人教版 八年级数学上册全等三角形性质 同步练习B卷含答案

合集下载

人教版八年级数学上册12.1全等三角形同步测试(含答案)

  人教版八年级数学上册12.1全等三角形同步测试(含答案)

人教版八年级数学上册12.1全等三角形同步测试(含答案)班级:姓名:1.下列说法:①全等三角形的形状相同、大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④形状相同的两个三角形是全等三角形.其中正确的说法有( )A.②③B.①②③C.①③④D.①②③④2.已知:如图,△ABE≌△ACD,∠A=65°,∠B=36°,则∠C的度数是( )A.79°B.65°C.36°D.29°3.如图,已知△ABE≌△ACD,下列结论不一定成立的是( )A.AB=ACB.∠BAD=∠CAEC.∠ADB=∠AECD.AD=DE4.已知:如图,△ABD≌△BAC,下列结论不一定成立的是( )A.∠ADB=∠BCAB.∠ABD=∠BDCC.AD=BCD.BD=AC5.如图11.1-7,△ABD≌△ACE,点B和点C是对应顶点,AB=8,AD=6,BD=7,则BE的长是( )A.1B.2C.4D.66.如图11.1-9,△ABC与△DBE是全等三角形,则图中相等的角有( )A.1对B.2对C.3对D.4对7.如图12,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C=( )A.15°B.20°C.25°D.30°8.如果△ABC≌△A’B’C’,若AB=A’B’,∠B=50°,∠C=70°,则∠A’=°9.如图,△DEF≌△ABC,且AC>BC>AB,则在△DEF中,< < .10.如图所示,已知△ABD≌△ACD,且B,D,C在同一条直线上,那么AD与BC是怎样的位置关系?为什么?1.如图,点E,F在线段BC上,△ABF与△DCE全等,点A与点D,点B与点C是对应顶点,AF与DE交于点M,则∠DCE=( )A.∠BB.∠AC.∠EMFD.∠AFB2.如图,△ABC≌△DEF,BE=4,AE=1,则DE的长是( )A.5B.4C.3D.23.如图15,△ABC≌△BAD,AC与BD是对应边,AC=8cm,AD=10cm,DE=CE=2cm,那么AE的长是( )A.8cmB.10cmC.2cmD.不能确定4.在△ABC中,∠A=∠C,若与△ABC全等的三角形有一个角等于96°,那么这个角在△ABC中对应的角是( )A.∠AB.∠BC.∠CD.∠A或∠C5.如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为( )A.15°B.20°C.25°D.30°6.如图所示,若≌,则下列结论错误的是( )A.B.AC=BCC.AB=CD D.AD∥BC7.如图,已知:△ABE≌△ACD,∠1=∠2,∠B=∠C,不正确的等式是( )A.AB=ACB.∠BAE=∠CADC.BE=DCD.AD=DE8.已知△ABC≌△DEF,且∠A=90°,AB=6,AC=8,BC=10,△DEF中最大边长是,最大角是度.9.已知如图1,△ABC≌△FED,且BC=DE.则∠A= .AD= ,FE=10.如图,△ABC≌△DEB,AB=DE,∠E=∠ABC,则∠C的对应角为,BD的对应边为.11.已知:如图,△OAD≌△OBC,且∠O=70°,∠C=25°,则∠AEB=度.12.如图所示,△ABC ≌△ADE ,BC 的延长线过点E ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,求∠DEF 的度数。

人教版初中数学八年级上册《12.1 全等三角形》同步练习卷(含答案解析

人教版初中数学八年级上册《12.1 全等三角形》同步练习卷(含答案解析

人教新版八年级上学期《12.1 全等三角形》同步练习卷一.选择题(共10小题)1.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°2.如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,点E在线段AB上,若∠AED+∠BCE=52°,则∠ACD的大小为()A.25°B.26°C.27°D.28°3.若△ABC≌△DEF,∠A=60°,∠B=50°,那么∠F的度数是()A.120°B.80°C.70°D.60°4.如图,△ABC≌△DEF,则下列结论正确的是()A.∠E=60°B.∠F=50°C.x=18D.x=205.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A.120°B.125°C.130°D.135°6.如图,△ABC≌△DCB,∠A=80°,∠DBC=40°,则∠DCA的度数为()A.20°B.25°C.30°D.35°7.如图,△ABC≌△DCB,若AC=10,DE=3,则CE的长为()A.6B.7C.8D.98.如图,已知△ABC≌△DBE,点A,C分别对应点D,E,BC交DE于点F,∠ABD=∠E,若BE=10,CF=4,则EF的长为()A.4B.5C.6D.79.若△ABC≌△MNP,∠A=∠M,∠C=∠P,AB=4cm,BC=2cm,则NP=()A.2cm B.3cm C.4cm D.6cm10.△ABC≌△DEF,下列结论中不正确的是()A.AB=DE B.BE=CF C.BC=EF D.AC=DE二.填空题(共4小题)11.如图,已知△ABC≌△DCB,∠BDC=35°,∠DBC=50°,则∠ABD=.12.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=30°,∠E=70°,则∠ADC的度数是.13.如图,若△ABC≌△ADE,且∠B=65°,则∠BAD=.14.如图所示,已知△ABC≌△EDC,∠E=∠A=30°,∠D=50°,则∠BCE=.人教新版八年级上学期《12.1 全等三角形》同步练习卷参考答案与试题解析一.选择题(共10小题)1.如图,已知△ABC≌△ADE,若∠B=40°,∠C=75°,则∠EAD的度数为()A.65°B.70°C.75°D.85°【分析】根据全等三角形的性质求出∠D和∠E,根据三角形内角和定理求出即可.【解答】解:∵△ABC≌△ADE,∠B=40°,∠C=75°,∴∠B=∠D=40°,∠E=∠C=75°,∴∠EAD=180°﹣∠D﹣∠E=65°,故选:A.【点评】本题考查了三角形内角和定理,全等三角形的性质的应用,能根据全等三角形的性质得出∠B=∠D,∠E=∠C是解此题的关键,注意:全等三角形的对应边相等,对应角相等.2.如图,△ABC≌△DEC,CA和CD,CB和CE是对应边,点E在线段AB上,若∠AED+∠BCE=52°,则∠ACD的大小为()A.25°B.26°C.27°D.28°【分析】由全等可得∠B=∠DEC,∠DCE=∠ACB,且∠AEC=∠B+∠BCE=∠AED+∠DEC,可得∠AED=∠BCE=26°,即可求∠ACD的度数【解答】解∵△ABC≌△DEC∴∠B=∠DEC,∠DCE=∠ACB∵∠AEC=∠B+∠BCE=∠AED+∠DEC∴∠AED=∠BCE.且∠AED+∠B CE=52°∴∠BCE=∠AED=26°∵∠DCE=∠ACB∴∠DCA=∠BCE=26°故选:B.【点评】本题考查了全等三角形的性质,利用全等三角形对应角相等解决问题是本题的关键.3.若△ABC≌△DEF,∠A=60°,∠B=50°,那么∠F的度数是()A.120°B.80°C.70°D.60°【分析】根据全等三角形的性质得出∠F=∠C,即可得出选项.【解答】解:∵∠A=60°,∠B=50°,∴∠C=180°﹣∠A﹣∠B=70°,∵△ABC≌△DEF,∴∠F=∠C,∵∠C=70°,∴∠F=70°,故选:C.【点评】本题考查了全等三角形的性质的应用,能熟记全等三角形的性质定理是解此题的关键,注意:全等三角形的对应边相等,对应角相等.4.如图,△ABC≌△DEF,则下列结论正确的是()A.∠E=60°B.∠F=50°C.x=18D.x=20【分析】根据全等三角形的对应边相等、对应角相等判断即可.【解答】解:∵△ABC≌△DEF,∴∠E=∠B=50°,A错误;∵△ABC≌△DEF,∴∠F=∠C=60°,B错误;EF=BC=20,即x=20,C错误、D正确;故选:D.【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等、对应角相等是解题的关键.5.如图,将一个正方形分成9个全等的小正方形,连接三条线段得到∠1,∠2,∠3,则∠1+∠2+∠3的度数和等于()A.120°B.125°C.130°D.135°【分析】根据全等三角形的判定定理可得出△BCA≌△BDE,从而有∠3=∠CAB,这样可得∠1+∠3=90°,根据图形可得出∠2=45°,这样即可求出∠1+∠2+∠3的度数.【解答】解:在△ABC与△BDE中,∴△BCA≌△BDE(SAS),∴∠3=∠CAB,在RT△ABC中可得∠1+∠3=90°,由图可知,∠2=45°,∴∠1+∠2+∠3=90°+45°=135°.故选:D.【点评】此题主要考查了全等三角形的判定与性质,属于数形结合的类型,解答本题需要判定△BCA≌△BDE,这要求学生熟练掌握全等三角形的判定定理.6.如图,△ABC≌△DCB,∠A=80°,∠DBC=40°,则∠DCA的度数为()A.20°B.25°C.30°D.35°【分析】根据全等三角形的性质得到∠D=∠A=80°,∠ACB=DBC=40°,根据三角形内角和定理求出∠DCB,计算即可.【解答】解:∵△ABC≌△DCB,∴∠D=∠A=80°,∠ACB=DBC=40°,∴∠DCB=180°﹣∠D﹣∠DBC=60°,∴∠DCA=∠DCB﹣∠ACB=20°,故选:A.【点评】本题考查的是全等三角形的性质、三角形内角和定理,掌握全等三角形的对应角相等是解题的关键.7.如图,△ABC≌△DCB,若AC=10,DE=3,则CE的长为()A.6B.7C.8D.9【分析】根据全等三角形的对应边相等解答.【解答】解:∵△ABC≌△DCB,∴AB=DC,∠A=∠D,在△ABE和△DCE中,,∴△ABE≌△DCE,∴AE=DE=3,∴CE=AC﹣AE=7,【点评】本题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解题的关键.8.如图,已知△ABC≌△DBE,点A,C分别对应点D,E,BC交DE于点F,∠ABD=∠E,若BE=10,CF=4,则EF的长为()A.4B.5C.6D.7【分析】根据全等三角形性质,可得:∠ABC=∠DBE,进而得出∠ABD=∠FBE,得出∠FBE=∠E,得出BF=EF即可.【解答】解:∵△ABC≌△DBE,∴∠ABC=∠DBE,BE=BC,∴∠ABC﹣∠DBF=∠DBE﹣∠DBF,即∠ABD=∠FBE,∵∠ABD=∠E,∴∠FBE=∠E,∴BF=EF=BC﹣CF=10﹣4=6,故选:C.【点评】本题考查了全等三角形性质,关键找出对应边和对应角.求线段的大小往往利用全等三角形的性质求解.9.若△ABC≌△MNP,∠A=∠M,∠C=∠P,AB=4cm,BC=2cm,则NP=()A.2cm B.3cm C.4cm D.6cm【分析】根据全等三角形的对应边相等,即可解答出;【解答】解:∵△ABC≌△MNP,∠A=∠M,∠C=∠P,∴∠B=∠N,BC=NP,∵BC=2,∴NP=2.【点评】本题主要考查了全等三角形的性质,即全等三角形的对应边相等.10.△ABC≌△DEF,下列结论中不正确的是()A.AB=DE B.BE=CF C.BC=EF D.AC=DE【分析】根据全等三角形的性质即可判断;【解答】解:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BE=CF,故A,B,C正确,故选:D.【点评】本题考查全等三角形的性质,解题的关键是熟练掌握全等三角形的性质,属于中考常考题型.二.填空题(共4小题)11.如图,已知△ABC≌△DCB,∠BDC=35°,∠DBC=50°,则∠ABD=45°.【分析】根据三角形的内角和等于180°求出∠BCD,再根据全等三角形对应角相等可得∠ABC=∠BCD,然后列式进行计算即可得解.【解答】解:∵∠BDC=35°,∠DBC=50°,∴∠BCD=180°﹣∠BDC﹣∠DBC=180°﹣35°﹣50°=95°,∵△ABC≌△DCB,∴∠ABC=∠BCD=95°,∴∠ABD=∠ABC﹣∠DBC=95°﹣50°=45°.故答案为:45°.【点评】本题考查了全等三角形对应角相等的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.12.如图,已知△ABC≌△EDF,点F,A,D在同一条直线上,AD是∠BAC的平分线,∠EDA=30°,∠E=70°,则∠ADC的度数是65°.【分析】由全等三角形的性质可求得∠B和∠BAC的度数,由角平分线可求得∠BAD的度数,利用三角形的外角可求得∠ADC的度数.【解答】解:∵△ABC≌△EDF,∴∠B=∠EDA=30°,∠BAC=∠E=70°,∵AD是∠BAC的平分线,∴∠BAD=∠BAC=35°,∴∠ADC=∠B+∠BAD=30°+35°=65°,故答案为:65°.【点评】本题主要考查全等三角形的性质,熟练掌握全等三角形的性质是解题的关键,即对应角相等、对应边相等.13.如图,若△ABC≌△ADE,且∠B=65°,则∠BAD=50°.【分析】由全等三角形的性质可知AB=AD,再根据等腰三角形的性质和三角形内角和定理即可得到答案.【解答】解:∵△ABC≌△ADE,∴AB=AD,∴∠B=∠ADB,∵∠B=65°,∴∠BAD=180°﹣2×65°=50°,故答案为50°.【点评】本题主要考查的是全等三角形的性质:对应角相等,仔细读图,利用图形上的关系做题时比较好的一种方法.14.如图所示,已知△ABC≌△EDC,∠E=∠A=30°,∠D=50°,则∠BCE=20°.【分析】根据全等三角形的性质可得∠DCE=∠BCA,再根据三角形内角和定理计算出∠DCE=100°,进而可得∠BCA的度数,然后根据平角定义可得答案.【解答】解:∵△ABC≌△EDC,∴∠DCE=∠BCA,∵∠E=30°,∠D=50°,∴∠DCE=100°,∴∠BCA=100°,∴∠BCE=100°+100°﹣180°=20°,故答案为:20°.【点评】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应角相等.。

人教版八年级数学 上册 第十二章 全等三角形 单元综合与测试 B卷(含答案)

人教版八年级数学 上册 第十二章 全等三角形 单元综合与测试 B卷(含答案)

第十二章 全等三角形 单元复习与检测题 B 卷(含答案)一、选择题1、下列条件不能判定两个直角三角形全等的是( ) A .两条直角边对应相等 B .斜边和一锐角对应相等 C .斜边和一直角边对应相等D .两个锐角对应相等2、如图,D 是AB 上一点,DF 交AC 于点E ,DE FE =,//FC AB ,若4AB =,3CF =,则BD 的长是( )A .0.5B .1C .1.5D .23、如图,在△ABC 和△DEF 中,已有条件AB=DE ,还需要添加两个条件才能使△ABC ≌△DEF ,不能添加的一组条件是( )A .∠B=∠E ,BC=EFB .∠A=∠D ,BC=EFC .∠A=∠D ,∠B=∠ED .BC=EF ,AC=DF4、如图,P 是∠AOB 平分线上一点,CD ⊥OP 于P ,并分别交OA 、OB 于C D ,则CD_____点P 到∠AOB 两边距离之和.( )A .小于B .大于C .等于 D.不能确定5、如图.射线OC 平分∠AOB ,点P 在OC 上,且PM ⊥OA 于M .PN ⊥OB 于N ,当PM =2cm 时,则PN 是( )A .1cmB .2cmC .4cmD .不确定6、如图,直线a ,b ,c 表示三条公路,现要建一个货物中转站,要求它到三条公路的距离相等,则可供选择的地址有( )A .一处B .两处C .三处D .四处7、要测量河两岸相对的两点A ,B 的距离,先在AB 的垂线BF 上取两点C ,D ,使CD =BC ,再定出BF 的垂线DE ,使A ,C ,E 在一条直线上(如图所示),可以说明△EDC ≌△ABC ,得ED =AB ,因此测得ED 的长就是AB 的长,判定△EDC ≌△ABC 最恰当的理由是( )A .边角边B .角边角C .边边边D .边边角8、已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是( )A .两条边长分别为4,5,它们的夹角为βB .两个角是β,它们的夹边为4C .三条边长分别是4,5,5D .两条边长是5,一个角是β9、如图,在ABC 中,AC BC =,过点B 作射线BF ,在射线BF 上取一点E ,连接AE ,使得CBF CAE ∠=∠,过点C 作射线BF 的垂线,垂足为点D ,若2DE =,4AE =,则BD 的长度为( )A .7B .6C .4D .210、如图,方格纸中△DEF 的三个顶点分别在小正方形的顶点上,像这样的三个顶点都在格点上的三角形叫格点三角形,则图中与△DEF 全等的格点三角形最多有A .8个B .7个C .6个D .4个二、填空题11、如图,如果△ABC ≌△DEF ,△DEF 周长是32cm ,DE=9cm ,EF=13cm ,∠E=∠B ,则AC=______cm .12、如图,小明用直尺和圆规作一个角等于已知角,则说明A O B AOB '''∠=∠的依据是______.13、已知△ABC ≌△DEF ,△ABC 的周长为12,则△DEF 的周长为______14、如图,D 为Rt △ABC 中斜边BC 上的一点,且BD=AB ,过D 作BC 的垂线,交AC 于E ,若AE=12cm ,则DE 的长为__cm .15、已知AD 是△ABC 的角平分线,DE ⊥AB 于E ,且DE =3cm ,则点D 到AC 的距离为_____.16、在四边形ABCD 中,∠BAD+∠BCD=180°, AC 平分∠BAD ,过点C 作CE ⊥AD ,垂足为E , CD=4,AE=10,则四边形ABCD 的周长是____________________.17、在数学活动课上,小明提出这样一个问题:∠B=∠C=90°,E 是BC 的中点,DE 平分∠ADC ,如图.大家一起热烈地讨论交流,小英第一个得出如下结论:(1)AE 平分∠DAB ;(2)△EBA ≌△DCE ;(3)AB+CD=AD ;(4)AE ⊥DE ;(5)AB ∥CD .其中正确的结论是_____.(将你认为正确结论的序号都填上)18、如图所示,直线a经过正方形ABCD的顶点A,分别过正方形的顶点B、D作BF⊥a于点F,DE⊥a于点E,若DE=8,BF=5,则EF的长为__.三、解答题19、已知△ABC≌△DFE,∠A=100°,∠B=50°,DF=12cm,求∠E的度数及AB的长.20、如图,点A,B,D,E在同一直线上,AB=ED,AC∥EF,∠C=∠F.求证:AC=EF.21、如图,∠C=∠CAM=90°,AC=8,BC=4,P,Q两点分别在线段AC和射线AM上运动,且PQ=A B.若△ABC和△PQA全等,求AP的长度.22、如图,已知△EFG≌△NMH,∠F与∠M是对应角.(1)写出图中相等的线段与角.(2)若EF=2.1cm,FH=1.1cm,HM=3.3cm,求MN和HG的长度.23、如图,在ABC∆中,D是BC边上的一点,AB DB=,BE平分ABC∠,交AC边于点E,连接DE.(1)求证:ABE DBE ∆≅∆;(2)若100A ∠=︒,50C ∠=︒,求AEB ∠的度数.24、如图,△ABC 为等腰三角形,AB=AC ,∠D=∠E ,∠BAD=∠CAE . (1)写出一对全等的三角形:△ ≌△ ; (2)证明(1)中的结论; (3)求证:点G 为BC 的中点.25、已知AB=AC ,D ,E 是BC 边上的点,将△ABD 绕点A 旋转,得到△ACD',连接D'E(1)如图1,当∠BAC=120°,∠DAE=60°时,求证DE=D'E ,(2)如图2,当DE=D'E 时,∠DAE 与∠BAC 有怎样的数量关系?请写出,并说明理由.参考答案:一、1、D 2、B 3、B 4、B 5、B 6、D 7、B 8、D 9、B 10、A 二、 11、10 12、SSS 13、12 14、12 15、 3cm 16、 2817、(1)(3)(4)(5). 18、13三、解答题19、∠E=30°,AB=12cm . 【分析】根据全等三角形性质得出∠D=∠A=100°,∠F=∠B=50°,利用三角形内角和定理即可求出∠E 的度数,再根据DF=AB ,即可求出AB 的长.【详解】∵△ABC ≌△DFE ,∴∠D=∠A=100°,∠F=∠B=50°,DF=AB ∴∠E=180°-100°-50°=30°,∵DF=12cm , ∴AB=12cm .【点睛】本题主要考查全等三角形的性质,掌握全等三角形的对应边、对应角相等是解题的关键. 20、证明见解析. 【解析】试题分析:根据全等三角形的片对于性质,再由原子条件即可证明△ABC ≌△EDF (AAS ),推出AC=EF 即可.试题解析:证明:∵AC ∥EF , ∴∠A=∠E . 在△ABC 和△DEF 中, {∠A =∠E∠C =∠F AB =ED , ∴△ABC ≌△EDF . ∴AC=EF .考点:全等三角形的判定与性质. 21、4或8 【解析】试题分析:分△ABC ≌△PQA 和△ABC ≌△QPA 两种情况求AP 的长. 试题解析:当△ABC ≌△PQA 时,AP =CA =8; 当△ABC ≌△QPA 时,AP =CB =4.22、(1)见解析;(2)MN=2.1cm ;HG= 2.2cm . 【分析】(1)根据△EFG ≌△NMH ,∠F 与∠M 是对应角可得到两个三角形中对应相等的三边和三角;(2)根据(1)中的对等关系即可得MN 和HG 的长度.【详解】(1)∵△EFG ≌△NMH ,∠F 与∠M 是对应角,∴EF=NM ,EG=NH ,FG=MH ,∠F=∠M ,∠E=∠N ,∠EGF=∠NHM , ∴FH=GM ,∠EGM=∠NHF ; (2)∵EF=NM ,EF=2.1cm , ∴MN=2.1cm ;∵FG=MH ,FH+HG=FG ,FH=1.1cm ,HM=3.3cm , ∴HG=FG-FH=HM-FH=3.3-1.1=2.2cm .23、(1)见解析;(2)65︒ 【分析】(1)由角平分线定义得出ABE DBE ∠∠=,由SAS 证明ABE DBE ∆≅∆即可; (2)由三角形内角和定理得出30ABC ∠=︒,由角平分线定义得出1152ABE DBE ABC ∠∠∠︒===,在ABE ∆中,由三角形内角和定理即可得出答案.【详解】(1)证明:BE 平分ABC ∠,∴ABE DBE ∠∠=,在ABE ∆和DBE ∆中,AB DB ABE DBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∴()ABE DBE SAS ∆≅∆;(2)100A ∠=︒,50C ∠=︒,∴30ABC ∠=︒,BE平分ABC∠,∴1152ABE DBE ABC∠∠∠︒===,在ABE∆中,1801801001565AEB A ABE∠=︒∠∠=︒︒︒=︒----.【点睛】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.24、(1)△ABE≌△ACD.(2)详见解析.(3)详见解析.【分析】(1)结论:△ABE≌△ACD.(2)根据AAS即可证明;(3)只要证明FB=FC,可得AF垂直平分线段BC即可解决问题;【详解】(1)解:结论:△ABE≌△ACD.(2)证明:∵∠BAD=∠CAE,∴∠BAE=∠CAD,在△ABE和△ACD中,{E DBAE CADAB AC∠=∠∠=∠=,∴△ABE≌△ACD.故答案为ABE,ACD.(3)证明:∵AB=AC,∴∠ABC=∠ACB,∵△ABE≌△ACD,∴∠ABE=∠ACD,∴∠FBC=∠FCB,∴BF=CF,∵AB=AC,∴AF垂直平分线段BC,∴BG=GC,∴点G为BC的中点.【点睛】本题考查了全等三角形的判定和性质、等腰三角形的判定和性质等知识,解题的关键是准确寻找全等三角形解决问题.25、(1)详见解析;(2)∠DAE=12∠BAC,理由详见解析.【分析】(1)根据旋转的性质和全等三角形的判定定理SAS证得△DAE≌△D′AE,则由“全等三角形的对应边相等”的性质证得结论;(2)∠DAE=12∠BAC.根据旋转的性质和全等三角形的判定定理SSS证得△DAE≌△D′AE,则由“全等三角形的对应角相等”的性质推知∠DAE=12∠BAC.【详解】(1)证明:如图,∵△ABD旋转得到△ACD',∴∠DAD'=∠BAC=120°,AD=AD'.∵∠DAE=60°,∴∠EAD'=∠DAD'-∠DAE=120°-60°=60°. ∴∠DAE=∠D'AE,又∵AE=AE,AD=AD',∴△DAE≌△D'AE(SAS).∴DE=D'E.(2)解:∠DAE=12∠BAC.理由:如图,∵△ABD旋转得到△ACD', ∴∠DAD'=∠BAC,AD=AD'. ∵DE=D'E,AE=AE,∴△DAE≌△D'AE(SSS).∴∠DAE=D'AE=12∠DAD'.∴∠DAE=12∠BAC.【点睛】本题考查的知识点是全等三角形的判定与性质及旋转的性质以及等腰三角形的性质,解题的关键是熟练的掌握全等三角形的判定与性质及旋转的性质以及等腰三角形的性质.。

人教版八年级上册数学全等三角形的判定同步练习(含答案)

人教版八年级上册数学全等三角形的判定同步练习(含答案)

人教版八年级上册数学12.2 全等三角形的判定同步练习一、单选题1.在下列各组图形中,是全等图形的是( )A .B .C .D . 2.已知图中的两个三角形全等,则∠α的度数是( )A .72°B .60°C .58°D .50° 3.如图,,40,30ABD CDB ABD CBD ∠=︒∠=︒≌,则C ∠等于( )A .20︒B .100︒C .110︒D .115︒ 4.如图,在ABC 中,D ,E 分别是边AC ,BC 上的点,若ADB EDB EDC ≌≌,则C ∠的度数为( )A .15︒B .20︒C .25︒D .30 5.如图,已知∠ABC ∠∠CDE ,其中AB =CD ,不正确的是( )A .AC =CEB .∠BAC =∠DCE C .∠ACB =∠ECD D .∠B =∠D 6.如图,ABC DEC ≌△△,点A 和点D 是对应顶点,点B 和点E 是对应顶点,过点A 作AF CD ⊥,垂足为点F ,若65BCE ∠=︒,则CAF ∠的度数为( )A .30B .25︒C .35︒D .65︒ 7.如图,A ABC B C '''≌△△,其中36A ∠=︒,24C '∠=︒,则B ∠=( )A .60°B .100°C .120°D .135° 8.如图,△ABC ≌△ADE ,如果AB =5cm ,BC =7cm ,AC =6cm ,那么DE 的长是( )A .6cmB .5cmC .7cmD .无法确定二、填空题 9.如图,△EFG∠∠NMH ,△EFG 的周长为15cm ,HN=6cm ,EF=4cm ,FH=1cm ,则HG= ______ .10.如图,若∠ABC∠∠A 1B 1C 1,且∠A =110°,∠B =40°,则∠C 1=______°.11.如图,已知△ABC ∠∠BAD .若∠DAC =20°,∠C =88°,则∠DBA =________°.12.如图,∠ABD∠∠AC E,A E=3cm,AC=6 cm,则CD=__________cm.13.如图∠ABC,使A与D重合,则∠ABC______∠DBC,其对应角为_____,对应边是_______.14.如图,已知∠ABC∠∠DBC,∠A=45°,∠ACD=76°,则∠DBC的度数为_________°.15.如图△ACB∠A′CB′,∠A′CB=30°,∠ACB′=110°,则∠ACA′的度数是________度.16.已知△ABC∠∠DEF,若∠B=40°,∠D=30°,则∠F=________°.三、解答题17.如图,C为BE上一点,点A,D在线段BE的两侧,若△ABC∠∠CED,试说明:AB∠ED.18.如图,ABE DCE △≌△,点E 在线段AD 上,点F 在CD 延长线上,F A ∠=∠,求证:AD BF ∥.19.已知:如图,::3:10:5ABC A B C A BCA ABC ''∆∆∠∠∠=≌,,求A B BC ''∠∠,的度数.20.如图,已知∠ABF∠∠CDE.(1)若∠B =30°,∠DCF =40°,求∠EFC 的度数;(2)若BD=10,EF=2,求BF 的长.答案第1页,共1页 参考答案:1.C2.A3.C4.D5.C6.B7.C8.C9.4cm10.3011.3612.313. ∠ ∠A =∠D ,∠ABC =∠DBC ;∠ACB =∠DCB AB =DB ,AC =DC ,BC =BC . 14.9715.4016.11019.30A '∠=︒,50B BC '∠=︒20.(1)70°;(2)6.。

人教版 八年级数学上册全等三角形性质 同步练习B卷含答案

人教版 八年级数学上册全等三角形性质 同步练习B卷含答案

八年级数学上册全等三角形性质B卷一、选择题1、下列说法中不正确的是()①全等三角形的对应边相等;②全等三角形的对应角相等;③全等三角形的周长相等;④周长相等的两个三角形全等;⑤全等三角形的面积相等;⑥面积相等的两个三角形全等.A.④⑤B.④⑥C.③⑥D.③④⑤⑥△2、如图所示,ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等△B.ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC3、下列说法中,正确的是()A.两个全等三角形一定关于某直线对称B.等边三角形的高、中线、角平分线都是它的对称轴C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D.关于某直线对称的两个图形是全等形△4、在ABC中,∠B=∠△C,与ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()A.∠AB.∠BC.∠CD.∠B或∠C5、如图,与左边正方形图案属于全等的图案是()A. B. C. D.△6、ABC与△DFE是全等三角形,A与D对应,B与F对应,则按标有字母的线段计算,图中相等的线段有()A.1组B.2组C.3组D.4组7、下列各组图形中,是全等形的是()A.两个含60°角的直角三角形;B.腰对应相等的两个等腰直角三角形;C.边长为3和5的两个等腰三角形;D.一个钝角相等的两个等腰三角形△8、边长都为整数的ABC≌△DEF,AB与DE是对应边,AB=2,BC=4△若DEF的周长为偶数,则DF的取值为()A.3B.4C.5D.3或4或5△9、如图,AOC≌△BOD,∠C与∠D是对应角,AC与BD是对应边,AC=8cm,AD=10cm,OD=OC=2cm,那么OB的长是()A.8cm B.10cm C.2cm D.无法确定10、如图,△R t ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=()A.40°.B.30°.C.20°.D.10°.二、填空题11、已知△:如图,ABC≌△FED,且BC=DE.则∠A=__________,A D=_______.FE=_______12、已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=_________,A′B′=__________.13、如图,已知△ABE≌△ACD,∠1=75°,BD=2cm,DE=3cm,则∠2=°,CD=cm;14、如图,△ABC≌△ADE,BC的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,则∠DEF的度数为________.D15、已知△ABC与△DEF全等,∠A=∠D=90°,∠B=37°则∠E=.16、如图,锐角△ABC中,,E分别是AB,AC边上的点,△ADC≌△ADC',△AEB≌△AEB',且C'D//EB'//BC,记BE,CD交于点F,若∠BAC=x°,则∠BFC的大小是________°.(用含x的式子表示)三、解答题17、如图,△ABC≌△DEF,且顶点A与D对应,B与E对应,点E,C,F,B在同一条直线上.(1)请写出所有相等的线段,并说明理由.(2)请写出所有平行的线段,并说明理由.18、如图所示,已知△ABD≌△ACE,∠B=∠C,试指出这两个三角形的对应边和对应角.19、如图所示,四边形ABCD的对角线AC,BD相交于点△O,ABC≌△BAD.求证:(1)OA=OB;(2)AB∥CD.20、如图的等边三角形ABC是学校的一块空地,为美化校园,决定把这块空地分为全等的三部分,分别种植不同的花草.现有两种划分方案:(1)分为三个全等的三角形;(2)分为三个全等的四边形.你认为这两种方案能实现吗?若能,画图说明你的划分方法.参考答案1、B;2、C;3、D;4、A;5、C;6、D;7、B;8、B;9、A;10、D;11、∠F,FC,BA;12、700,1513、75,514、35°.15、37或5316、180°-2x.17、(1)AB=DE,AC=DF,BC=EF,BF=EC.理由:△ABC≌△DEF.(2)AB∥DE,AC∥△D F.理由:ABC≌△DEF18、对应边是:AD与AE,AB与AC,BD与CE;对应角是:∠B和∠C,∠ADB和∠AEC,∠BAD和∠CAE.19、证明:(1)因为△ABC≌△BAD,所以∠CAB=∠DBA,所以OA=OB.(2)因为△ABC≌△BAD,所以AC=BD.又因为OA=OB,所以AC-OA=BD-OB,即OC=OD,所以∠OCD=∠ODC.因为∠AOB=∠COD,∠CAB=,∠ACD=,所以∠CAB=∠ACD,所以AB∥CD.20、解:能.划分方法如下:(1)画△ABC的中线AD,BE,两条中线相交于O点,连接△O C,则ABO,△BCO,△ACO为三个全等的三角形,如图①所示.(2)画△ABC的中线AD,BE,两条中线相交于O点,连接CO并延长交AB于点F,则四边形AEOF,四边形BDOF,四边形CDOE为三个全等的四边形,如图②所示.(答案不唯一。

人教版八年级上册12.2全等三角形判定同步练习(包含答案)

人教版八年级上册12.2全等三角形判定同步练习(包含答案)

12.2全等三角形判定知识要点:三角形全等的判定(1)边边边(SSS):三边分别相等的两个三角形全等。

(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。

(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。

(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。

(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。

一、单选题1.如图,12∠=∠,下列条件中不能使...ABD ACD ∆≅∆的是( )A .AB AC = B .B C ∠=∠ C .ADB ADC ∠=∠D .DB DC = 2.如图所示,则下面图形中与图中△ABC 一定全等的三角形是( )A .B .C .D .3.如图,有两个长度相同的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面夹角∠ABC与∠DFE的度数和是( )A.90°B.120°C.135°D.150°4.有一个小口瓶(如图所示),想知道它的内径是多少,但是尺子不能伸到里边直接测,于是拿两根长度相同的细木条,把两根细木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB的长,就可以知道玻璃瓶的内径是多少,那么△OAB≌△OCD理由是()A.边角边B.角边角C.边边边D.角角边5.如图,用尺规作出∠OBF=∠AOB,作图痕迹MN是A.以点B为圆心,OD为半径的弧B.以点B为圆心,DC为半径的弧C.以点E为圆心,OD为半径的弧D.以点E为圆心,DC为半径的弧6.如图,已知,,,则图中全等三角形的总对数是A.3 B.4 C.5 D.67.如图,FE=BC,DE=AB,∠B=∠E=40°,∠F=70°,则∠A=( )A.40°B.50°C.60°D.70°8.如图,已知AB∥CF,E为DF的中点,若AB=9cm,CF=5cm,则BD等于()A.2cm B.3cm C.4cm D.5cm9.如图,已知AC=DB,AO=DO,CD=100 m,则A,B两点间的距离( )A.大于100 m B.等于100 mC.小于100 m D.无法确定10.如图,AB⊥BC且AB=BC,DE⊥CD且DE=CD,请按照图中所标注的数据,计算图中实线所围成的图形的面积S是()A.36 B.48 C.72 D.108二、填空题11.如图,若AB=AD,加上一个条件_____,则有△ABC≌△ADC.12.如图,已知BD⊥AE于点B,DC⊥AF于点C,且DB=DC,∠BAC=40°,∠ADG=130°,则∠DGF=__________.13.如图,已知∠1=∠2=90°,AD=AE,那么图中有____对全等三角形.14.如图,Rt∆ABC 中,∠BAC = 90°,AB =AC ,分别过点B、C 作过点A 的直线的垂线BD、CE ,垂足分别为D、E ,若BD = 4,CE=2,则DE= (_________)15.如图,∠ACB =90°,AC =BC ,BE ⊥CE ,AD ⊥CE ,垂足分别为E ,D ,AD =25,DE =17,则BE =______.三、解答题16.如图,点E ,F 在CD 上,AD CB ,DE CF =,A B ∠=∠,试判断AF 与BE 有怎样的数量和位置关系,并说明理由.17.已知:如图,AB=AC ,PB=PC ,PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E .证明:(1)PD=PE .(2)AD=AE .18.已知:如图,AE ∥CF ,AB=CD ,点B 、E 、F 、D 在同一直线上,∠A=∠C .求证:(1)AB∥CD;(2)BF=DE.19.如图,点M.N在线段AC上,AM=CN,AB∥CD,AB=CD.请说明△ABN≌△CDM的理由;答案1.D 2.B3.A4.A5.D6.D7.D8.C9.B10.C11.BC =DC12.150°13.314.615.816.解:AF 与BE 平行且相等,因为AD CB ,所以C D ∠=∠.因为DE CF =,所以CE DF =.又因为A B ∠=∠,所以AFD BEC ∆≅∆.所以AF BE =,AFD BEC ∠=∠.所以AF BE .17.解:证明:(1)连接AP .在△ABP 和△ACP 中,AB=AC PB=PC AP=AP ⎧⎪⎨⎪⎩,∴△ABP ≌△ACP (SSS ).∴∠BAP=∠CAP ,又∵PD ⊥AB ,PE ⊥AC ,垂足分别为D 、E ,∴PD=PE (角平分线上点到角的两边距离相等).(2)在△APD 和△APE 中,∵90PAD PAE ADP AEP AP AP ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩,∴△APD ≌△APE (AAS ),∴AD=AE ;18.解:(1)∵AB ∥CD ,∴∠B=∠D .在△ABE 和△CDF 中,A CAB CD B D∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABE ≌△CDF (ASA ),∴∠B=∠D ,∴AB ∥CD ;(2)∵△ABE ≌△CDF ,∴BE=DF .∴BE+EF=DF+EF ,∴BF=DE .19.∵AM=CN∴AM+MN=CN+MN即AN=CM∵AB ∥CD∴∠A=∠C在△ABN 和△CDM 中=AN CMA C AB CD=⎧⎪∠∠⎨⎪=⎩∴△ABN ≌△CDM (SAS )人教版八年级上册12.2全等三角形判定同步练习(包含答案)11 / 11。

2023-2024学年八年级数学上册《第十二章 全等三角形》同步练习题含答案(人教版)

2023-2024学年八年级数学上册《第十二章 全等三角形》同步练习题含答案(人教版)

2023-2024学年八年级数学上册《第十二章全等三角形》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.已知△ABC≌△DEF,点A与D,点C与F分别是对应点,则∠B的对应角是()A.∠A B.∠F C.∠E D.∠C2.已知△ABC≌△DEF,AB=2,AC=4若△DEF的周长为偶数,则EF的取值为()A.4 B.3 C.5 D.3 或 4 或 53.如图ΔABC≅ΔDEC,点E在边AB上∠DEC=75∘,则∠BCE的度数是()A.25°B.30°C.40°D.75°4.如图△ABC≌△BAD,点A和点B,点C和点D是对应点,如果AB=8cm,BD=7cm,AD=6cm那么BC的长是()A.5cm B.6cm C.7cm D.8cm5.如图△ABD≌△ACE,AB=9,AD=7,BD=8,则BE的长是()A.1 B.2 C.4 D.66.如图所示,D,E分别是△ABC的边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°7.如图已知△ABC≌△CDE,其中AB=CD,不正确的是()A.AC=CE B.∠BAC=∠DCEC.∠ACB=∠ECD D.∠B=∠D8.如图△ABC≌△DEF,∠A=63°,∠B=70°,则∠F的度数为()A.47°B.43°C.45°D.40°二、填空题9.若△ABC≌△DEF,∠A=70°,∠B=50°点A的对应点是D,AB=DE,那么∠F的度数是.10.如图已知△OAB≌△OCD,∠A=30°,∠AOB=105°,则∠D= °.11.如图已知△ABD≌△ACE,且∠1=45°,∠ADB=95°,则∠AEC= ,∠C= .12.如图△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=25°,则∠EAC的度数为.13.如图△ABC的顶点分别为A(0,3),B(﹣4,0),C(2,0),且△BCD与△ABC全等,则点D坐标可以是.三、解答题14.已知:如图△ABD与△CDB全等,∠ABD=∠CDB,写出其余的对应角和各对对应边.15.如图点B,F,C,E在同一条直线上,△ABC≌△DEF,点B与点E,点A与点D分别是对应点,AB=6,BC=11,BF=3,∠ACB=30°.求∠DFE的度数及DE,CE的长.16.如图已知△ACF≌△DBE,且点A,B,C,D在同一条直线上,∠A=50°,∠F=40°.(1)求△DBE各内角的度数;(2)若AD=16,BC=10,求AB的长.17.已知,如图△ABC≌△DEF,求证:AC∥DF.18.如图已知△ABC≌△DEB,点E在AB上,DE与AC相交于点F.(1)当DE=9,BC=5时,线段 AE的长为(2)已知∠D=35°,∠C=60°,求∠AFD的度数.19.如图所示,已知△ABD≌△CFD,AD⊥BC于D.(1)求证∶ CE⊥AB(2)已知BC=7,AD=5,求 AF的长.参考答案1.C2.A3.B4.B5.B6.D7.C8.A9.60°10.4511.95°;50°12.45°13.(﹣2,3)或(﹣2,﹣3)或(0,﹣3)14.解:△ABD与△CDB全等,∠ABD=∠CDB,则∠A与∠C,∠ADB与∠CBD是对应角;BD与DB,AD与CB,AB与CD是对应边.15.解:∵△ABC≌△DEF,点B与点E,点A与点D分别是对应点∴DE=AB=6,EF=BC=11∠DFE=∠ACB=30°.∵CE=EF-CF,BF=BC-CF,EF=BC∴CE=BF=316.解:(1)∵△ACF≌△DBE,∠A=50°,∠F=40°∴∠D=∠A=50°,∠E=∠F=40°∴∠EBD=180°﹣∠D﹣∠E=90°;(2)∵△ACF≌△DBE∴AC=BD∴AC﹣BC=DB﹣BC∴AB=CD∵AD=16,BC=10∴AB=CD=1(AD﹣BC)=3.217.证明:∵△ABC≌△DEF∴∠ACF=∠DFC∴AC∥DF.18.(1)4(2)解:∵△ABC≌△DEB,∠C=60°,∠D=35°∴∠C=∠DBE=60°∠A=∠D=35°∵∠D=35°∴∠AED=∠DBE+∠D=60°+35°=95°∴∠AFD=∠A+∠AEF=35°+95°=130°. 19.(1)证明:∵AD⊥BC∴∠CDF=90°∵△ABD≌△CFD∴∠BAD=∠DCF又∵∠AFE=∠CFD∴∠AEF=∠CDF=90°∴CE⊥AB;(2)解:∵△ABD≌△CFD∴BD=DF,AD=DC∵BC=7,AD=5∴BD=BC−CD=2∴AF=AD−DF=5−2=3。

人教版八年级数学上册三角形全等的判定同步练习及答案

人教版八年级数学上册三角形全等的判定同步练习及答案

三角形全等的判定同步练习题一. 选择题1. 下列条件不能判定两个三角形全等的是()A. 有两边和夹角对应相等B. 有三边分别对应相等C. 有两边和一角对应相等D. 有两角和一边对应相等2. 下列条件能判定两个三角形全等的是()A. 有三个角相等B. 有一条边和一个角相等C. 有一条边和一个角相等D. 有一条边和两个角相等3. 如图所示,已知AB∥CD,AD∥BC,那么图中共有全等三角形()AB C DO第3题A. 1对B. 2对C. 4对D. 8对4. 如图所示,已知∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件是()AB CDE12第4题FA. ∠E =∠BB. ED =BCC. AB =EFD. AF =CD5. 如图所示,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠2,∠E =∠C ,AE =AC ,则 ( )A B CD E123第5题FA. △ABC ≌△AFEB. △AFE≌△ADC C. △AFE ≌△DFC D. △ABC ≌△ADE6. 我们学过的判定两个直角三角形全等的条件,有 ( )A. 5种B. 4种C. 3种D. 2种7. 如图所示,AB ∥EF ∥CD ,∠ABC =90°,AB =DC ,那么图中的全等三角形有 ( )A B C DEF 第7题A. 1对B. 2对C. 3对D. 4对8. 如图,在△ABC 中,AB =AC ,AD ⊥BC ,垂足为D ,且BC =6cm ,则BD =__________.()AB C D 第8题A. 1cmB. 2cmC. 3cmD. 4cm9. 如图所示,DE ⊥AB ,DF ⊥AC ,AE =AF ,则下列结论成立的是 ( )AB C DEF 第9题 A. BD =CD B. DE =DF C. ∠B =∠C D. AB =AC二. 填空题10. 如图所示,AC ∥BD ,AC =BD ,那么__________,理由是__________.B CD O第10题11. 已知△ABC ≌△A'B'C',AB =6cm ,BC =7cm ,AC =9cm ,∠A'=70°,∠B'=80°,则A'B'=__________,B'C'=__________,A'C'=__________,∠C'=__________,∠C =__________.12. 如图所示,已知AB =AC ,在△ABD 与△ACD 中,要使△ABD ≌△ACD ,还需要再添加一个条件是____________________.AB CD13. 如图所示,已知△ABC≌△DEF,AB=4cm,BC=6cm,AC=5cm,CF=2cm,∠A=70°,∠B=65°,则第12题∠D=__________,∠F=__________,DE=__________,BE=__________.14. (2007年福州)如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,要使△ABE≌△ACD,需添加一个条件是__________(只要求写一个条件).15. (2007年沈阳)如图,AC、BD相交于点O,∠A=∠D,请你再补充一个条件,使得△AOB≌△DOC,你补充的条件是__________.三. 解答题16. (2007年浙江温州)已知:如图,∠1=∠2,∠C =∠D ,求证:AC =AD.A BCD1217. (2007年浙江金华)如图,A 、E 、B 、D 在同一直线上,在△ABC 和△DEF 中,AB =DE ,AC =DF ,AC ∥DF. (1)求证:△ABC ≌△DEF ;(2)你还可以得到的结论是__________(写出一个即可,不再添加其他线段,不再标注或使用其它字母)A B CDEF18. (2007年武汉)你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O 上下转动,立柱OC 与地面垂直. 当一方着地时,另一方上升到最高点. 问:在上下转动横板的过程中,两人上升的最大高度AA'、BB'有何数量关系?为什么?C O A'AB'B19. MN 、PQ 是校园里的两条互相垂直的小路,小强和小明分别站在距交叉口C 等距离的B 、E 两处,这时他们分别从B 、E 两点按同一速度沿直线行走,如图所示,经过一段时间后,同时到达A 、D 两点,他们的行走路线AB 、DE 平行吗?请说明你的理由.MNP20. 有一块不规则的鱼池,下面是两位同学分别设计的能够粗略地测量出鱼池两端A 、B 的距离的方案,请你分析一下两种方案的理由.方案一:小明想出了这样一个方法,如图①所示,先在AB 的垂线BF 上取两点C 、D ,使CD =BC ,再定出BF 的垂线DE ,使A 、C 、E 在同一条直线上,测得DE 的长就是AB 的长. 你能说明一下这是为什么吗?方案二:小军想出了这样一个方法,如图②所示,先在平地上取一个可以直接到达鱼池两端A 、B 的点C ,连结AC 并延长到点D ,使CD =CA ,连结BC 并延长到E ,使CE =CB ,连结DE ,量出DE 的长,这个长就是A、B之间的距离. 你能说明一下这是为什么吗?A BCD EF①A B②CE D21. 我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等. 那么在什么情况下,它们会全等?(1)阅读与证明:对于这两个三角形均为直角三角形,显然它们全等.对于这两个三角形均为钝角三角形,可证它们全等(证明略).对于这两个三角形均为锐角三角形,它们也全等,可证明如下:已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.求证:△ABC≌△A1B1C1. (请你将下列证明过程补充完整)证明:分别过点B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.则∠BDC=∠B1D1C1=90°,∵BC=B1C1,∠C=∠C1,∴△BCD≌△B1C1D1,∴BD=B1D1.______________________________。

人教版 八年级数学上册 第12章 全等三角形 同步训练(含答案)

人教版 八年级数学上册  第12章 全等三角形 同步训练(含答案)

人教版八年级数学第12章全等三角形同步训练一、选择题1. 在如图所示的三角形中,与图中的△ABC全等的是()2. 如图所示,AC,BD是长方形ABCD的对角线,过点D作DE∥AC交BC的延长线于点E,则图中与△ABC全等的三角形共有()A.1个B.2个C.3个D.4个3. 如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°4. 下列四个图形中,属于全等图形的是()A.③和④B.②和③C.①和③D.②和④5. 如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF的是()A.∠A=∠D B.BC=EFC.∠ACB=∠F D.AC=DF6. 如图,点B,E,C,F在同一直线上,AB∥DE,∠A=∠D,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.BE=CF B.∠ACB=∠FC.AC=DF D.AB=DE7. 如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,BC =7,BD=4,则点D到AB的距离是()A.3 B.4C.5 D.78. 如图,△ABC的外角平分线BD,CE相交于点P,若点P到AC的距离为3,则点P到AB的距离为()A.1 B.2 C.3 D.49. 现已知线段a,b(a<b),∠MON=90°,求作Rt△ABO,使得∠O=90°,OA=a,AB=b.小惠和小雷的作法分别如下:小惠:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点A为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.小雷:①以点O为圆心、线段a的长为半径画弧,交射线ON于点A;②以点O为圆心、线段b的长为半径画弧,交射线OM于点B,连接AB,△ABO即为所求.则下列说法中正确的是()A.小惠的作法正确,小雷的作法错误B.小雷的作法正确,小惠的作法错误C.两人的作法都正确D.两人的作法都错误10. 如图,点G在AB的延长线上,∠GBC,∠BAC的平分线相交于点F,BE⊥CF 于点H.若∠AFB=40°,则∠BCF的度数为()A.40°B.50°C.55°D.60°二、填空题11. 已知△ABC的三边长分别是6,8,10,△DEF的三边长分别是6,6x-4,4x+2.若两个三角形全等,则x的值为________.12. 如图,已知∠ABC=∠DCB,添加下列条件中的一个:①∠A=∠D,②AC =DB,③AB=DC,其中不能判定△ABC≌△DCB的是________(只填序号).13. 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B,F,C,E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是________(只填一个即可).14. 如图,在△ABC中,D,E分别是边AB,AC上的点,过点C作平行于AB的直线交DE的延长线于点F.若DE=FE,AB=5,CF=3,则BD的长是________.15. 如图K-10-10,CA=CD,AB=DE,BC=EC,AC与DE相交于点F,ED 与AB相交于点G.若∠ACD=40°,则∠AGD=________°.16. 如图所示,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB,BC上沿A→B→C 运动. 当OP=CD时,点P的坐标为.17. 如图,△ABC的两条外角平分线BP,CP相交于点P,PE⊥AC交AC的延长线于点E.若△ABC的周长为11,PE=2,S△BPC =2,则S△ABC=.三、解答题18. 如图,A、C、D、B四点共线,且AC=BD,∠A=∠B,∠ADE=∠BCF.求证:DE=CF.19. 如图,△ABC≌△EBD,则∠1与∠2相等吗?若相等,请证明;若不相等,请说明理由.20. 如图所示,∠BAC=∠BCA,AD为△ABC中BC边上的中线,延长BC至点E,使CE=AB,连接AE.求证:∠CAD=∠CAE.人教版八年级数学第12章全等三角形同步训练-答案一、选择题1. 【答案】C2. 【答案】D[解析] 与已知三角形全等的三角形有△DCB,△BAD,△DCE,△CDA.3. 【答案】D[解析] 由条件可知∠ADB=∠EDB=∠EDC=60°,且∠DEB=∠DEC=90°,∴∠C=30°.4. 【答案】D[解析] 图形②和图形④放在一起,可以完全重合,因此是全等图形.5. 【答案】D[解析] 已知∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用“ASA”可得△ABC≌△DEF;添加BC=EF,利用“SAS”可得△ABC≌△DEF;添加∠ACB=∠F,利用“AAS”可得△ABC≌△DEF;添加AC=DF,不能证明△ABC≌△DEF.故选D.6. 【答案】B7. 【答案】A8. 【答案】C[解析] 如图,过点P作PQ⊥AC于点Q,PW⊥BC于点W,PR⊥AB 于点R.∵△ABC的外角平分线BD,CE相交于点P,∴PQ=PW,PW=PR.∴PR=PQ.∵点P到AC的距离为3,∴PQ=3.∴PR=3,则点P到AB的距离为3.9. 【答案】A[解析] AB=b,AB是斜边,小惠作的斜边长是b符合条件,而小雷作的是一条直角边长是b.故小惠的作法正确,小雷的作法错误.10. 【答案】B[解析] 如图,过点F分别作FZ⊥AE于点Z,FY⊥CB于点Y,FW⊥AB于点W.∵AF平分∠BAC,FZ⊥AE,FW⊥AB,∴FZ=FW.同理FW=FY.∴FZ=FY.又∵FZ⊥AE,FY⊥CB,∴∠FCZ=∠FCY.由∠AFB=40°,易得∠ACB=80°.∴∠ZCY=100°.∴∠BCF=50°.二、填空题11. 【答案】2[解析] 由全等三角形的对应边相等可知有以下两种情况:①4x +2=10,解得x =2; 6x -4=8, 解得x =2.由于2=2,所以此种情况成立. ②4x +2=8,解得x =32; 6x -4=10,解得x =73.由于32≠73,所以此种情况不成立. 综上所述,x 的值为2.12. 【答案】②[解析] ∵已知∠ABC =∠DCB ,且BC =CB ,∴若添加①∠A =∠D ,则可由“AAS”判定△ABC ≌△DCB ; 若添加②AC =DB ,则属于“SSA”,不能判定△ABC ≌△DCB ; 若添加③AB =DC ,则可由“SAS”判定△ABC ≌△DCB.13. 【答案】答案不唯一,如AB =DE[解析] ∵BF =CE ,∴BC =EF.在△ABC 和△DEF 中,⎩⎨⎧AB =DE ,∠B =∠E ,BC =EF ,∴△ABC ≌△DEF(SAS).14. 【答案】2[解析] ∵CF ∥AB ,∴∠A =∠FCE.在△ADE 和△CFE 中,⎩⎨⎧∠A =∠FCE ,∠AED =∠CEF ,DE =FE ,∴△ADE ≌△CFE(AAS). ∴AD =CF =3.∴BD =AB -AD =5-3=2.15. 【答案】40 [解析] 在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,AB =DE ,BC =EC ,∴△ABC ≌△DEC(SSS). ∴∠A =∠D.又∵∠AFG =∠DFC , ∴∠AGD =∠ACD =40°. 16. 【答案】(2,4)或(4,2)17. 【答案】7[解析] 过点P 作PF ⊥BC 于点F ,PG ⊥AB 于点G ,连接AP .∵△ABC 的两条外角平分线BP ,CP 相交于点P ,∴PF=PG=PE=2.∵S △BPC =2,∴BC ·2=2,解得BC=2.∵△ABC 的周长为11,∴AC+AB=11-2=9.∴S △ABC =S △ACP +S △ABP -S △BPC =AC ·PE+AB ·PG-S △BPC =×9×2-2=7.三、解答题18. 【答案】证明:∵A 、C 、D 、B 四点共线,且AC =BD , ∴AC +CD =BD +CD ,即AD =BC ,(2分) 在△ADE 和△BCF 中,⎩⎨⎧∠A =∠BAD =BC∠ADE =∠BCF, ∴△ADE ≌△BCF(ASA ),(4分) ∴DE =CF.(6分)19. 【答案】解:∠1=∠2.证明:∵△ABC ≌△EBD ,∴∠A =∠E. 在△AOF 中,∠1=180°-∠A -∠AOF , 在△EOB 中,∠2=180°-∠E -∠BOE. 又∵∠AOF =∠BOE(对顶角相等), ∴∠1=∠2.20. 【答案】证明:如图,延长AD 到点F ,使得DF =AD ,连接CF.∵AD 为△ABC 中BC 边上的中线,∴BD =CD. 在△ADB 和△FDC 中,⎩⎨⎧AD =FD ,∠ADB =∠FDC ,BD =CD ,∴△ADB ≌△FDC(SAS). ∴AB =CF ,∠B =∠DCF. ∵CE =AB ,∴CE =CF.∵∠ACE =∠B +∠BAC ,∠ACF =∠DCF +∠BCA ,∠BAC =∠BCA , ∴∠ACE =∠ACF.在△ACF 和△ACE 中,⎩⎨⎧AC =AC ,∠ACF =∠ACE ,CF =CE ,∴△ACF ≌△ACE(SAS). ∴∠CAD =∠CAE.。

人教版八年级数学上册 12.1 全等三角形 同步训练(含答案)

人教版八年级数学上册 12.1 全等三角形 同步训练(含答案)

人教版八年级数学上册12.1 全等三角形同步训练一、选择题1. 下列各组的两个图形属于全等图形的是()2. 已知图中的两个三角形全等,则∠α的度数为 ()A.105°B.75°C.60°D.45°3. 如图,△ABC≌△A′B′C′,其中∠A=36°,∠C=24°,则∠B′的度数为()A.150°B.120°C.90°D.60°4. 如图,在△ABC中,D,E分别是边AC,BC上的点.若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°5. 如图,△ABC≌△EDF,DF=BC,AB=ED,AC=15,EC=10,则CF的长是()A.5B.8C.10D.156. 如图所示,△ABD≌△CDB,下列四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,AD=BC7. 如图,若△ABE≌△ACF,且AB=5,AE=2,则EC的长为()图12-1-10A.2B.3C.5D.2.58. 如图,已知点A,B,C,D在同一条直线上,△AEC≌△DFB.如果AD=37 cm,BC=15 cm,那么AB的长为()A.10 cmB.11 cmC.12 cmD.13 cm9. 如图,△ACB≌△A'CB',∠ACA'=30°,则∠BCB'的度数为()A.20°B.30°C.35°D.40°10. 如图所示,已知△ABC≌△ADE,BC的延长线交DE于点F,∠B=∠D=25°,∠ACB=∠AED=105°,∠DAC=10°,则∠DFB的度数为 ()A.40°B.50°C.55°D.60°二、填空题11. 如图,△ABC≌△DEF,根据图中提供的信息,得x=________.12. 已知△ABC≌△A'B'C',∠A=90°,∠B'=30°,AC=15 cm,则∠C'=,B'C'=.13. 如图,△ABC≌△ADE,BC的延长线交DE于点G,∠CAB=54°,∠DAC=16°,则∠DGB=°.14. 已知△ABC≌△DEF,若△ABC的周长为16,AB=6,AC=7,则EF=________.15. 已知△ABC的三边长分别是6,8,10,△DEF的三边长分别是6,6x-4,4x+2.若两个三角形全等,则x的值为________.16. 已知△ABC的三边长分别为6,7,10,△DEF的三边长分别为6,3x-2,2x-1.若这两个三角形全等,则x的值为.三、解答题17. 如图所示,已知△ABD≌△ACD,且点B,D,C在同一条直线上,那么AD 与BC有怎样的位置关系?为什么?18. 如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P,AD=DC =2.4,BC=4.1.(1)若∠ABE=150°,∠DBC=30°,求∠CBE的度数;(2)求△DCP与△BPE的周长和.19. 如图,在△ACE中,CD⊥AE于点D,B是AE延长线上一点,连接BC,取BC上一点F.若∠ACB=90°,△ACD≌△ECD,△CEF≌△BEF.(1)求∠B的度数;(2)求证:EF∥AC.人教版八年级数学上册12.1 全等三角形同步训练-答案一、选择题1. 【答案】A2. 【答案】 B3. 【答案】B[解析] ∵∠A=36°,∠C=24°,∴∠B=120°.∵△ABC≌△A′B′C′,∴∠B=∠B′=120°.4. 【答案】D[解析] 由条件可知∠ADB=∠EDB=∠EDC=60°,且∠DEB=∠DEC=90°,∴∠C=30°.5. 【答案】A[解析] ∵△ABC≌△EDF,AC=15,∴EF=AC=15.∵EC=10,∴CF=EF-EC=15-10=5.6. 【答案】C[解析] A.∵△ABD≌△CDB,∴△ABD和△CDB的面积相等,故本选项不符合题意;B.∵△ABD≌△CDB,∴△ABD和△CDB的周长相等,故本选项不符合题意;C.∵△ABD≌△CDB,∴∠A=∠C,∠ABD=∠CDB.∴∠A+∠ABD=∠C+∠CDB≠∠C+∠CBD,故本选项符合题意;D.∵△ABD≌△CDB,∴AD=BC,∠ADB=∠CBD.∴AD∥BC,故本选项不符合题意.故选C.7. 【答案】B[解析] ∵△ABE≌△ACF,AB=5,∴AC=AB=5.∵AE=2,∴EC=AC-AE=5-2=3.8. 【答案】B[解析] ∵△AEC≌△DFB,∴AC=DB.∴AC-BC=DB-BC,即AB=CD.∵AD=37 cm,BC=15 cm,∴AB==11(cm).9. 【答案】B[解析] 由△ACB≌△A'CB',得∠ACB=∠A'CB'.由等式的基本性质,得∠ACB-∠A'CB=∠A'CB'-∠A'CB.所以∠BCB'=∠ACA'=30°.10. 【答案】D[解析] 因为△ABC≌△ADE,∠B=∠D=25°,∠ACB=∠AED=105°,所以∠CAB=∠EAD=180°-105°-25°=50°.所以∠DAB=∠CAB+∠DAC=60°.由图易得∠DFB=∠DAB=60°.二、填空题11. 【答案】2012. 【答案】60°30 cm13. 【答案】70[解析] ∵△ABC≌△ADE,∴∠B=∠D.∵∠GFD=∠AFB,∴∠DGB=∠F AB.∵∠F AB=∠DAC+∠CAB=70°,∴∠DGB=70°.14. 【答案】3[解析] ∵△ABC的周长为16,AB=6,AC=7,∴BC=3.∵△ABC≌△DEF,∴EF=BC=3.15. 【答案】2[解析] 由全等三角形的对应边相等可知有以下两种情况:①4x+2=10,解得x=2;6x-4=8,解得x=2.由于2=2,所以此种情况成立. ②4x +2=8,解得x =32; 6x -4=10,解得x =73.由于32≠73,所以此种情况不成立. 综上所述,x 的值为2.16. 【答案】4[解析] ∵△ABC 的三边长分别为6,7,10,△DEF 的三边长分别为6,3x-2,2x-1,这两个三角形全等,∴3x-2=10,2x-1=7,解得x=4;还可以是3x-2=7,2x-1=10,这种情况不成立.三、解答题17. 【答案】解:AD ⊥BC.理由:∵△ABD ≌△ACD , ∴∠ADB =∠ADC.又∵∠ADB +∠ADC =180°, ∴∠ADB =∠ADC =90°. ∴AD ⊥BC.18. 【答案】解:(1)∵∠ABE =150°,∠DBC =30°, ∴∠ABD +∠CBE =120°.∵△ABC ≌△DBE ,∴∠ABC =∠DBE.∵∠ABD =∠ABC -∠DBC ,∠CBE =∠DBE -∠DBC , ∴∠ABD =∠CBE =60°, 即∠CBE 的度数为60°. (2)∵△ABC ≌△DBE ,∴DE =AC =AD +DC =4.8,BE =BC =4.1.∴△DCP 与△BPE 的周长和=DC +DP +BP +CP +PE +BE =DC +DE +BC +BE =15.4.19. 【答案】解:(1)∵△ACD≌△ECD,∴∠A=∠DEC. ∵△CEF≌△BEF,∴∠ECB=∠B.∵∠DEC=∠ECB+∠B,∴∠A=2∠B.∵∠ACB=90°,∴∠A+∠B=90°.∴2∠B+∠B=90°.∴∠B=30°.(2)证明:∵△CEF≌△BEF,∴∠EFB=∠EFC.而∠EFB+∠EFC=180°,∴∠EFB=90°.∴∠ACB=∠EFB.∴EF∥AC.。

人教版 八年级数学上册全等三角形 角平分线的性质与判定 同步练习B卷含答案

人教版 八年级数学上册全等三角形 角平分线的性质与判定 同步练习B卷含答案

八年级数学上册全等三角形角平分线的性质与判定 B卷一、选择题1、如图,OP平分∠AOB,PD⊥OA于点D,点Q是射线OB上一个动点,若PD=2,则PQ的最小值为( )A.PQ<2 B.PQ=2 C.PQ>2 D.以上情况都有可能2、如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S:S△BCO:S△CAO等于()△ABOA.1:1:1 B.1:2:3 C.2:3:4 D.3:4:53、如图,AD平分∠BAC,DE⊥AB于点E,S△ACD=3,DE=2,则AC长是( )A.3 B.4 C.5 D.64、图,在平面直角坐标系中,以点O为圆心,适当的长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )A.a=b B.2a+b=-1 C.2a-b=1 D.2a+b=15、已知:在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若BC=32,且BD:DC=9:7,则点D到AB边的距离为( )A.18B.16C.14D.126、如图,已知AC⊥BC,DE⊥AB,AD平分∠BAC,下面结论错误的是( )A.BD+ED=BC B.∠B=2∠DAC C.AD平分∠EDC D.ED+AC>AD7、如图,△ABC中,∠ABC、∠ACB外角的平分线相交于点F,连接AF,则下列结论正确的有()A.AF平分BC B.AF平分∠BAC C.AF⊥BC D.以上结论都正确8、如图,已知四边形ABCD中,AD∥BC,AP平分∠DAB,BP平分∠ABC,它们的交点P给在线段CD上,下面的结论:①AP⊥BP;②点P到直线AD、BC的距离相等;③PD=PC.其中正确的结论有( )A.①②③ B.①② C.仅① D.仅②9、如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为()A.11B.5.5C.7D.3.510、如图,△ABC中,∠ACB=90°,D为AB上任一点,过D作AB的垂线,分别交边AC、BC的延长线于EF 两点,∠BAC∠BFD的平分线交于点I,AI交DF于点M,FI交AC于点N,连接BI.下列结论:①∠BAC=∠BFD;②∠ENI=∠EMI;③AI⊥FI;④∠ABI=∠FBI;其中正确结论的个数是( )A. 1个B. 2个C. 3个D. 4个二、填空题11、如图所示,△ABC中,∠C=90°,BD是∠ABC的平分线,DE⊥AB于点E,AB=8cm,BC=6cm,S△ABC=14cm2,则DE的长是 _cm.12、如图,BD是∠ABC的平分线,DE⊥AB于点E,AB=36cm,BC=24cm,S△ABC=144cm,则DE的长是.13、如图,已知OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA=2,则PQ的最小值为,理论根据为.14、如图,AD是△ABC的角平分线,DE⊥AB于E,若AB=18,AC=12,△ABC的面积等于36,则DE= .15、如图所示,∠1=∠2,CF⊥AD,CE⊥AB,CD=CB,则∠ADC+∠CBA= °.16、如图,已知射线OC上的任意一点到∠AOB的两边的距离都相等,点D、E、F分别为边OC、OA、OB上,如果要想证得OE=OF,只需要添加以下四个条件中的某一个即可,请写出所有可能的条件的序号.①∠ODE=∠ODF;②∠OED=∠OFD;③ED=FD;④EF⊥OC.三、解答题17、PB,PC分别是△ABC的外角平分线且相交于P.求证:P在∠A的平分线上(如图).18、已知:如图,△ABC中,AC=6,BC=8,AB=10,∠BCA的平分线与AB边的垂直平分线相交于点D,DE⊥AC,D F⊥BC,垂足分别是E、F.(1)求证:AE=BF;(2)求线段DG的长.19、如图,△ABC中,角平分线AD、BE、CF相交于点H,过H点作HG⊥AB,垂足为G,那么∠AHE=∠CHG 吗?为什么?20、如图所示,在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB交AB于E,F在AC上,BD=DF.证明:(1)CF=EB.(2)AB=AF+2EB.21、(1)在图1中,已知∠MAN=120°,AC平分∠MAN.∠ABC=∠ADC=90°,则能得如下两个结论:①DC = BC; ②AD+AB=AC.请你证明结论②;(2) 在图2中,把(1)中的条件“∠ABC=∠ADC=90°”改为∠ABC+∠ADC=180°其他条件不变,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由.图1 图2参考答案1、B2、C3、A4、B5、C6、B7、B8、A9、B10、C11、2cm.12、4.8.13、2,角平分线上的点到角两边的距离相等.14、.15、18016、①②④.17、证明:过P点作PE,PH,PG分别垂直AB,BC,AC.∵PB,PC分别是△ABC的外角平分线,∴PE=PH,PH=PG,∴PE=PG.∴P点在∠A的平分线上.18、(1)连接AD、BD证△ADE≌BDF,得AE=BF (2)CE=CF==7,∴AE=119、因为AD、BE、CF为△ABC的角平分线,所以可设∠BAD=∠CAD=x°,∠ABE=∠CBE=y°,∠BCF=∠ACF=z°,则2x+2y+2z=180,即x+y+z=90.在△A HB中,∠AHE=x+y=90°-z°,在△CHG中,∠CHG=90°-z°,所以∠AH E=∠CHG.20、证明:(1)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴ DE=DC.又∵ BD=DF,∴ Rt△CDF≌Rt△EDB(HL),∴ CF=EB.(2)∵ AD是∠BAC的平分线,DE⊥AB,DC⊥AC,∴△ADC≌△ADE,∴ AC=AE,∴ AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.21、。

八年级数学上册《第十二章 全等三角形》同步练习及答案(人教版)

八年级数学上册《第十二章 全等三角形》同步练习及答案(人教版)

八年级数学上册《第十二章 全等三角形》同步练习及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列说法不正确的是( )A .能够完全重合的两个图形是全等形B .形状相同的两个图形是全等形C .大小不同的两个图形不是全等形D .形状、大小都相同的两个图形是全等形2.下列四个图形中,属于全等图形的是( )A .①和②B .②和③C .①和③D .②和④3.已知△ABC ≌△A ´B ´C ´,且△ABC 的周长为20,AB =8,BC =5,则A ´C ´等于( )A .5B .6C .7D .84.如图,△ACB ≌△A 'CB ',∠BCB '=30°,则∠ACA '的度数为( )A .20°B .30°C .35°D .40°5.如图,△ABC ≌△DEF ,BE=4,则AD 的长是( )A .5B .4C .3D .26.如图所示,在△ABC 中,D 、E 分别是边AC 、BC 上的点,若△ADB ≌△EDB ≌△EDC ,则∠C 的度数为( )A .30°B .25°C .20°D .15°7.如图ABC ≌EDC ,BC CD ⊥点A ,D ,E 在同一条直线上ACB 20∠=,则ADC ∠的度数是( )A .55B .60C .65D .708.如图,锐角△ABC 中,D 、E 分别是AB 、AC 边上的点,△ADC ≌△ADC ′,△AEB ≌△AEB ′,且 ////C D EB BC '' ,BE 、CD 交于点F.若∠BAC=40°,则∠BFC 的大小是( )A .105°B .110°C .100°D .120°二、填空题9.ABC ≌ DEF , AB=2 , BC=4 ,若 DEF 的周长为偶数,则 DF = .10.一个三角形的三边为2、5、x+2y ,另一个三角形的三边为2x+y 、2、4,若这两个三角形全等,则x+y = .11.如图,△ABC ≌△A ′B ′C ′,其中∠A=36°,∠C ′=24°,则∠B= .12.如图ABC DEC ≌,点B ,C ,D 在同一条直线上,且1CE =,2CD =则AE 的长是 .13.如图,△ABC ≌△ADE ,BC 的延长线经过点E ,交AD 于F ,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,则∠EAB= °,∠DEF= °.三、解答题14.如图所示,已知△ABD≌△ACD,且B,D,C在同一条直线上,那么AD与BC是怎样的位置关系?为什么?15.如图,已知△ACF≌△DBE,AD=9厘米,BC=5厘米,求AB的长.16.如图,△ABC≌△ADE,且∠CAD=35°,∠B=∠D=20°,∠EAB=105°,求∠BFD和∠BED的度数.17.如图,已知△ABC≌△DBE,点D在AC上,BC与DE交于点P,若AD=DC=2.4,BC=4.1.(1)若∠ABE=162°,∠DBC=30°,求∠CBE的度数;(2)求△DCP与△BPE的周长和.≌18.如图,A,E,C三点在同一直线上,且ABC DAE(1)线段DE,CE,BC有怎样的数量关系?请说明理由.DE BC,并证明.(2)请你猜想ADE满足什么条件时//参考答案:1.B 2.D 3.C 4.B 5.B 6.A 7.C 8.C9.410.311.120°12.113.60;3514.解:AD ⊥BC .证明:∵△ABD ≌△ACD∴∠ADB=∠ADC∵B ,D ,C 在同一条直线上∴∠ADB+∠ADC=180°∴∠ADB=∠ADC=90°∴AD ⊥BC .15.解:∵△ACF ≌△DBE∴CA=BD∴CA ﹣BC=DB ﹣BC即AB=CD∴AB+CD=2AB=AD ﹣BC=9﹣5=4(cm )∴AB=2cm .16.解:∵ △ABC ≌△ADE∴∠DAE=∠BAC∴∠DAE+∠BAC+∠CAD=105°∴2∠BAC=105°-∠CAD=70°∴∠BAC=35°∴∠BAF=∠BAC+∠CAD=35°+35°=70°∴∠BFD=∠B+∠BAF=20°+70°=90°∴∠BED=∠BFD-∠D=90°-20°=70°.17.(1)解:∵∠ABE=162°,∠DBC=30°∴∠ABD+∠CBE=132°∵△ABC ≌△DBE∴∠ABC=∠DBE∴∠ABD=∠CBE=132°÷2=66°即∠CBE 的度数为66°;(2)∵△ABC ≌△DBE∴DE=AD+DC=4.8,BE=BC=4.1△DCP 和△BPE 的周长和=DC+DP+CP+BP+PE+BE=DC+DE+BC+BE=15.4.18.(1)解:DE CE BC =+.理由:∵ABC DAE ≌∴AE BC = DE AC =.∵A ,E ,C 三点在同一直线上∴AC AE CE =+∴DE CE BC =+.(2)解:假如//DE BC则DEC C ∠=∠.∵ABC DAE ≌∴AED C ∠=∠∴AED DEC ∠=∠.又∵180AED DEC ∠+∠=︒∴90AED DEC ∠=∠=︒∴当ADE 满足90AED ∠=︒时//DE BC。

人教版 初中数学八年级上册 12.2全等三角形的判定 同步练习(含答案)

人教版 初中数学八年级上册 12.2全等三角形的判定 同步练习(含答案)

人教版初中数学八年级上册12.2全等三角形的判定同步练习(含答案)一、选择题(本大题共8道小题)1. 如图,AD=AE,若利用“SAS”证明△ABE△△ACD,则需要添加的条件是()A.AB=ACB.△B=△CC.△AEB=△ADCD.△A=△B2. 下列三角形中全等的是()A.△△ B.△△ C.△△ D.△△3. 如图,小强画了一个与已知△ABC全等的△DEF,他画图的步骤是:(1)画DE =AB;(2)在DE的同旁画△HDE=△A,△GED=△B,DH,EG相交于点F,小强画图的依据是()A.ASA B.SASC.SSS D.AAS4. 如图所示,△C=△D=90°,若要用“HL”判定Rt△ABC与Rt△ABD全等,则可添加的条件是()A.AC=AD B.AB=ABC.△ABC=△ABD D.△BAC=△BAD5. 如图,点B,F,C,E在一条直线上,AB△ED,AC△FD,那么添加下列一个条件后,仍无法判定△ABC△△DEF的是()A.AB=DE B.AC=DFC.△A=△D D.BF=EC6. 如图所示,P是△BAC内一点,且点P到AB,AC的距离PE,PF相等,则△PEA△△PF A的依据是()A.HL B.ASA C.SSS D.SAS7. 在Rt△ABC和Rt△DEF中,△C=△F=90°,下列条件不能判定Rt△ABC△Rt△DEF的是()A.AC=DF,△B=△E B.△A=△D,△B=△EC.AB=DE,AC=DF D.AB=DE,△A=△D8. 如图,有两个长度相同的滑梯靠在一面墙上,已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,且左边的滑梯与地面的夹角△ABC=35°,则右边的滑梯与地面的夹角△DFE等于()A.60° B.55° C.65° D.35°二、填空题(本大题共4道小题)9. 如图,在△ABC中,AD⊥BC,CE⊥AB,垂足分别为D,E,AD,CE交于点H,请你添加一个适当条件:________,使△AEH△△CEB.10. 如图,在△ABC中,AD△BC于点D,要使△ABD△△ACD,若根据“HL”判定,还需要添加条件:____________.11. 如图,已知AD=BC,AB=CD,若△C=40°,则△A=________°.12. 如图K-10-10,CA=CD,AB=DE,BC=EC,AC与DE相交于点F,ED 与AB相交于点G.若△ACD=40°,则△AGD=________°.三、解答题(本大题共2道小题)13. 如图,点A,B,C,D在同一条直线上,CE∥DF,EC=BD,AC=FD.求证:AE=FB.14. 如图,C是线段BD的中点,AB=EC,△B=△ECD.求证:△ABC△△ECD.人教版初中数学八年级上册12.2全等三角形的判定同步练习-答案一、选择题(本大题共8道小题)1. 【答案】A2. 【答案】A[解析] △△符合证明三角形全等的判定方法“SAS”.△△中相等的角所对的边不相等,所以不可能全等.故选A.3. 【答案】A4. 【答案】A5. 【答案】C[解析] 选项A中添加AB=DE可用“AAS”进行判定,故本选项不符合题意;选项B中添加AC=DF可用“AAS”进行判定,故本选项不符合题意;选项C中添加△A=△D不能判定△ABC△△DEF,故本选项符合题意;选项D中添加BF=EC可得出BC=EF,然后可用“ASA”进行判定,故本选项不符合题意.故选C.6. 【答案】A7. 【答案】B[解析] 选项A,D均可由“AAS”判定Rt△ABC△Rt△DEF,选项C 可由“HL”判定Rt△ABC△Rt△DEF,只有选项B不能判定Rt△ABC△Rt△DEF.8. 【答案】B [解析] 在Rt△ABC 和Rt△DEF 中,⎩⎨⎧BC =EF ,AC =DF ,△Rt△ABC△Rt△DEF(HL). △△DEF =△ABC =35°.△△DFE =90°-35°=55°.二、填空题(本大题共4道小题)9. 【答案】AH =CB (符合要求即可)【解析】∵AD ⊥BC ,CE ⊥AB ,垂足分别为点D 、E ,∴∠BEC =∠AEC =90°,在Rt △AEH 中,∠EAH =90°-∠AHE ,在Rt △HDC 中,∠ECB =90°-∠DHC ,∵∠AHE =∠DHC ,∴∠EAH =∠ECB ,∴根据AAS 添加AH =CB 或EH =EB ;根据ASA 添加AE =CE.可证△AEH ≌△CEB.故答案为:AH =CB 或EH =EB 或AE =CE 均可.10. 【答案】AB =AC 11. 【答案】40[解析] 如图,连接DB.在△ADB 和△CBD 中,⎩⎨⎧AD =CB ,AB =CD ,DB =BD ,△△ADB△△CBD(SSS). △△A =△C =40°.12. 【答案】40[解析] 在△ABC 和△DEC 中,⎩⎨⎧CA =CD ,AB =DE ,BC =EC ,△△ABC△△DEC(SSS). △△A =△D.又△△AFG =△DFC ,△△AGD =△ACD =40°.三、解答题(本大题共2道小题)13. 【答案】证明:∵CE ∥DF ,∴∠ACE =∠FDB ,(2分)在△ACE 和△FDB 中,⎩⎨⎧EC =BD∠ACE =∠FDB AC =FD,∴△ACE ≌△FDB(SAS ),(5分) ∴AE =FB.(7分)14. 【答案】证明:△C 是线段BD 的中点,△BC =CD.在△ABC 与△ECD 中,⎩⎨⎧BC =CD ,△B =△ECD ,AB =EC ,△△ABC△△ECD.。

八年级数学上册《第十二章全等三角形》同步练习题及答案(人教版)

八年级数学上册《第十二章全等三角形》同步练习题及答案(人教版)

八年级数学上册《第十二章全等三角形》同步练习题及答案(人教版)姓名班级学号一、单选题1.下列命题中,是真命题的是()A.同位角相等B.有理数和数轴上的点一一对应C.三角形的一个外角大于任何一个内角D.全等三角形对应边上的中线相等2.△ABC与△DFE是全等三角形,A与D对应,B与F对应,则按标有字母的线段计算,图中相等的线段有()A.1组B.2组C.3组D.4组3.如图,△ABC≌△DCB,若∠A=80°,∠ACB=40°,则∠BCD等于()A.80°B.60°C.40°D.20°4.如图,△ABD≌△ACE,若AB=7,AE=4,则CD的长度为()A.7 B.4 C.3 D.25.如图,△ABC≌△ADE,∠DAC=60°,∠BAE=100°,BC、DE相交于点F,则∠DFB的度数是()A.80°B.70°C.30°D.110°6.如图所示是两个全等三角形,由图中条件可知A.65°B.30°C.85°D.30°或65°7.如图∠ACB=90°,AC=BC,AE⊥CE于点E,BD⊥CD于点D AE=5cm,BD=2cm则DE的长是()A.8 cm B.4 cm C.3 cm D.2 cm8.如图,在等腰直角△ABC中∠ACB=90°,点O为斜边AB的中点,点D、E分别在直角边AC、BC上,且∠DOE=90°,DE交OC于点P,则下列结论:①图中全等三角形有三对;②△ABC的面积等于四边形CDOE面积的√2倍;③DE2+2CD•CE=2OA2;④AD2+BE2=2OP•OC.正确的有()个.A.1 B.2 C.3 D.4二、填空题9.如图,已知△ABC≌△DEF,点B,E,C,F在同一条直线上,若BC=5,BE=2则BF = .10.如图,△ABD≌△EBC,AB=4cm,BC=7cm,则DE= cm.11.如图,已知△ABC≌△ADE,若AB=7,AC=3,则BE的值为12.如图,△ABC≌△A'B'C',其中∠A=35°,∠C=25°,则∠B'=.13.如图,△ABC≌△DEF,请根据图中提供的信息,写出x= .三、解答题14.如图,是一个4×4的方格(1)求图中∠1+∠2+∠3+∠4+…+∠16的和.(2)求∠1﹣∠2+∠3﹣∠4+…+∠15﹣∠16.15.如图,已知∆ABE≌∆ACD,求证:∠BAD=∠CAE.16.如图,已知△ABC≌△DEF,点B、E、C、F在同一直线上,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.17.如图△ADF≌△BCE,∠B=40°,∠F=22°,BC=2cm,CD=1cm.(1)求∠1的度数;(2)求:AC的长.18.已知:如图,点E在线段BC上,且△ABC≌△AED.求证:(1)∠B=∠AEB;(2)AE平分∠BED.19.如图,△ABE≌△DCE,点E在线段AD上,点F在CD延长线上∠F=∠A,求证:AD∥BF.参考答案1.D2.D3.B4.C5.B6.A7.C8.C9.710.311.412.120°13.2014.解:(1)观察图形可知:∠1所在的三角形与∠7所在的三角形全等,∠1与∠7的余角相等,也就是∠1与∠7互余,同理:∠2与∠6互余,∠3与∠5互余,∠8与∠12互余,∠9与∠11互余,∠13与∠15互余,又∠4=∠10=∠14=∠16=45°∴∠1+∠7=90°、∠2+∠6=90°、∠3+∠5=90°、∠8+∠12=90°、∠9+∠11=90°、∠13+∠15=90°、∠4=∠10=∠14=∠16=45°∴∠1+∠2+∠3+…+∠9=90°×6+45°×4=720°.(2)∠1﹣∠2+∠3﹣∠4+…+∠15﹣∠16=(∠1+∠3+…+∠15)﹣(∠2+∠4+…+∠16)=(∠1+∠7)+(∠3+∠5)+(∠9+∠11)+(∠13+∠15)﹣(∠2+∠6)﹣(∠8+∠12)﹣∠4﹣∠10﹣∠14﹣∠16=90°×4﹣90°×2﹣45°×4=0.15.证明:∵△ABE≌△ACD∴∠BAE=∠CAD∴∠BAE-∠DAE=∠CAD-∠DAE∴∠BAD=∠CAE.16.(1)解:∵∠A=85°∠B=60°∴∠ACB=180°-∠A-∠B=35°∵△ABC≌△DEF,AB=8 ∴∠F=∠ACB=35°,DE=AB=8∵EH=2,∴DH=8-2=6(2)证明:∵△ABC≌△DEF,∴∠DEF=∠B∴AB∥DE17.(1)解:∵△ADF≌△BCE∴∠E=∠F=22°由三角形外角的性质可得:∠1=∠B+∠E=62°∠1的度数为62°(2)解:∵△ADF≌△BCE∴AD=BC=2cm∴AC=AD+CD=3cm即AC的长为3cm18.(1)证明:∵△ABC≌△AED∴AB=AE∴∠B=∠AEB;(2)证明:∵△ABC≌△AED∴∠B=∠AED又∠B=∠AEB∴∠AED=∠AEB∴AE平分∠BED.19.证明:∵△ABE≌△DCE∴∠A=∠CDE∵∠F=∠A∴∠F=∠CDE∴AD∥BF.。

八年级数学上册《第十二章全等三角形》同步练习题及答案(人教版)

八年级数学上册《第十二章全等三角形》同步练习题及答案(人教版)

八年级数学上册《第十二章全等三角形》同步练习题及答案(人教版) 班级姓名学号一、单选题1.若△ABC≌△MNP,∠A=∠M,∠C=∠P,AB=4cm,BC=2cm,则 NP=()A.2cm B.3cm C.4cm D.6cm2.如图所示,在Rt△ABC中,∠A=90°,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为()A.15°B.20°C.25°D.30°3.如图△ABC≌△DBE,∠ABC=80°,∠D=65°则∠C的度数为()A.20°B.25°C.30°D.35°4.如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是()A.54°B.60°C.66°D.76°5.如图,△ABC≌△DEF,∠A=50°,∠C=30°,则∠E的度数为()A.30°B.50°C.60°D.100°6.已知,如图△ABC≌△ADE,AE=AC,∠CAE=20°,则∠BED的度数为()A.60°B.90°C.80°D.20°7.已知△ABC≌△DEF,∠A=50°,∠B=75°,则∠F的大小为()A.50°B.55°C.65°D.75°8.如图,△ACB≌△A'C'B',∠ACB=70°,∠ACB'=100°,则∠BCA'的度数为()A.30°B.35°C.40°D.50°二、填空题9.已知△ABC的三边长分别为5,7,8,△DEF的三边分别为5,2x,3x﹣5,若两个三角形全等,则x= .10.在平面直角坐标系中,已知点A(1,2),B(5,5),C(5,2),存在点E,使△ACE和△ACB全等,写出所有满足条件的E点的坐标.11.如图,点A,D,C在同一条直线上,且△ABC≌△DBE,若∠A=60°,∠C=30°则∠DBC的度数为.12.如图,在△ABC中∠ACB=90°,点D为AC边上一点,ED⊥AC,CE⊥AB,AB=CE若BC=2,DE= 5则线段AD的长为.13.如图,锐角△ABC中,D,E分别是AB,AC边上的点,△ADC≌△ADC',△AEB≌△AEB',且C'D∥EB'∥BC,记BE,CD交于点F,若∠BAC=x°,则∠BFC的大小是°.(用含x的式子表示)三、解答题14.如图,△ABO≌△CDO,点B在CD上,AO∥CD,∠BOD=30°,求∠A的度数.15.如图,已知△ABC≌△DEF,∠A=32°,∠B=48°,BF=3,求∠DFE的度数和EC的长.16.已知:如图,△AFD≌△CEB.求证:AD∥BC,AE=CF.17.如图所示,△ABE≌△ACD,∠B=70°,∠AEB=75°,求∠CAE的度数.18.如图△ABC≌△DEB,点E在AB上,DE与AC相交于点F,若DE=7,BC=4,∠D=35°,∠C=60° .(1)求线段AE的长;(2)求∠DFA的度数.19.如图,点B,C,D在同一条直线上,∠B=∠D=90°,△ABC≌△CDE,AB=6,BC=8,CE=10.(1)求△ABC的周长;(2)求△ACE的面积.参考答案1.A2.D3.D4.C5.D6.D7.B8.C9.410.(1,5)或(1,-1)或(5,-1)11.30°12.313.180−2x14.解:∵△ABO≌△CDO∴OB=OD,∠ABO=∠D∴∠OBD=∠D= 12(180°-∠BOD)= 12(180°-30)=75°∴∠ABC=180°-75°×2=30°∵AO∥CD∴∠A=∠ABC=30°.15.解:∵△ABC≌△DEF,∠A=32°,∠B=48°∴∠D=∠A=48°,∠E=∠B=32°在△DEF中,∠D+∠E+∠DFE=180°解得:∠DFE=100°∵△ABC≌△DEF∴BC=EF∴BF+FC=EC+CF∴BF=EC∵BF=3∴EC=3.16.证明:∵△AFD≌△CEB∴∠A=∠C,AF=CE∴AD∥BCAF-EF=CE-EF∴AE=CF.17.解:∵△ABE≌△ACD∴∠C=∠B=70°∴∠CAE=∠AEB﹣∠C=5°.18.(1)解:∵△ABC≌△DEB∴BC=BE=4,AB=DE=7∴AE=AB-BE=7-4=3.(2)解:∵△ABC≌△DEB∴∠D=∠A=35°,∠C=∠EBD=60°∴∠AEF=∠D+∠EBD=35°+60°=95°∴∠AFD=∠A+∠AEF=35°+95°=130°. 19.(1)解:∵△ABC≌△CDE∴AC=CE∴△ABC的周长=AB+BC+AC=24(2)解:∵△ABC≌△CDE∴AC=CE,∠ACB=∠CED,∠BAC=∠DCE 又∠B=90°∴∠ACB+∠BAC=90°∴∠ACB+∠DCE=90°∴∠ACE=180°-(∠ACB+∠DCE)=90°×AC×CE=50∴△ACE的面积=12。

人教版八年级上册数学三角形全等的判定同步练习(含答案)

人教版八年级上册数学三角形全等的判定同步练习(含答案)

人教版八年级上册数学12.2 三角形全等的判定同步练习一、单选题1.如图,若∠B =∠C ,下列结论正确的是( )A .△BOE ∠∠CODB .△ABD ∠∠ACEC . AE =AD D .∠AEC =∠ADB2.如图,在2×2的方格纸中,∠1+∠2等于( )A .60°B .90°C .120°D .150° 3.如图,BF CE =,AE BC ⊥,DF BC ⊥,添加一个条件______,即可证明Rt ABE △∠Rt DCF △.下列添加的条件不正确的是( )A .AB DC = B .AE BF = C .EA FD = D .A D ∠=∠ 4.如图,已知B C ∠=∠,AE AF =,则ABE ACF ∆≅∆的根据是( )A .SASB .AASC .ASAD .SSS 5.如图,已知OF 平分AOB ∠,PD OA ⊥于D 点,PE OB ⊥于E 点,F 是OF 上的另一点,连接DF 、EF .判断图中有几对全等三角形( )A .1B .2C .3D .46.在∠ABC 与∠DFE 中,∠B =∠F ,AB =DF ,∠A =∠D ,能得到∠ABC ∠∠DFE 的方法是( )A .SSSB .SASC .ASAD .AAS 7.如图,把两根钢条AB ,CD 的中点连在一起,可以做成一个测量工件内槽宽的工具(卡钳)只要量得AC 的长度,就可知工件的内径BD 是否符合标准,这是利用的什么数学原理呢?( )A .SSSB .SASC .ASAD .AAS 8.如图,在ABC 中,已知AB =AC ,求证:∠B =∠C .分析问题可知:需添加如图所示辅助线AD ,进而证明ABD ACD ≌△△.下列说理中:∠取BC 的中点D ,连接AD ,证明ABD ACD ≌△△的依据是SSS ;∠作ABC 的角平分线AD ,证明ABD ACD ≌△△的依据是SAS ;∠过点A 作AD ∠BC 于点D ,证明ABD ACD △≌△的依据是HL .其中正确的是( )A .∠∠B .∠∠C .∠∠D .∠∠∠二、填空题9.如图,已知∠1=∠2,要根据ASA ,判定△ABD ∠∠ACD ,则需要补充一个条件为_______________________.10.如图,∠E =∠F =90°,∠B =∠C ,AE =AF .给出下列结论:∠∠1=∠2;∠BE =CF ;∠ACN ∠ABM ;∠CD =DN .其中符合题意结论的序号是_____.11.如图,在ABC 和DEF 中,点B 、E 、C 、F 在同一条直线上,且AB DE =,BC EF =,请你再添加一个适当的条件:________________,使ABC DEF △≌△.12.如图,已知AE AD =,请你添加一个条件:________________________________,使ABE ACD △△≌,并说明理由.13.如图,点B 、C 、E 三点在同一直线上,且AB =AD ,AC =AE ,BC =DE ,若12394∠+∠+∠=︒,则∠3=______°.14.如图,点E 是CD 上的一点,Rt∠ACD ∠Rt∠EBC ,则下结论:∠AC =BC ,∠AD ∠BE ,∠∠ACB =90°,∠AD +DE =BE ,成立的有 _____个.15.如图,点B 、E 、C 、F 在同一条直线上,AB DE ∥,AB DE =,A D ∠=∠,8.6BF =, 5.8BC =,则EC =_______.16.如图,在ABC 中,已知AD 是A ∠平分线,DE AC ⊥于点E ,4,6,10ABC AC AB S ===,则点D 到AB 的最短距离是_________.三、解答题17.已知:如图,点E 、F 在CD 上,且∠A =∠B ,AC ∥BD ,CF =DE .求证:ΔAEC ∠ΔBF D .18.如图,△ABC 中,AD 是BC 边上的中线,E ,F 为直线AD 上的点,连接BE ,CF ,且BE ∠CF .(1)求证:△BDE ∠∠CDF ;(2)若AE =13,AF =7,试求DE 的长.19.己知:如图,点E ,F 是BD 上的点,∠AED =∠CFB ,AE =CF ,BE =DF . 求证:AB ∠CD ,AB =CD .20.已知AB CD =,AE BC ⊥,DF BC ⊥,垂足分别为E ,F ,BF CE =.(1)如图1,求证:AE DF =;(2)如图2,连接AD 交BC 于点G ,请直接写出图2中以点G 为一个端点的相等线段.答案第1页,共1页 参考答案:1.D2.B3.B4.B5.C6.C7.B8.D9.∠BAD =∠CAD10.∠∠∠11.AC DF = ABC DEF ∠=∠ //AB DE 12.AB =AC (答案不唯一) 13.4714.115.316.218. (2)DE =319.20. (2)GE =GF ,GD =GA ,GC =GB .。

八年级数学上册《第十二章 三角形全等的判定》同步练习带有答案-人教版

八年级数学上册《第十二章 三角形全等的判定》同步练习带有答案-人教版

八年级数学上册《第十二章三角形全等的判定》同步练习带有答案-人教版学校:___________班级:___________姓名:___________考号:___________一、单选题1.如图,点A,O,D在一条直线上,OC // AB,OC=OA,OD=AB,则下列结论正确的是()A.∠AOB=∠COD B.∠OAB=∠OCDC.OB=CD D.AB=CD2.如图,一块三角形的玻璃碎成3块(图中所标1、2、3),小华带第3块碎片去玻璃店,购买形状相同、大小相等的新玻璃,这是利用三角形全等中的()A.SAS B.ASA C.AAS D.SAS3.如图,AE∥DF,AE=DF,要使△EAC≌△FDB,需要添加下列选项中的()A.AB=CD B.EC=BF C.∠A=∠D D.AB=BC4.如图,AB=CD,AD=CB,那么下列结论中错误的是()A.∠A=∠C B.AB=AD C.AD∥BC D.AB∥CD5.如图,AB∥CD,AD∥BC,OE=OF,图中全等三角形共有()A.6对B.5对C.4对D.3对6.如图,在等边三角形ABC中,D,E分别是AB,AC上的点,且AD=CE,则∠BCD+∠CBE的度数为()A.60°B.45°C.30°D.无法确定7.如图AB=2,BC=AE=6,CE=CF=7,BF=8则四边形ABDE与△CDF面积的比值是()A.1 B.34C.23D.128.如图,△ABC中,AD⊥BC,D为BC的中点,以下结论:⑴△ABD≌△ACD;(2)AB=AC;(3)∠B=∠C;(4)AD是△ABC的一条角平分线.其中正确的有()A.1个B.2个C.3个D.4个二、填空题9.如图,把△ABC的中线CD延长到E,使DE=CD,连接AE,若AC=4且△BCD的周长比△ACD的周长大1,则AE= .10.如图AB、CD相交于点O,∠A=∠C=90°请你补充一个条件,使得ΔAOD≅ΔCOB .你补充的条件是.11.如图,A,B两个建筑物分别位于河的两岸,为了测量它们之间的距离,可以沿河岸作射线BF,且使BF⊥AB,在BF上截取BC=CD,过D点作DE⊥BF,使E,C,A在一条直线上,测得DE=16米,则A,B之间的距离为米.12.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=7cm,CE=5cm,则DE= cm.13.已知:点M、P、N、Q依次是正方形ABCD的边AB、BC、CD、DA上一点(不与正方形的顶点重合),给出如下结论:①MN⊥PQ,则MN=PQ;②MN=PQ,则MN⊥PQ;③△AMQ≌△CNP,则△BMP≌△DNQ;④△AMQ∽△CNP,则△BMP∽△DNQ其中所有正确的结论的序号是.三、解答题14.在△ABC中,AE平分∠BAC交BC于E,DE∥AC交AB于D,过D作DF∥BC交AC于F,若AD=3,求FC.15.如图,已知AB=BC,∠BCD=∠ABD点E在BD上BE=CD.求证:AE=BD.16.如图,两根旗杆相距12m,某人从B点沿BA走向A点,一段时间后他到达点M,此时他仰望旗杆的顶点C和D,两次视线的夹角为90°,且CM=DM,已知旗杆AC的高为3m,该人的运动速度为1m/s,求:这个人从B点到M点运动了多长时间?17.如图:已知D、E分别在AB、AC上,AB=AC,AD=AE,求证:∠BDC=∠CEB.18.如图BD//AC,BD=BC点E在BC上,且BE=AC .求证:∠D=∠ABC .19.已知:∠ACB=90°,AC=BC,AD⊥CM,BE⊥CM,垂足分别为D,E.(1)如图1,①线段CD和BE的数量关系是▲;②请写出线段AD,BE,DE之间的数量关系并证明.(2)如图2,上述结论②还成立吗?如果不成立,请写出线段AD,BE,DE之间的数量关系并证明.参考答案1.C2.B3.A4.B5.A6.A7.A8.D9.510.AD=CB(答案不唯一)11.1612.1213.①②③14.解:∵AE平分∠BAC交BC于E ∴∠1=∠3.∵DE∥AC∴∠2=∠3∴∠1=∠3∴∠1=∠2∴AD=DE.又∵DE∥AC,DF∥BC∴四边形DECF是平行四边形∴DE=FC∴AD=FC∵AD=3∴CF=3.15.证明:∵∠BCD=∠ABD∴∠BCD=∠ABE在△ABE和△BCD中{AB=BC∠ABD=∠BCD BE=CD∴△ABE≅△BCD(SAS).∴AE=BD.16.解:∵∠CMD=90°∴∠CMA+∠DMB=90°又∵∠CAM=90°∴∠CMA+∠ACM=90°∴∠ACM=∠DMB在Rt△ACM和Rt△BMD中{∠A=∠B∠AMC=∠DMBCM=DM∴Rt△ACM≌Rt△BMD(AAS)∴AC=BM=3m∴他到达点M时,运动时间为3÷1=3(s).答:这个人从B点到M点运动了3s.17.证明:在△ABE和△ACD中{AB=AC ∠A=∠A AE=AD∴△ABE≌△ACD∴∠B=∠C∵∠BDC=∠A+∠C,∠CEB=∠A+∠B ∴∠BDC=∠CEB.18.证明:∵BD//AC∴∠EBD=∠C .∵BD=BC∴△EDB≌△ABC(SAS) .∴∠D =∠ABC19.(1)解:①CD=BE ②AD =BE +DE ,理由如下∵△ADC ≌△CEB∴AD =CE CD =BE∴AD =CE =CD +DE =BE +DE即AD =BE +DE(2)解:原来结论②不成立,AD +BE =DE ,理由如下 ∵ AD ⊥CM ,BE ⊥CM∴∠ADC =∠CEB =90°∵∠ACB =90°∴∠ACD +∠BCE =∠ACD +∠CAD∴∠BCE =∠CAD在△ADC 与△CEB 中{∠ADC =∠CEB∠CAD =∠BCE AC =BC∴△ADC ≌△CEB∴AD =CE CD =BE∴AD +BE =CE +CD =DE即AD +BE =D E。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册全等三角形性质B卷
一、选择题
1、下列说法中不正确的是()
①全等三角形的对应边相等;②全等三角形的对应角相等;
③全等三角形的周长相等;④周长相等的两个三角形全等;
⑤全等三角形的面积相等;⑥面积相等的两个三角形全等.
A.④⑤
B.④⑥
C.③⑥
D.③④⑤⑥
△2、如图所示,ABD≌△CDB,下面四个结论中,不正确的是()
A.△ABD和△CDB的面积相等△
B.ABD和△CDB的周长相等
C.∠A+∠ABD=∠C+∠CBD
D.AD∥BC,且AD=BC
3、下列说法中,正确的是()
A.两个全等三角形一定关于某直线对称
B.等边三角形的高、中线、角平分线都是它的对称轴
C.两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧
D.关于某直线对称的两个图形是全等形
△4、在ABC中,∠B=∠△C,与ABC全等的三角形有一个角是100°,那么在△ABC中与这100°角对应相等的角是()
A.∠A
B.∠B
C.∠C
D.∠B或∠C
5、如图,与左边正方形图案属于全等的图案是()
A. B. C. D.
△6、ABC与△DFE是全等三角形,A与D对应,B与F对应,则按标有字母的线段计算,图中相等的线段有()
A.1组
B.2组
C.3组
D.4组
7、下列各组图形中,是全等形的是()
A.两个含60°角的直角三角形;
B.腰对应相等的两个等腰直角三角形;
C.边长为3和5的两个等腰三角形;
D.一个钝角相等的两个等腰三角形
△8、边长都为整数的ABC≌△DEF,AB与DE是对应边,AB=2,BC=4△若DEF的周长为偶数,则DF的取值为()
A.3
B.4
C.5
D.3或4或5
△9、如图,AOC≌△BOD,∠C与∠D是对应角,AC与BD是对应边,AC=8cm,AD=10cm,OD=OC=2cm,那么OB的长是()
A.8cm B.10cm C.2cm D.无法确定
10、如图,△R t ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′
DB=()
A.40°.
B.30°.
C.20°.
D.10°.
二、填空题
11、已知△:如图,ABC≌△FED,且BC=DE.则∠A=__________,A D=_______.FE=_______
12、已知:△ABC≌△A′B′C′,∠A=∠A′,∠B=∠B′,∠C=70°,AB=15cm,则∠C′=_________,A′B′=__________.
13、如图,已知△ABE≌△ACD,∠1=75°,BD=2cm,DE=3cm,则∠2=°,CD=cm;
14、如图,△ABC≌△ADE,BC的延长线过点E,∠ACB=∠AED=105°,∠CAD=10°,∠B=50°,则∠DEF的度数为________.
D
15、已知△ABC与△DEF全等,∠A=∠D=90°,∠B=37°则∠E=.
16、如图,锐角△ABC中,,E分别是AB,AC边上的点,△ADC≌△ADC',△AEB≌△AEB',且C'D//EB'//BC,记BE,CD交于点F,若∠BAC=x°,则∠BFC的大小是________°.(用含x的式子表示)
三、解答题
17、如图,△ABC≌△DEF,且顶点A与D对应,B与E对应,点E,C,F,B在同一条直线上.
(1)请写出所有相等的线段,并说明理由.(2)请写出所有平行的线段,并说明理由.
18、如图所示,已知△ABD≌△ACE,∠B=∠C,试指出这两个三角形的对应边和对应角.
19、如图所示,四边形ABCD的对角线AC,BD相交于点△O,ABC≌△BAD.
求证:(1)OA=OB;(2)AB∥CD.
20、如图的等边三角形ABC是学校的一块空地,为美化校园,决定把这块空地分为全等的三部分,分别种植不同的花草.现有两种划分方案:(1)分为三个全等的三角形;(2)分为三个全等的四边形.你认为这两种方案能实现吗?若能,画图说明你的划分方法.
参考答案
1、B;
2、C;
3、D;
4、A;
5、C;
6、D;
7、B;
8、B;
9、A;10、D

11、∠F,FC,BA;
12、700,15
13、75,5
14、35°.
15、37或53
16、180°-2x.
17、(1)AB=DE,AC=DF,BC=EF,BF=EC.理由:△ABC≌△DEF.
(2)AB∥DE,AC∥△D F.理由:ABC≌△DEF
18、对应边是:AD与AE,AB与AC,BD与CE;对应角是:∠B和∠C,∠ADB和∠AEC,∠BAD和∠CAE.
19、证明:(1)因为△ABC≌△BAD,所以∠CAB=∠DBA,所以OA=OB.
(2)因为△ABC≌△BAD,所以AC=BD.
又因为OA=OB,所以AC-OA=BD-OB,即OC=OD,所以∠OCD=∠ODC.
因为∠AOB=∠COD,∠CAB=,∠ACD=,所以∠CAB=∠ACD,所以AB∥CD.
20、解:能.划分方法如下:(1)画△ABC的中线AD,BE,两条中线相交于O点,连接△O C,则ABO,△BCO,△ACO为三个全等的三角形,如图①所示.
(2)画△ABC的中线AD,BE,两条中线相交于O点,连接CO并延长交AB于点F,则四边形AEOF,四边形BDOF,
四边形CDOE为三个全等的四边形,如图②所示.(答案不唯一。

相关文档
最新文档