高精密数控机床中840D数控系统双向螺距误差补偿的应用
Sinumerik840D的误差补偿技术
y哪
: S n i u me r  ̄8 4 0 D; b a c k l a s h c o mp e n s a t i o n ; l e a d s c r e w p h c o mp en s a t on i ;s a g c o mp en s a t o i n
Er r o r Co mp e n s a t i o n Te c h n o l o g y o f S i n mn e r i k 8 4
( S c h o o l o f Me c h a n i c a l a n dE l e c t r i c a l E n g i n e e r i n g , C an h gZ h o uC o l l e g e o f I n f o r ma t i o nT e c h n o l o g y , C an h  ̄ o u 2 1 3 1 4, 6 C h n i a )
C N C s st y e m. T h i s ap p er i s r e f e r e n c e f o r e x t e n d i n g e r r r o c o r r f  ̄ e ma t i o nt e c no h o l g i e s a d n i m p r o v i n g t h e ma c l l i 啦 a c c u r a c y o f t h e
S i n u me r i k 8 4 0 D 的 误 差 补 偿 技 术
唐 静 朱 俊
( 常州信息 职业技术 学院机电工程学 院 江苏 常州 2 1 3 1 6 4 )
摘
要: 利用数控 系统 的误差 补偿 技术可以在成本投入不大 的情况 下提高机床的加工精度 。西 门子 S i n u me r  ̄8 4 0 D数控 系统 提供 了多种误差补偿功能 , 用来弥补 因机床 的机械 部件 制造 、 装配 工艺和 环境变 化等 因素引起 的误 差。通过 说明多 种误差产生 的原 因 , 阐述 S i n u m e r  ̄8 4 0 D数 控系统 中反 向间隙 、 螺距误差 和垂度 误差 的补偿 原理 和补偿方 法 , 这对推
西门子840D精度调整与补偿应用
西门子840D精度调整与补偿应用谭乐志【摘要】本文介绍了西门子840D数控系统常见精度调整与补偿的方法及其在数控机床维修实践中的应用。
【期刊名称】《金属加工:冷加工》【年(卷),期】2016(000)016【总页数】2页(P50-51)【作者】谭乐志【作者单位】中航飞机股份有限公司西安飞机分公司设备50厂陕西 710089【正文语种】中文(1)换向角。
数控机床更换同步电动机后,电动机磁场的零点和编码器的零点常常不一致,两者相差一定的角度,导致电动机运行不平稳,严重时甚至无法启动。
西门子840D数控系统提供了同步电动机的换向角(又称同步角、整流角)的调整功能,可以通过相关坐标轴电动机驱动参数来调整换向角使两者一致。
(2)应用实例。
某五坐标加工中心更换A轴同步电动机后,电动机功率增大,需要调整换向角,方法如下:①将A轴的驱动参数P1011.12设为1,然后执行NC-RESET,进行系统重启。
②系统重启完成后将参数P1017设定为1,然后加坐标轴使能,在JOG方式下点动一下A轴,使A轴运动,A轴同步电动机开始自适应,自适应完成后840D数控系统自动调整好换向角,并自动记录到参数P1016里,同时参数P1017自动变成0(该步骤完成后系统会出现300799号报警,忽略该报警即可)。
③保存驱动参数并执行NC-RESET进行系统重启,重启完成后修改的驱动参数才生效,换向角调整完成。
注意一般要执行换向角调整操作两次,两次自动调整的换向角结果(参数P1016中的数值)变化范围不超过5°为合格。
(1)零点偏置。
西门子840D数控系统中的参考点偏移量参数是MD34090,可以在里面人为设定机床原点的偏移量。
当机床实际的坐标位置与所想要的坐标位置有偏差时,可以在此参数里进行补偿,设置MD34090(新)=MD34090(旧)+实际的坐标位置与理想的坐标位置的偏差。
注意,MD34090参数更改后需要系统断电重启、机床轴回零后才能生效。
西门子840D数控系统螺距误差补偿知识
西门子840D数控系统螺距误差补偿西门子840D数控系统不同于以前曾广泛应用的810T/M和840C等老数控系统,它并没有提供专门的双向螺距误差补偿功能,通过对840D系统中的下垂补偿功能的分析研究,找到了一种方法,成功的解决了进行双向螺距误差补偿的问题。
关键词:数控系统下垂补偿功能双向螺距误差补偿由于机床丝杠在制造、安装和调整等方面的误差,以及磨损等原因,造成机械正反向传动误差的不一致,导致零件加工精度误差不稳定。
因此也必须定期对机床坐标精度进行补偿,必要时要做双向坐标补偿,以达到坐标正反向运动误差的一致性。
一、西门子840D数控系统的补偿功能西门子840D数控系统提供了多种补偿功能,供机床精度调整时选用。
这些功能有:1、温度补偿。
2、反向间隙补偿。
3、插补补偿,分为:(1) 螺距误差和测量系统误差补偿。
(2)下垂补偿(横梁下垂和工作台倾斜的多维交叉误差补偿)。
4、动态前馈控制(又称跟随误差补偿)。
包括:速度前馈控制和扭矩前馈控制。
5、象限误差补偿(又称摩擦力补偿)。
分为:常规(静态) 象限误差补偿和神经网络(动态)象限误差补偿。
6、漂移补偿。
7、电子重量平衡补偿。
在西门子840D功能说明样本和资料中所列的众多补偿功能中,都没有指出该系统具有双向螺距误差补偿功能。
但是在下垂补偿功能描述中却指出,下垂补偿功能具有方向性。
这样,如果下垂误差补偿功能,在基准轴和补偿轴定义为同一根轴时,就可能对该轴进行双向丝杠螺距误差补偿,由此提供了一个双向螺距误差补偿的依据。
二、840D下垂补偿功能的原理1、下垂误差产生的原因:由于镗铣头的重量或镗杆自身的重量,造成相关轴的位置相对于移动部件产生倾斜,也就是说,一个轴(基准轴)由于自身的重量造成下垂,相对于另一个轴(补偿轴)的绝对位置产生了变化。
2、840D下垂补偿功能参数的分析:西门子840D数控系统的补偿功能,其补偿数据不是用机床数据描述,而是以参数变量,通过零件程序形式或通用启动文件(_INI文件) 形式来表达。
西门子840D数控系统螺距误差及补偿
(2)机床热变形误差。机床在运行过程中各传动部件和润 滑液压管路系统会导致机床产生热变形误差;另外机床的设 计、液压元件安装位置和环境温度同样会导致机床产生热变形 误差。针对此类误差大多会采用风冷、油冷等设备降低和控制 液压系统温度来减少误差。
(4)其他误差源。如伺服系统的跟随误差、数控系统插补 计算误差、位置测量系统的测量误差等。这些误差需要对数控 系统进行不断升级,利用数控系统的误差补偿功能来控制和 减小误差。
在设计和制造时消除和减少可能的误差源、更好的利用周 边辅助设备控制环境温度等方法在技术上实现起来难度较大, 需要的从研发到成熟的时间较长,而且需要付出的经济代价也 很高昂。而对已有的机床误差,可以利用数控系统的补偿功能 进行补偿,提高机床精度。常用的补偿功能有:丝杠螺距误差补 偿、反向间隙补偿、垂度补偿等等。
輨 輰 设备管理与维修 2019 翼4(下)
也节省了时间,可以减小或部分消除螺距误差,使坐标轴的实际
位移更加接近指令值,提高机床加工精度,满足生产需求。
3 设备故障维修案例
对数控机床误差补偿前,需要进行误差测量。应使用高精度
的测量仪器(如激光干涉仪和球杆仪等)来保证测量数据的准确
性。误差测量前须将机床各零部件的间隙调整到最小,各项几何
(3)加工工件时的误差。主要由于工件材料质地不匀、断续 切屑或刀具磨损等导致加工时负载的变化所引起的误差。可以 通过使用高质量的切削刀具和优化加工工艺来改善。
机械磨损造成误差。机床长期使用过程中,导轨、丝杠、联 接轴承等部件的磨损导致机床几何精度下降,误差扩大。针对 此类误差,设备应进行科学合理的定保小修和对易损件进行定 期点检就尤为重要。严格按规程进行设备保养,能在一定程度 上来降低因机械磨损导致的误差。
西门子840D数控系统螺距误差补偿
西门子840D数控系统不同于以前曾广泛应用的810T/M和840C等老数控系统,它并没有提供专门的双向螺距误差补偿功能,通过对840D系统中的下垂补偿功能的分析研究,找到了一种方法,成功的解决了进行双向螺距误差补偿的问题。
关键词:数控系统下垂补偿功能双向螺距误差补偿由于机床丝杠在制造、安装和调整等方面的误差,以及磨损等原因,造成机械正反向传动误差的不一致,导致零件加工精度误差不稳定。
因此也必须定期对机床坐标精度进行补偿,必要时要做双向坐标补偿,以达到坐标正反向运动误差的一致性。
一、西门子840D数控系统的补偿功能西门子840D数控系统提供了多种补偿功能,供机床精度调整时选用。
这些功能有:1、温度补偿。
2、反向间隙补偿。
3、插补补偿,分为:(1) 螺距误差和测量系统误差补偿。
(2)下垂补偿(横梁下垂和工作台倾斜的多维交叉误差补偿)。
4、动态前馈控制(又称跟随误差补偿)。
包括:速度前馈控制和扭矩前馈控制。
5、象限误差补偿(又称摩擦力补偿)。
分为:常规(静态) 象限误差补偿和神经网络(动态)象限误差补偿。
6、漂移补偿。
7、电子重量平衡补偿。
在西门子840D功能说明样本和资料中所列的众多补偿功能中,都没有指出该系统具有双向螺距误差补偿功能。
但是在下垂补偿功能描述中却指出,下垂补偿功能具有方向性。
这样,如果下垂误差补偿功能,在基准轴和补偿轴定义为同一根轴时,就可能对该轴进行双向丝杠螺距误差补偿,由此提供了一个双向螺距误差补偿的依据。
二、840D下垂补偿功能的原理1、下垂误差产生的原因:由于镗铣头的重量或镗杆自身的重量,造成相关轴的位置相对于移动部件产生倾斜,也就是说,一个轴(基准轴)由于自身的重量造成下垂,相对于另一个轴(补偿轴)的绝对位置产生了变化。
2、840D下垂补偿功能参数的分析:西门子840D数控系统的补偿功能,其补偿数据不是用机床数据描述,而是以参数变量,通过零件程序形式或通用启动文件(_INI文件) 形式来表达。
西门子840D五轴联动刀具补偿及应用
摘要:通过对刀具轴,刀具补偿,坐标变换的分析研究,介绍了五轴联动刀具补偿的理论及应用. 关键词:刀具轴,刀具补偿,坐标变换1 五轴联动的结构形式及其转轴,转台主从关系五轴联动对叶轮,蜗轮,桁架的加工可以做到一次成型,加工效率高.它改变了以往三轴机床的由点成面,由线成面的加工方法,而且被加工零件的表面质量好,精度高.对复杂曲面只要指定刀具轴与零件曲面表面的位置关系,就可使复杂曲面的加工过渡光滑,不干涉,不过切,满足曲面的要求.要能够正常使用五轴联动就必须使五轴刀具补偿生效.五轴联动的旋转轴是根据所围绕的线性轴而确定的.绕X轴旋转的为A轴,绕Y轴旋转的为B轴,绕Z轴旋转的为C轴,其旋转方向根据所对应的线性轴的正方向按右手定则确定,当然旋转轴的转向也可不按右手定则而由系统中旋转方向的参数设定.通常根据转轴和转台的组成情况大致可把五轴联动分成三种结构型式:(a)两个旋转轴;(b)两个转台旋转;(c)一个转轴加一个转台旋转.在确定了结构型式后旋转轴的主从关系也随之确立,如表1所示:表1 五轴联动的三种旋转类型[2](Table 1. Three rotation options of 5-axis machining)结构形式主从关系旋转形式(a)第一个旋转轴C(主)刀具轴旋转第二个旋转轴A(从)(b)第二个旋转台B(从)工作台旋转第一个旋转台C(主)(c)刀具轴旋转A(主)混合旋转工作台面旋转C(从)表1中(a),(b),(c)的两个旋转轴(台)的上下关系即为实际结构中的上下顺序,如图1所示. (a) 刀具轴旋转( b)工作台旋转(c)混合旋转图1 五轴联动的结构顺序(Fig.1 Structural consequence of 5-axis machining )2 五轴联动刀具补偿的理论分析根据XH2725/5X-10桥式龙门五轴联动的刀具补偿原理及参数设置进行分析说明.该机床采用的是西门子840D系统,如图1(a)所示的A,C轴万能铣头结构,刀具轴心的起始位置在Z轴上.在五轴联动的加工中,保持刀具中心位置不变是可以通过各线性轴的位置调整来实现,如图2所示.从而编程时只要考虑刀具中心的运动和刀具轴的方向,解决了编程和实际运行的统一.如何在只有A,C轴运动的情况下,保持刀具刀尖位置不变,分析如下:设当A,C轴摆动A和C 后,X,Y,Z产生的移动分别是NX,NY,NZ ,则由图3可知NX =–D sin(C , NY=D cos(C , NZ= R–R cos(A式中D=R sin(A ,(R为A轴旋转中心到刀具端面的距离)图2 刀具的旋转运动(Fig 2. Rotation of the cutter )(a) (b) (c)图3 各轴运动的相对变化关系(Fig 3. The relative relationship between the axis' rotation)图3(a)为机床坐标系;(b)为C轴在零位,A轴摆动角度A时Z,Y轴的变化;(c)为A,C摆动后的X,Y变化.可见A,C轴摆动后X,Y,Z轴产生的移动分别为Nx,Ny,Nz.A ,C为A,C轴的实际角度,经过上述推算在刀具长度补偿生效时,设A,C轴移动的角度为A,C,则X,Y,Z的移动补偿量为–Nx -Ny - NZ .在西门子系统中将五轴刀具长度补偿称为位置变换(坐标变换)即在激活补偿的情况下,使加工面垂直于刀具轴的方向,从而根据矩阵变换方程计算出相应的X,Y,Z轴的补偿分量变换矩阵如下:1 0 0 0 cosC sinC 0 00 cosA sinA 0 -sinC cosC 0 0Tx= 0 -sinA cosA 0 Tz= 0 0 1 00 0 0 1 0 0 0 1注:Tx为绕x轴的旋转距阵,Tz为绕z轴的旋转距阵.To=[0 0 R 1] 刀具补偿的初始分量在Z方向上.Tk= To * Tx * Tz =[sinA *sinC *R -sinA *cosC *R cosA *R 1]Tm= To - Tk Tm为A,C轴摆动后X,Y,Z轴产生的移动量,即- Tm即为刀具的补偿量.3,实际应用中数控系统的参数设定根据刀具长度补偿的原理,参考西门子的参数说明进行相关参数设定.首先要选择刀具补偿的类型(如表2).表2 万能铣头补偿类型选择表[2](Table 2 Compensation list of universal miller)第一旋转轴第二旋转轴补偿类型刀具轴初始位置AACCC′C′A′A′129145132148XZX根据上述的说明结合XH2725/5X-10机床的结构可知补偿类型应选择148(该机床的结构参数大致为:主轴端面至回转中心的距离为285mm,A轴旋转中心线与C轴旋转中心线正交,A,C轴的旋转方向为顺时针).由上述提供的数据进行相关参数设定,设定如下:补偿类型:N24100 $MC-TRAFO-TYPE-1=148.第一旋转轴是C轴,C轴绕Z轴旋转,C轴在X,Y轴方向的补偿矢量是为0,N24570 $MC-TRAFOS-AXISI-1[2]=1;第二旋转轴是A轴,A轴绕X轴旋转,A轴在Y,Z轴方向的补偿矢量是0,N24572 $MC-TRAFOS-AXISI-1[0]=1;刀具的初始方向在Z轴方向, N24574 $MC-TRAFOS-BASE-ORIENT-1[2]=1.其余参数如旋转方向,刀具基体偏置等就不一一详细列出.4,五轴刀补在加工中的应用西门子840D系统中激活五轴刀具长度补偿的指令为TRAORI,取消补偿的指令为TRAFOOF. 激活刀具补偿后应再调用一次工件坐标系,选择G54-G57中的任意一个,否则系统会认为使用的是机床本身的机械坐标从而导致出错.实际使用过程由于刀具的长度补偿对于加工零件的轮廓精度有较大的影响,分析如下(图四):图4 刀具补偿对加工的影响(Fig. 4 The influence from the cutter compensation to manufacturing)注:图四中左图表示刀具理论加工状态;右图实线表示刀具的测量值比左图短去部分为ΔL,虚线表示刀具的实际加工状态.若将刀具的实际长度缩短ΔL ,A轴的摆动角度为A,则知零件外形将变小,变化值为ΔL*sinA.故实际应用时应尽量保证刀具具有精确的长度值.测量刀具长度一般有两种方法:用对刀仪测量;用百分表测刀尖与主轴端面的距离.对应于长度补偿,西门子840D还提供了五轴刀具半径补偿,由于大多数五轴加工程序是由CAD/CAM软件制作生成的,因而五轴刀具半径补偿较少使用,仅举一例以作说明.例:G00 G54 X0 Y0 Z0T1 D1 ISD=20 //调用刀具,在1号刀具的1号刀沿下设定刀具长度和刀具半径.TRAORI [1] //激活五轴长度补偿CUT3DC [1] //激活五轴半径补偿G1 G54 G42 X10 Y10 F2000X60A30 C10Y150G1 G40 X- Y- //撤消半径补偿TRAFOOF //撤消五轴长度补偿参考文献:[1] SIEMENS. Programming Guide Advanced[M]. Federal Republic of Germany: Siemens Automation Group,1998.[2] SIEMENS. Special Functions (Part 3)[M]. Federal Republic of Germany: Siemens Automation Group,1998.Theory and Application of Cutter Offset Compensation in 5-axis CNC machiningAbstract: The article introduces the theory and application of cutter offset compensation in 5-axis machining, by analyzing the machine tool axes, cutter offset compensation and coordinate shift. Key words: Machine Tool Axes; Cutter offset compensation; Coordinate shift.。
西门子840D数控系统螺距补偿的探索与实践
$A A _E N C _C O M P 0 ,O,A X I]= 0. 2 [ 04 $A A _E N C 工 O M P ,l,A X I]= 0. 20 0 [ 0
. 2 4 .1
N o lo
N 020 N 030
N ( 牡 ) )
主程序
G 5 4 G 90 G D X 一 10
G4FS XO
定 义 补偿 步
$A A 一 N C _ C O M P M I [ A X I =50 . - N 0 , ] 0 0 点 $A A J N C工 O M P M A X [ , X I 二 50 . 0A ] 10 0 0 偿 终点 $A A E N C _ C O M P IS_ M O D U L [ ,A X I]= O 0 0 功能
$A A _E N C _C O M P 0 ,5,A X I]= 0. 旧 [ (兀 $A A E N C _C O M P 0 ,6,A X I]= 0. [ 仪抖
N 050
X SU B l l
PZI
调用子程 序 X SU B l ,共 调用 l 1 2 次 , 即 X 轴正 向走完 全长 到终 点后 ,再 次越程 10~
然后用 键盘 的光标键选 择 /数 据 , 0, 并选 择其 中的 /丝 杠误差 补偿 0,按 菜单键 /读 出 0 动数据 传输 " 启 5 ) 按 照预 定 的最小 位 置 , 最 大位 置 和测 量 间隔 移 动要进 行补偿 的坐标 " 6 ) 用激光 干涉仪测 试每一 点的误差 " ) 7
% N
西门子 84 D 数控系统螺距补偿的探索与实践 0
赵 阳 卢 宝
泞 夏共享精密加工有限公司,宁夏 银川 7 0 2 ) 5 1
西门子840D数控系统螺距补偿的探索与实践
西门子840D数控系统螺距补偿的探索与实践摘要:由于机械电子技术的飞速发展,数控机床做为一种高精度、高效率、稳定性强的自动化加工装备,已经成为机械行业必不可少的现代化技术装置。
利用数控系统的螺距误差补偿功能进行调整,可以大大提高数控机床的定位精度。
西门子SINUMERIK 840D数控系统是西门子公司最新推出的全闭环数控系统,已经在机械加工行业已经获得了最为广泛的应用。
关键词:数控;加工;高精度;补偿一、背景介绍我公司目前拥有多西门子SINUMERIK 840D系统的数控机床。
日常加工以大型铸钢件为主,工件硬度高,机床消耗和磨损较大,机床精度每过一段时间就会出现偏差。
因此,我们需要定期通过对数控系统进行精度调整,从而保证其有效加工精度。
下面我们以精工工厂GIMAX 180落地镗铣加工中心X轴为例,对螺距误差补偿进行研究与探索。
二、实施过程(一)螺距误差补偿的原理由于机床丝杠在制造、安装和调整等方面的误差,以及磨损等原因,造成机械实际进给值与给定信号值的不一致,导致零件加工精度不稳定。
因此必须定期对机床坐标精度进行补偿。
在补偿的时候,在机床的运行轨道上取若干点,(一般取30个点,取的点越多,补偿精度越高)通过激光干涉仪测得机床的实际定位位置,与设定定位位置进行比较,得出便宜距离,并将其写入补偿文件中。
机床在下次运行时,降会把补偿文件的数据也计算在内。
从而达到精度要求。
(二) 840D补偿功能几个关键机床数据的说明机床在出厂前,需进行螺距误差补偿(LEC)。
螺距误差补偿是按轴进行的,与其有关的轴参数只有两个:(1) MD38000 最大补偿点数。
(2) MD32700 螺距误差使能:0 禁止,可以写补偿值;1 使能,补偿文件写保护并且螺距误差补偿是在该轴返回参考点后才生效的。
(三)补偿的方法(1) 修改MD38000:由于该参数系统初始值为0,故而应根据需要先设此参数。
修改此参数,会引起NCK 内存重新分配,会丢失数据。
840D系统补偿功能汇总
840D系统补偿功能汇总数控机床的的几何精度,定位精度一方面受到机械加工母机的精度限制,另一方面更受到机床的材料和机械安装工艺的限制,往往不能够达到设计精度要求。
而要在以上诸多方面来提高数控机床的几何精度,定位精度需要投入大量的人力物力。
在机械很难提高精度的情况下,通过数控电气补偿能够使数控机床达到设计精度。
一、反向间隙补偿机床反向间隙误差是指由于机床传动链中机械间隙的存在,机床执行件在运动过程中,从正向运动变为反向运动时,执行件的运动量与目标值存在的误差,最后反映为叠加至工件上的加工精度。
机床反向间隙是机床传动链中各传动单元的间隙综合,如电机与联轴器的间隙,齿轮箱中齿轮间隙,齿轮与齿条间隙,滚珠丝杠螺母副与机床运动部件贴合面的间隙等等。
反向间隙直接影响到数控机床的定位精度和重复定位精度。
在半闭环下,由伺服电机编码器作为位置环反馈信号。
机械间隙无法由编码器检测到,在机械调整到最佳状态下需要进行反向间隙补偿。
在全闭环下,直线轴一般采用光栅尺作为位置环反馈信号,旋转轴一般采用外接编码器或圆光栅作为位置环反馈信号。
由于是直接检测运动部件的实际位移,理论上讲全闭环下无反向间隙。
但是由于光栅尺或圆光栅本身精度的限制和安装工艺的限制等等,使得全闭环下也具有“反向间隙”,这在激光干涉仪下能很明显看出来,一般在0.01mm左右。
西门子840D数控系统反向间隙补偿的方法如下:测得反向间隙值后在轴机床数据输入反向差值,单位为mm。
MD32450 BACKLASH [0]MD32450 BACKLASH [1]其中[0]为半闭环,[1]为全闭环。
输入后按下Reset键,回参考点后补偿生效。
可以在诊断→服务显示→轴调整→绝对补偿值测量系统中看到补偿效果。
反向间隙补偿能够在较大程度上提高数控机床的定位精度、重复定位精度,但是它的值是固定的,不能适用于机床的整个行程,这就需要另一种电气补偿手段,螺距误差补偿。
两者结合能使数控机床达到较高的定位精度和重复定位精度。
西门子840D数控系统温度误差补偿的研究与应用
2009年9月第37卷第9期机床与液压MACH INE TOOL & HYDR AUL IC SSep12009Vol137 No19DO I: 10. 3969 / j1 issn11001 - 3881120091091004西门子840D数控系统温度误差补偿的研究与应用刘朝华, 戴怡, 石秀敏, 杨雪翠(天津市高速切削与精密加工重点实验室(天津工程师范学院) , 天津300222)摘要: 温度变化可以产生数控机床热变形误差, 从而影响加工精度。
介绍了西门子S I NUM E R IK 840D 数控系统温度误差补偿的原理及相关系统参数, 采用Pt100型热电阻设计了温度误差补偿系统的硬件, 同时进行了PLC程序的开发。
关键词: 数控系统; 热变形误差; 温度补偿; 热电阻中图分类号: TP272 文献标识码: A 文章编号: 1001 - 3881 ( 2009) 9 - 012 - 2Study and Applica tion on T em pera ture Error C om pen sa tionBa sed on S i em en s 840D CNC SystemL IU Z haohua, DA I Yi, SH I Xium in, YAN G Xuecui( Tianjin Key Laborato ry of H i gh Sp eed Cutting & Precision Machining ( TU TE) , Tianjin 300222, China) Abstract: Thermal defo rm ation erro r of CNC machine too ls generated by temperature changes will influence the accuracy of the machined workp ieces. Temperature erro r compensation p rincip le and system param eters of S INUM E R IK 840D CNC system were intro2 duced, the hardware of temperature error compensation system was designed with Pt100 thermal resistance, and PLC p rog ram was d esigned.Keywords: CNC system; Therm al deformation error; Temperature compensation; Therm al resistance0 引言数控机床在工作过程中, 由于驱动装置发热、外界环境温度变化、切削热传导等原因使得机床部件产生热变形, 从而造成加工精度下降。
实现西门子840d sl数控系统螺距误差的批量设置方法
2°20年第4期________________________________________________________________________________NCTechnology數控技术实现西门子840D si数控系统螺距误差的批量设置方法刘佃凯盛超丰赵丽荣(济南二机床集团有限公司,山东济南250022)摘要:西门子840D si数控系统中的螺距补偿通常只能通过调试人员根据激光检测的偏差值逐个输入进螺距补偿界面中,但当机床行程很大时,补偿点数可能会达到数百个,再通过人工输入的方式变得不再现实。
为此简要介绍通过补偿文件实现螺距补偿值的批量设置方法。
关键词:西门子;840D si数控系统;螺距补偿;批量设置中图分类号:T19文献标识码祖DOI:10.19287/ki.1005-2402.2020.04.032The method of batch setting of pitch error in Siemens840D si CNC systemLIU Diankai,SHENG Chaofeng,ZHAO Lirong(Jier Machine-Tool Group Co.,Ltd.,Jinan250022,CHN)Abstract:In Siemens840D si CNC system,pitch compensation can only be input into the pitch compensation interface one by one through the debugger according to the deviation value of laser detection,but when themachine tool travel is large,the number of compensation points may reach hundreds,and then itbecomes unrealistic by manual input.This paper briefly introduces the method of batch setting of p让chcompensation value through compensation file.Keywords:Siemens;840D si CNC system;pitch compensation;batch setting1840D si螺距补偿流程简要介绍首先通过雷尼绍的激光干涉仪进行各轴的定位精度检测,然后根据检测软件给出的数值在840D si系统中进行补偿表填写。
西门子840D系统下的螺距补偿和垂度补偿的综合运用
西门子840D系统下的螺距补偿和垂度补偿的综合运用李培志(武汉华中自控技术发展有限公司,武汉430062)摘要:结合西门子840D系统介绍了两种为提高机床定位精度的补偿方法------螺距补偿和垂度补偿。
以及在机械几何精度不理想情况下的两种方法的综合运用。
关键词:螺距补偿垂度补偿位置精度检测由于机械电子技术的飞速发展,数控机床作为一种高精度、高效率、稳定性强的自动化加工设备,越来越多的受到大家的关注。
数控系统的定位精度是影响其高精度性能的一个重要因素,而利用西门子840D数控系统自带的螺距补偿和垂度补偿功能可以极大的降低机床的定位误差,提高机床的定位精度。
本文就此介绍了这两种方法在实际中的具体使用。
补偿一般在机床几何精度调整完成后进行,这样可以尽量减少几何精度对定位精度的影响。
一般情况下,螺距补偿可以运用在所有的直线进给轴以及旋转轴中,垂度补偿多运用在镗床的主轴箱滑枕或镗杆与立柱间的交叉补偿。
1.螺距补偿840D数控系统的螺距补偿功能是一种绝对型补偿方法,螺距补偿是按轴进行的。
我们设定补偿起始点位置a,补偿终止点位置b,补偿间隔距离c,那么需要插补的中间点的个数n,其中n=1+(b-a)/c。
具体操作步骤如下:1)设置轴数据MD38000 MM_ENC_COMP_MAX_POINTS[t] =n,修改此参数后会引起NCK内存的重新分配。
所以修改后要在服务菜单下对NC做一次备份。
(t=所补偿轴的轴号)2)对系统做一次NCK复位后会出现“M4400” 报警,提示轴参数丢失,此时将1)步骤下的NC备份Load进NC系统。
3)在Nc-Active-Data菜单下Copy出“C EC_DATA”到一个新建立的备份文档目录*.MDN中。
4)在新的目录下找到并打开补偿文件表格,根据测量人员测量的数据把相应的补偿点直接在表格中更改。
保存并关闭编辑器。
5)设定轴参数MD32700 ENC_COMP_ENABLE=0,将修改后的补偿表格 Load进NC系统。
西门子840D数控系统螺距误差及补偿分析
西门子840D数控系统螺距误差及补偿分析摘要:针对西门子840D数控系统螺距误差类别,进行有效性分析,并简单介绍了分析西门子840D数控系统螺距误差及补偿的重要性,提出数控系统螺距误差补偿要点,获取较好的应用效果,旨在为相关工作人员提供良好的帮助与借鉴。
关键词:西门子840D数控系统;螺距误差;补偿0引言:数控机床精度等级,对加工工件质量起到决定性作用,由于数控技术的快速发展,系统软件误差补偿技术的有效运用,显著提升数控机床精度,本文重点探讨西门子840D数控系统螺距误差和无偿要点,内容如下。
1分析西门子840D数控系统螺距误差及补偿的重要性结合西门子840D数控系统运行特点,引起误差的因素比较多,各类因素之间存在密切联系,通过对系统螺距误差进行合理补偿,能够有效减小误差的出现。
同时,利用系统螺距误差补偿功能,无需调整机床硬件,不但可以提高机床的精度,而且能够显著减少材料损耗。
通过分析西门子840D数控系统螺距误差及补偿,能够更好的满足数控机床高精度加工要求。
有关人员要结合西门子数控系统类型,进行科学的补偿。
2误差补偿2.1机床误差类别分析第一,数控机床结构,包括各项零部件几何误差类别。
在机床制造过程当中,各个零部件容易出现尺寸误差,在装配期间,因为装配技术不规范,容易引起较大误差[1]。
可以对机床结构进行全面改进,并提升数控机床加工精度,有效减少系统误差的出现。
第二,数控机床的变形误差类别。
数控机床运行期间,因为其内部的传动部件,以及润滑液管路产生较大的热量,数控机床特别容易出现热变形,引发变形误差。
数控机床内部的液压元件安装部位,以及外界温度条件,均会引发机床变形误差。
为了减少此种类型误差的出现,操作人员可以安装风冷设备,确保数控机床液压系统温度得到良好控制,避免数控系统出现较大的螺距误差。
第三,加工工件过程中所产生的误差。
因为工件材料质地比较差,存在严重的磨损现状,在实际加工过程中,出现严重的负载变化,最终引起较大误差。
840D数控系统中光栅尺与螺距误差补偿的应用分析
第58卷1光栅尺概述1.1光栅尺的原理光栅尺也叫做光栅位移传感器,是数控机床中使用较多的测量装置。
它具有精度高、响应速度快,能消除由于滚珠丝杆温度特性导致的位置误差、反向间隙和滚珠丝杆螺距误差导致的运动特性误差等特点,因此光栅尺已成为高精度定位和高速加工不可或缺的一员。
作为闭环控制系统中的位置检测装置,是保证数控系统位移精度的关键。
光栅位移传感器的工作原理,是由一对光栅副中的主光栅(即标尺光栅)和副光栅(即指示光栅)进行相对位移时,在光的干涉与衍射共同作用下产生黑白相间(或明暗相间)的规则条纹图形,称之为莫尔条纹。
经过光电器件转换使黑白(或明暗)相同的条纹转换成正弦波变化的电信号,再经过放大器放大,整形电路整形后,得到两路相差为90°的正弦波或方波,送入光栅数显表计数显示。
1.2光栅尺的安装光栅尺安装位置应避开铁屑、冷却液、油的直接淋溅,如无法避免应加装护罩。
密封条应朝下或远离溅水的方向,直线光栅尺应尽可能安装在接近加工面处;为保证直线光栅尺工作正常,不应使光栅尺承受持续的强烈振动载荷,为此尽可能将直线光栅尺安装在机床刚性最好的零件上。
不允许将直线光栅尺安装在空心零件或转换件上。
对小截面的封闭式直线光栅尺,推荐使用安装板。
直线光栅尺应安装在远离热源的地方,避免温度影响。
在安装读数头时,首先应保证读数头的基面达到安装要求,然后再安装读数头,其安装方法与主尺相似。
最后调整读数头,使读数头与光栅主尺平行度保证在0.1m m 之内,其读数头与主尺的间隙控制在1~1.5m m 以内。
这一数据十分重要,也是安装光栅尺要求最严的一项。
它直接影响光栅尺能否正常工作以及检测精度。
2误差与补偿2.1误差产生的原因影响机床加工精度的原因主要有几何误差、运动误差、热变形误差、环境误差、检测误差、装配误差等。
对于半闭环系统,由于编码器安装在驱动电机端部或者丝杠杆的端部,用来测量驱动电机或者丝杠的回转角,间接测出运动部件的实际位置。
西门子840D垂度补偿对机床精度调整的应用
西门子840D垂度补偿对机床精度调整的应用发布时间:2021-04-27T09:47:16.990Z 来源:《基层建设》2020年第33期作者:许鑫[导读] 摘要:机床加工零件的质量和精度,主要取决于机床的精度。
中国一重集团公司设备能源管控中心设备维修厂黑龙江齐齐哈尔 161042 摘要:机床加工零件的质量和精度,主要取决于机床的精度。
而机床的几何精度和各种误差又是影响精度的主要原因。
而其中针对于落地镗床,垂度误差又影响最为严重。
本文简要介绍垂度误差产生原因、补偿原理及基于西门子SINUMERIK 840D系统的补偿应用。
关键词:垂度误差,补偿,西门子840D1.悬垂误差产生的原因及垂度补偿的原理1.1产生原因以落地镗床为例,落地镗床的滑枕或镗杆伸出主轴箱时,由于自身的重量及材料、结构特性造成相关轴的位置相对于移动部件产生倾斜。
也就是说,一个轴(基准轴或输入轴)移动后由于自身的重量造成下垂,相对于另一个轴(补偿轴或输出轴)的绝对位置产生了变化,如图1所示。
由于滑枕或镗杆伸出的位置不同,也就造成了相应位置下垂程度的不同,这种现象可直观的反映在我们在水平的大理石方尺上所压百分表上,当滑枕或镗杆伸出在不同的位置时百分表显示的数值相对于百分表的零点是不同的。
图1:悬垂误差1.2补偿原理由于上述原因,当滑枕或镗杆伸出在不同的位置时,使得主轴箱相对于水平的大理石方尺的绝对位置发生了变化,这时就要通过垂度补偿功能使主轴箱产生微量的补偿移动,移动量是由滑枕或镗杆伸出在不同的位置时百分表所检测到的主轴箱的绝对位移来决定的。
补偿时可根据实际情况设定不同的补偿点数(最多2000个补偿点),补偿点数越多补偿效果越明显,当然所设定补偿点数只要满足加工要求即可,将滑枕或镗杆移动至补偿点位置,然后通过百分表采集当前所在位置下主轴箱的绝对位移数据,并将采集到的数据填写到事先生成的补偿表格中,再激活补偿表即可实现垂度补偿功能。
对于SIEMENS SINUMERIK 840D系统,该系统提供了多种补偿功能,用来弥补机械结构、外部环境、加工制造和安装问题引起的误差,使得各轴坐标实际位置更加趋近于给定位置,提高机床自身精度和加工精度。
840C系统的螺距补偿功能介绍
840C系统的螺距误差补偿功能介绍西门子840C系统提供的螺距误差补偿功能是系统的一个选项功能,需单独订购(订货号:6FC5150-0AH01-0AA0)。
该功能可用来提高数控机床的定位精度,经常用在低成本高精度的设备或翻新改造的设备上。
在使用螺距误差补偿功能前,应满足下列条件:1)选项功能可用。
2)使用可靠的仪器(激光干涉仪、步距规等)测量无补偿时的实际螺距误差3) 被补偿轴必须确保重复定位精度达到机床的要求。
4)环境温度湿度稳定,无大的干扰源。
5) 取消被补偿轴的反向间隙。
6) 取消原有的螺距误差补偿。
7)测量实际螺距误差至少2次以上。
8)假设轴的移动路径为正方向。
一、螺距误差补偿的相关机床数据‘*’的含义说明:第1轴,‘*’=0,第2轴,‘*’=1,…,第6轴,‘*’=5二、螺距误差补偿的生效1、执行NCK POWER ON或机床断电后重新上电2、机床必须回参考点三、螺距误差补偿的注意事项1、增量式补偿,对每一点的补偿都会影响其后的各点。
2、定量式补偿,只能给每一个点补偿一个固定的值。
3、在参考点的补偿量为0。
4、从参考点往负方向补偿时: ‘+’:当补偿点的值需要增大才能满足要求时 ‘-’:当补偿点的值需要减小才能满足要求时5、从参考点往正方向补偿时: ‘+’:当补偿点的值需要减小才能满足要求时‘-’:当补偿点的值需要增大才能满足要求时6、所有轴的补偿点总共有1000个,且都位于同一参数区域。
各轴的补偿点不可出现重叠。
7、MD324* 尽量取10的倍数,例如10,20等。
8、如果实际测量间距超出MD 324*的范围,例如100,500,1000等,设定的值应和实际间距成倍数关系,并采用插入补偿方式。
9、如果采用插入补偿方式,参考点的实际位置指针仍要满足4M+1(M=1,2,3,…)的形式。
10、不可使用MD 276*中指定的加速度。
11、选择合适的补偿当量。
四、补偿后的注意事项1、反复检查调整补偿曲线直到满足要求。
840dsl螺距补偿方法
840dsl螺距补偿方法宝子,今天咱来唠唠840dsl的螺距补偿方法哈。
咱得先知道,螺距补偿是为了让机床的加工精度更高呢。
一般来说呀,在840dsl 系统里,你得先进入到机床的参数设置界面。
这就像你要进一个神秘的小房间,里面藏着能让机床变厉害的魔法咒语。
在参数设置里,你要找到和螺距补偿相关的那些参数。
这可能得费点小劲儿,就像在一堆宝藏里找特定的那颗宝石一样。
有些参数可能是关于螺距补偿的点数啦,补偿的间隔啦之类的。
你得小心地设置这些数值,要是弄错了,机床可能就会闹小脾气,加工出来的东西就不那么完美啦。
然后呢,你要测量实际的螺距误差。
这就好比给机床做个体检,看看它的螺距到底哪里有偏差。
你可以用一些专业的测量工具,像激光干涉仪之类的。
这个测量过程可得认真,就像医生给病人做检查一样,不能马虎。
得到了测量数据后,就把这些数据按照系统要求的格式输入到螺距补偿的参数里。
还有哦,在做螺距补偿的时候,要注意机床的状态。
要是机床有其他的故障或者没调整好,那这个螺距补偿做了可能效果也不好。
就像你给一个生病的人吃补药,可他还有其他毛病没治好呢,补药也发挥不了最大的作用。
而且呀,做完螺距补偿之后,最好再测试一下机床的加工精度。
看看是不是真的有提高。
要是有提高,那就太棒啦,就像你的小宠物学会了新技能一样让人开心。
要是没有,那可能就得重新检查一下前面的步骤,是不是哪里出了小差错。
总之呢,840dsl的螺距补偿虽然有点小复杂,但只要咱细心、耐心,就像照顾小宝贝一样对待这个过程,就能让机床更好地工作,加工出超棒的零件呢。
宝子,希望你能顺利搞定螺距补偿哦。
高精密数控机床中840D数控系统双向螺距误差补偿的应用
高精密数控机床中840D数控系统双向螺距误差补偿的应用【摘要】螺距误差补偿在数控机床的使用中必不可少。
随着数控机床精度的不断提升,高精密、超精密数控机床的出现,对螺距误差补偿方面的要求也越来越严格。
由于机床零件加工、安装和调整等方面的误差,造成机械正反向传动误差的不一致。
在高精密数控机床中,双向运动的不一致性很大程度上制约了机床精度的提升,单向螺距误差补偿已经无法满足机床的精度补偿要求,因此要对机床做双向坐标补偿,以达到坐标正反向运动误差的一致性。
但是现在使用的主流数控系统西门子840D没有提供专门的双向螺距误差补偿功能。
我们通过对西门子840D系统中的下垂补偿功能的分析研究,找到了一种方法,成功的解决了西门子840D进行双向螺距误差补偿的问题。
【关键词】高精密数控机床;840D;双向螺距误差补偿一、西门子840D数控系统的补偿功能西门子840D做为目前主流使用的高端数控系统,其提供了多种补偿功能,供机床精度调整时选用。
但在其功能说明样本和资料中所列的众多补偿功能中,都没有指出该系统具有双向螺距误差补偿功能。
我们通过研究下垂补偿功能发现,下垂补偿功能具有方向性。
换种思路,如果在下垂误差补偿功能中将基准轴和补偿轴定义为同一根轴时,就可能对该轴进行双向丝杠螺距误差补偿,由此提供了一个双向螺距误差补偿的依据。
二、840D下垂补偿功能的原理1、下垂误差产生的原因:由于镗铣头的重量或镗杆自身的重量,造成相关轴的位置相对于移动部件产生倾斜,也就是说,一个轴(基准轴)由于自身的重量造成下垂,相对于另一个轴(补偿轴)的绝对位置产生了变化。
2、840D下垂补偿功能参数的分析:西门子840D数控系统的补偿功能,其补偿数据不是用机床数据描述,而是以参数变量,通过零件程序形式或通用启动文件(_INI文件)形式来表达。
描述如下:(1)$AN_CEC[t,N]:插补点N的补偿值,即基准轴的每个插补点对应于补偿轴的补偿值变量参数。
浅谈西门子840D系统螺距补偿在维修中的运用_刘清
收稿日期:2012-10-12 作者简介:刘 清(1977—),男,四川资中人,本科,研究方向为电气自动化。
160
N10 G53G90G17 N20 G00Y=900 N30 G04F6 N40 Y=890 N50 R0=0 N60 AA: N70 Y=IC(-230) N80 G04F6 N90 R0=R0+1 N100 IF R0<20 GOBO AA N110 Y=IC(-10) N120 GO4F6 N130 R1=0 N140 Y=IC(10) N150 G04F6 N160 BB: N170 Y=IC(230) N180 G04F6 N190 R1=R1+1 N200 IF R1<=20 GOBO BB N210 Y=IC(10) N220 M02 当程序编制结束以后,应该试运行一下,看各个 点位和步长是否正确。该程序可以通过外部计算机 编制完成以后上传系统,也可以在系统中直接编制。 如果考虑经常要使用逻辑补偿,那么可以将该程序 存在工系统件程序中,方便以后使用。 (4)在系统中自动生成补偿文件。 自动生成补偿文件过程如下:在系统主界面,点 击服务→移动光标到“NC- 生效 - 数据”→选择测量 系统误差补偿→测量系统误差补偿轴 2 (X 轴为轴 1,Y 轴为轴 2,Z 轴为轴 3)→点击数据管理→复制→ 工件→粘贴。将系统产生的补偿文件传出,在 PC 机 上编辑并输入补偿值,经过编辑,按照需要将编辑过 的补偿文件传入系统[1]。 (5)在这里要用到两个西门子 840D 系统的两个 轴参数。 MD38000 最大补偿点数:修改此参数,会引起 NCK 内存重新分配,会丢失数据,所以要求必须先做 好第二步,备份好机床的重要数据。原则上我们不要 轻易改动这个参数。MD32700 螺距误差补偿:0 为螺 距补偿不生效,允许修改补偿文件,1 为 螺距补偿生 效,不允许修改补偿文件[2]。 (6)将 MD32700 置 0,在 PC 机将补偿文件中的
840d系统补偿功能汇总
840D系统补偿功能汇总数控机床的的几何精度,定位精度一方面受到机械加工母机的精度限制,另一方面更受到机床的材料和机械安装工艺的限制,往往不能够达到设计精度要求。
而要在以上诸多方面来提高数控机床的几何精度,定位精度需要投入大量的人力物力。
在机械很难提高精度的情况下,通过数控电气补偿能够使数控机床达到设计精度。
一、反向间隙补偿机床反向间隙误差是指由于机床传动链中机械间隙的存在,机床执行件在运动过程中,从正向运动变为反向运动时,执行件的运动量与目标值存在的误差,最后反映为叠加至工件上的加工精度。
fYPxlii。
XbxvYZR。
Bzr9OIm。
机床反向间隙是机床传动链中各传动单元的间隙综合,如电机与联轴器的间隙,齿轮箱中齿轮间隙,齿轮与齿条间隙,滚珠丝杠螺母副与机床运动部件贴合面的间隙等等。
8Ldknr8。
KdosTYn。
k6spQcZ。
反向间隙直接影响到数控机床的定位精度和重复定位精度。
在半闭环下,由伺服电机编码器作为位置环反馈信号。
机械间隙无法由编码器检测到,在机械调整到最佳状态下需要进行反向间隙补偿。
在全闭环下,直线轴一般采用光栅尺作为位置环反馈信号,旋转轴一般采用外接编码器或圆光栅作为位置环反馈信号。
由于是直接检测运动部件的实际位移,理论上讲全闭环下无反向间隙。
但是由于光栅尺或圆光栅本身精度的限制和安装工艺的限制等等,使得全闭环下也具有“反向间隙”,这在激光干涉仪下能很明显看出来,一般在0.01mm左右。
vzyynpr。
RavNO51。
H8e0UaX。
西门子840D数控系统反向间隙补偿的方法如下:测得反向间隙值后在轴机床数据输入反向差值,单位为mm。
MD32450 BACKLASH [0]MD32450 BACKLASH [1]其中[0]为半闭环,[1]为全闭环。
输入后按下Reset键,回参考点后补偿生效。
可以在诊断→服务显示→轴调整→绝对补偿值测量系统中看到补偿效果。
YJfUsQv。
6co4TFp。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高精密数控机床中840D数控系统双向螺距误差补偿的应用
【摘要】螺距误差补偿在数控机床的使用中必不可少。
随着数控机床精度的不断提升,高精密、超精密数控机床的出现,对螺距误差补偿方面的要求也越来越严格。
由于机床零件加工、安装和调整等方面的误差,造成机械正反向传动误差的不一致。
在高精密数控机床中,双向运动的不一致性很大程度上制约了机床精度的提升,单向螺距误差补偿已经无法满足机床的精度补偿要求,因此要对机床做双向坐标补偿,以达到坐标正反向运动误差的一致性。
但是现在使用的主流数控系统西门子840D没有提供专门的双向螺距误差补偿功能。
我们通过对西门子840D系统中的下垂补偿功能的分析研究,找到了一种方法,成功的解决了西门子840D进行双向螺距误差补偿的问题。
【关键词】高精密数控机床;840D;双向螺距误差补偿
一、西门子840D数控系统的补偿功能
西门子840D做为目前主流使用的高端数控系统,其提供了多种补偿功能,供机床精度调整时选用。
但在其功能说明样本和资料中所列的众多补偿功能中,都没有指出该系统具有双向螺距误差补偿功能。
我们通过研究下垂补偿功能发现,下垂补偿功能具有方向性。
换种思路,如果在下垂误差补偿功能中将基准轴和补偿轴定义为同一根轴时,就可能对该轴进行双向丝杠螺距误差补偿,由此提供了一个双向螺距误差补偿的依据。
二、840D下垂补偿功能的原理
1、下垂误差产生的原因:
由于镗铣头的重量或镗杆自身的重量,造成相关轴的位置相对于移动部件产生倾斜,也就是说,一个轴(基准轴)由于自身的重量造成下垂,相对于另一个轴(补偿轴)的绝对位置产生了变化。
2、840D下垂补偿功能参数的分析:
西门子840D数控系统的补偿功能,其补偿数据不是用机床数据描述,而是以参数变量,通过零件程序形式或通用启动文件(_INI文件)形式来表达。
描述如下:
(1)$AN_CEC[t,N]:插补点N的补偿值,即基准轴的每个插补点对应于补偿轴的补偿值变量参数。
(2)$AN_CEC_INPUT_AXIS[t]:定义基准轴的名称。
(3)$AN_CEC_OUTPUT_AXIS[t]:定义对应补偿值的轴名称。
(4)$AN_CEC_STEP[t]:基准轴两插补点之间的距离。
(5)$AN_CEC_MIN[t]:基准轴补偿起始位置。
(6)$AN_CEC_MAX[t]:基准轴补偿终止位置。
(7)$AN_CEC_DIRECTION[t]:定义基准轴补偿方向。
其中:
★$AN_CEC_DIRECTION[t]=0:补偿值在基准轴的两个方向有效。
★$AN_CEC_DIRECTION[t]=1:补偿值只在基准轴的正方向有效,基准轴的负方向无补偿值。
★$AN_CEC_DIRECTION[t]=-1:补偿值只在基准轴的负方向有效,基准轴的正方向无补偿值。
(8)$AN_CEC_IS_MODULO[t]:基准轴的补偿带模功能。
(9)$AN_CEC_MULT_BY_TABLE[t]:基准轴的补偿表的相乘表。
这个功能允许任一补偿表可与另一补偿表或该表自身相乘。
3、下垂补偿功能用于螺距误差或测量系统误差补偿时的定义方法:
根据840D资料的描述,机床的一个轴,在同一补偿表中,既可以定义为基准轴,又可以定义为补偿轴。
当基准轴和补偿轴同为一个轴时,可以利用下垂补偿功能对该轴进行螺距误差或测量系统误差补偿。
从补偿变量参数$AN_CEC_DIRECTION[t]的描述中可以看出,由于下垂补偿功能补偿值具有方向性,所以,下垂补偿功能在用于螺距误差或测量系统误差时,可以理解为在坐标轴两个方向上可以分别给予补偿。
一个表应用于补偿轴的运行正方向,另一个表应用于补偿同一轴的运行负方向。
三、840D下垂误差补偿功能几个关键机床数据的说明
1、NC机床数据
MD18342:补偿表的最大补偿点数,每个补偿表最大为2000插补补偿点数。
MD32710:激活补偿表。
MD32720:下垂补偿表在某点的补偿值总和的极限值,840DE(出口型)为1mm;840D(非出口型)为10mm。
2、设定机床数据
SD41300:下垂补偿赋值表有效。
SD41310:下垂补偿赋值表的加权因子。
由于这两个数据可以通过零件程序或PLC程序修改,所以一个轴由于各种因素造成的不同条件下的不同补偿值可通过修改这两个数据来调整补偿值。
四、应用
下垂补偿功能应用于双向螺距误差补偿,其装载步骤与840D螺距误差补偿方法一样。
例一:正向补偿文件
%_N_NC_CEC_INI
CHANDATA(1)
$AN_CEC[0,0]=0.000
$AN_CEC[0,1]=0.000
$AN_CEC[0,2]=0.000
$AN_CEC[0,3]=0.000
……
$AN_CEC[0,49]=0.000
$AN_CEC[0,50]=0.000以上定义补偿插补点的补偿值
$AN_CEC_INPUT_AXIS[0]=(AX1)定义基准轴
$AN_CEC_OUTPUT_AXIS[0]=(AX1)定义补偿轴
$AN_CEC_STEP[0]=10定义补偿步距
$AN_CEC_MIN[0]=0定义补偿起点
$AN_CEC_MAX[0]=500定义补偿终点
$AN_CEC_DIRECTION[0]=1定义补偿方向
$AN_CEC_MULT_BY_TABLE[0]=0定义补偿相乘表
$AN_CEC_IS_MODULO[0]=0定义补偿表模功能
例二:负向补偿文件
%_N_NC_CEC_INI
CHANDATA(1)
$AN_CEC[1,0]=0.000
$AN_CEC[1,1]=0.000
$AN_CEC[1,2]=0.000
$AN_CEC[1,3]=0.000
……
$AN_CEC[1,49]=0.000
$AN_CEC[1,50]=0.000以上定义补偿插补点的补偿值
$AN_CEC_INPUT_AXIS[1]=(AX1)定义基准轴
$AN_CEC_OUTPUT_AXIS[1]=(AX1)定义补偿轴
$AN_CEC_STEP[1]=10定义补偿步距
$AN_CEC_MIN[1]=0 定义补偿起点
$AN_CEC_MAX[1]=500 定义补偿终点
$AN_CEC_DIRECTION[1]=-1定义补偿方向
$AN_CEC_MULT_BY_TABLE[1]=0定义补偿相乘表
$AN_CEC_IS_MODULO[1]=0定义补偿表模功能
通过使用激光干涉仪等仪器的测量,得出补偿数值,填入补偿文件并运行,由此,我们成功进行了双向螺距误差补偿,从而更好的提升了机床精度。