苏教版数学九年级上册 期末试卷(Word版 含解析)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版数学九年级上册 期末试卷(Word 版 含解析)
一、选择题
1.在平面直角坐标系中,O 的直径为10,若圆心O 为坐标原点,则点()8,6P -与O 的位置关系是( )
A .点P 在
O 上 B .点P 在O 外 C .点P 在O 内 D .无法确定 2.如图,CD 为O 的直径,弦AB CD ⊥于点E ,2DE =,8AB =,则O 的半径
为( )
A .5
B .8
C .3
D .10 3.已知抛物线221y ax x =+-与x 轴没有交点,那么该抛物线的顶点所在的象限是
( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限 4.已知△ABC ,以AB 为直径作⊙O ,∠C =88°,则点C 在( ) A .⊙O 上
B .⊙O 外
C .⊙O 内 5.若x=2y ,则
x y 的值为( ) A .2 B .1 C .12 D .13
6.下列方程有两个相等的实数根是( )
A .x 2﹣x +3=0
B .x 2﹣3x +2=0
C .x 2﹣2x +1=0
D .x 2﹣4=0
7.如图,小正方形边长均为1,则下列图形中三角形(阴影部分)与△ABC 相似的是
A .
B .
C .
D .
8.已知一组数据共有20个数,前面14个数的平均数是10,后面6个数的平均数是15,则这20个数的平均数是( )
A .23
B .1.15
C .11.5
D .12.5 9.已知⊙O 的半径为4,点P 到圆心O 的距离为4.5,则点P 与⊙O 的位置关系是( ) A .P 在圆内
B .P 在圆上
C .P 在圆外
D .无法确定 10.O 的半径为5,圆心O 到直线l 的距离为3,则直线l 与O 的位置关系是( )
A .相交
B .相切
C .相离
D .无法确定
11.下列说法正确的是( )
A .所有等边三角形都相似
B .有一个角相等的两个等腰三角形相似
C .所有直角三角形都相似
D .所有矩形都相似 12.如图,AB 为O 的直径,C 为O 上一点,弦AD 平分BAC ∠,交BC 于点
E ,6AB =,5AD =,则AE 的长为( )
A .2.5
B .2.8
C .3
D .3.2
二、填空题
13.在泰州市举行的大阅读活动中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽为________cm .(结果保留根号)
14.如图,在Rt △ABC 中,∠ACB=90°,AC=4,BC=3,D 是以点A 为圆心2为半径的圆上一点,连接BD ,M 为BD 的中点,则线段CM 长度的最小值为__________.
15.如图,Rt △ABC 中,∠ACB =90°,AC =BC =4,D 为线段AC 上一动点,连接BD ,过点C 作CH ⊥BD 于H ,连接AH ,则AH 的最小值为_____.
16.一组数据:2,5,3,1,6,则这组数据的中位数是________.
17.一种药品经过两次降价,药价从每盒80元下调至45元,平均每次降价的百分率是__.
18.抛物线228y x x m =++与x 轴只有一个公共点,则m 的值为________.
19.已知3a =4b ≠0,那么a b
=_____. 20.如图,圆形纸片⊙O 半径为2,先在其内剪出一个最大正方形,再在剩余部分剪出 4个最大的小正方形,则 4 个小正方形的面积和为_______.
21.如图,四边形ABCD是⊙O的内接四边形,若∠C=140°,则∠BOD=____°.
22.若一个圆锥的侧面展开图是一个半径为3cm,圆心角为120°的扇形,则该圆锥的底面半径为__________cm.
23.如图,将二次函数y=1
2
(x-2)2+1的图像沿y轴向上平移得到一条新的二次函数图
像,其中A(1,m),B(4,n)平移后对应点分别是A′、B′,若曲线AB所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.
24.如图,二次函数y=x(x﹣3)(0≤x≤3)的图象,记为C1,它与x轴交于点O,A1;将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点
A3;……若P(2020,m)在这个图象连续旋转后的所得图象上,则m=_____.
三、解答题
25.新建马路需要在道路两旁安装路灯、种植树苗.如图,某道路一侧路灯AB在两棵同样高度的树苗CE和DF之间,树苗高2 m,两棵树苗之间的距离CD为16 m,在路灯的照射下,树苗CE的影长CG为1 m,树苗DF的影长DH为3 m,点G、C、B、D、H在一条直线上.求路灯AB的高度.
26.对于代数式ax2+bx+c,若存在实数n,当x=n时,代数式的值也等于n,则称n为这个代数式的不变值.例如:对于代数式x2,当x=0时,代数式等于0;当x=1时,代数式等于1,我们就称0和1都是这个代数式的不变值.在代数式存在不变值时,该代数式的最大不变值与最小不变值的差记作A.特别地,当代数式只有一个不变值时,则A=0.(1)代数式x2﹣2的不变值是,A=.
(2)说明代数式3x2+1没有不变值;
(3)已知代数式x2﹣bx+1,若A=0,求b的值.
27.如图1,矩形OABC的顶点A的坐标为(4,0),O为坐标原点,点B在第一象限,连接AC, tan∠ACO=2,D是BC的中点,
(1)求点D的坐标;
(2)如图2,M是线段OC上的点,OM=2
3
OC,点P是线段OM上的一个动点,经过P、
D、B三点的抛物线交x轴的正半轴于点E,连接DE交AB于点F.
①将△DBF沿DE所在的直线翻折,若点B恰好落在AC上,求此时点P的坐标;
②以线段DF为边,在DF所在直线的右上方作等边△DFG,当动点P从点O运动到点M 时,点G也随之运动,请直接写出点G运动的路径的长.
28.在平面直角坐标系中,已知抛物线经过A(﹣2,0),B(0,﹣2),C(1,0)三点.
(1)求抛物线的解析式;
(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;
(3)若点P是抛物线上的动点,点Q是直线y=﹣x上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
29.如图,已知ABC ∆中,3045ABC ACB ∠=︒∠=︒,,8AB =.求ABC ∆的面积.
30.如图,矩形OABC 中,O 为原点,点A 在y 轴上,点C 在x 轴上,点B 的坐标为(4,3),抛物线238
y x bx c =-++与y 轴交于点A ,与直线AB 交于点D ,与x 轴交于C E ,两点.
(1)求抛物线的表达式;
(2)点P 从点C 出发,在线段CB 上以每秒1个单位长度的速度向点B 运动,与此同
时,点Q 从点A 出发,在线段AC 上以每秒
53
个单位长度的速度向点C 运动,当其中一点到达终点时,另一点也停止运动.连接DP DQ PQ 、、,设运动时间为t (秒). ①当t 为何值时,DPQ ∆得面积最小?
②是否存在某一时刻t ,使DPQ ∆为直角三角形?若存在,直接写出t 的值;若不存在,请说明理由.
31.如图所示,在平面直角坐标系中,顶点为(4,﹣1)的抛物线交y 轴于A 点,交x 轴于B ,C 两点(点B 在点C 的左侧),已知A 点坐标为(0,3).
(1)求此抛物线的解析式;
(2)过点B 作线段AB 的垂线交抛物线于点D ,如果以点C 为圆心的圆与直线BD 相切,请判断抛物线的对称轴与⊙C 有怎样的位置关系,并给出证明.
32.如图,扇形OAB 的半径OA =4,圆心角∠AOB =90°,点C 是弧AB 上异于A 、B 的一点,过点C 作CD ⊥OA 于点D ,作CE ⊥OB 于点E ,连结DE ,过点C 作弧AB 所在圆的切线CG 交OA 的延长线于点G .
(1)求证:∠CGO =∠CDE ;
(2)若∠CGD =60°,求图中阴影部分的面积.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
求出P 点到圆心的距离,即OP 长,与半径长度5作比较即可作出判断.
【详解】
解:∵()8,6P -,
∴228610+= , ∵O 的直径为10,
∴r=5,
∵OP>5,
∴点P 在
O 外. 故选:B.
【点睛】
本题考查点和直线的位置关系,当d>r 时点在圆外,当d=r 时,点在圆上,当d<r 时,点
在圆内,解题关键是根据点到圆心的距离和半径的关系判断.
2.A
解析:A
【解析】
【分析】
作辅助线,连接OA ,根据垂径定理得出AE=BE=4,设圆的半径为r ,再利用勾股定理求解即可.
【详解】
解:如图,连接OA ,
设圆的半径为r ,则OE=r-2,
∵弦AB CD ⊥,
∴AE=BE=4,
由勾股定理得出:()2
2242r r =+-,
解得:r=5,
故答案为:A.
【点睛】
本题考查的知识点主要是垂径定理、勾股定理及其应用问题;解题的关键是作辅助线,灵活运用勾股定理等几何知识点来分析、判断或解答. 3.D
解析:D
【解析】
【分析】
根据题目信息可知当y=0时,20a 21x x =+-,此时0<,可以求出a 的取值范围,从而可以确定抛物线顶点坐标的符号,继而可以确定顶点所在的象限.
【详解】
解:∵抛物线2
y a 21x x =+-与x 轴没有交点, ∴2a 210x x +-=时无实数根;
即,24440b ac a =-=+<,
解得,a 1<-,
又∵2y a 21x x =+-的顶点的横坐标为:2102a a -
=->; 纵坐标为:()414
104a a a a
⨯----=<; 故抛物线的顶点在第四象限.
故答案为:D.
【点睛】
本题考查的知识点是抛物线与坐标轴的交点问题,解题的关键是根据抛物线与x 轴无交点得出2a 210x x +-=时无实数根,再利用根的判别式求解a 的取值范围.
4.B
解析:B
【解析】
【分析】
根据圆周角定理可知当∠C=90°时,点C 在圆上,由由题意∠C =88°,根据三角形外角的性质可知点C 在圆外.
【详解】
解:∵以AB 为直径作⊙O ,
当点C 在圆上时,则∠C=90°
而由题意∠C =88°,根据三角形外角的性质
∴点C 在圆外.
故选:B .
【点睛】
本题考查圆周角定理及三角形外角的性质,掌握直径所对的圆周角是90°是本题的解题关键.
5.A
解析:A
【解析】
【分析】
将x=2y 代入x y
中化简后即可得到答案. 【详解】
将x=2y 代入x y
得: 22x y y y ==,
故选:A.
【点睛】
此题考查代数式代入求值,正确计算即可.
6.C
解析:C
【解析】
【分析】
先根据方程求出△的值,再根据根的判别式的意义判断即可.
【详解】
A、x2﹣x+3=0,
△=(﹣1)2﹣4×1×3=﹣11<0,
所以方程没有实数根,故本选项不符合题意;
B、x2﹣3x+2=0,
△=(﹣3)2﹣4×1×2=1>0,
所以方程有两个不相等的实数根,故本选项不符合题意;
C、x2﹣2x+1=0,
△=(﹣2)2﹣4×1×1=0,
所以方程有两个相等的实数根,故本选项符合题意;
D、x2﹣4=0,
△=02﹣4×1×(﹣4)=16>0,
所以方程有两个不相等的实数根,故本选项不符合题意;
故选:C.
【点睛】
本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.
7.B
解析:B
【解析】
【分析】
根据网格的特点求出三角形的三边,再根据相似三角形的判定定理即可求解.【详解】
已知给出的三角形的各边AB、CB、AC、2
只有选项B的各边为1B.
【点晴】
此题主要考查相似三角形的判定,解题的关键是熟知相似三角形的判定定理. 8.C
解析:C
【解析】
【分析】
由题意可以求出前14个数的和,后6个数的和,进而得到20个数的总和,从而求出20个数的平均数.
【详解】
解:由题意得:(10×14+15×6)÷20=11.5,
故选:C.
【点睛】
此题考查平均数的意义和求法,求出这些数的总和,再除以总个数即可.

9.C
解析:C
【解析】
【分析】
点到圆心的距离大于半径,得到点在圆外.
【详解】
∵点P到圆心O的距离为4.5,⊙O的半径为4,
∴点P在圆外.
故选:C.
【点睛】
此题考查点与圆的位置关系,通过比较点到圆心的距离d的距离与半径r的大小确定点与圆的位置关系.
10.A
解析:A
【解析】
【分析】
根据直线和圆的位置关系可知,圆的半径大于直线到圆距离,则直线l与O的位置关系是相交.
【详解】
∵⊙O的半径为5,圆心O到直线的距离为3,∴直线l与⊙O的位置关系是相交.
故选A.
【点睛】
本题考查了直线和圆的位置关系,直接根据直线和圆的位置关系解答即可.
11.A
解析:A
【解析】
【分析】
根据等边三角形各内角为60°的性质、矩形边长的性质、直角三角形、等腰三角形的性质可以解题.
【详解】
解:A、等边三角形各内角为60°,各边长相等,所以所有的等边三角形均相似,故本选项
正确;
B、一对等腰三角形中,若底角和顶角相等且不等于60°,则该对三角形不相似,故本选项错误;
C、直角三角形中的两个锐角的大小不确定,无法判定三角形相似,故本选项错误;
D、矩形的邻边的关系不确定,所以并不是所有矩形都相似,故本选项错误.
故选:A.
【点睛】
本题考查了等边三角形各内角为60°,各边长相等的性质,考查了等腰三角形底角相等的性质,本题中熟练掌握等边三角形、等腰三角形、直角三角形、矩形的性质是解题的关键.
12.B
解析:B
【解析】
【分析】
连接BD,CD,由勾股定理求出BD的长,再利用ABD BED,得出DE DB
DB AD
=,从而
求出DE的长,最后利用AE AD DE
=-即可得出答案.【详解】
连接BD,CD
∵AB为O的直径
90
ADB
∴∠=︒
2222
6511
BD AB AD
∴=-=-
∵弦AD平分BAC

11
CD BD
∴==
CBD DAB
∴∠=∠
ADB BDE
∠=∠
ABD BED

DE DB
DB AD
∴=
11
5
11
=
解得
11
5
DE=
11
5 2.8
5
AE AD DE
∴=-=-=
故选:B.
【点睛】
本题主要考查圆周角定理的推论及相似三角形的判定及性质,掌握圆周角定理的推论及相似三角形的性质是解题的关键.
二、填空题
13.()
【解析】
设它的宽为xcm.由题意得
.
∴ .
点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之比等于较短部分与较长部分之比,其比值是一个无理数,即,近似值约
解析:(10)
【解析】
设它的宽为x cm.由题意得
:20
x=.

10
x= .
点睛:本题主要考查黄金分割的应用.把一条线段分割为两部分,使其中较长部分与全长之
,近似值约为0.618. 14.【解析】
【分析】
作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.

解析:3 2
【解析】
【分析】
作AB的中点E,连接EM,CE,AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.
【详解】
解:如图,取AB的中点E,连接CE,ME,AD,
∵E是AB的中点,M是BD的中点,AD=2,
∴EM为△BAD的中位线,

11
21
22
EM AD ,
在Rt△ACB中,AC=4,BC=3,
由勾股定理得,AB=2222
435
AC BC
+=+=∵CE为Rt△ACB斜边的中线,

115
5
222 CE AB,
在△CEM中,55
11
22
CM ,即
37
22
CM,
∴CM的最大值为3 2 .
故答案为:3 2 .
【点睛】
本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.
15.2﹣2
【解析】
【分析】
取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=BC=2,根据勾股定理可求AG=2,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,
解析:25﹣2【解析】
【分析】
取BC中点G,连接HG,AG,根据直角三角形的性质可得HG=CG=BG=1
2
BC=2,根据
勾股定理可求AG=25,由三角形的三边关系可得AH≥AG﹣HG,当点H在线段AG上时,可求AH的最小值.
【详解】
解:如图,取BC中点G,连接HG,AG,
∵CH⊥DB,点G是BC中点
∴HG=CG=BG=1
2
BC=2,
在Rt△ACG中,AG22
AC CG
5
在△AHG中,AH≥AG﹣HG,
即当点H在线段AG上时,AH最小值为52,
故答案为:52
【点睛】
本题考查了动点问题,解决本题的关键是熟练掌握直角三角形中勾股定理关系式. 16.3
【解析】【分析】根据中位数的定义进行求解即可得出答案.
【详解】将数据从小到大排列:1,2,3,5,6,
处于最中间的数是3,
∴中位数为3,
故答案为:3.
【点睛】本题考查了中位数的定义,中
解析:3
【解析】【分析】根据中位数的定义进行求解即可得出答案.
【详解】将数据从小到大排列:1,2,3,5,6,
处于最中间的数是3,
∴中位数为3,
故答案为:3.
【点睛】本题考查了中位数的定义,中位数是将一组数据从小到大或从大到小排列,处于最中间(中间两数的平均数)的数即为这组数据的中位数.
17.25%
【解析】
【分析】
设每次降价的百分比为x ,根据前量80,后量45,列出方程,解方程即可得到答案.
【详解】
设每次降价的百分比为x ,

解得:x1=0.25=25%,x2=1.75(不合
解析:25%
【解析】
【分析】
设每次降价的百分比为x ,根据前量80,后量45,列出方程280(1)
45x ,解方程即可
得到答案.
【详解】
设每次降价的百分比为x , 280(1)45x ,
解得:x 1=0.25=25%,x 2=1.75(不合题意舍去)
故答案为:25%.
【点睛】
此题考查一元二次方程的实际应用,正确理解百分率问题,代入公式:前量(1 x )2=后量,即可解答此类问题.
18.8
【解析】
试题分析:由题意可得,即可得到关于m 的方程,解出即可.
由题意得,解得
考点:本题考查的是二次根式的性质
点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;当时,抛物线与x
解析:8
【解析】
试题分析:由题意可得
,即可得到关于m 的方程,解出即可. 由题意得
,解得 考点:本题考查的是二次根式的性质
点评:解答本题的关键是熟练掌握当时,抛物线与x 轴有两个公共点;
当时,抛物线与x轴只有一个公共点;时,抛物线与x轴没有公共点.
19..
【解析】
【分析】
根据等式的基本性质将等式两边都除以3b,即可求出结论.
【详解】
解:两边都除以3b,得
=,
故答案为:.
【点睛】
此题考查的是等式的基本性质,掌握等式的基本性质是解决此
解析:4
3

【解析】
【分析】
根据等式的基本性质将等式两边都除以3b,即可求出结论.【详解】
解:两边都除以3b,得
a b =
4
3

故答案为:4
3

【点睛】
此题考查的是等式的基本性质,掌握等式的基本性质是解决此题的关键.
20.16
【解析】
【分析】
根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据勾股定理求出x值即可得到小正方形的边长,从而算出4 个小正方形的面积和.
【详解】
解:如
解析:16
【解析】
【分析】
根据题意可知四个小正方形的面积相等,构造出直角△OAB,设小正方形的面积为x,根据
勾股定理求出x 值即可得到小正方形的边长,从而算出4 个小正方形的面积和.
【详解】
解:如图,点A 为上面小正方形边的中点,点B 为小正方形与圆的交点,D 为小正方形和大正方形重合边的中点,
由题意可知:四个小正方形全等,且△OCD 为等腰直角三角形,
∵⊙O 半径为 52,根据垂径定理得:
∴OD=CD=522
=5, 设小正方形的边长为x ,则AB=
12x , 则在直角△OAB 中,
OA 2+AB 2=OB 2,
即()()
22215=522x x ⎛⎫++ ⎪⎝⎭, 解得x=2,
∴四个小正方形的面积和=242=16⨯.
故答案为:16.
【点睛】
本题考查了垂径定理、勾股定理、正方形的性质,熟练掌握利用勾股定理解直角三角形是解题的关键.
21.80
【解析】
∵∠A+∠C=180°,
∴∠A=180°−140°=40°,
∴∠BOD=2∠A=80°.
故答案为80.
解析:80
【解析】
∵∠A+∠C=180°,
∴∠A=180°−140°=40°,
∴∠BOD=2∠A=80°.
故答案为80.
22.1
【解析】
【分析】
(1)根据,求出扇形弧长,即圆锥底面周长;
(2)根据,即,求圆锥底面半径.
【详解】
该圆锥的底面半径=
故答案为:1.
【点睛】
圆锥的侧面展开图是扇形,解题关键是理解扇
解析:1
【解析】
【分析】
(1)根据180
n R l π=,求出扇形弧长,即圆锥底面周长; (2)根据2C r π=,即2C r π=
,求圆锥底面半径. 【详解】
该圆锥的底面半径=
()1203=11802cm ππ
⋅⋅ 故答案为:1.
【点睛】 圆锥的侧面展开图是扇形,解题关键是理解扇形弧长就是圆锥底面周长.
23.y=0.5(x-2)+5
【解析】
解:∵函数y=(x ﹣2)2+1的图象过点A (1,m ),B (4,n ),∴m=(1﹣2)2+1=1,n=(4﹣2)2+1=3,∴A(1,1),B (4,3),过A 作AC
解析:y=0.5(x-2)2+5
【解析】
解:∵函数y =12
(x ﹣2)2+1的图象过点A (1,m ),B (4,n ),∴m =
12(1﹣2)2+1=112,n =12(4﹣2)2+1=3,∴A (1,112),B (4,3),过A 作AC ∥x 轴,交B ′B 的延长线于点C ,则
C (4,112
),∴AC =4﹣1=3.∵曲线段AB 扫过的面积为12(图中的阴影部
分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=1
2
(x﹣2)2+1的图象沿y轴向上平移4
个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=1
2
(x﹣2)2+5.故答案
为y=0.5(x﹣2)2+5.
点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.
24.【解析】
【分析】
x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=
A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然
解析:【解析】
【分析】
x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然后计算自变量为2020对应的函数值即可.
【详解】
当y=0时,x(x﹣3)=0,解得x1=0,x2=3,则A1(3,0),
∵将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;……
∴OA1=A1A2=A2A3=…=A673A674=3,
∴抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),
把P(2020,m)代入得m=﹣(2020﹣2019)(2020﹣2022)=2.
故答案为2.
【点睛】
本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.
三、解答题
25.m
【解析】
【分析】
设BC的长度为x,根据题意得出△GCE∽△GBA,△HDF∽△HBA,进而利用相似三角形的性质列出关于x的方程.
【详解】
解:设BC的长度为x m
由题意可知CE∥AB∥DF
∵CE∥AB
∴△GCE∽△GBA,△HDF∽△HBA
∴GC CE
GB AB
=,即
1
1x
+

2
AB
HD HB =
FD
AB
,即()
3
316x
+-

2
AB

1
1x
+
=()
3
316x
+-
∴x=4
∴AB=10
答:路灯AB的高度为10 m.
【点睛】
此题主要考查了相似三角形的应用,得出△GCE∽△GBA,△HDF∽△HBA是解题关键.26.(1)﹣1和2;3;(2)见解析;(3)﹣3或1
【解析】
【分析】
(1)根据不变值的定义可得出关于x的一元二次方程,解之即可求出x的值,再做差后可求出A的值;
(2)由方程的系数结合根的判别式可得出方程3x2﹣x+1=0没有实数根,进而可得出代数式3x2+1没有不变值;
(3)由A=0可得出方程x2﹣(b+1)x+1=0有两个相等的实数根,进而可得出△=0,解之即可得出结论.
【详解】
解:(1)依题意,得:x2﹣2=x,
即x2﹣x﹣2=0,
解得:x1=﹣1,x2=2,
∴A=2﹣(﹣1)=3.
故答案为﹣1和2;3.
(2)依题意,得:3x2 +1=x,
∴3x2﹣x+1=0,
∵△=(﹣1)2﹣4×3×1=﹣11<0,
∴该方程无解,即代数式3x2+1没有不变值.
(3)依题意,得:方程x2﹣bx+1= x即x2﹣(b+1)x+1=0有两个相等的实数根,
∴△=[﹣(b+1)]2﹣4×1×1=0,
∴b1=﹣3,b2=1.
答:b的值为﹣3或1.
【点睛】
本题考查了一元二次方程的应用以及根的判别式,根据不变值的定义,求出一元二次方程的解是解题的关键.
27.(1)D(2,2);(2)①P(0,0);②1 3
【解析】
【分析】
(1)根据三角函数求出OC的长度,再根据中点的性质求出CD的长度,即可求出D点的坐标;
(2)①证明在该种情况下DE为△ABC的中位线,由此可得F为AB的中点,结合三角形全等即可求得E点坐标,结合二次函数的性质可设二次函数表达式(此表达式为交点式的变形,利用了二次函数的平移的特点),将E点代入即可求得二次函数的表达式,根据表达式的特征可知P点坐标;
②可得G点的运动轨迹为'
GG,证明△DFF'≌△FGG',可得GG'=FF',求得P点运动到M 点时的解析式即可求出F'的坐标,结合①可求得FF'即GG'的长度.
【详解】
解:(1)∵四边形OABC为矩形,
∴BC=OA=4,∠AOC=90°,
∵在Rt△ACO中,tan∠ACO=OA
OC
=2,
∴OC=2,
又∵D为CB中点,∴CD=2,
∴D(2,2);
(2)①如下图所示,
若点B恰好落在AC上的'B时,根据折叠的性质
1
'','
2
BDF B DF BDB BD B D ∠=∠=∠=,
∵D为BC的中点,∴CD=BD,
∴'CD
B D =,
∴1''2
BCA DB C BDB ∠=∠=
∠, ∴BCA BDF ∠=∠, ∴//DF AC ,DF 为△ABC 的中位线,
∴AF=BF,
∵四边形ABCD 为矩形
∴∠ABC=∠BAE=90° 在△BDF 和△AEF 中,
∵ABC BAE BF AF BFD AFE ∠=∠⎧⎪=⎨⎪∠=∠⎩ ∴△BDF ≌△AEF ,
∴AE=BD=2,
∴E(6,0),
设(2)(4)2y
a x x ,将E (6,0)带入,8a+2=0 ∴a=14
-,则二次函数解析式为21342y x x =-+,此时P (0,0); ②如图,当动点P 从点O 运动到点M 时,点F 运动到点F',点G 也随之运动到G'.连接GG'.当点P 向点M 运动时,抛物线开口变大,F 点向上线性移动,所以G 也是线性移动.
∵OM=23OC=43
∴4
(0,)3M ,
当P 点运动到M 点时,设此时二次函数表达式为1(2)(4)2y
a x x ,将4(0,)3M 代入得14823a ,解得1
112a ,所以抛物线解析式为1(2)(4)212y x x ,整理得21141223y x x =-
++.
当y=0时,211401223
x x -
++=,解得x=8(已舍去负值), 所以此时(8,0)E , 设此时直线'DF 的解析式为y=kx+b ,
将D (2,2),E (8,0)代入2208k b k b =+⎧⎨=+⎩解得1383k b ⎧=-⎪⎪⎨⎪=⎪⎩
, 所以1833
y x =-+, 当x=4时,43y =,所以4'3AF =, 由①得112
AF AB ==, 所以1''3FF AF AF =-=
, ∵△DFG 、△DF'G'为等边三角形,
∴∠GDF =∠G'DF'=60°,DG =DF ,DG'=DF',
∴∠GDF ﹣∠GDF'=∠G'DF'﹣∠GDF',
即∠G'DG =∠F'DF ,
在△DFF'与△FGG'中,
''''DF DG F DF G DG DF DG =⎧⎪∠=∠⎨⎪=⎩

∴△DFF'≌△FGG'(SAS ),
∴GG'=FF',
即G 运动路径的长为
13
. 【点睛】
本题考查二次函数综合,解直角三角形,全等三角形的性质与判定,三角形中位线定理,一次函数的应用,折叠问题.(1)中能根据正切求得OC 的长度是解决此问的关键;(2)①熟练掌握折叠前后对应边相等,对应角相等是解题关键;②中能通过分析得出G 点的运动轨迹为线段GG',它的长度等于FF',是解题关键.
28.(1)y =x 2+x ﹣2;(2)S =﹣m 2﹣2m (﹣2<m <0),S 的最大值为1;(3)点Q 坐标为:(﹣2,2)或(﹣
1
或(﹣1
)或(2,﹣2).
【解析】
【分析】
(1)设此抛物线的函数解析式为:y =ax 2+bx+c ,将A ,B ,C 三点代入y =ax 2+bx+c ,列方程组求出a 、b 、c 的值即可得答案;
(2)如图1,过点M作y轴的平行线交AB于点D,M点的横坐标为m,且点M在第三象限的抛物线上,设M点的坐标为(m,m2+m﹣2),﹣2<m<0,由A、B坐标可求出直线AB的解析式为y=﹣x﹣2,则点D的坐标为(m,﹣m﹣2),即可求出MD的长度,进一步求出△MAB的面积S关于m的函数关系式,根据二次函数的性质即可求出其最大值;(3)设P(x,x2+x﹣2),分情况讨论,①当OB为边时,根据平行四边形的性质知
PQ∥OB,且PQ=OB,则Q(x,﹣x),可列出关于x的方程,即可求出点Q的坐标;②当BO为对角线时,OQ∥BP,A与P应该重合,OP=2,四边形PBQO为平行四边形,则BQ=OP=2,Q横坐标为2,即可写出点Q的坐标.
【详解】
(1)设此抛物线的函数解析式为:y=ax2+bx+c,
将A(﹣2,0),B(0,﹣2),C(1,0)三点代入,得
420
2
a b c
c
a b c
-+=


=-

⎪++=


解得:
1
1
2 a
b
c
=


=

⎪=-


∴此函数解析式为:y=x2+x﹣2.
(2)如图,过点M作y轴的平行线交AB于点D,
∵M点的横坐标为m,且点M在第三象限的抛物线上,∴设M点的坐标为(m,m2+m﹣2),﹣2<m<0,
设直线AB的解析式为y=kx﹣2,
把A(﹣2,0)代入得,-2k-2=0,
解得:k=﹣1,
∴直线AB的解析式为y=﹣x﹣2,
∵MD∥y轴,
∴点D的坐标为(m,﹣m﹣2),
∴MD=﹣m﹣2﹣(m2+m﹣2)=﹣m2﹣2m,
∴S△MAB=S△MDA+S△MDB
=1
2 MD•OA
=1
2
×2(m2﹣2m)
=﹣m2﹣2m
=﹣(m+1)2+1,
∵﹣2<m<0,
∴当m=﹣1时,S△MAB有最大值1,
综上所述,S关于m的函数关系式是S=﹣m2﹣2m(﹣2<m<0),S的最大值为1.(3)设P(x,x2+x﹣2),
①如图,当OB为边时,根据平行四边形的性质知PQ∥OB,且PQ=OB,
∴Q的横坐标等于P的横坐标,
∵直线的解析式为y=﹣x,
则Q(x,﹣x),
由PQ=OB,得|﹣x﹣(x2+x﹣2)|=2,
即|﹣x2﹣2x+2|=2,
当﹣x2﹣2x+2=2时,x1=0(不合题意,舍去),x2=﹣2,
∴Q(﹣2,2),
当﹣x2﹣2x+2=﹣2时,x1=﹣1+5,x2=﹣1﹣5,
∴Q(﹣1+5,1﹣5)或(﹣1﹣5,1+5),
②如图,当BO为对角线时,OQ∥BP,
∵直线AB的解析式为y=-x-2,直线OQ的解析式为y=-x,
∴A与P重合,OP=2,四边形PBQO为平行四边形,
∴BQ =OP =2,点Q 的横坐标为2,
把x=2代入y =﹣x 得y=-2, ∴Q (2,﹣2),
综上所述,点Q 的坐标为(﹣2,2)或(﹣515155(2,﹣2).
【点睛】
本题是对二次函数的综合考查,有待定系数法求二次函数解析式,三角形的面积,二次函数的最值问题,平行四边形的对边相等的性质,平面直角坐标系中两点间的距离的表示,熟练掌握二次函数的性质把运用分类讨论的思想是解题关键.
29.8+83【解析】
【分析】
过点A 作AD ⊥BC ,垂足为点D ,构造直角三角形,利用三角函数值分别求出AD 、BD 、CD 的值即可求三角形面积.
【详解】
解:过点A 作AD ⊥BC ,垂足为点D , 在Rt △ADB 中,∵sin AD ABC AB ∠=
, ∴sin AD AB ABC =⋅∠= 1842⨯
= ∵cos BD ABC AB
∠=, ∴3cos 8432BD AB ABC =⋅∠=⨯
=在Rt △ADC 中,∵45ACB ︒∠=,
∴45CAD ︒∠=,
∴AD =DC =4

111()(443)4883222
ABC S BC AD BD CD AD ∆=⋅=+⋅=⨯+⨯=+
【点睛】
本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.
30.(1)233384y x x =-
++;(2)① 32t =;②123453172417145,3,,,2617t t t t t -===== 【解析】
【分析】
(1)根据点B 的坐标可得出点A ,C 的坐标,代入抛物线解析式即可求出b ,c 的值,求得抛物线的解析式;
(2)①过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,推出△QFA ∽△CBA ,
△CGP ∽△CBA ,用含t 的式子表示OF ,PG ,将三角形的面积用含t 的式子表示出来,结合二次函数的性质可求出最值;②由于三角形直角的位置不确定,需分情况讨论,根据点的坐标,再结合两点间的距离公式用勾股定理求解即可.
【详解】
解:(1)由题意知:A (0,3),C (4,0),
∵抛物线经过A 、B 两点,
∴3316408
c b c =⎧⎪⎨-⨯++=⎪⎩,解得,343b c ⎧=⎪⎨⎪=⎩, ∴抛物线的表达式为:233384
y x x =-++. (2)① ∵四边形ABCD 是矩形,
∴∠B =90O , ∴AC 2=AB 2+BC 2=5;
由2333384
x x -++=,可得120,2x x ==,∴D (2,3). 过点Q 、P 作QF ⊥AB 、PG ⊥AC ,垂足分别为F 、G ,
∵∠FAQ =∠BAC , ∠QFA =∠CBA ,
∴△QFA ∽△CBA .
∴AQ QF AC BC
=, ∴5335AQ QF BC t t AC =
⋅=⋅=.
同理:△CGP ∽△CBA , ∴PG CP AB AB =∴CP PG AB AB =⋅,∴45PG t =, 1154162(5)2(3)22352
DPQ ABC QAD PQC PBD S S S S S t t t t ∆∆∆∆∆=---=-⨯⨯-⨯-⨯-⨯⨯-222229323323(3)3()3342322
t t t t t =-+=-+-+=-+ 当32t =时,△DPQ 的面积最小.最小值为32
. ② 由图像可知点D 的坐标为(2,3),AC=5,直线AC 的解析式为:3y 34x =-
+. 三角形直角的位置不确定,需分情况讨论:
当DPG 90∠=︒时,根据勾股定理可得出:
()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-+-++-=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
, 整理,解方程即可得解;
当DGP 90∠=︒时,可知点G 运动到点B 的位置,点P 运动到C 的位置,所需时间为t=3;
当PDG 90∠=︒时,同理用勾股定理得出:
()()22222255552t 3t 3434233434t t t t ⎛⎫⎛⎫⎛⎫⎛⎫-++-=-++-+-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
; 整理求解可得t 的值.
由此可得出t 的值为:132t =,23t =,3176t =,42417t =,517145t -=.
【点睛】
本题考查的知识点是二次函数与几何图形的动点问题,掌握二次函数图象的性质是解此题的关键.
31.(1)21234
y x x =
-+;(2)相交,证明见解析 【解析】
【分析】
(1)已知抛物线的顶点坐标,可用顶点式设抛物线的解析式,然后将A 点坐标代入其中,即可求出此二次函数的解析式;。

相关文档
最新文档