和验证,以确保你的答案正确无误。

在计算过程中,要注意单位的统一和计算的准确性。

下面是一个具体的例子,以帮助你更好地理解如何解决初二动点问题:例题:一个圆形的跑道长为100米,甲、乙两人从同一起点出发,沿着跑道练习跑步。

甲每分钟跑10米,乙每分钟跑8米。

当甲第一次追上乙时,甲跑了多少米?解题思路:1. 首先,我们定义甲、乙两人的速度分别为10米/分钟和8米/分钟,跑道长度为100米。

2. 其次,我们需要找出甲追上乙的时间。

由于甲的速度比乙快,所以当甲追上乙时,甲比乙多跑了一圈(100米)。

因此,我们可以建立方程:10t -8t = 100,其中t是时间(分钟)。

3. 解这个方程,我们得到 t = 50 分钟。

这意味着甲追上乙需要50分钟。

4. 最后,我们计算甲跑了多少米。

甲的速度是10米/分钟,所以甲跑了 10 × 50 = 500 米。

通过以上步骤,我们可以得出结论:当甲第一次追上乙时,甲跑了500米。

初二动点问题讲解

初二动点问题讲解

初二动点问题主要涉及几何图形中点的运动,通常伴随着线段、角度或其他几何元素的变化。

解决这类问题的一般步骤如下:
理解题意:首先,需要仔细阅读题目,理解动点的运动方式、起始位置和目标位置,以及与此相关的线段、角度或其他几何元素的变化。

画图分析:画出相关的几何图形,标注出已知的量和未知的量。

这样可以帮助我们更直观地理解问题,找到解题思路。

建立关系式:根据题意和图形,利用相关的几何知识(如相似三角形、勾股定理等)建立关系式。

这些关系式通常包含未知数,可以是线段的长度、角度的大小等。

求解关系式:通过解方程或不等式,求出未知数的值或范围。

这一步可能需要一些代数技巧,如代入法、消元法等。

验证答案:最后,需要验证求出的解是否符合题意。

这可以通过再次观察图形或检查计算过程来完成。

以下是一些常见的动点问题类型及解题思路:
点在线段上的运动:这类问题通常涉及线段长度的变化。

可以通过建立线段长度的关系式来解决。

点在圆上的运动:这类问题可能涉及角度或弧长的变化。

可以通过建立角度或弧长的关系式来解决。

两点之间的距离最短问题:这类问题通常可以通过建立两点之间的距离公式,然后利用导数求最值的方法来解决。

点的轨迹问题:这类问题要求找出动点的轨迹。

可以通过分析动点的运动方式和条件,确定其可能的轨迹类型(如直线、圆、抛物线等)。

动态相似或全等问题:这类问题涉及图形的相似或全等性质在动点运动过程中的变化。

可以通过分析图形的相似或全等条件,建立关系式来解决。

请注意,解决动点问题需要灵活运用各种几何和代数知识,同时保持清晰的思路和逻辑。

2023-2024学年人教版数学八年级上册第十二章全等三角形微专题——动点问题1(含解析)

2023-2024学年人教版数学八年级上册第十二章全等三角形微专题——动点问题1(含解析)

2023-2024学年人教版数学八年级上册第十二章全等三角形微专题——动点问题1一、单选题1.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2B.3C.4D.52.如图,已知Rt△ABC,∠C=90°,点D在AC上,CD=3,BD平分∠ABC,点P是AB 上一个动点,则下列结论正确的是()A.PD>3B.PD≥3C.PD≤3D.PD=33.如图,在△ABC中,∠A=90°,BD平分∠ABC交AC于点D,AD=3,若P是BC上的动点,则线段DP的最小值是()A.3B.2.4C.4D.54.如图所示,在△ABC中,∠ABC=68°,BD平分∠ABC,P为线段BD上一动点,Q为边AB上一动点,当AP+PQ的值最小时,∠APB的度数是()A.118°B.125°C.136°D.124°5.如图,在长方形ABCD中,AB=4,AD=6,延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC→CD→DA向终点A运动,设点P的运动时间为t秒,当以A、B、P为顶点的三角形和△DCE全等时,t的值为( )A.1B.7C.1或2D.1或76.如图,在△ABC中,∠ACB>90°,△ABC的面积为18,AB=9,BD平分∠ABC,E,F分别是BD,BC上的动点,则CE+EF的最小值为( )A.4B.6C.7D.97.如图,四边形ABCD中,∠A=90°,AD=5,连接BD,BD⊥CD,垂足是D且∠ADB=∠C,点P是边BC上的一动点,则DP的最小值是()A.2B.3C.4D.5二、填空题10.如图,在正方形ABCD中,∠A=∠B=∠C=∠D=90°,动点动点Q以3cm/s的速度从点B止移动.设移动的时间为t(与△PAB全等.12.如图,CA⊥AB,垂足为点B,一动点E从A点出发,以随着E点运动而运动,且始终保持三角形与点A、B、C组成的三角形全等.13.如图,OP平分∠AOB,PC⊥OA值为.14.如图,∠ACB=90°,AC=/秒的速度沿射线AC运动,点Q秒时,△ABC与以点P,Q,C为顶点的三角形全等.三、解答题15.在平面直角坐标系中,A(−5,0),B(0,5).点C为x轴正半轴上一动点,过点A作AD⊥BC交y轴于点E.(1)如图①,若C(4,0),求点E的坐标;(2)如图②,若点C在x轴正半轴上运动,且OC<5.其它条件不变,连接DO,求证:DO 平分∠ADC.16.已知:△ABC中,AC=CB,∠ACB=90°,D 为直线BC上一动点,连接AD,在直线AC右侧作AE⊥AD,且AE=AD.(1)如图,当点D在线段BC上时,过点E 作EH⊥AC于H,连接DE,求证:EH=AC;(2)如图,当点D在线段BC的延长线上时,连接BE交CA的延长线于点M.求证:BM=EM.17.如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ 全等时,求t的值.18.定理:三角形任意两边之和大于第三边.(1)如图1,线段AD,BC交于点E,连接AB,CD,判断AD+BC与AB+CD的大小关系,并说明理由;(2)如图2,OC平分∠AOB,P为OC上任意一点,在OA,OB上截取OE=OF,连接PE,PF.求证:PE=PF;(3)如图3,在△ABC中,AB>AC,P为角平分线AD上异于端点的一动点,求证:PB−PC>BD−CD.19.如图,在△ABC中,D为AB的中点,AB=AC=10cm,BC=8cm,动点P从点B出发,沿BC方向以每秒3cm的速度向点C运动;同时动点Q从点C出发,沿CA方向以每秒3 cm的速度向点A运动,运动时间是t秒.(1)在运动过程中,当点C位于线段PQ的垂直平分线上时,求出t的值;(2)在运动过程中,是否存在某一时刻t,使△BPD和△CQP全等,若存在,求出t的值.若不存在,请说明理由.20.在△ABC中,AC=BC,∠ACB=90°,D是射线BA上一动点,连接CD,以CD为边作∠DCE=45°,CE在CD右侧,CE与过点A且垂直于AB的直线交于点E,连接DE.(1)当CD,CE都在AC的左侧时,如图①,线段BD,AE,DE之间的数量关系是_________;(2)当CD,CE在AC的两侧时,如图②,线段BD,AE,DE之间有怎样的数量关系?写出你的猜想,并给予证明;(3)当CD,CE都在AC的右侧时,如图③,线段BD,AE,DE之间有怎样的数量关系?直接写出你的猜想,不必证明.参考答案:1.B【分析】根据垂线段最短得出当PQ⊥OM时,PQ的值最小,根据角平分线性质得出PQ=PA,求出即可.【详解】解:当PQ⊥OM时,PQ的值最小,∵OP平分∠MON,PA⊥ON,PA=3,∴PQ=PA=3,故选:B.【点睛】本题考查了角平分线性质,垂线段最短的应用,解题的关键是能得出使PQ最小时Q 的位置.2.B【分析】连接DP,根据角平分线的性质及垂线段最短解答即可.【详解】解:连接DP,如图所示:∵∠C=90°,BD平分∠ABC,∴当DP⊥AB时,DP=CD=3那么当DP不垂直AB时,DP>CD=3,∵垂线段最短,∴PD≥3,故选:B.【点睛】本题考查的是角平分线的性质及垂线段最短,熟知角的平分线上的点到角的两边的距离相等是解题的关键.3.A【分析】由垂线段最短可知当DP⊥BC时,DP最短,根据角平分线的性质即可得出结论.【详解】解:当DP⊥BC时,DP的值最小,∵BD平分∠ABC,∠A=90°,∵BD平分∠ABC,∠ABC=∠ABC ∴∠ABD=∠CBD=12∵BP=BP,∴△PBQ≌△PBE(SAS),∵∠AEB=90°,∠CBD=34°∴∠APB=∠AEB+∠CBD=∵BD平分∠ABC,PE⊥AB,EF⊥∴PE=EF,∴CP=CE+PE=CE+EF的最小值.即CE+EF的最小值为4,故选:A.【点睛】本题考查了轴对称-最短路线问题,关键是将CE+EF的最小值为转化为CP,题目具有一定的代表性,是一道比较好的题目.7.D【分析】根据等角的余角相等求出∠ABD=∠CBD,再根据垂线段最短可知DP⊥BC时DP最小,然后根据角平分线上的点到角的两边距离相等可得DP=AD.【详解】解:∵BD⊥CD,∠A=90°.∴∠ABD+∠ADB=90°,∠CBD+∠C=90°,∴∠ABD=∠CBD,由垂线段最短得,DP⊥BC时DP最小,此时,DP=AD=5.故选:D.【点睛】本题考查了角平分线上的点到角的两边距离相等的性质,垂线段最短的性质,熟记性质并判断出DP最小时的位置是解题的关键.8.D【分析】当△EAP与△PBQ全等时,有两种情况:①当EA=PB,AP=BQ时,△APE≅△BQP②当AP=BP,AE=BQ时,△AEP≅△BQP,分别按照全等三角形的性质及行程问题的基本数量关系求解即可.【详解】当△EAP与△PBQ全等时,有两种情况:①当EA=PB,AP=BQ时,△APE≅△BQP,∵AB=10cm,AE=6cm,∴BP=AE=6cm,AP=4cm,∴BQ=AP=4cm;∵动点P在线段AB上,从点A出发以2cm/s的速度向点B运动,∴点P和点Q的运动时间为:4÷2=2s,∴v的值为:4÷2=2cm/s;②当AP=BP,AE=BQ时,△AEP≅△BQP,∵AB=10cm,AE=6cm,∵BD平分∠ABC,∴∠N′BM=∠NBM,在△MBN′与△MBN中,{BN′=BN∠N′BM=∠NBM,BM=BM×AB×CN′,此时S△ABC=12×4×CN′,可得6=12可得CN′=3,∴CM+MN的最小值为3,故答案为:3.∵AB=AD,∠ABP=∴BP=AQ,∵AQ=AB−BQ=8−3t,BP=t,∴8−3t=t,∴t=2s,当点Q在边AD时,不能构成△QAD,当点Q在边CD上时,如图2,AB+AD+DQ=3t,BP=t,∴DQ=3t−16.要使△PAB和△QAD全等,只能是△PAB≌△QAD,∴BP=DQ,∴t=3t−16,∴t=8s,故答案为:2s或8s.【点睛】此题主要考查了正方形的性质,全等三角形的性质解本题的关键是分类讨论,用方程的思想解决问题.11.5【分析】由平行线的性质可得∠EBF=∠A,由ASA证明△BEF≌△AED,得到AD=BF,最后由BF+CD=AD+CD=AC即可得到答案.【详解】解:∵BF∥AC,∴∠EBF=∠A,∵E为AB中点,∴BE=AE,在△BEF和△AED中,{∠EBF=∠ABE=AE∠BEF=∠AED,∴△BEF≌△AED(ASA),∴AD=BF,∴BF+CD=AD+CD=AC=5,故答案为:5.【点睛】本题主要考查了平行线的性质、三角形全等的判定与性质,熟练掌握平行线的性质、三角形全等的判定与性质是解题的关键.12.0或2或6或8【分析】首先分两种情况:当E在线段AB上和当E在BN上,然后再分成两种情况AC=BE和AB=EB,分别进行计算,即可得出结果.【详解】解:①当E在线段AB上,AC=BE时,△ACB≌△BED,∵AC=4cm,∴BE=4cm,∴AE=AB−BE=4cm,∴点E的运动时间为4÷2=2(秒);②当E在BN上,AC=BE时,△ACB≌△BED,∵AC=4cm,∴BE=4cm,∴AE=AB+BE=12cm,∴点E的运动时间为12÷2=6(秒);③当E在线段AB上,AB=EB时,△ACB≌△BDE,这时E在A点未动,因此时间为0秒;④当E在BN上,AB=EB时,△ACB≌△BDE,∵AB=8cm,∴BE=8cm,∴AE=AB+BE=16cm,∴点E的运动时间为16÷2=8(秒),综上所述,当点E经过0秒或2秒或6秒或8秒时,由点D、E、B组成的三角形与点A、B、C 组成的三角形全等,故答案为:0或2或6或8.【点睛】本题考查了全等三角形的性质,解题的关键是注意分类讨论思想的运用.13.3【分析】过P作PE⊥OB交OB于E,当D于E重合时,PD=PE最小,即可求解.【详解】解:如图,过P作PE⊥OB交OB于E,∴当D于E重合时,PD=PE最小,∵OP平分∠AOB,PC⊥OA,∴PE=PC=3,∴PD的最小值为3,故答案:3.【点睛】本题考查了角平分线的性质定理,垂线段定理,掌握定理是解题的关键.14.1或3或4【分析】设点P运动时间为t秒,根据已知条件分△ABC≌△PQC,△ABC≌△QPC,两种情况,根据AC=PC=4和BC=PC=2列方程求出t值即可.【详解】解:∵AC=2BC=4,∴BC=2,设点P运动时间为t秒,∵∠ACB=∠PCQ=90°,PQ=AB,∴当△ABC≌△PQC时,AC=PC=4,∴|4−2t|=4,解得:t=0(舍)或t=4;当△ABC≌△QPC时,BC=PC=2,∴|4−2t|=2,解得:t=1或t=3;综上:1秒或3秒或4秒时,△ABC与以点P,Q,C为顶点的三角形全等,故答案为:1或3或4.【点睛】本题考查直角三角形全等的判定,关键是找到所有符合题意的情况.15.(1)点E 的坐标为(0,4);(2)见解析【分析】(1)可证明△AOE≌△BOC(ASA),从而得出OE =OC ,进而求得;(2)过O 作OM ⊥DA 于M ,ON ⊥DC 于N ,根据△AOE≌△BOC ,得S ΔAOE =S ΔBOC ,从而得出OM =ON ,进而得证.【详解】(1)解:如图,∵AD ⊥BC ,AO ⊥BO ,∴∠AOE =∠BDE =∠BOC =90°,∴∠OAE +∠ACD =90°,∠OBC +∠ACD =90°,∴∠OAE =∠OBC ,∵A (−5,0),B (0,5),∴OA =OB =5.在△AOE 和△BOC 中,{∠OAE =∠OBC OA =OB ∠AOE =∠BOC,∴△AOE≌△BOC(ASA),∴OE =OC ,∴点C 坐标为(4,0),∴OE =OC =4,∴E (0,4);(2)证明:如图,过O作OM⊥DA于M,ON⊥DC于由(1)知,△AOE≌△BOC,∴SΔAOE=SΔBOC,AE=BC,∴1 2×AE×OM=12×BC×ON,∴OM=ON,{∠AHE =∠C ∠AEH =∠DAC AE =DA,∴△AEH≌△DAC(AAS),∴EH =AC .(2)如图,作EF ⊥CM 交CM 的延长线于点F ,∵∠F =90°,∠ACD =180°−∠ACB =90°,∠DAE =90°,∴∠F =∠ACD =∠MCB ,∵∠FAE +∠CAD =90°,∠CDA +∠CAD =90°,∴∠FAE =∠CDA ,在△FAE 和△CDA 中,{∠F =∠ACD ∠FAE =∠CDA AE =DA,∴△FAE≌△CDA(AAS),∴EF =AC ,∵AC =CB ,∴EF =AC =BC ,在△BMC 和△EMF 中,{∠MCB =∠F ∠BMC =∠EMF BC =EF,∴△BMC≌△EMF(AAS),∵BM =EM .【点睛】此题考查了同角的余角相等、全等三角形的判定与性质等知识,难度较大,正确地作出辅助线是解题的关键.17.(1)6∵∠BOD=∠ACD,∴∠AOP=∠ACF,∵AO=CF,∴当OP=CQ时,△AOP≌△FCQ∵∠BOD=∠ACD,∴∠AOP=∠FCQ,∵AO=CF,∴当OP=CQ时,△AOP≌∴t=4t−6,∵AD是∠BAC的角平分线,∴∠EAP=∠CAP,在△APE和△APC中,{AE=AC(3)过点C作CF⊥CE,交AB于点F,如图,先证明△CBF≌△CAE,得到BF=AE,CF=CE,然后证明△DCE≌△DCF解题即可;【详解】(1)过点C作CF⊥CE,交AB延长线于点F,如图.∴∠ECF=∠ACB=90°.∴∠FCB=∠ECA.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=135°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD+BF=DF,∴BD+AE=DE.故答案为:BD+AE=DE.(2)图②的猜想:BD−AE=DE.证明:过点C作CF⊥CE,交AB于点F,如图②.∴∠ECF=∠ACB=90°.∴∠CBF=∠CAE.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=45°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD−BF=DF,∴BD−AE=DE.(3)过点C作CF⊥CE,交AB于点F,如图∴∠ECF=∠ACB=90°.∴∠FCB=∠ECA.∵AE⊥AB,∴∠EAB=90°.∵∠CBA=∠CAB=45°,∴∠CBF=∠CAE=45°.∵BC=AC,∴△CBF≌△CAE(ASA).∴BF=AE,CF=CE.∵∠DCE=45°,∠ECF=90°,∴∠DCE=∠DCF=45°.∵CD=CD,∴△DCE≌△DCF(SAS).∴DE=DF.∵BD−BF=DF,∴BD−AE=DE.故答案为:BD−AE=DE.【点睛】本题考查全等三角形的判定和性质,掌握全等三角形的判定和性质是解题的关键.。

八年级下册数学动点知识点

八年级下册数学动点知识点

八年级下册数学动点知识点数学中的动点是一个非常重要的概念,也是许多学生比较薄弱的知识点之一。

在八年级下册的数学课程中,动点相关的知识点会有所增加和深化,包括动点的定义、性质、运用等方面。

下面将从几个方面来详细解析八年级下册数学动点知识点。

一、动点的定义动点是指在平面内沿着一条已知的路径运动的点,在运动的过程中,它同时保持着与原来位置相对的距离和方向不变,这个点就叫做动点。

在这个定义中,我们可以看到关键的三个要素:已知路径、距离、方向。

这三个要素是定义中不可缺少的,它们限定了动点的特定运动方式。

二、动点的性质动点是一个非常特殊的点,它与其他点不同的地方在于,它的位置不是固定不变的,而是具有一定的运动性。

由此可见,动点具有一些特殊的性质,这些性质对于分析和解决问题非常有帮助。

1.动点具有相对不变性。

动点在运动中保持着与原来位置相对的距离和方向不变,这是动点一个重要的性质。

这个性质可以帮助我们定位和确定动点的位置。

2.动点在路径上的运动符合特定的规律。

动点沿着已知路径运动,其运动方式和路径有密切的关系。

因此,对路径的认识和理解对于分析动点的运动方式非常重要。

3.动点的运动方式是可控的。

动点的运动方式并不是随意的,它是受到路径和起点位置的限制的。

当我们清楚地认识到这些限制时,就能够更好地掌握动点的运动方式。

三、动点的运用动点的运用在数学中是非常广泛的,它可以帮助我们解决各种各样的问题。

在八年级下册的课程中,动点的运用主要包括以下几个方面:1.探究几何形状的特点。

在探究几何形状的特点时,我们可以运用动点的方法来分析几何图形的性质。

比如,我们可以利用动点的方法求出直线的垂直平分线、平行线等性质。

2.解决数学题目。

在解决数学题目时,动点也是非常有用的工具。

比如,在一些几何题目中,我们可以利用动点的方法来证明一些形状的性质,或者求出一些不易直接求得的量。

3.研究变化规律。

动点在运动的过程中可以记录下不同位置和时间的数据,这些数据可以帮助我们研究变化的规律。

八年级上册数学动点问题

八年级上册数学动点问题

八年级上册数学动点问题
第一种,已知路径求速度。

这种问题需要先明确动点的起始和终止位置,然后计算路径的长度或者距离。

接着,通过已知的运动时间,可以求出动点的速度。

第二种,已知速度求路径。

这种问题需要先明确动点的速度和运动的时间,然后计算动点的运动路程。

接着,结合起始位置,可以确定动点的终止位置,从而得到路径。

解决动点问题的关键在于理解速度、时间和距离之间的关系,即速度等于距离除以时间。

同时,要根据问题的具体情况,灵活运用代数、几何等数学知识进行求解。

对于八年级上册的学生来说,解决动点问题需要注意以下几点:
1. 仔细审题:在动点问题中,往往需要根据题意去分析动点的运动过程,如果题意理解错误,就很难得到正确的答案。

2. 画图分析:在解决动点问题时,画图是一个很好的辅助工具。

通过画图可以更直观地了解动点的运动过程,从而更容易找到解题思路。

3. 灵活运用知识:动点问题往往涉及到多个知识点,如代数、几何等。

在解决问题时,需要灵活运用这些知识,根据问题的具体情况选择合适的方法进行求解。

4. 检查答案:在解决动点问题后,一定要检查答案是否正确。

可以通过代入原题、重新计算等方法进行验证,确保答案的准确性。

初二数学动点问题-初二数学动点问题分析-初二数学动点问题总结

初二数学动点问题-初二数学动点问题分析-初二数学动点问题总结

初二動點問題解題技巧所謂“動點型問題”是指題設圖形中存在一個或多個動點,它們在線段、射線或弧線上運動的一類開放性題目.解決這類問題的關鍵是動中求靜,靈活運用有關數學知識解決問題. 關鍵:動中求靜.數學思想:分類思想函數思想方程思想數形結合思想轉化思想注重對幾何圖形運動變化能力的考查。

從變換的角度和運動變化來研究三角形、四邊形、函數圖像等圖形,通過“對稱、動點的運動”等研究手段和方法,來探索與發現圖形性質及圖形變化,在解題過程中滲透空間觀念和合情推理。

選擇基本的幾何圖形,讓學生經歷探索的過程,以能力立意,考查學生的自主探究能力,促進培養學生解決問題的能力.圖形在動點的運動過程中觀察圖形的變化情況,需要理解圖形在不同位置的情況,才能做好計算推理的過程。

在變化中找到不變的性質是解決數學“動點”探究題的基本思路,這也是動態幾何數學問題中最核心的數學本質。

GAGGAGAGGAFFFFAFAF二期課改后數學卷中的數學壓軸性題正逐步轉向數形結合、動態幾何、動手操作、實驗探究等方向發展.這些壓軸題題型繁多、題意創新,目的是考察學生的分析問題、解決問題的能力,內容包括空間觀念、應用意識、推理能力等.從數學思想的層面上講:(1)運動觀點;(2)方程思想;(3)數形結合思想;(4)分類思想;(5)轉化思想等.研究歷年來各區的壓軸性試題,就能找到今年中考數學試題的熱點的形成和命題的動向,它有利于我們教師在教學中研究對策,把握方向.只的這樣,才能更好的培養學生解題素養,在素質教育的背景下更明確地體現課程標準的導向.本文擬就壓軸題的題型背景和區分度測量點的存在性和區分度小題處理手法提出自己的觀點.專題一:建立動點問題的函數解析式函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函GAGGAGAGGAFFFFAFAF数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析.一、應用勾股定理建立函數解析式。

八年级数学上动点知识点

八年级数学上动点知识点

八年级数学上动点知识点动点是数学中一个很重要的概念,在我们的生活和工作中都有广泛的应用。

掌握好动点的知识点可以让我们更好地解决实际问题,因此,在这篇文章中,我将为大家介绍八年级数学上动点的一些基本知识点和应用技巧。

一、动点的定义动点是指在一个几何图形中,点随着某个规律运动的过程中所经过的所有位置构成的集合。

例如,在一条直线上,取定一个点A作为起点,另外再取定一点P作为运动的点。

当点P随着某个规律从起点A向右移动时,它所经过的所有位置所构成的集合,就是一个动点。

二、动点的性质1、动点的位置一般是用函数的形式进行表达的。

例如,在上面的例子中,我们可以用点P沿着坐标轴运动的函数来表示它的位置:P(x,t)=A+(x(t),0),其中x(t)为随时间而改变的位置函数。

2、动点可以是连续的,也可以是不连续的。

例如,当一个物体做匀速直线运动时,它所经过的所有位置构成的集合就是一个连续的动点。

而当一个物体做非匀速运动时,它所经过的所有位置可能是不连续的动点。

3、动点的运动轨迹可以是一个简单的曲线,也可以是由多个曲线段组成的复杂曲线。

例如,在一个圆周上,取定一点作为动点,在圆周上做匀速圆周运动,它所经过的所有位置构成的集合,就是一个简单曲线的动点。

而当一个物体沿着曲线运动时,它所经过的所有位置就构成了一个复杂曲线的动点。

三、动点的应用1、在动点问题中,我们需要确定动点的位置,并计算它在某个特定时间的位置。

例如,在一条公路上,一辆汽车开始沿着公路匀速行驶,它的起点是公路的起点,而它以每小时60公里的速度向前行驶。

如果在2小时后,我们希望知道汽车此时的位置,我们可以用动点的计算方法来求出汽车现在所在的位置。

2、利用动点的概念,我们可以解决一些几何问题。

例如,在一个公平的赛道上,两个人以相同的速度开始奔跑。

假设他们的起点不同,我们希望知道他们在比赛中谁会先到达终点。

我们可以利用动点的方法来解决这个问题。

四、动点问题的解法1、根据实际情况确定动点的位置。

八年级数学动点问题解题技巧

八年级数学动点问题解题技巧

八年级数学动点问题解题技巧
动点问题是初中数学中常见的问题,这类问题通常涉及到图形和点的运动,需要我们运用几何和代数知识来解决。

以下是一些解决动点问题的基本技巧:
1.建立坐标系:对于涉及运动的点,一个有效的方法是使用坐标系
来表示它们的位置。

这有助于将问题转化为数学表达式,从而更容易地找到解决方案。

2.确定关键点:在解决动点问题时,确定关键点(如起点、终点、
转折点等)的位置非常重要。

这些点的位置通常决定了整个问题的解决方向。

3.运用速度、时间、距离关系:在动点问题中,速度、时间和距离
之间的关系是非常重要的。

这些关系可以帮助我们理解点的运动轨迹和方向。

4.运用函数关系:在许多情况下,点的运动可以用函数来表示,如
一次函数、二次函数等。

这有助于我们预测点的未来位置和运动轨迹。

5.运用几何知识:解决动点问题时,几何知识如平行线、垂直线、
角等是非常有用的。

这些知识可以帮助我们理解点的运动规律和轨迹。

6.逻辑推理:在解决动点问题时,逻辑推理是非常重要的。

我们需
要根据已知条件和信息,推断出未知的信息和结果。

7.数形结合:数形结合是解决动点问题的常用方法。

通过将数学表
达式和图形结合起来,我们可以更直观地理解问题的本质和解决方案。

8.反复练习:解决动点问题需要大量的练习和经验积累。

只有通过
反复练习,我们才能熟练掌握解决这类问题的方法和技巧。

以上是解决八年级数学动点问题的一些基本技巧。

希望对你有所帮助!。

人教版_人教版八年级数学关于动点问题的分析

人教版_人教版八年级数学关于动点问题的分析

动面问题博项训练之阳早格格创做1、如图,正在曲角坐标系中,O是本面,A,B,C三面的坐标分别为A (18,0),B(18,6),C(8,6),四边形OABC是梯形,面P,Q共时从本面出收,分别做匀速疏通,其中面P沿OA背末面A疏通,速度为每秒1个单位,面Q沿OC,CB背末面B疏通,当那二面有一面到达自己的末面时,另一面也停止疏通.(1)供曲线OC的剖析式.(2)设从出提倡,疏通了t秒.如果面Q的速度为每秒2个单位,试写出面Q的坐标,并写出此时t的与值范畴.(3)设从出提倡,疏通了t秒.当P,Q二面疏通的路途之战恰佳等于梯形OABC的周少的一半,那时,曲线PQ是可把梯形的里积也分成相等的二部分?如有大概,哀供出t的值;如没有成能,请道明缘由.2、如图1所示,正在△ABC中,面O正在AC边上疏通,过O做曲线MN∥BC接∠BCA内角仄分线于E面,中角仄分线于F面.试商量:当面O 疏通到那边时,四边形AECF是矩形?3、如图2所示,正在曲角坐标系中,四边形OABC为曲角梯形,OA∥BC,BC=14cm,A面坐标为(16,0),C面坐标为(0,2).面P、Q分别从C、A共时出收,面P以2cm/s的速度由C背B疏通,面Q以4cm/s的速度由A背O疏通,当面Q停止疏通时,面P也停止疏通,设疏通时间为ts(0≤t≤4).(1)供当t为几时,四边形PQAB为仄止四边形.(2)供当t为几时,PQ地圆曲线将梯形OABC分成安排二部分的里积比为1:2,供出此时曲线PQ的函数闭系式.坚韧普及:1. 如图,正在曲角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动面P从A启初沿AD边背D以1cm/s的速度疏通;动面Q从面C启初沿CB边背B以3cm/s的速度疏通.P、Q分别从面A、C共时出收,当其中一面到达端面时,其余一面也随之停止疏通,设疏通时间为ts.(1)当t为何值时,四边形PQCD为仄止四边形?(2)当t为何值时,四边形PQCD为等腰梯形?(3)当t为何值时,四边形PQCD为曲角梯形?2. 如图,△ABC中,面O为AC边上的一个动面,过面O做曲线MN∥BC,设MN接∠BCA的中角仄分线CF于面F,接∠ACB内角仄分线CE于E.(1)试道明EO=FO;(2)当面O疏通到那边时,四边形AECF是矩形并道明您的论断;(3)若AC边上存留面O,使四边形AECF是正圆形,预测△ABC的形状并道明您的论断.3. 如图,曲角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动面P从B面出收,沿线段BC背面C做匀速疏通;动面Q从面D 出收,沿线段DA背面A做匀速疏通.过Q面笔曲于AD的射线接AC于面M,接BC于面N.P、Q二面共时出收,速度皆为每秒1个单位少度.当Q面疏通到A面,P、Q二面共时停止疏通.设面Q疏通的时间为t 秒.(1)供NC,MC的少(用t的代数式表示);(2)当t为何值时,四边形PCDQ形成仄止四边形;(3)是可存留某一时刻,使射线QN恰佳将△ABC的里积战周少共时仄分?若存留,供出此时t的值;若没有存留,请道明缘由;(4)商量:t为何值时,△PMC为等腰三角形.4. 如图,正在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D 出收沿AD,BC,CB,DA目标正在矩形的边上共时疏通,当有一个面先到达地圆疏通边的另一个端面时,疏通即停止.已知正在相共时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为二边,以矩形的边(AD或者BC)的一部分为第三边形成一个三角形;(2)当x为何值时,以P,Q,M,N为顶面的四边形是仄止四边形;(3)以P,Q,M,N为顶面的四边形是可为等腰梯形?如果能,供x的值;如果没有克没有及,请道明缘由.5. 如图,正在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,面M从面A启初,沿边AD背面D疏通,速度为1cm/s;面N 从面C启初,沿边CB背面B疏通,速度为2cm/s、面M、N分别从面A、C出收,当其中一面到达端面时,另一面也随之停止疏通,设疏通时间为t 秒.(1)当t为何值时,四边形MNCD是仄止四边形?(2)当t为何值时,四边形MNCD是等腰梯形?6. 如图,正在曲角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动面P从面D出收,沿射线DA的目标以每秒2个单位少的速度疏通,动面Q从面C出收,正在线段CB上以每秒1个单位少的速度背面B疏通,P、Q分别从面D、C共时出收,当面Q疏通到面B时,面P随之停止疏通,设疏通时间为t(s).(1)设△BPQ的里积为S,供S与t之间的函数闭系;(2)当t为何值时,以B、P、Q三面为顶面的三角形是等腰三角形?7. 曲线y=- 34x+6与坐标轴分别接于A、B二面,动面P、Q共时从O面出收,共时到达A面,疏通停止.面Q沿线段OA疏通,速度为每秒1个单位少度,面P沿门路O⇒B⇒A疏通.(1)间接写出A、B二面的坐标;(2)设面Q的疏通时间为t(秒),△OPQ的里积为S,供出S与t之间的函数闭系式;(3)当S= 485时,供出面P的坐标,并间接写出以面O、P、Q为顶面的仄止四边形的第四个顶面M的坐标.。

人教版人教版八年级数学关于动点问题的分析

人教版人教版八年级数学关于动点问题的分析

动点问题专项练习1、如图,在直角坐标系中,O是原点,A,B,C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P,Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC,CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动.(1)求直线OC的解析式.(2)设从出发起,运动了t秒.如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围.(3)设从出发起,运动了t秒.当P,Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分如有可能,请求出t的值;如不可能,请说明理由.2、如图1所示,在△ABC中,点O在AC边上运动,过O作直线MN∥BC交∠BCA内角平分线于E点,外角平分线于F点.试探究:当点O运动到何处时,四边形AECF是矩形3、如图2所示,在直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14cm,A 点坐标为(16,0),C点坐标为(0,2).点P、Q分别从C、A同时出发,点P以2cm/s 的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q停止运动时,点P也停止运动,设运动时间为ts(0≤t≤4).(1)求当t为多少时,四边形PQAB为平行四边形.(2)求当t为多少时,PQ所在直线将梯形OABC分成左右两部分的面积比为1:2,求出此时直线PQ的函数关系式.巩固提高:1.如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.2.(1)当t为何值时,四边形PQCD为平行四边形?3.(2)当t为何值时,四边形PQCD为等腰梯形?4.(3)当t为何值时,四边形PQCD为直角梯形5.如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.6.(1)试说明EO=FO;7.(2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;8.(3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的结论.9.如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.10.(1)求NC,MC的长(用t的代数式表示);11.(2)当t为何值时,四边形PCDQ构成平行四边形;12.(3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分若存在,求出此时t的值;若不存在,请说明理由;13.(4)探究:t为何值时,△PMC为等腰三角形.14.如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,DN=x2cm.(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;(3)以P,Q,M,N为顶点的四边形能否为等腰梯形如果能,求x的值;如果不能,请说明理由.15.如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.16.(1)当t为何值时,四边形MNCD是平行四边形?17.(2)当t为何值时,四边形MNCD是等腰梯形18.如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB 上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s).19.(1)设△BPQ的面积为S,求S与t之间的函数关系;20.(2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形21.直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O?B?A运动.22.(1)直接写出A、B两点的坐标;23.(2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系式;24.(3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形的第四个顶点M的坐标.。

(完整word)《初二数学动点问题》专题分析

(完整word)《初二数学动点问题》专题分析

初二数学“动点问题”剖析所谓“ 动点型问题”是指题设图形中存在一个或多个动点, 它们在线段、射线或弧线上运动的一类开放性题目 . 解决这种问题的重点是动中求静, 灵巧运用相关数学知识解决问题.重点:动中求静.数学思想:分类思想函数思想方程思想数形联合思想转变思想着重对几何图形运动变化能力的观察。

从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,经过“对称、动点的运动”等研究手段和方法,来研究与发现图形性质及图形变化,在解题过程中浸透空间看法和合情推理。

选择基本的几何图形,让学生经历研究的过程,以能力立意,观察学生的自主研究能力,促使培育学生解决问题的能力.图形在动点的运动过程中察看图形的变化状况,需要理解图形在不一样地点的状况,才能做好计算推理的过程。

在变化中找到不变的性质是解决数学“动点”研究题的基本思路 , 这也是动向几何数学识题中最核心的数学实质。

课改后数学卷中的数学压轴性题正逐渐转向数形联合、动向几何、着手操作、实验研究等方向发展.这些压轴题题型众多、题意创新,目的是观察学生的剖析问题、解决问题的能力,内容包含空间看法、应意图识、推理能力等.从数学思想的层面上讲:(1)运动看法;(2)方程思想;(3)数形联合思想;(4)分类思想;( 5)转变思想等.一、成立动点问题的函数分析式函数揭露了运动变化过程中量与量之间的变化规律, 是初中数学的重要内容. 动点问题反应的是一种函数思想 , 因为某一个点或某图形的有条件地运动变化, 惹起未知量与已知量间的一种变化关系, 这种变化关系就是动点问题中的函数关系. 那么 , 我们如何成立这种函数分析式呢?1.应用勾股定理成立函数分析式。

2.应用比率式成立函数分析式。

3.应用求图形面积的方法成立函数关系式。

二、动向几何型压轴题动向几何特色 ----问题背景是特别图形,观察问题也是特别图形,因此要掌握好一般与特别的关系;分析过程中,特别要关注图形的特征(特别角、特别图形的性质、图形的特别地点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动点问题专项练习
1、如图,在直角坐标系中,O是原点,A,B,C三点的坐标分别为A(18,0),B(18,6),C(8,6),四边形OABC是梯形,点P,Q同时从原点出发,分别作匀速运动,其中点P沿OA向终点A运动,速度为每秒1个单位,点Q沿OC,CB向终点B运动,当这两点有一点到达自己的终点时,另一点也停止运动.
(1)求直线OC的解析式.
(2)设从出发起,运动了t秒.如果点Q的速度为每秒2个单位,试写出点Q的坐标,并写出此时t的取值范围.
(3)设从出发起,运动了t秒.当P,Q两点运动的路程之和恰好等于梯形OABC的周长的一半,这时,直线PQ能否把梯形的面积也分成相等的两部分?如有可能,请求出t的值;如不可能,请说明理由.
2、如图1所示,在△ABC中,点O在AC边上运动,过O作直线MN∥BC交∠BCA内角平分线于E点,外角平分线于F点.试探究:当点O运动到何处时,四边形AECF是矩形?
3、如图2所示,在直角坐标系中,四边形OABC为直角梯形,OA∥BC,BC=14cm,A 点坐标为(16,0),C点坐标为(0,2).点P、Q分别从C、A同时出发,点P以2cm/s 的速度由C向B运动,点Q以4cm/s的速度由A向O运动,当点Q停止运动时,点P也停止运动,设运动时间为ts(0≤t≤4).
(1)求当t为多少时,四边形PQAB为平行四边形.
(2)求当t为多少时,PQ所在直线将梯形OABC分成左右两部分的面积比为1:2,求出此时直线PQ的函数关系式.
巩固提高:
1. 如图,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=24cm,AB=8cm,BC=26cm,
动点P从A开始沿AD边向D以1cm/s的速度运动;动点Q从点C开始沿CB边向B
以3cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一点到达端点时,另外一点也随之停止运动,设运动时间为ts.
2. (1)当t为何值时,四边形PQCD为平行四边形?
3. (2)当t为何值时,四边形PQCD为等腰梯形?
4. (3)当t为何值时,四边形PQCD为直角梯形?
5. 如图,△ABC中,点O为AC边上的一个动点,过点O作直线MN∥BC,设MN交∠
BCA的外角平分线CF于点F,交∠ACB内角平分线CE于E.
6. (1)试说明EO=FO;
7. (2)当点O运动到何处时,四边形AECF是矩形并证明你的结论;
8. (3)若AC边上存在点O,使四边形AECF是正方形,猜想△ABC的形状并证明你的
结论.
9. 如图,直角梯形ABCD中,AD∥BC,∠ABC=90°,已知AD=AB=3,BC=4,动点P
从B点出发,沿线段BC向点C作匀速运动;动点Q从点D出发,沿线段DA向点A 作匀速运动.过Q点垂直于AD的射线交AC于点M,交BC于点N.P、Q两点同时出发,速度都为每秒1个单位长度.当Q点运动到A点,P、Q两点同时停止运动.设点Q运动的时间为t秒.
10. (1)求NC,MC的长(用t的代数式表示);
11. (2)当t为何值时,四边形PCDQ构成平行四边形;
12. (3)是否存在某一时刻,使射线QN恰好将△ABC的面积和周长同时平分?若存在,
求出此时t的值;若不存在,请说明理由;
13. (4)探究:t为何值时,△PMC为等腰三角形.
14. 如图,在矩形ABCD中,BC=20cm,P,Q,M,N分别从A,B,C,D出发沿AD,
BC,CB,DA方向在矩形的边上同时运动,当有一个点先到达所在运动边的另一个端点时,运动即停止.已知在相同时间内,若BQ=xcm(x≠0),则AP=2xcm,CM=3xcm,
DN=x2cm.
(1)当x为何值时,以PQ,MN为两边,以矩形的边(AD或BC)的一部分为第三边构成一个三角形;
(2)当x为何值时,以P,Q,M,N为顶点的四边形是平行四边形;
(3)以P,Q,M,N为顶点的四边形能否为等腰梯形?如果能,求x的值;如果不能,请说明理由.
15. 如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=14cm,AD=15cm,BC=21cm,点
M从点A开始,沿边AD向点D运动,速度为1cm/s;点N从点C开始,沿边CB向点B运动,速度为2cm/s、点M、N分别从点A、C出发,当其中一点到达端点时,另一点也随之停止运动,设运动时间为t秒.
16. (1)当t为何值时,四边形MNCD是平行四边形?
17. (2)当t为何值时,四边形MNCD是等腰梯形?
18. 如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21,动点P
从点D出发,沿射线DA的方向以每秒2个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,P、Q分别从点D、C同时出发,当点Q运动到点B时,点P随之停止运动,设运动时间为t(s).
19. (1)设△BPQ的面积为S,求S与t之间的函数关系;
20. (2)当t为何值时,以B、P、Q三点为顶点的三角形是等腰三角形?
21. 直线y=- 34x+6与坐标轴分别交于A、B两点,动点P、Q同时从O点出发,同时到达
A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O⇒B ⇒A运动.
22. (1)直接写出A、B两点的坐标;
23. (2)设点Q的运动时间为t(秒),△OPQ的面积为S,求出S与t之间的函数关系
式;
24. (3)当S= 485时,求出点P的坐标,并直接写出以点O、P、Q为顶点的平行四边形
的第四个顶点M的坐标.。

相关文档
最新文档