[推荐学习]2019年高考数学 25个必考点 专题22 圆锥曲线的统一定义检测

合集下载

圆锥曲线的统一定义

圆锥曲线的统一定义

圆锥曲线的统一定义圆锥曲线的统一定义:1. 什么是圆锥曲线:圆锥曲线是指满足特定条件的曲线,它利用三角函数与立体几何图形结合生成。

简言之,当一条曲线贯穿一个圆孤和一个平面,并在圆上和平面上满足有关关系时,它就是圆锥曲线。

2. 圆锥曲线的数学特征:圆锥曲线是一种曲线,它满足特定的约束关系,可以由方程组表示:r=z/cosθ或r=1/sinθ。

其中,r为曲线上任意点到圆锥的拱顶的距离,z为曲线上任意点到圆锥的中心的距离,θ为曲线上任意点到拱顶的夹角。

3. 圆锥曲线的物理应用:圆锥曲线是多方面用途,在工程应用中有着重要地位,主要是因为圆锥曲线可用来表示周向和纵向的形变,它们也经常用于航空、船舶和汽车的设计。

例如,它可以用来表示飞机机翼的形状。

4. 圆锥曲线的构成:圆锥曲线由一个圆锥和一个平面构成,所以它也常被称为圆锥-平面曲线,是指当一条曲线贯穿一个圆锥和一个平面,并在圆锥上和平面上满足有关关系(且这两个关系上的函数要满足l次可积方程)时,它就称为圆锥曲线。

5. 相关几何定义:圆锥曲线通过以下几何定义确定:它可以由一个圆柱体和一个平面构成,其中圆柱体由一条等流线和一条垂直于它的矢量组成,平面由它的法线矢量和一条曲线组成。

该曲线(椭圆或双曲线)的一条切线扫描等流线,而另一条切线与平面的法线构成的平面垂直;这两条切线将圆柱体分成两个由圆盘和一段圆锥组成的元件。

6. 解析表达式:可以使用两个方程描述圆锥曲线:r=z/cosθ或r=1/sinθ,其中,r为曲线上任意点到圆锥的拱顶的距离;z为曲线上任意点到圆锥的中心的距离;θ为曲线上任意点到拱顶的夹角。

结合几何定义及数学特征,可以更容易地理解两个方程。

圆锥曲线知识点

圆锥曲线知识点

圆锥曲线知识点知识点一:圆锥曲线的统一定义椭圆、双曲线、抛物线统称圆锥曲线。

平面内,到一定点的距离与它到一条定直线(不经过定点)的距离之比是常数e的点的轨迹叫做圆锥曲线。

定点叫做焦点,定直线叫做准线、常数叫做离心率。

①e∈(0,1)时轨迹是椭圆;②e=1时轨迹是抛物线;③e∈(1,+∞)时轨迹是双曲线。

知识点二:圆锥曲线的标准方程和几何性质1.椭圆:(1)定义:平面内到两个定点F1、F2的距离之和等于常数(大于|F1F2|)的点的轨迹叫椭圆,这两个定点叫焦点.(2)标准方程当焦点在轴上时,椭圆的标准方程:,其中;当焦点在轴上时,椭圆的标准方程:,其中;(3)椭圆的的简单几何性质:范围:,,焦点,顶点、,长轴长= ,短轴长= ,焦距=,2.双曲线(1)定义:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线,这两个定点叫双曲线的焦点.(2)标准方程当焦点在轴上时,双曲线的标准方程:,其中;当焦点在轴上时,双曲线的标准方程:,其中 .(3)双曲线的简单几何性质范围:,;焦点,顶点,实轴长= ,虚轴长= ,焦距=;离心率是,准线方程是;渐近线: .3.抛物线(1)定义:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线.(2)标准方程四种形式:,,,。

(3)抛物线标准方程的几何性质范围:,,对称性:关于x轴对称顶点:坐标原点离心率: .知识点三:直线和圆锥曲线的位置关系1.直线Ax+By+C=0和椭圆的位置关系:将直线方程代入椭圆后化简为一元二次方程,其判别式为Δ。

(1)若Δ>0,则直线和椭圆相交,有两个交点(或两个公共点);(2)若Δ=0,则直线和椭圆相切,有一个切点(或一个公共点);(3)若Δ<0,则直线和椭圆相离,无公共点.2.直线Ax+By+C=0和双曲线的位置关系:将直线方程代入双曲线方程后化简方程①若为一元一次方程,则直线和双曲线的渐近线平行,直线和双曲线只有一个交点,但不相切不是切点;②若为一元二次方程,则(1)若Δ>0,则直线和双曲线相交,有两个交点(或两个公共点);(2)若Δ=0,则直线和双曲线相切,有一个切点;(3)若Δ<0,则直线和双曲线相离,无公共点.注意:如说直线和双曲线有一个公共点,则要考虑两种情况:一个切点和一个交点3.直线Ax+By+C=0和抛物线y2=2px(p>0)的位置关系:将直线方程代入抛物线方程后化简后方程:①若为一元一次方程,则直线和抛物线的对称轴平行,直线和抛物线有一个交点,但不相切不是切点;②若为一元二次方程,则(1)若Δ>0,则直线和抛物线相交,有两个交点(或两个公共点);(2)若Δ=0,则直线和抛物线相切,有一个切点;(3)若Δ<0,则直线和抛物线相离,无公共点。

高三数学圆锥曲线详细知识点

高三数学圆锥曲线详细知识点

高三数学圆锥曲线详细知识点在高中数学中,圆锥曲线是一个重要的学习内容。

它包括了椭圆、双曲线和抛物线三个部分。

这些曲线在数学和物理学中都有广泛的应用,因此掌握圆锥曲线的知识对于学生来说非常重要。

1. 椭圆椭圆是圆锥曲线中的一种,它由一个动点P和两个定点F1和F2确定。

椭圆的定义是动点P到两个定点F1和F2的距离之和等于常数2a,即PF1 + PF2 = 2a。

这个常数2a称为椭圆的长轴长度。

椭圆的形状由参数e = PF1 / 2a来确定,其中e称为离心率。

当e=0时,椭圆退化成一个圆。

椭圆有许多重要性质和公式,比如它的离心率范围是0<e<1,长轴和短轴的长度之间有关系a^2 = b^2(1 - e^2)。

此外,椭圆还有焦点、准线、主轴等概念,对于理解椭圆的性质和应用非常有帮助。

2. 双曲线双曲线是圆锥曲线中的另一种形式。

它由一个动点P和两个定点F1和F2确定,类似于椭圆。

但不同的是,双曲线的定义是动点P到两个定点F1和F2的距离之差的绝对值等于常数2a,即|PF1 - PF2| = 2a。

与椭圆不同的是,双曲线的离心率e>1,因此它的形状更加扁平。

双曲线也有许多重要的性质和公式。

比如,它的离心率范围是e>1,焦点与曲线的准线之间的距离等于常数2a。

双曲线还有渐近线,指的是双曲线两个分支无限远处趋于平行的直线。

3. 抛物线抛物线是圆锥曲线中的第三种形式。

它由一个定点F和一条直线l确定,定点F称为焦点,直线l称为准线。

抛物线的定义是动点P到焦点F的距离等于点P到直线l的距离,即PF = PD。

抛物线的形状是开口向上或向下的U形曲线。

抛物线也有许多特殊的性质和公式。

比如,抛物线的焦半径等于准线与焦点之间的垂直距离,焦半径的长度等于焦距的两倍。

抛物线还有焦平面和直径等概念,对于解决实际问题非常有帮助。

总结:在高三数学中,圆锥曲线是一个重要的学习内容。

它包括了椭圆、双曲线和抛物线三个部分。

高三圆锥曲线知识点总结

高三圆锥曲线知识点总结

高三圆锥曲线知识点总结高三是学生们备战高考的关键一年,其中数学是许多学生感到困惑和挑战的一门学科。

在数学学习中,圆锥曲线是一个重要的知识点。

本文将对高三圆锥曲线的知识点进行总结和归纳,帮助学生们更好地理解和应用这一部分内容。

一、圆锥曲线的定义和基本性质圆锥曲线是由一个平面与一个圆锥相交而产生的曲线。

常见的圆锥曲线包括椭圆、双曲线和抛物线。

圆锥曲线具有许多重要的性质,例如,椭圆和双曲线是有界的,抛物线是无界的。

此外,每个圆锥曲线都有两个对称轴,并且具有焦点和准线等重要特征。

二、椭圆的性质和方程椭圆是圆锥曲线中最常见的形式之一。

椭圆的定义是平面上到两个给定点(焦点)的距离之和等于常数的点的集合。

椭圆有许多有趣的性质,例如,长轴和短轴的长度相等,焦点到曲线上任意一点的距离之和等于常数,以及椭圆对称于两个轴等。

椭圆的标准方程为(x-h)²/a² + (y-k)²/b² = 1,其中(h,k)是椭圆的中心,a和b分别是长轴和短轴的长度。

三、双曲线的性质和方程双曲线是圆锥曲线中另一种常见的形式。

与椭圆不同,双曲线的定义是平面上到两个给定点(焦点)的距离之差等于常数的点的集合。

双曲线也具有许多有趣的性质,例如,焦点到曲线上任意一点的距离之差等于常数,以及双曲线有两条渐近线等。

双曲线的标准方程为(x-h)²/a² - (y-k)²/b² = 1或(x-h)²/a² - (y-k)²/b² = -1,其中(h,k)是双曲线的中心,a和b分别是距离差和水平距离的一半。

四、抛物线的性质和方程抛物线是圆锥曲线中另一种重要的形式。

抛物线的定义是平面上到一个给定点(焦点)和一条给定直线(准线)的距离相等的点的集合。

抛物线具有许多有趣的性质,如对称性、焦距等于准线到抛物线顶点的垂直距离的两倍,并且焦点到曲线上任意一点的距离等于焦准距的一半。

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。

通过对这些曲线的研究,我们可以更深入地理解数学的美妙之处。

本文将对高中数学中与圆锥曲线相关的知识点进行总结,包括基本概念、方程及性质等,帮助您更好地掌握这一部分的知识。

椭圆椭圆是圆锥曲线中的一种,它是平面上到两个定点F1和F2的距离之和为常数2a的点的轨迹。

这两个定点称为椭圆的焦点,而常数2a称为椭圆的长轴。

椭圆的标准方程为(x-h)²/a²+(y-k)²/b²=1,其中(h,k)为椭圆的中心坐标。

椭圆的性质包括离心率、焦距、焦点坐标等。

双曲线双曲线也是圆锥曲线中的一种,它是平面上到两个定点F1和F2的距离之差为常数2a的点的轨迹。

这两个定点称为双曲线的焦点,而常数2a称为双曲线的距离差。

双曲线的标准方程为(x-h)²/a²-(y-k)²/b²=1,其中(h,k)为双曲线的中心坐标。

双曲线的性质包括离心率、焦距、渐近线等。

抛物线抛物线是圆锥曲线中的一种,它是平面上到一个定点F的距离与该点到直线l的距离相等的点的轨迹。

抛物线的标准方程为y²=4ax,其中a为抛物线的焦点到顶点的距离。

抛物线的性质包括焦点、准线、顶点、对称轴等。

圆锥曲线的运用圆锥曲线不仅在数学中有重要应用,还广泛应用于物理、工程等领域。

例如,在天文学中,行星的运动轨迹可以用椭圆描述;在天体力学中,行星对星球的引力也可以通过椭圆来计算。

此外,圆锥曲线还被应用于天线的设计、椭圆轨道的卫星发射等工程领域。

由于圆锥曲线具有独特的性质,对于解决一些实际问题具有重要意义。

总结通过对高中数学圆锥曲线的知识点的总结,我们了解到椭圆、双曲线和抛物线的基本概念、方程及性质。

这些知识点不仅具有学科内部的联系,还与实际应用息息相关。

掌握这些知识,有助于我们更好地理解数学的美妙之处,同时也为未来的学习和工作奠定了坚实的基础。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线,是由平面上一个动点到两个定点的距离之比为定值的点的轨迹。

圆锥曲线是解析几何的重要内容,广泛应用于数学、物理、工程等领域。

本文将对圆锥曲线的相关知识进行总结,帮助读者更好地理解和掌握这一概念。

一、基本概念1. 定义:圆锥曲线是平面上一个动点到两个定点的距离之比为定值的点的轨迹。

2. 定点:圆锥曲线的两个定点分别称为焦点。

3. 对称轴:通过两个焦点并垂直于准线的直线称为对称轴。

4. 准线:通过两个焦点的直线段称为准线。

二、椭圆1. 定义:椭圆是圆锥曲线的一种,其离心率小于1,且焦点不重合的曲线。

2. 方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。

3. 性质:椭圆具有对称性、渐近线和切线性质等。

4. 应用:椭圆在天文学、建筑学和电子等领域应用广泛。

三、双曲线1. 定义:双曲线是圆锥曲线的一种,其离心率大于1的曲线。

2. 方程:双曲线的标准方程为x^2/a^2 - y^2/b^2 = 1,其中a和b分别是双曲线的半长轴和半短轴。

3. 性质:双曲线具有渐近线和切线性质,且有两个分支。

4. 应用:双曲线在物理学、天文学和通信等领域有重要应用。

四、抛物线1. 定义:抛物线是圆锥曲线的一种,其离心率等于1的曲线。

2. 方程:抛物线的标准方程为y^2 = 4ax,其中a是抛物线的焦点到准线的距离。

3. 性质:抛物线具有对称性、渐近线和切线性质等。

4. 应用:抛物线在物理学、工程学和天文学等领域有广泛应用。

五、圆1. 定义:圆是圆锥曲线的一种,其离心率等于0的曲线。

2. 方程:圆的标准方程为(x-h)^2 + (y-k)^2 = r^2,其中(h, k)是圆心的坐标,r是半径长度。

3. 性质:圆具有对称性、切线性质和切圆定理等。

4. 应用:圆在几何学、物理学和工程学等领域有广泛应用。

总结:圆锥曲线是解析几何的重要内容,包括椭圆、双曲线、抛物线和圆。

高中数学圆锥曲线知识点

高中数学圆锥曲线知识点

高中数学知识点—圆锥曲线部分一、平面解析几何的知识结构:二、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。

用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。

其中定点叫焦点,定直线叫准线,常数e 是离心率。

用集合表示为:;e 越小,椭圆越圆;e 越大,椭圆越扁(2)标准方程和性质:①范围:由标准方程知,,说明椭圆位于直线,22221x y a b+=||x a ≤||y b ≤x a =±所围成的矩形里;y b =±②对称性:在曲线方程里,若以代替方程不变,所以若点在曲线上时,点y -y (,)x y 也在曲线上,所以曲线关于轴对称,同理,以代替方程不变,则曲线关于(,)x y -x x -x 轴对称。

若同时以代替,代替方程也不变,则曲线关于原点对称。

y x -x y -y 所以,椭圆关于轴、轴和原点对称。

这时,坐标轴是椭圆的对称轴,原点是对称中心,x y 椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与轴、轴的交点坐标。

在椭x y 圆的标准方程中,令,得,则,是椭圆与轴的两个交点。

0x =y b =±1(0,)B b -2(0,)B b y 同理令得,即,是椭圆与轴的两个交点。

0y =x a =±1(,0)A a -2(,0)A a x 所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。

同时,线段、分别叫做椭圆的长轴和短轴,它们的长分别为和,和21A A 21B B 2a 2b a 分别叫做椭圆的长半轴长和短半轴长。

b 由椭圆的对称性知:椭圆的短轴端点到焦点的距离为;在中,,a 22Rt OB F ∆2||OBb =,,且,即;2||OF c =22||B F a =2222222||||||OF B F OB =-222c a b =-④离心率:椭圆的焦距与长轴的比叫椭圆的离心率。

高考圆锥曲线知识点梳理

高考圆锥曲线知识点梳理

高考数学圆锥曲线部分知识点梳理二、圆锥曲线的统一定义:平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l的距离之比是一个常数e(e>0),则动点的轨迹叫做圆锥曲线。

其中定点F(c,0)称为焦点,定直线l称为准线,正常数e称为离心率。

当0<e<1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e>1时,轨迹为双曲线。

三、椭圆、双曲线、抛物线:椭圆双曲线抛物线定义1.到两定点F1,F2的距离之和为定值2a(2a>|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(0<e<1)1.到两定点F1,F2的距离之差的绝对值为定值2a(0<2a<|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(e>1)与定点和直线的距离相等的点的轨迹.轨迹条件点集:({M||MF1+|MF2|=2a,|F 1F2|<2a=点集:{M||MF1|-|MF2|.=±2a,|F2F2|>2a}.点集{M||MF|=点M到直线l的距离}.图形方程标准方程12222=+byax(ba>>0) 12222=-byax(a>0,b>0) pxy22=范围─a≤x≤a,─b≤y≤b |x| ≥ a,y∈R x≥0中心原点O(0,0)原点O(0,0)顶点(a,0), (─a,0), (0,b) ,(0,─b)(a,0), (─a,0) (0,0) 对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a, 虚轴长2b.x轴焦点F1(c,0), F2(─c,0) F1(c,0), F2(─c,0) )0,2(pF准 线x=±ca 2准线垂直于长轴,且在椭圆外.x=±ca 2准线垂直于实轴,且在两顶点的内侧.x=-2p准线与焦点位于顶点两侧,且到顶点的距离相等.焦距2c (c=22b a -) 2c (c=22b a +)离心率)10(<<=e ace )1(>=e ace e=1【备注1】双曲线:⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e .⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.λ=-2222b y a x 与λ-=-2222by a x 互为共轭双曲线,它们具有共同的渐近线:02222=-by ax .⑸共渐近线的双曲线系方程:)0(2222≠=-λλb y a x 的渐近线方程为02222=-b y a x 如果双曲线的渐近线为0=±bya x 时,它的双曲线方程可设为)0(2222≠=-λλby ax .【备注2】抛物线: (1)抛物线2y =2px(p>0)的焦点坐标是(2p ,0),准线方程x=-2p ,开口向右;抛物线2y =-2px(p>0)的焦点坐标是(-2p ,0),准线方程x=2p ,开口向左;抛物线2x =2py(p>0)的焦点坐标是(0,2p ),准线方程y=-2p ,开口向上;抛物线2x =-2py (p>0)的焦点坐标是(0,-2p ),准线方程y=2p,开口向下.(2)抛物线2y =2px(p>0)上的点M(x0,y0)与焦点F 的距离20p x MF +=;抛物线2y =-2px(p>0)上的点M(x0,y0)与焦点F 的距离02x pMF -=(3)设抛物线的标准方程为2y =2px(p>0),则抛物线的焦点到其顶点的距离为2p ,顶点到准线的距离2p ,焦点到准线的距离为p.(4)已知过抛物线2y =2px(p>0)焦点的直线交抛物线于A 、B 两点,则线段AB 称为焦点弦,设A(x1,y1),B(x2,y2),则弦长AB =21x x ++p 或α2sin 2pAB =(α为直线AB 的倾斜角),221p y y -=,2,41221px AF p x x +==(AF 叫做焦半径)d四、常用结论:1.椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点三角形的面积为122tan2F PFS b γ∆=. 且γcos 12221+=b PF PF2.设P 点是双曲线22221x y a b-=(a >0,b >0)上异于实轴端点的任一点,F 1、F 2为其焦点,记12F PF θ∠=,则(1)2122||||1cos b PF PF θ=-.(2).2cot221θb S FPF =∆3.)0(22≠=p px y 则焦点半径2P x PF +=;)0(22≠=p py x 则焦点半径为2P y PF +=.4. 通径为2p ,这是过焦点的所有弦中最短的.px y 22=px y 22-=py x 22= py x 22-=图形▲yxO▲yxO▲yxO▲yxO焦点 )0,2(pF )0,2(p F -)2,0(p F )2,0(p F - 准线 2p x -= 2p x = 2p y -= 2p y =范围 R y x ∈≥,0 R y x ∈≤,0 0,≥∈y R x 0,≤∈y R x对称轴 x 轴y 轴顶点 (0,0)离心率 1=e焦半径 12x pPF +=12x pPF +=12y pPF +=12y pPF +=。

高中数学圆锥曲线知识点

高中数学圆锥曲线知识点

高中数学圆锥曲线知识点
圆锥曲线,渗透到平面解析几何的各个部分,是解决解析几何问题的重要工具之一,更是高考必考内容之一。

对于高中数学的学习,圆锥曲线是一大难点,也是一大重点,归纳结论和解题技巧对学生来说都是十分重要,事实上,运用解析法解决几何问题是一种解决问题的思路,为了体现这种思路,必须出现一些用传统几何方法无法解决或者很难解决的问题,而圆锥曲线就是最好的载体了——简单的方程和很多时候方便出题的性质。

圆锥曲线知识点总结_高三数学知识点总结

圆锥曲线知识点总结_高三数学知识点总结

圆锥曲线知识点总结_高三数学知识点总结圆锥曲线是高中数学的重要知识点,主要包括圆锥曲线的定义、性质、方程和参数方程、焦点、直线和曲线的位置关系等内容。

下面对圆锥曲线的相关知识点进行总结:一、圆锥曲线的定义圆锥曲线是平面上一个点到一定直线上一点的距离与另一定点(称为焦点)到这一定直线上一点的距离的比等于一个常数的几何图形。

根据这个定义,圆锥曲线可以分为椭圆、双曲线和抛物线三种。

1. 椭圆:椭圆是平面上到两定点F1和F2的距离之和等于定长2a的点P的轨迹。

即|PF1| + |PF2| = 2a。

椭圆对应的方程为\(\frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\)。

3. 抛物线:抛物线是平面上到一个定点F和一条直线L的距离相等的点P的轨迹。

即|PF| = |PM|,其中M是直线L上的一点。

抛物线对应的方程为\(y^2 = 2px\)。

二、圆锥曲线的性质1. 椭圆的性质:A. 椭圆的长半轴是轴的两焦点的距离的2a,短半轴是2b。

B. 椭圆的离心率e的范围为0<e<1。

C. 椭圆的离心率e与半长轴a和半短轴b的关系为\(e = \frac{\sqrt{a^2 -b^2}}{a}\)。

3. 抛物线的性质:A. 抛物线的焦点为定点F。

B. 抛物线的离心率e=1。

C. 抛物线的焦点F到直线L的垂直距离等于抛物线的焦点到抛物线顶点的距离。

三、圆锥曲线的方程和参数方程1. 椭圆的方程:\( \frac{x^2} {a^2} + \frac{y^2} {b^2} = 1\),参数方程为\(x = a\cos{t}, y = b\sin{t}\)。

2. 双曲线的方程:\(\frac{x^2} {a^2} - \frac{y^2} {b^2}= 1\),参数方程为\(x = a\sec{t}, y = b\tan{t}\)。

3. 抛物线的方程:\(y^2 = 2px\),参数方程为\(x = at^2, y = 2at\)。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是代数几何中重要的一部分,它由平面和一个定点的两条曲线组成。

在数学的发展历史中,圆锥曲线的研究经历了漫长的时期,涉及到众多的数学家和学者的努力。

本文将对圆锥曲线的基本概念、性质、分类以及应用等知识点进行总结。

一、圆锥曲线的基本概念1. 圆锥曲线的定义圆锥曲线是由平面与一个定点和这个定点到平面上任意一点的连线组成的图形。

2. 圆锥曲线的基本元素圆锥曲线由定点称为焦点和一条固定的直线称为准线组成。

3. 圆锥曲线的标准方程圆锥曲线可以用一般的二次方程表示,即 Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E和F为常数。

4. 圆锥曲线的焦点和准线焦点是定点到平面上各点的距离与准线到这些点距离之比的极限值。

准线是过焦点且垂直于对称轴的直线。

二、圆锥曲线的性质1. 直线和圆的特例直线是当离心率为1的圆锥曲线,圆是离心率为0的圆锥曲线。

2. 焦准属性圆锥曲线上的任意一点到焦点的距离与到准线的距离之比始终为常数,这就是焦准属性。

3. 长轴和短轴圆锥曲线的焦点和准线确定了两条互相垂直的轴线,这两条轴线分别称为长轴和短轴。

4. 离心率圆锥曲线的离心率是一个反映离心程度的量,离心率为0时曲线为圆,离心率为1时曲线为直线。

5. 对称性圆锥曲线具有平移和对称性,即曲线在对称轴两侧具有相同的形状。

三、圆锥曲线的分类1. 椭圆圆锥曲线的离心率小于1,且大于0,形状近似于椭圆的曲线称为椭圆。

2. 抛物线圆锥曲线的离心率等于1,形状类似于抛物线的曲线称为抛物线。

3. 双曲线圆锥曲线的离心率大于1,形状类似于双曲线的曲线称为双曲线。

四、圆锥曲线的应用1. 天文学圆锥曲线在天文学中有广泛的应用,例如行星和彗星的轨道可以用圆锥曲线描述。

2. 工程学在工程学中,圆锥曲线被用于设计天桥、隧道、公路弯道等工程项目。

3. 经济学圆锥曲线在经济学中有重要的应用,例如需求曲线和供给曲线可以用圆锥曲线表示。

高三关于圆锥曲线的知识点

高三关于圆锥曲线的知识点

高三关于圆锥曲线的知识点圆锥曲线是高中数学学科中一个重要的知识点,它涉及了从代数、几何以及计算器操作等多个方面。

下面就让我们来系统性地了解和掌握圆锥曲线的相关知识。

一、圆锥曲线的定义和分类圆锥曲线是由一个固定点(称为焦点)和到这个点的距离与到一条直线(称为准线)的距离之比等于一个常数(称为离心率)的点构成的集合。

根据离心率的不同,圆锥曲线分为三类:当离心率为0时,是椭圆;当离心率为1时,是抛物线;当离心率大于1时,是双曲线。

二、椭圆的性质和方程椭圆是圆锥曲线中最简单的一类曲线。

它具有很多有趣的性质。

例如,椭圆的对称轴是准线上的线段,焦点在对称轴上,并且椭圆上的任意一点到焦点的距离和到准线的距离之和是一个常数。

椭圆的方程一般为x²/a²+y²/b²=1,其中a和b分别是椭圆的长半轴和短半轴。

三、抛物线的性质和方程抛物线与椭圆相比,更加特殊一些。

它的准线是水平的直线,焦点在准线之上。

抛物线有一个很重要的性质,就是焦点到准线的距离等于焦点到抛物线上任意一点的距离。

抛物线的方程可以有多种形式,例如:y²=4ax和x²=4ay。

其中,焦点在原点,准线与x轴平行,a是一个常数。

四、双曲线的性质和方程双曲线是圆锥曲线中最复杂的一类曲线。

它的准线有两条,且并不平行。

双曲线有两个焦点和两个顶点,同时还有两条渐近线。

它具有很多有趣的性质,例如,双曲线的各个点到焦点的距离差的绝对值等于到准线的距离差的绝对值之比等于一个常数。

双曲线的方程一般有两种形式:x²/a²-y²/b²=1和y²/b²-x²/a²=1,其中a和b分别是双曲线的半轴。

五、圆锥曲线的应用除了了解圆锥曲线的性质和方程,我们还可以通过几何和代数的方法来解决实际问题。

例如,我们可以利用椭圆的性质来解决地球上船只航行问题;我们可以利用抛物线的性质来解决物体抛射问题;我们可以利用双曲线的性质来解决电磁波传播问题等等。

高三数学圆锥曲线知识点总结归纳

高三数学圆锥曲线知识点总结归纳

高三数学圆锥曲线知识点总结归纳在高三数学中,圆锥曲线是一个重要的知识点。

它包括了椭圆、双曲线和抛物线三种曲线形式,是解析几何的经典内容之一。

在本文中,我将对高三数学圆锥曲线的知识点进行总结归纳,旨在帮助同学们更好地理解和掌握这一部分知识。

1. 椭圆椭圆是一种闭合曲线,它的形状类似于圆。

椭圆是由平面上到两个定点的距离之和等于常数的点的集合构成的。

椭圆有以下几个重要的性质:- 焦点:椭圆的两个焦点是确定椭圆形状的重要因素。

所有椭圆上的点到两个焦点的距离之和等于常数。

- 长轴和短轴:椭圆有两个轴,一个是较长的轴称为长轴,一个是较短的轴称为短轴。

长轴的长度是两个焦点的距离,短轴的长度是两条离心线之间的距离。

- 离心率:椭圆的离心率是一个反映椭圆形状的重要指标,它等于焦距与长轴长度的比值。

离心率小于1,且越接近于0,椭圆越扁平,离心率等于1时,椭圆退化为一个圆。

- 椭圆方程:椭圆的方程是一个重要的知识点,常见的椭圆方程形式有标准方程和一般方程。

标准方程形如(x-h)²/a² + (y-k)²/b² = 1,其中(h, k)为椭圆的中心坐标,a为长轴的长度,b为短轴的长度。

2. 双曲线双曲线是一种开口的曲线,它的形状类似于两个向外扩张的喇叭。

双曲线是由平面上到两个定点的距离之差等于常数的点的集合构成的。

双曲线有以下几个重要的性质:- 焦点:双曲线也有两个焦点,但与椭圆不同的是,所有双曲线上的点到两个焦点的距离之差等于常数。

- 长轴和短轴:双曲线也有两个轴,一个是较长的轴称为长轴,一个是较短的轴称为短轴。

长轴的长度是两个焦点的距离之差。

- 离心率:双曲线的离心率也是一个反映双曲线形状的重要指标,它等于焦距与长轴长度的比值。

离心率大于1,且越大,双曲线越"瘦长"。

- 双曲线方程:双曲线的方程形式也有标准方程和一般方程。

标准方程形如(x-h)²/a² - (y-k)²/b² = 1,其中(h, k)为双曲线的中心坐标,a为横轴半轴的长度,b为纵轴半轴的长度。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。

在高中数学课程中,学习圆锥曲线是必不可少的。

本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。

一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。

二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。

其中,a和b分别为椭圆的两个半轴。

2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。

其中,a和b分别为椭圆的两个半轴。

3. 抛物线:抛物线的基本方程为:$y^2=2px$。

其中,p为抛物线的焦距。

三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。

双曲线还具有渐近线,即曲线趋近于两根直线。

2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。

此外,椭圆也具有主轴、短轴和焦距等重要概念。

3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。

四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。

2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。

例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。

3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。

例如自由落体运动、射击运动以及卫星的发射轨道等。

综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。

在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。

希望本文对你对圆锥曲线的学习有所帮助。

高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结

高中数学中,圆锥曲线是重要的内容之一。

以下是对圆锥曲线的知识点进行总结:1. 圆锥曲线的定义:圆锥曲线是在平面上由一个固定点(焦点)和一个到该点的固定距离之比(离心率)确定的曲线。

2. 椭圆:-定义:椭圆是所有到两个焦点的距离之和等于常数的点的集合。

-基本方程:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表椭圆的半长轴和半短轴。

-离心率:$e=\frac{\sqrt{a^2-b^2}}{a}$,离心率满足$0<e<1$。

3. 双曲线:-定义:双曲线是所有到两个焦点的距离之差的绝对值等于常数的点的集合。

-基本方程:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$,其中$a$和$b$分别代表双曲线的半长轴和半短轴。

-离心率:$e=\frac{\sqrt{a^2+b^2}}{a}$,离心率满足$e>1$。

4. 抛物线:-定义:抛物线是所有到一个焦点的距离等于到直线(准线)的距离的点的集合。

-基本方程:$y^2=4ax$,其中$a$为抛物线的焦点到准线的距离的一半。

5. 圆:-定义:圆是到一个固定点的距离等于常数的点的集合。

-基本方程:$(x-h)^2+(y-k)^2=r^2$,其中$(h,k)$为圆心的坐标,$r$为半径的长度。

6. 圆锥曲线的性质:-焦点和准线:椭圆和双曲线有两个焦点和一条准线,抛物线有一个焦点和一条准线,圆只有一个焦点和没有准线。

-对称性:椭圆和双曲线关于$x$轴、$y$轴对称,抛物线关于$y$轴对称。

-焦点与离心率的关系:椭圆和双曲线的离心率小于1,抛物线的离心率等于1,圆的离心率为0。

-焦点与直径的关系:椭圆和双曲线的焦点在直径上,抛物线的焦点在对称轴上。

7. 焦点和准线的性质:-椭圆和双曲线:对于椭圆和双曲线,焦点到准线的距离等于焦点到曲线上任意点的距离之差的一半。

同时,准线也是曲线的对称轴。

2019年高考数学 25个必考点 专题22 圆锥曲线的统一定义课件

2019年高考数学 25个必考点 专题22 圆锥曲线的统一定义课件
高考数学25个必考点—
解析 几何
—专题复习策略指导
圆锥曲线的统一定义
例1.已知椭圆
x
2
25

y
2
16
1上一点B到右准线距离为10,
求B点到左焦点的距离.
解析
y
d1
B O F
10
x
法二
F1
A
BF1 =ed1
解析
解得: ∴b2=a2-c2 =12-3 =9 ∴所求的椭圆标准方程为:
b a
60°
c
4 | F1 A | 4 9 16 9.
例4. 若点A 的坐标为(3,2),F 为抛物线 y2=2x 的焦点,点P 在抛物线上移动时, 求|PA|+|PF |的最小值,并求这时P 的坐标. 解析
l d N P A o y

1 2
F
x
变1.已知抛物线y2=2px(p>0)上一点M(1,m)(m>0)到其焦点F的距离为5, 则以M为圆心且与y轴相切的圆的方程为( A ). A.(x-1)2+(y-4)2=1 C.(x-1)2+(y-4)2=16 解析
2 x y 1 的左焦点, 4 12
2
A(1, 4), P是双曲线右支上的 9 .
动点,则|PF|+|PA|的最小值为 解析 F1(4, 0), |PF|-|PF1|=4.
∴|PF|+|PA|= 4+|PF1|+|PA|. 则只需|PF1|+|PA|最小即可,
F O
yA
P
F1
x
即P, F1 , A三点共线.
例2.已知A(-1,1),B(1,0),点P在椭圆上运动,
4
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题22 圆锥曲线的统一定义
一、基础过关题
1.椭圆x 2
4+y 2
3=1的左、右焦点分别是F 1、F 2,P 是椭圆上一点,若PF 1=3PF 2,则P 点到左准线的距离是________.
【答案】:6
【解析】 a 2
=4,b 2
=3,c 2
=1,∴准线x =a 2c =4
1
=4,
两准线间距离为8,设P 到左准线的距离为d 1,P 到右准线的距离为d 2. ∵PF 1∶PF 2=3∶1. 又∵
PF 1d 1=e ,PF 2
d 2
=e ,∴d 1∶d 2=3∶1. 又d 1+d 2=8,∴d 1=8×3
4
=6.
2.椭圆x 2
25+y
2
9=1上点P 到右焦点的距离的最大值、最小值分别为________.
【答案】:.9,1
3.到点F (2,0)与直线x =1
2的距离的比等于2的曲线方程为________.
【答案】:x 2
-y 2
3
=1
【解析】 由圆锥曲线的统一定义可知,曲线为焦点在x 轴上的双曲线,且c =2,a 2c =1
2

即a 2
=1,故b 2
=3,则双曲线的方程为x 2
-y 2
3
=1.
4.椭圆x 225+y 2
16=1上一点P 到左焦点F 1的距离为3,则点P 到左准线的距离为________.
【答案】 5
【解析】 由x 225+y 2
16=1,得a =5,b =4,c =3,
∴e =35.根据椭圆的第二定义得PF 1
d =
e .
又∵PF 1=3, ∴d =
PF 1e =3×5
3
=5, ∴点P 到左准线的距离为5. 5.已知椭圆x 2
100

y 2
36
=1上有一点P ,它到左、右焦点距离之比为1∶3,则点P 到两准线的距离分别为
________. 【答案】
254,75
4
6.已知A (4,0),B (2,2)是椭圆x
2
25+y
2
9=1内的两个点,M 是椭圆上的动点.
(1)求MA +MB 的最大值和最小值;
(2)求MB +5
4
MA 的最小值及此时点M 的坐标.
【答案】 (1) MA +MB 的最大值为10+210,最小值为10-210. (2) MB +54MA 的最小值为174,此时点M 的坐标为⎝ ⎛⎭
⎪⎫
553,2.
解 (1)如图所示,由x 225+y 2
9=1,得a =5,b =3,c =4.
所以A (4,0)为椭圆的右焦点,F (-4,0)为椭圆的左焦点. 因为MA +MF =2a =10, 所以MA +MB =10-MF +MB . 因为|MB -MF |≤BF =
-4-
2
+-
2
=210,
所以-210≤MB -MF ≤210.
故10-210≤MA +MB ≤10+210,
即MA +MB 的最大值为10+210,最小值为10-210.
7.已知双曲线x 24-y 2
12=1和点A (4,1),F 是双曲线的右焦点,P 是双曲线上任意一点,求PA +1
2PF 的最小值.
【答案】:3
【解析】由双曲线的方程,知a =2,b =23,
∴c =4,离心率e =c
a
=2,右准线的方程为x =1, 设点P 到右准线的距离为d ,由圆锥曲线的定义, 有
PF d =2,即1
2
PF =d , 如图所示,过P 作右准线的垂线,垂足为D , 则PA +1
2
PF =PA +d =PA +PD ,
所以当P ,A ,D 三点共线时,PA +PD 的值最小,为4-1=3.
8.已知椭圆的一个焦点是F (3,1),相应于F 的准线为y 轴,l 是过F 且倾斜角为60°的直线,l 被椭圆截得的弦AB 的长是16
5
,求椭圆的方程.
【答案】:椭圆的方程为
x -
2
4

y -
2
3
=1.
【解析】设椭圆离心率为e ,M (x ,y )为椭圆上任一点,
由统一定义MF
d
=e ,得
x -
2
+y -
2
|x |
=e ,整理得(x -3)2+(y -1)2=e 2x 2
.①
∵直线l 的倾斜角为60°,∴直线l 的方程为y -1=3(x -3),② ①②联立得(4-e 2
)x 2
-24x +36=0.
设A (x 1,y 1),B (x 2,y 2),由韦达定理得x 1+x 2=24
4-e 2,
∴AB =e (x 1+x 2)=e ·244-e 2=
165,∴e =1
2, ∴椭圆的方程为(x -3)2
+(y -1)2
=14x 2,即
x -
2
4

y -
2
3
=1.
二、能力提高题
1.过圆锥曲线C 的一个焦点F 的直线l 交曲线C 于A ,B 两点,且以AB 为直径的圆与F 相应的准线相交,则曲线C 为________. 【答案】:双曲线
【解析】 设圆锥曲线的离心率为e ,M 为AB 的中点,A ,B 和M 到准线的距离分别为d 1,d 2和d , 圆的半径为R ,d =
d 1+d 2
2
,R =AB 2
=FA +FB 2

e d 1+d 2
2
.
由题意知R >d ,则e >1,圆锥曲线为双曲线.
2.已知点P 在双曲线x 216-y 2
9=1上,并且P 到双曲线的右准线的距离恰是P 到双曲线的两个焦点的距离的
等差中项,那么P 的横坐标是________. 【答案】 -64
5
3.双曲线x 2
a 2-y
2
b 2=1 (a>0,b>0)的右支上存在与右焦点和左准线等距离的点,求离心率e 的取值范围.
【答案】:e 的取值范围为(1,2+1].
故e 的取值范围为(1,2+1].。

相关文档
最新文档