安徽省合肥市高三数学第一次教学质量检测试题 理 新人教A版1
合肥市2019年高三第一次教学质量检测数学试题(理)(含答案解析)
合肥市2018年高三第一次教学质量检测,数学试题(理)(考试时间:120分钟满分:150分)注窻事项:1.答趙前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2.答第I卷时,每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3.答第II卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚.必须在题号疾备佘的答题区域作答,超出答题区域书写的答案无效,在试题卷、萆稿纸上答题无效第I卷(满分50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项t,只有一项是符合题目要求的),则=A.{4,5}B. {1,4,5}C.{3,4,5}D.{1,3,4,5}3. 已知命题p:若(x-1)(x-2) ≠0则x ≠1且x ≠2命题q:存在实数x。
,使2x<0下列选项中为真命题的是()A p⌝∨ D.q⌝ B. q p⌝∧ C. p q4. 一个六面体的三视图如图所示,其侧视图是边长为2的正方形,则该六面体的表面积是()长,此双曲线的离心率等于()数的图象与函数y=f(x)的图象关于-轴对称,则ω的值不可能是()A.2B. 4C. 6D. 107-将包含甲、乙两队的8支队伍平均分成2个小组参加某项比赛,则甲、乙两队被分在不同 小组的分组方案有()A.20 种B.35 种C.40 种D.60 种8以S n 表示等差数列{a n }的前n 项和,若S 5>S 6,则下列不等 关系不一定成立的是()A.2a 3>3a 4B. 5a 5>a 1+6a 6C.a 5+a 4-a 3<0D. a 3+a 6+a 12<2a 79执行右边的程序框图,输出的结果是()A.63B. 64C. 65D.6610函数f(x)=e x +x 2+x+1图象L 关于直线 2x-y-3 =0对称的图象为M,P 、Q 分别是 两图象上的动点,则||PQ 的最小值为()第II 卷(满分100分)二、填空题(本大題共5小题,每小题5分,共25分.把答案填在答題卡的相应位里)14. 在梯形ABCD 中,Ab//CD ,AB=2CD ,M 、N 分别为CD 、BC 的中点,若AB AM AN λμ=+, 则λμ+=_____15 已知函数f(x)=xlnx ,且x 2>x 1>0,则下列命题正确的是_______(写出所有正确命题的编号).①1212().(()()0x x f x f x --< ②1212()()1f x f x x x -<-; ③1222()()()f x f x x f x +<; ④2112.().()x f x x f x <;⑤当lnx 1=-1时,112221.()()2()x f x x f x x f x +>.三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步驟)16(本小题满分12分)(I)求函数f(x)的最小正周期和单调递增区间;(II)在ΔABC 中,角A ,B,C 所对的边是a ,b ,c.若.f(A)=1,b=2,sinA=2sinC ,求边c 的长17 (本题满分12分)某地统计部门对城乡居民进行了主题为“你幸福吗?”的幸福指数问卷调査,共收到1万 份答卷.其统计结果如下表(表中人数保留1位小数):(I)根据表1画出频率分布直方图;(II)对幸福指数评分值在[50,60]分的人群月平均收人的统计结果如表2,根据表2按 月均收入分层抽样,从幸福指数评分值在[50,60 ]分的人群中随机抽取10人,再从这10 人中随机抽取6人参加“幸福愿景”座谈会.记6人中月均收人在[1000,3000)元的人数 为随机变量X ,求随机变量X 的分布列与期望.18(本题满分13分)已知数列{a n }的前》项和为S n ,且2S n +3=3a n (*n N ∈)(I)求数列{a n }的通项公式;19(本題满分13分)已知函数2()2ln(1)()f x x x ax a R =+++∈.(I)若函数f(x)的图象上任意一点P 处的切线的倾斜角均为锐角,求实数a 的取值范 围;(I I )求函数f(x)的单调区间.20(本题满分12分)如图,四棱锥P-ABCD 的底面四边形ABCD 是边长 为2的正方形,PA =PB ,O 是AB 的中点, PO 丄 AD,PO=2.(I)求二面角O-PC-B 的余弦值; (II)设M为PA的中点,N为四棱银P-ABCD内部或表面上的一动点,且MN//平面PDC,请你判断满足条件的所有的N 点组成的几何图形(或几何体)是怎样的几何图形(或几何体),并说明你的理由.21•(本題满分13分):的焦点,点(I)试求椭圆C1的方程;(II)若直线l与椭圆C1相交于A,B两点(A,B不是上下顶点),且以AB为直径的圆过椭圆C1的上顶点.求证:直线l过定点.。
安徽省合肥市2019届高三第一次教学质量检测数学试卷(理)附答案解析
安徽省合肥市2019届高三第一次教学质量检测数学试题(理)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知为虚数单位,,则复数的虚部为().A. B. C. 2 D.【答案】D【解析】,故虚部即为i的系数,为-2,故选D。
2.集合,,则=( )A. B.C. D.【答案】C【解析】解得集合,所以,故选C。
3.执行如图所示的程序框图,则输出的值为( ).A. 63B. 47C. 23D. 7【答案】C【解析】n=15,i=2不满足条件,继续循环,得到n=11,i=3不满足条件,继续循环,n=23,i=4,满足条件,退出循环,输出n,即可。
故选C。
4.已知正项等差数列的前项和为(),,则的值为( ).A. 11B. 12C. 20D. 22【答案】D【解析】结合等差数列的性质,可得,而因为该数列为正项数列,可得,所以结合,可得,故选D。
5.已知偶函数在上单调递增,则对实数,“”是“”的( ).A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】结合偶函数的性质可得,而当,所以结合在单调递增,得到,故可以推出.举特殊例子,,但是,故由无法得到,故是的充分不必要条件,故选A.6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( ).注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A. 互联网行业从业人员中90后占一半以上B. 互联网行业中从事技术岗位的人数超过总人数的20%C. 互联网行业中从事运营岗位的人数90后比80前多D. 互联网行业中从事技术岗位的人数90后比80后多【答案】D【解析】A选项,可知90后占了56%,故正确;B选项,技术所占比例为39.65%,故正确;C选项,可知90后明显比80多前,故正确;D选项,因为技术所占比例,90后和80后不清楚,所以不一定多,故错误。
合肥市高三第一次教学质量检测理数试题—附答案
合肥市高三第一次教学质量检测理数试题—附答案合肥市2020届高三第一次教学质量检测数学试题(理科) (考试时间:120分钟满分:150分) 第Ⅰ卷 (60分) 一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,则( ). A. B. C. D.2.设复数满足(为虚数单位),在复平面内对应的点为(,),则( ). A. B. C. D. 3.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自xx年以来,“一带一路”建设成果显著.右图是xx-xx年,我国对“一带一路”沿线国家进出口情况统计图,下列描述错误的是( ).A.这五年,xx年出口额最少B.这五年,出口总额比进口总额多C.这五年,出口增速前四年逐年下降D.这五年,xx年进口增速最快4.下列不等关系,正确的是( ). A. B. C. D. 5.已知等差数列的前项和为,,,则的值等于( ). A.21 B.1 C.-42 D.0 6.若执行右图的程序框图,则输出的值等于( ). A.2 B.3 C.4 D.5 7.函数的图象大致为( ). 8.若函数的图象向右平移个单位得到的图象对应的函数为,则下列说法正确的是( ). A.的图象关于对称 B.在上有2个零点 C.在区间上单调递减 D.在上的值域为 9.已知双曲线()的左右焦点分别为,圆与双曲线的渐近线相切,是圆与双曲线的一个交点.若,则双曲线的离心率等于( ). A. B.2 C. D. 10.射线测厚技术原理公式为,其中分别为射线穿过被测物前后的强度,是自然对数的底数,为被测物厚度,为被测物的密度,是被测物对射线的吸收系数.工业上通常用镅241()低能射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为( ). (注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,,结果精确到0.001) A. B. C. D. 11.已知正方体,过对角线作平面交棱于点E,交棱于点F,则:①平面分正方体所得两部分的体积相等;②四边形一定是平行四边形;③平面与平面不可能垂直;④四边形的面积有最大值. 其中所有正确结论的序号为( ). A.①④B.②③C. ①②④D. ①②③④ 12.已知函数,则函数的零点个数为( ) (是自然对数的底数). A.6 B.5 C.4 D.3 第Ⅱ卷 (90分) 本卷包括必考题和选考题两部分.第13题—第21题为必考题,每个试题考生都必须作答.第22题、第23题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,满分20分.把答案填在答题卡上的相应位置. 13.已知向量(1,1),,且∥,则的值等于 . 14.直线经过抛物线:的焦点,且与抛物线交于,两点,弦的长为16,则直线的倾斜角等于 . 15.“学习强国”是由中宣部主管,以深入学习宣传 ___新时代 ___社会主义思想为主要内容,立足全体党员、面向全社会的优质学习平台.该平台设有“阅读文章”、“视听学习”等多个栏目.假设在这些栏目中,某时段更新了2篇文章和4个视频,一位学习者准备学习这2篇文章和其中2个视频,则这2篇文章学习顺序不相邻的学法有种. 16.已知三棱锥的棱长均为6,其内有个小球,球与三棱锥的四个面都相切,球与三棱锥的三个面和球都相切,如此类推,…,球与三棱锥的三个面和球都相切(,且),则球的体积等于,球的表面积等于 . 三、解答题:本大题共6小题,满分70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分) 在中,内角所对的边分别为,若,. (1)求;(2)若边的中线长为,求的面积. 18.(本小题满分12分) “大湖名城,创新高地”的合肥,历史文化积淀深厚,民俗和人文景观丰富,科教资源众多,自然风光秀美,成为中小学生“研学游”的理想之地.为了将来更好地推进“研学游”项目,某旅游学校一位实习生,在某旅行社实习期间,把“研学游”项目分为科技体验游、民俗人文游、自然风光游三种类型,并在前几年该旅行社接待的全省高一学生“研学游”学校中,随机抽取了100所学校,统计如下:研学游类型科技体验游民俗人文游自然风光游学校数 40 40 20 该实习生在明年省内有意向组织高一“研学游”学校中,随机抽取了3所学校,并以统计的频率代替学校选择研学游类型的概率(假设每所学校在选择研学游类型时仅选择其中一类,且不受其他学校选择结果的影响):(1)若这3所学校选择的研学游类型是“科技体验游”和“自然风光游”,求这两种类型都有学校选择的概率;(2)设这3所学校中选择“科技体验游”学校数为随机变量X,求X 的分布列与数学期望. 19.(本小题满分12分) 如图,已知三棱柱中,平面平面,,. (1)证明:;(2)设,,求二面角的余弦值. 20.(本小题满分12分) 设椭圆()的左右顶点为,上下顶点为,菱形的内切圆的半径为,椭圆的离心率为. (1)求椭圆的方程;(2)设是椭圆上关于原点对称的两点,椭圆上一点满足,试判断直线与圆的位置关系,并证明你的结论. 21.(本小题满分12分) 已知函数(为自然对数的底数). (1)求函数的零点,以及曲线在处的切线方程;(2)设方程()有两个实数根,,求证:. 请考生在第22、23题中任选一题作答.注意:只能做所选定的题目,如果多做,则按所做的第一个题目计分,作答时,请用2B铅笔在答题卡上,将所选题号对应的方框涂黑. 22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线的方程为. (1)求曲线的直角坐标方程;(2)设曲线与直线交于点,点的坐标为(3,1),求. 23.(本小题满分10分)选修4-5:不等式选讲已知函数(),不等式的解集为. (1)求的值;(2)若,,,且,求的最大值. 合肥市2020届高三第一次教学质量检测数学试题(理科) 参考答案及评分标准一、选择题:本大题共12小题,每小题5分,共60分. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A B C D D B A B A C C B 二、填空题:本大题共4小题,每小题5分,共20分. 13.-2 14.或 15.72 16.,(第一空2分,第二空3分) 三、解答题:大题共6小题,满分70分. 17.(本小题满分12分) 解:(1)在中,,且,∴,∴,又∵,∴. ∵是三角形的内角,∴. ………………………………5分 (2)在中,,由余弦定理得,∴,∵,∴. 在中,,,,∴的面积. ………………………………12分 18.(本小题满分12分) (1)依题意,学校选择“科技体验游”的概率为,选择“自然风光游”的概率为,∴若这3所学校选择研学游类型为“科技体验游”和“自然风光游”,则这两种类型都有学校选择的概率为:. ………………………………5分 (2)可能取值为0,1,2,3. 则,,,,∴的分布列为 0 1 2 3 ∴. ……………………………12分或解:∵随机变量服从,∴. ……………………………12分19.(本小题满分12分) (1)连结. ∵,四边形为菱形,∴. ∵平面平面,平面平面,平面,,∴平面. 又∵,∴平面,∴. ∵,∴平面,而平面,∴. …………………………5分 (2)取的中点为,连结. ∵,四边形为菱形,,∴,. 又∵,以为原点,为正方向建立空间直角坐标系,如图. 设,,,,∴(0,0,0),(1,0,),(2,0,0),(0,1,0),(-1,1,). 由(1)知,平面的一个法向量为. 设平面的法向量为,则,∴. ∵,,∴. 令,得,即 . ∴,∴二面角的余弦值为. ……………………………12分 20.(本小题满分12分) (1)设椭圆的半焦距为.由椭圆的离心率为知,. 设圆的半径为,则,∴,解得,∴,∴椭圆的方程为. ……………………………5分 (2)∵关于原点对称,,∴. 设,. 当直线的斜率存在时,设直线的方程为. 由直线和椭圆方程联立得,即,∴. ∵,,∴,∴,,∴圆的圆心O到直线的距离为,∴直线与圆相切. 当直线的斜率不存在时,依题意得,. 由得,∴,结合得,∴直线到原点O的距离都是,∴直线与圆也相切. 同理可得,直线与圆也相切. ∴直线、与圆相切. …………………………12分 21.(本小题满分12分) (1)由,得,∴函数的零点. ,,. 曲线在处的切线方程为. ,,∴曲线在处的切线方程为.………………………5分 (2). 当时,;当时,. ∴的单调递增区间为,单调递减区间为. 由(1)知,当或时,;当时,. 下面证明:当时,. 当时, . 易知,在上单调递增,而,∴对恒成立,∴当时,. 由得.记. 不妨设,则,∴. 要证,只要证,即证. 又∵,∴只要证,即. ∵,即证. 令. 当时,,为单调递减函数;当时,,为单调递增函数. ∴,∴,∴. (12)分 22.(本小题满分10分) (1)曲线的方程,∴,∴,即曲线的直角坐标方程为:. …………………………5分 (2)把直线代入曲线得,得,. ∵,设为方程的两个实数根,则,,∴为异号,又∵点(3,1)在直线上,∴. …………………………10分 23.(本小题满分10分) 解:(1)∵,∴的解集为,∴,解得,即. …………………………5分 (2)∵,∴. 又∵,,,∴,当且仅当,结合解得,,时,等号成立,∴的最大值为32. …………………………10分模板,内容仅供参考。
安徽省合肥市2019届高三第一次教学质量检测数学理试题含详解
C. 2
D.
【分析】 本道题结合复数的运算,化简
z,计算虚部,即可。
【详解】
, 故虚部即为 i 的系数,为 -2 ,故选 D。
【点睛】本道题看考查了复数的化简,关键在于化简
z,属于较容易的题。
2. 集合
,
,则
=( )
A.
B.
C.
D.
【答案】 C
【分析】
先化简集合 A,B ,结合并集计算方法,求解,即可。
,所以结合
,可得
【点睛】本道题考查了等差数列的性质,关键抓住
难度中等。
5. 已知偶函数 在
上单调递增,则对实数
( ).
-2-
,代入,即可。
,而因为该数列为正项数列,可得
,故选 D。
,即可,
,“
”是“
”的
A. 充分不必要条件 C. 充要条件 【答案】 A
B. 必要不充分条件 D. 既不充分也不必要条件
A. 互联网行业从业人员中 90 后占一半以上
B. 互联网行业中从事技术岗位的人数超过总人数的
20%
C. 互联网行业中从事运营岗位的人数 90 后比 80 前多
D. 互联网行业中从事技术岗位的人数 90 后比 80 后多
【答案】 D
【分析】 本道题分别将各个群体的比例代入,即可。 【详解】 A 选项,可知 90 后占了 56%,故正确; B 选项,技术所占比例为 39.65%, 故正确;
可 , 属于较容易的题 .
6. 某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、
90 后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是
( ).
注:90 后指 1990 年及以后出生, 80 后指 1980-1989 年之间出生, 80 前指 1979 年及以前出生 .
2021届安徽省合肥市高三第一次教学质量检测理科数学试卷(带解析)
2021届安徽省合肥市高三第一次教学质量检测理科数学试卷(带解析)2021届安徽省合肥市高三第一次教学质量检测理科数学试卷(带解析)一、选择题 1.已知复数A.表示复数的共轭复数,则 D.6()B.5 C.【答案】B.【解析】试题分析:考点:1.共轭复数的概念;2.复数模长的计算. 2.设集合A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件【答案】A.【解析】试题分析:①当时,若,则“.综上得“”是“”是“”的充分条件;②”的充分不必要条件.则“”是“”的(),故选B.或考点:1.充分条件和必要条件的判断;2.一元二次不等式的解法;3.集合的包含关系. 3.过坐标原点O作单位圆使得(A.点B.点C.点的两条互相垂直的半径),则以下说法正确的是(),若在该圆上存在一点,一定在单位圆内一定在单位圆上一定在单位圆外时,点在单位圆上D.当且仅当【答案】B.【解析】试题分析:使用特殊值方法求解.设在单位圆上,故选B..在圆上,考点:1.平面向量基本定理;2.点和圆的位置关系. 4.过双曲线的一个焦点作实轴的垂线,交双曲线于两点,若线段的长度恰等于焦距,则双曲线的离心率为() A.B.C.D.【答案】A.【解析】试题分析:,又.考点:双曲线的标准方程及其几何性质(离心率的求法). 5.一个几何体的三视图如图所示,则该几何体的表面积是()A. B. C. D.【答案】C.【解析】试题分析:由三视图还原该几何体得它是一个直四棱柱等的等腰梯形,棱平面(如图),,其中为全梯形的高,,故选C.考点:1.几何体的三视图;2.几何体表面积的计算. 6.已知函数A.B.,则一定在函数图象上的点是()C.D.【答案】C.【解析】试题分析:根据的解析式,求出断四个选项是否在图象上.为奇函数,考点:函数的奇偶性.,判断函数的奇偶性,由函数.的奇偶性去判在图象上.故选C.7.执行如图所示的程序框图(算法流程图),输出的结果是()A.5 B.6 C.7 D.8 【答案】C.【解析】试题分析:由程序框图运算得的输出值为7,故选C.考点:算法初步与程序框图. 8.在中,已知,,则为()A.等边三角形B.等腰直角三角形 C.锐角非等边三角形 D.钝角三角形【答案】B.【解析】试题分析:由已知及正弦定理,得,,得.三角形,故选B.考点:综合应用正余弦定理及三角恒等变换判断三角形的形状.,.由为等腰直角9.已知满足时,的最大值为1,则的最小值为()A.7 B.8 C.9 D.10 【答案】D.【解析】试题分析:由线性规划将图画出,由的最大值为 1,找出的最大值时图上的点,进而求得在处有最大值.与矛盾,故不能用均值不等式求最值.设时,的最小值.由图象知,当且仅当,即.由对勾函数性质得,考点:线性规划参数最值问题.有最小值,.10.对于函数,若为某一三角形的三边长,则称为“可构造三角形函数”.已知函数A.B.C.是“可构造三角形函数”,则实数t的取值范围是() D.【答案】D.【解析】试题分析:由已知得当时,,由;当数”;当时,,则.,得时,显然是“可构造三角形函.综上所述:,故选D.考点:函数的性质(有界性、最大值和最小值).二、填空题 1.若随机变量【答案】0.8413.【解析】试题分析:由题意可知正态分布密度函数的图象关于.考点:正态分布密度函数的图象及其性质. 2.已知数列满足且,则.对称,得,且,则__________.【答案】2021.【解析】试题分析:由题意可知.考点:等差数列、等比数列通项公式的求法.3.某办公室共有6人,组织出门旅行,旅行车上的6个座位如图所示,其中甲、乙两人的关系较为亲密,要求在同一排且相邻,则不同的安排方法有种.是以为首项,2为公比的等比数列,【答案】144.【解析】试题分析:由题意可知满足条件的不同安排方法分两类:一类是并排坐在第二排,有种;一类是并排坐在第三排,有种,故共有种.考点:有限制条件的排列组合问题. 4.若展开式的各项系数绝对值之和为1024,则展开式中项的系数为_____________.【答案】-15.【解析】试题分析:,得展开式的各项系数绝对值之和与.设.令考点:二项式定理的应用. 5.已知直线:出下列命题:①当时,中直线的斜率为;(为给定的正常数,为参数,)构成的集合为,给展开式中含的项为第,得展开式的各项系数和相等,令项,则.,含项的系数为②中所有直线均经过一个定点;③当④当时,存在某个定点,该定点到中的所有直线的距离均相等;时,中的两条平行直线间的距离的最小值为;⑤中的所有直线可覆盖整个平面.其中正确的是(写出所有正确命题的编号).【答案】③④.【解析】试题分析:且把直线圆既满足直线的方程代入椭圆的切线.①当时,点在圆时,的方程,也满足椭圆的方程可得直线的方程,为椭①错;②为椭圆切线不经过定点,②错;③当上,圆心到圆上的距离相等,∴③正确;④当时,为椭圆切线,当中两直线分别与椭圆相切于的短轴两端点时,它们间的距离为,∴④正确;⑤为椭圆切线,不可覆盖整个平面.综上所述:③④正确.考点:1.椭圆的几何性质;2.直线和椭圆的位置关系.三、解答题 1.已知(1)(2)【答案】(1)【解析】试题分析:(1)利用两角和与差的余弦公式将已知式开化简,即可求得的值,再利用平方关系求的值,最后将拆成展;.;(2).求:,利用两角和与差的正弦公式求得的值,可先求出的值,再利用商关系将的值.的值;(2)利用平方关系,由(1)中中的正切化为正余弦,将,的值,代将入即可求得试题解析:(1)即,注意到2分,故,从而. 7分5分(2). 12分(或者,,==).,,=考点:1.三角恒等变换;2.两角和与差的三角函数公式;3.三角函数基本关系式. 2.如图,在多面体ABCDEF中,底面ABCD是梯形,且AD=DC=CB=AB.直角梯形ACEF 中,,是锐角,且平面ACEF⊥平面ABCD.(1)求证:;的余弦值.(2)若直线DE与平面ACEF所成的角的正切值是,试求【答案】(1)详见试题解析;(2)【解析】.试题分析:(1)证明线线垂直,可转化为证明线面垂直.要证,只要证平面,由已知平面ACEF⊥平面ABCD,故由面面垂直的性质定理知,只要证.在等腰梯形ABCD中,由已知条件及平面几何相关知识易得;(2)连结交于,再连结EM,FM,易知四边形为菱形,∴DM⊥AC,注意到平面平面,故DM⊥平面.于是,即为直线DE与平面ACEF 所成的角.在中由锐角三角函数可求得的长,再在中由锐角三角函数即可求得的余弦值.试题解析:(1)证明:在等腰梯形ABCD中,∵AD=DC=CB=AB,∴AD、BC为腰,取AB得中点H,连CH,易知,四边形ADCH为菱形,则CH=AH=BH,故△ACB为直角三角形,. 3分平面,故平面,且平面平面. 6分,平面,而平面(2)连结交于,再连结EM,FM,易知四边形平面平面,故DM⊥平面.于是,角. 9分为菱形,∴DM⊥AC,注意到即为直线DE与平面ACEF所成的设AD=DC=BC=,则MD=中,,,.依题意,,∵,,在=AM,四边形AMEF为平行四边形,. 12分,考点:1.空间垂直关系的证明;2.空间角的计算. 3.已知函数(1)若函数的极小值是在,求处取得极小值.;上单调递(2)若函数的极小值不小于,问:是否存在实数,使得函数减?若存在,求出的范围;若不存在,说明理由.【答案】(1)【解析】试题分析:(1)对列出方程组实数k,使得函数.由得解这个方程组,可得在求导,得的值,从而求得;(2)存在实数,满足题意.,结合已知条件可以的解析式;(2)假设存在=0两根为,由,解得,则,上单调递减.设,的递减区间为的递减区间为在.由条件有有这个条件组可求得,即可求得的值.的值.利用函数上单调递减,列出不等式组试题解析:(1),由知,解得 4分. 6分上单调递减.设,.的递减区间为,由=0两根为,检验可知,满足题意.(2)假设存在实数,使得函数,则解得,.由的递减区间为由条件有,解得 10分函数在上单调递减.由.∴存在实数,满足题意. 12分考点:1.导数与函数的极值;2.导数与函数的单调性;3.含参数的探索性问题的解法. 4.已知椭圆,如图.的右焦点为,设左顶点为A,上顶点为B且(1)求椭圆的方程;(2)若,过的直线交椭圆于两点,试确定;(2)的取值范围..【答案】(1)椭圆的方程为【解析】的取值范围为试题分析:(1)首先写出,,,由运算,可得方程,又由椭圆中关系得及向量数量积的坐标,解这个方程组得的值,从,此时,,而得椭圆的标准方程;(2)先考虑直线斜率不存在的情况,=;若直线斜率存在,设,代入椭圆方程消去得关于的一元二次的取值方程,利用韦达定理,把范围.试题解析:(1)由已知,∵,∴表示成斜率的函数,求此函数的值域,即得,,解得,,∴,此时,则由,∴椭圆,,得:. 4分=;.(2)①若直线斜率不存在,则②若直线斜率存在,设,∴,,,则由,∴消去得:=,∴..∵,∴,∴综上,的取值范围为. 13分考点:1.椭圆的标准非常及其几何性质;2.直线和椭圆的位置关系;3.利用向量的数量积运算解决椭圆中的取值范围问题.5.某市质监部门对市场上奶粉进行质量抽检,现将9个进口品牌奶粉的样品编号为1,2,3,4,,9;6个国产品牌奶粉的样品编号为10,11,12,15,按进口品牌及国产品牌分层进行分层抽样,从其中抽取5个样品进行首轮检验,用表示编号为的样品首轮同时被抽到的概率.(1)求的值;的和.;(2)所有的的和为10.(2)求所有的【答案】(1)【解析】试题分析:(1)由分层抽样可知:首轮检验从编号为1,2,3,,9的洋品牌奶粉的样品中抽取3个,从编号为10,11,,15的国产品牌奶粉的样品中抽取2个,从而可求得的值;(2)采用分类讨论思想,分别求满足①当时,②当时,③当时的的值,最后求和即得所有的的和.试题解析:(1)由分层抽样可知:首轮检验从编号为1,2,3,,9的洋品牌奶粉的样品中抽取3个,从编号为10,11,,15的国产品牌奶粉的样品中抽取2个,故=. 4分(2)①当②当③当∴所有的时,时,时,==的和为==,而这样的有有=36个;=,而这样的=,而这样的×36+=15个;有=54个.×15+×54=10. 13分考点:1.分层抽样的基本思想;2.古典概型的概率计算. 6.已知函数,记函数(1)求;(2)求证:<(3)设为数列;的前项和,求证:<.来,(>0,图象与三条直线,以点为切点作函数图象的切线所围成的区域面积为.【答案】(1)【解析】试题分析:(1)先对;(2)详见试题分析;(3)详见试题分析.求导,根据切点坐标及导数的几何意义,求出切线的斜率,计算图象与三条直线写出切线的方程,最后利用定积分所围成的区域面积,可求得数列(≥0),求导可得递减,故,从而证得当>0时,,∴=<<的通项公式;(2)构造函数,从而函数成立,故(≥0)单调<,由放缩法得<;(3)由(2):<,再结合裂项相消法即可证明来<.试题解析:(1)易知即(2)构造函数,∴(≥0),则,(≥0)单调递减,而∴当>0时,<<.成立,∴知<,∴,等号在,∴=,切点为,则方程为=,即函数时取得,(3)<<<,∴当时,=<;当<.时,方法二:(1)(2)同方法一;(3)由(2)知<,(),,又综上所述:对一切,都有<.,,∴考点:1.导数的几何意义;2.定积分的计算;3.利用导数证明不等式;4.利用放缩法和裂项相消法证明不等式.感谢您的阅读,祝您生活愉快。
安徽省合肥市2019届高三第一次教学质量检测数学(理)试题Word版含答案
0.06 34 0.18 38 0.20 42 0.28 46 0.16 50 0.10 54 0.02 58 44.72 45 ; …………………………
6826 ( 人 ) ; …………………………
c ,由椭圆的离心率为
2 知, b 2
c, a
2b ,
x
2 2
合肥市 2019 届高三第一次教学质量检测数学试题
(理科 )
参考答案及评分标准
一、选择题:本大题共 题号 答案 1 D 2 C 12 小题,每小题 3 C 4 D 5 A 5 分. 3, 13 2
4
5 分. 6 D 7 D 8 D 9 C 10 C 11 B 12 A
二、填空题:本大题共 13. 1, 6 14.1
合肥市 2019 届高三第一次教学质量检测
数学试题 ( 理科 )
( 考试时间: 120 分钟 满分: 150 分 )
第Ⅰ 卷
一、选择题:本大题共 题目要求的 . 1. 已知 i 为虚数单位, A. 2i B. x x
2
12 小题,每小题 4
5 分 .在每小题给出的四个选项中,只有一项是符合
z 2i
,则复数 z 的虚部为 ( 1 i C.2 D. 2
组数据用该组区间的中点值代替,结果精确到 个位 ) ; ( Ⅱ ) 由直方图可以认为, 人的睡眠时间 t 近似服从正态分布
2 2 2
N
,
2
,其中
近似地等
于样本平均数 x , s ,s 33.6 . 假设该辖区内这一年龄层次共有 近似地等于样本方差 10000 人,试估计该人群中一周睡眠时间位于区间 (39.2 , 50.8) 的人数 . 附: 33.6 P 2 Z 5.8 .若随机变量 Z 服从正态分布 2 0.9544 .
《精编》安徽省合肥市高三数学第一次教学质量检测试题 文 新人教A版.doc
合肥市年高三第一次教学质量检测数学试题(文〕(考试时间:120分钟总分值:150分〕本卷须知:1. 答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2. 答第I 卷时,每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3 答第II 卷时,必须使用毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、 笔迹清晰.作图题可先用铅笔在等亭争规定的位置绘出,确认后再用毫米的黑色 墨水签字笔描清楚,必须在题号所指示的答题区域作答4.考试结束,务必将答题卡和答题卷一并上交.第I 卷〔总分值50分〕一、选择题〔本大题共10小题,每题5分,共50分.在每小趙给出的四个选项中,只有一 项是符合趙目要求的〕1. 假设i 为虚数单位,那么311i i -+=() A. -2+2i B. -1+2iC. 1+2iD. 1-2i 2. 双曲线C:4x 2-3y 2=12的焦距是〔)A.2B. 4 3.命题p:假设(x-1)(x-2) ≠0那么x ≠1且x ≠2;命题q:存在实数x 0使:02x <0以下选项中为真命题的是〔〕A. p ⌝B. q p ⌝∧C. p q ⌝∨D.q4. 设全集为R ,集合M=|x|log 2(x-1)那么R C M =()A. [3,)+∞B. [,1)[2,)-∞+∞C. [,1)[3,)-∞+∞D. [,0)[2,)-∞+∞ 5. 以S n 表示等差数列|a n |的前n 项和,假设a 2+a 7-a 3=6,那么S 7 =()A.42B. 28C. 21D. 146. 函数y=f(x)是定义在上的奇函数,且当x>0时,f(x)=2x-1-3,那么f(f(1)= ()A.1B. -1C.2D. -27. 平面向量a 与b 的夹角为60°,且|a|=2,|b|=1,那么|a-3b|=()A. 5B. 7C. 198. 将包含甲、乙两人的4位同学平均分成2个小组参加某项公益活动,那么甲、乙两名同学分 在同一小组的概率为〔〕A. 15B. 25C. 13D. 169. 某旋转体的三视图如以以下图,那么该旋转体的体积 为〔〕A. 23πB.π C.3π D. 15π10.假设实数满足x-ky-20236061010x y x y ≤⎧⎪--≥⎨⎪+-≤⎩其中k>0,假设使得1y x +取得最小值的解〔x,y 〕力有无穷多个,那么实数k 的值是〔)A. 22πB.1C. 32第II 卷(总分值100分〕二、填空题〔本大题共5小題,每题5分,共25分.把答案壤在答趙卡的相应位里〕11.抛物线y =-12x 2的准线方程为_____.12.执行如以以下图的程序框图,假设输出的结果为-12,那么输入的x 的值为_____13.假设正数a ,b 满足a+2b=3,且使不等式1102m a b+->恒成立,那么实数m 的取值范围是_____.14.函数y =2c o s x +x ,x ∈[0,]2π的最大值为_____. 15.在ΔABC 中,角A 、B 、C 所对的边分别为a 、b、c ,那么以下命题正确的选项是_____(写出所有正确命题的编号). ①cos 1cos b c C B a a<-; ②ΔABC 的面积为ABC 11..tan 22AB AC A ∆=; ③假设AcosA=ccosA ,那么ΔABC —定为等腰三角形;④假设A 是ΔABC 中的最大角,那么ΔABC 为钝角三角形的充要条件是-1<sinA+cosA<1 ⑤假设A=3π,3a =那么b 的最大值为2. 三、解答题〔本大题共6小题,共75分.解容许写出文字说明、证明过租或演算步碟〕16.(本小題总分值12分〕函数ωx+cos 2ωx-12存在相邻的两个零点分别为a 和(0,0)22a a ππω+><< (I)求ω和a;(I I )假设2(),(0,)240f x πππ-=-∈,求sin(10x π-)的值. 17.(本小題总分值12分〕某市针对交通拥堵、出行不便的现状,提出优先开展公共交通.为了合理调度,优化配置, 现随机调査200位市民,统计他们每天等候公共汽车的平均时间,得下表:(I )完成上述表格;(II)绘制等候时间的频率分布直方图;(III)试估计该市市民每天等候公共汽车时间的平均值.18.(本小題总分值12分〕矩形ABCD 中,AB = 2,AD=1 为CD 的中点,沿AE 将ΔDAE 折起到ΔD 1AE 的位置,使 平面D 1AE 丄平面ABCE. (I)假设F 为线段D 1A 的中点,求证:EF//平面D 1BC; (II)求证:BE 丄D 1A19.(本小題总分值13分〕巳知数列{a n }的前n 项和为S n ,且2S n +3=3a n (*n N ∈)(I)求数列{a n }的通项公式;(I I )设b n =log 3a n ,T n =1212...n nb b b a a a +++求证:1334n T ≤<.. 20.(本小題总分值13分〕函数.f(x)=lnx+x 2+ax(a ∈R).(I)假设函数y=f(x)图像在点P(1,f(a))处的切线与直线x+2y-1=0垂直,求实数a 的值 〔II)求函数f(x)的单调区间.21.(本小題总分值13分〕 焦点分别为F 1 ,F 2的椭圆C: 22221(0)x y a b b b+=>>过点M(2,1),且ΔMF 2F 的面积为 (I )求椭圆C 的方程;(II)过点(0,3)作直线l ,直线l 娜圆C 于不同的两点A,B,求直线l 倾斜角θ的取值范围;(III)在〔II)的条件下,使得MA =MB 成立的直线l 是否存在,假设存在,求直线l 的方程; 假设不存在,请说明理由.合肥市年高三第一次教学质量检测数学试题(文〕(考试时间:120分钟总分值:150分〕本卷须知:1. 答题前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.2. 答第I 卷时,每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3 答第II 卷时,必须使用毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、 笔迹清晰.作图题可先用铅笔在等亭争规定的位置绘出,确认后再用毫米的黑色 墨水签字笔描清楚,必须在题号所指示的答题区域作答4.考试结束,务必将答题卡和答题卷一并上交.第I 卷〔总分值50分〕一、选择题〔本大题共10小题,每题5分,共50分.在每小趙给出的四个选项中,只有一 项是符合趙目要求的〕1. 假设i 为虚数单位,那么311i i -+=() A. -2+2i B. -1+2i C. 1+2iD. 1-2i 2. 双曲线C:4x 2-3y 2=12的焦距是〔)A.2B. 4 3.命题p:假设(x-1)(x-2) ≠0那么x ≠1且x ≠2;命题q:存在实数x 0使:02x <0以下选项中为真命题的是〔〕A. p ⌝B. q p ⌝∧C. p q ⌝∨D.q4. 设全集为R ,集合M=|x|log 2(x-1)那么R C M =()A. [3,)+∞B. [,1)[2,)-∞+∞ C. [,1)[3,)-∞+∞ D. [,0)[2,)-∞+∞5. 以S n 表示等差数列|a n |的前n 项和,假设a 2+a 7-a 3=6,那么S 7 =()A.42B. 28C. 21D. 146. 函数y=f(x)是定义在上的奇函数,且当x>0时,f(x)=2x-1-3,那么f(f(1)= ()A.1B. -1C.2D. -27. 平面向量a 与b 的夹角为60°,且|a|=2,|b|=1,那么|a-3b|=() A. 5 B. 7 C. 198. 将包含甲、乙两人的4位同学平均分成2个小组参加某项公益活动,那么甲、乙两名同学分 在同一小组的概率为〔〕A. 15B. 25C. 13D. 169. 某旋转体的三视图如以以下图,那么该旋转体的体积 为〔〕A. 23πB.π C.3π D. 15π10.假设实数满足x-ky-20236061010x y x y ≤⎧⎪--≥⎨⎪+-≤⎩其中k>0,假设使得1y x +取得最小值的解〔x,y 〕力有无穷多个,那么实数k 的值是〔)A. 22πB.1C. 32第II 卷(总分值100分〕二、填空题〔本大题共5小題,每题5分,共25分.把答案壤在答趙卡的相应位里〕11.抛物线y =-12x 2的准线方程为_____.12.执行如以以下图的程序框图,假设输出的结果为-12,那么输入的x 的值为_____13.假设正数a ,b 满足a+2b=3,且使不等式1102m a b +->恒成立,那么实数m 的取值范围是_____.14.函数y =2c o s x +x ,x ∈[0,]2π的最大值为_____.15.在ΔABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,那么以下命题正确的选项是_____(写出所有正确命题的编号).①cos 1cos b c C B a a <-;②ΔABC 的面积为ABC 11..tan 22AB AC A ∆=; ③假设AcosA=ccosA ,那么ΔABC —定为等腰三角形; ④假设A 是ΔABC 中的最大角,那么ΔABC 为钝角三角形的充要条件是-1<sinA+cosA<1⑤假设A=3π,3a =那么b 的最大值为2. 三、解答题〔本大题共6小题,共75分.解容许写出文字说明、证明过租或演算步碟〕16.(本小題总分值12分〕函数ωx+cos 2ωx-12存在相邻的两个零点分别为a 和(0,0)22a a ππω+><< (I)求ω和a;(I I )假设2(),(0,)2403f x πππ-=-∈,求sin(10x π-)的值. 17.(本小題总分值12分〕某市针对交通拥堵、出行不便的现状,提出优先开展公共交通.为了合理调度,优化配置, 现随机调査200位市民,统计他们每天等候公共汽车的平均时间,得下表:(I )完成上述表格;(II)绘制等候时间的频率分布直方图;(III)试估计该市市民每天等候公共汽车时间的平均值.18.(本小題总分值12分〕矩形ABCD 中,AB = 2,AD=1 为CD 的中点,沿AE 将ΔDAE 折起到ΔD 1AE 的位置,使 平面D 1AE 丄平面ABCE.(I)假设F 为线段D 1A 的中点,求证:EF//平面D 1BC;(II)求证:BE 丄D 1A19.(本小題总分值13分〕 巳知数列{a n }的前n 项和为S n ,且2S n +3=3a n (*n N ∈)(I)求数列{a n }的通项公式;(I I )设b n =log 3a n ,T n =1212...n nb b b a a a +++求证:1334n T ≤<.. 20.(本小題总分值13分〕函数.f(x)=lnx+x 2+ax(a ∈R).(I)假设函数y=f(x)图像在点P(1,f(a))处的切线与直线x+2y-1=0垂直,求实数a 的值 〔II)求函数f(x)的单调区间.21.(本小題总分值13分〕焦点分别为F 1 ,F 2的椭圆C: 22221(0)x y a b b b+=>>过点M(2,1),且ΔMF 2F 的面积为 (I )求椭圆C 的方程;(II)过点(0,3)作直线l ,直线l 娜圆C 于不同的两点A,B,求直线l 倾斜角θ的取值范围;(III)在〔II)的条件下,使得MA =MB 成立的直线l 是否存在,假设存在,求直线l 的方程; 假设不存在,请说明理由.。
2020届安徽省合肥市高三第一次教学质量检测数学(理)试题(解析版)
2020届安徽省合肥市高三第一次教学质量检测数学(理)试题一、单选题1.已知集合{}220A x x x =--<,{}210B x x =->,则AB =( )A .()1,-+∞ B .1 12⎛⎫⎪⎝⎭, C .1 22⎛⎫⎪⎝⎭, D .1 2⎛⎫+∞ ⎪⎝⎭, 【答案】A【解析】确定出集合,A B 中的元素后,由并集定义计算. 【详解】由题意{|12}a x x =-<<,1{|}2B x x =>,∴{|1}A B x x =>-.故选:A. 【点睛】本题考查集合的并集运算,确定集合中的元素是解题关键.2.设复数z 满足1i z z -=-(i 为虚数单位),z 在复平面内对应的点为(x ,y ),则( ) A .y x =- B .y x =C .()()22111x y -+-=D .()()22111x y +++=【答案】B【解析】设(,)z x yi x y R =+∈,代入已知等式化简即可. 【详解】设(,)z x yi x y R =+∈,∵1i z z -=-,∴1x yi x yi i +-=+-, 即2222(1)(1)x y x y -+=+-,化简得y x =.故选:B. 【点睛】本题考查复数模的运算,直接代入复数的代数形式由模的定义化简即得.也可由模的几何意义求解.3.“一带一路”是“丝绸之路经济带”和“21世纪海上丝绸之路”的简称,旨在积极发展我国与沿线国家经济合作关系,共同打造政治互信、经济融合、文化包容的命运共同体.自2013年以来,“一带一路”建设成果显著.下图是2013-2017年,我国对“一带一路”沿线国家进出口情况统计图.下列描述错误的是()A.这五年,2013年出口额最少B.这五年,出口总额比进口总额多C.这五年,出口增速前四年逐年下降D.这五年,2017年进口增速最快【答案】C【解析】对于选项A:观察五个灰色的条形图的高低即可判断;对于选项B:观察五组条形图,对比每组灰色条形图与黑色条形图的高低及高低悬殊程度即可判断;对于选项C:从图中知,红色的折线图是先上升后下降即可判断;对于选项D:观察这五年所对的蓝色折线图的高低即可判断;【详解】对于选项A:观察五个灰色的条形图,可得2013年所对的灰色条形图高度最低,所以这五年,2013年出口额最少.故选项A正确;对于选项B:观察五组条形图可得,2013年出口额比进口额稍低,但2014年—2017年都是出口额高于进口额,并且2015年和2016年都是出口额明显高于进口额,故这五年,出口总额比进口总额多.故选项B正确;对于选项C:从图中可知,红色的折线图是先上升后下降,即2013年到2014年出口增速是上升的.故选项C错误;对于选项D:从图中可知,蓝色的折线图2017年是最高的,即2017年进口增速最快.故选项D正确;故选: C【点睛】本题主要考查统计条形图和折线图的应用;解题的关键是从条形图看出口金额和进口金额,从折线图看出口增速和进口增速;属于基础题. 4.下列不等关系,正确的是( ) A .234log 3log 4log 5<< B .243log 3log 5log 4>> C .243log 3log 5log 4<< D .234log 3log 4log 5>>【答案】D【解析】比较log (1)n n +与(1)log (2)n n ++的大小,2,n n ≥∈N , 【详解】 设2,n n ≥∈N ,log (1)n n +(1)log (2)n n +-+2lg(1)lg(2)lg (1)lg lg(2)lg lg(1)lg lg(1)n n n n n n n n n +++-+=-=++,因为222222lg ln(2)11lg lg(2)()lg (2)lg (21)lg (1)244n n n n n n n n n +++<=+<++=+,所以log (1)n n +(1)log (2)n n +-+0>,即log (1)n n +(1)log (2)n n +>+(2,n n ≥∈N ). 所以234log 3log 4log 5>>. 故选:D . 【点睛】本题考查比较对数的大小,本题通过证明数列{log (1)}n n +是递减数列得出结论. 5.已知等差数列{}n a 的前n 项和为n S ,13a =-,47329a a +=,则7S 的值等于( ) A .21 B .1C .-42D .0【答案】D【解析】用等差数列的基本量法计算. 【详解】设数列公差为d ,则47111232(3)3(6)5249a a a d a d a d +=+++=+=,因为13a =-,所以1d =,717677(3)21102S a d ⨯=+=⨯-+⨯=. 故选:D . 【点睛】本题考查等差数列的前n 项和公式,解题方法是基本量法,即求出首项1a 和公差d ,然后直接计算.6.若执行下图的程序框图,则输出i 的值为( )A .2B .3C .4D .5【答案】B【解析】依次写出每次循环得到的,,x y i 的值,当3,64,86i x y ===时,不满足条件x y >,退出循环,输出i 的值为即可.【详解】第一次循环:8,2x y ==,满足x y >,继续循环; 第二次循环:1,16,6i x y ===,满足x y >,继续循环; 第三次循环:2,32,22,i x y ===满足x y >,继续循环;第四次循环:3,64,86i x y ===,不满足x y >,跳出循环,输出3i =. 故选: B 【点睛】本题主要考查程序框图中当型循环,循环结构主要用在一些规律的重复计算,如累加、累乘等,在循环结构框图中要特别注意条件的应用;属于基础题. 7.函数22cos x xy x x--=-的图像大致为( ).A .B .C .D .【答案】A【解析】本题采用排除法: 由5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭排除选项D ; 根据特殊值502f π⎛⎫>⎪⎝⎭排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ; 【详解】对于选项D:由题意可得, 令函数()f x = 22cos x xy x x--=-,则5522522522f ππππ--⎛⎫-= ⎪⎝⎭,5522522522f ππππ--⎛⎫= ⎪⎝⎭;即5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.故选项D 排除; 对于选项C :因为55225220522f ππππ--⎛⎫=> ⎪⎝⎭,故选项C 排除;对于选项B:当0x >,且x 无限接近于0时,cos x x -接近于10-<,220x x -->,此时()0f x <.故选项B 排除;故选项:A 【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题. 8.若函数()sin 2f x x =的图象向右平移116π个单位得到的图象对应的函数为()g x ,则下列说法正确的是( ) A .()g x 的图象关于12x π=-对称B .()g x 在[]0π,上有2个零点C .()g x 在区间5 36ππ⎛⎫⎪⎝⎭,上单调递减 D .()g x 在 02π⎡⎤-⎢⎥⎣⎦,上的值域为 0⎡⎤⎢⎥⎣⎦【答案】B【解析】求出()g x 的解析式,并整理后,根据正弦函数性质判断. 【详解】由题意1111()sin 2()sin(2)sin(2)633g x x x x πππ=-=-=+, 1()sin()12632g πππ-=-+=不是函数的最值,12x π=-不是对称轴,A 错;由()sin(2)03g x x π=+=,2()3x k k Z ππ+=∈,26k x ππ=-,其中5,36ππ是[0,]π上的零点,B 正确; 由3222232k x k πππππ+≤+≤+得71212k x k ππππ+≤≤+,k Z ∈,因此()g x 在7(,)312ππ是递减,在75(,)126ππ上递增,C 错;[,0]2x π∈-时,22[,]333x πππ+∈-,()[g x ∈-,D 错. 故选:B . 【点睛】本题考查三角函数图象变换,考查三角函数的性质.掌握正弦函数性质是解题关键.9.已知双曲线C :22221x y a b-=(00a b >>,)的左右焦点分别为12F F ,,圆2F 与双曲线C 的渐近线相切,M 是圆2F 与双曲线C 的一个交点.若12=0F M F M ⋅,则双曲线C 的离心率等于( ) A.B .2CD【答案】A【解析】求出焦点到渐近线的距离,2MF ,由双曲线定义得1MF ,再由12=0F M F M ⋅可建立,,a b c 的关系,从而求得离心率. 【详解】由题意2(,0)F c ,一条渐近线为by x a =,即0bx ay -=,所以2MF r b ===, M 在双曲线右支上,则1222MF MF a b a =+=+,又12=0F M F M ⋅,则12MF MF ⊥,所以222(2)4b b a c ++=,2222444b ab a c ++=,又222b c a =-,所以242ab b =,2a b =,22224a b c a ==-,225c a =,ce a== 故选:D . 【点睛】本题考查求双曲线的离心率,解题关键是找到关于,,a b c 的等式.本题利用相切,利用双曲线定义,表示出焦半径,由数量积得垂直从而建立,,a b c 的等式.解法易得,属于中档题.10.射线测厚技术原理公式为0tI I e ρμ-=,其中0I I ,分别为射线穿过被测物前后的强度,e 是自然对数的底数,t 为被测物厚度,ρ为被测物的密度,μ是被测物对射线的吸收系数.工业上通常用镅241(241Am )低能γ射线测量钢板的厚度.若这种射线对钢板的半价层厚度为0.8,钢的密度为7.6,则这种射线的吸收系数为( )(注:半价层厚度是指将已知射线强度减弱为一半的某种物质厚度,ln 20.6931≈,结果精确到0.001) A .0.110 B .0.112C .0.114D .0.116【答案】C【解析】根据题意知,010.8,7.6,2I t I ρ===,代入公式0t I I e ρμ-=,求出μ即可. 【详解】由题意可得,010.8,7.6,2I t I ρ===因为0t I I e ρμ-=, 所以7.60.812e μ-⨯⨯=,即ln 20.69310.1147.60.8 6.08μ==≈⨯. 所以这种射线的吸收系数为0.114. 故选:C 【点睛】本题主要考查知识的迁移能力,把数学知识与物理知识相融合;重点考查指数型函数,利用指数的相关性质来研究指数型函数的性质,以及解指数型方程;属于中档题. 11.已知正方体1111ABCD A B C D -,过对角线1BD 作平面α交棱1AA 于点E ,交棱1CC 于点F ,则:①平面α分正方体所得两部分的体积相等; ②四边形1BFD E 一定是平行四边形; ③平面α与平面1DBB 不可能垂直; ④四边形1BFD E 的面积有最大值. 其中所有正确结论的序号为( ) A .①④ B .②③C .①②④D .①②③④【答案】C【解析】根据正方体的性质对每个命题进行判断.结合排除法可选正确结论. 【详解】截面上方几何体分割成四棱锥四棱锥111D A EFC -,四棱锥11B A EFC -,三棱锥111B A BC -,截面下方几何体对称的也是三个棱锥,对应体积相等(特殊位置截面更容易得此结论),①正确,排除B ;由正方体相对两个面平行,根据面面平行的性质定理知四边形1BFD E 的两组对边平行,从而是平行四边形,②正确,排除A ;当E 是1AA 中点,F 是1CC 中点,这时可证EF ⊥平面11BB D D (先证//EF AC ),从而平面α与平面1DBB 垂直,③错误,排除D , 只有C 可选了.事实上,四边形1BFD E 即有最大值也有最小值.E 与A (或1A )重合时面积最大,E是1AA 中点时,面积最小.设AE x =,正方体棱长为1,01x ≤≤,21BE x =+,2211(1)22D E x x x =+-=-+,13BD =,在1BED ∆中,2222111221cos 2122D E BE BD x xBED D E BE x x x +--∠==⋅+⋅-+,所以2222112222()222sin 1cos 1(1)(22)(1)(22)x x x x BED BED x x x x x x --+∠=-∠=-=+-++-+,所以1211sin 222BED F S BE D E BED x x =⋅∠=-+2132()22x =-+,所以0x =或1时,1BED F S 取得最大值2.④正确. 故选:C .【点睛】本题考查正方体的截面的性质.解题关键是由截面表示出相应的量与相应的关系.如果空间想象能力丰富,结论易得,由正方体对称性,①正确,从运动角度考虑,当E 从A 运动到1A 时,截面面积发生变化,这是一个有限的连续过程,其中必有最大值和最小值.④正确,②③易于从面线面关系说明.12.已知函数() 01ln 0x x e x f x xe x x x -⎧-≤=⎨--->⎩,,,则函数()()()()F x f f x ef x =-的零点个数为( )(e 是自然对数的底数) A .6 B .5C .4D .3【答案】B【解析】利用导数研究函数()f x 的性质,如单调性,函数值的变化趋势和,函数的极值.再研究方程()0f t et -=的解的个数,即直线y et =与函数()y f t =的公共点的的取值,从而利用函数()f x 的性质求得()F x 零点个数. 【详解】0x ≤时,()x f x e -=-是增函数,(0)1f =-,0x >时,()1ln x f x xe x x =---,11()(1)1(1)()x x f x x e x e x x'=+--=+-,显然10x +>,由1xe x=,作出xy e =和1(0)y x x=>的图象,如图,x y e =是增函数,1y x =在0x >是减函数它们有一个交点,设交点横坐标为0x ,易得0011x e x =>,001x <<, 在00x x <<时,1xe x <,()0f x '<,0x x >时,1xe x>,()0f x '>, 所以()f x 在0(0,)x 上递减,在0(,)x +∞上递增,0()f x 是()f x 的极小值,也是在0x >时的最小值.001x e x =,001x x e =,0001ln ln x x x ==-,即00ln 0x x +=,00000()1ln 0x f x x e x x =---=,0x →时,()f x →+∞,x →+∞时,()f x →+∞.作出()f x 的大致图象,作直线y ex =,如图,0x >时y ex =与()f x 的图象有两个交点,即()0f x ex -=有两个解12,t t ,120,0t t >>.0x <时,()x f x e -=-,()x f x e '-=,由11()xf x e e -'==得1x =-,而1x =-时,(1)y e e =⨯-=-,(1)f e -=-,所以直线y ex =与()x f x e -=-在(1,)e --处相切.即0x ≤时方程()0f x ex -=有一个解e -.()(())()0F x f f x ef x =-=,令()t f x =,则()()0F x f t et =-=,由上讨论知方程()0f t et -=有三个解:12,,e t t -(120,0t t >>)而()f x e =-有一个解,1()f x t =和2()f x t =都有两个解,所以()0F x =有5个解, 即函数()F x 有5个零点. 故选:B . 【点睛】本题考查函数的零点个数问题,通过换元法问题转化为()0f t et -=的解及()f x t =的解,为此利用导数研究函数()f x 的性质,研究直线y ex =与函数()y f x =的公共点问题.研究()f x 的图象与直线y t =的公共点个数.本题考查了学生的转化与化归思想.运算求解能力.二、填空题13.已知向量a =(1,1),() 2b m =-,,且a ∥()2a b +,则m 的值等于__________.【解析】计算2a b +,由向量共线的坐标运算可者m . 【详解】由题意2(12,3)a b m +=+-,因为a ∥()2a b +,所以123m +=-,解得2m =-. 故答案为:2-. 【点睛】本题考查向量平行的坐标表示,属于基础题.14.直线l 经过抛物线C :212y x =的焦点F ,且与抛物线C 交于A ,B 两点,弦AB 的长为16,则直线l 的倾斜角等于__________. 【答案】3π或23π【解析】设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,利用焦点弦长公式12AB x x p =++可求得参数k .【详解】 由题意6p,抛物线的焦点为(3,0)F , 16AB =,则AB 的斜率存在,设1122(,),(,)A x y B x y ,设直线AB 方程为(3)y k x =-,由2(3)12y k x y x =-⎧⎨=⎩得22226(2)90k x k x k -++=,所以21226(2)k x x k ++=,所以12616AB x x =++=,21226(2)10k x x k++==,k = 所以直线AB 的倾斜角为3π或23π. 故答案为:3π或23π. 【点睛】本题考查直线与抛物线相交问题,解题方法是设而不求思想方法,解题关键是掌握焦点弦长公式. 【答案】72 【解析】【详解】由题意224372A A =.故答案为:72.本题考查排列的综合应用.解题时确定分步完成本事件.插入法是解本题的关键. 16.已知三棱锥A BCD -的棱长均为6,其内有n 个小球,球1O 与三棱锥A BCD -的四个面都相切,球2O 与三棱锥A BCD -的三个面和球1O 都相切,如此类推,…,球n O 与三棱锥A BCD -的三个面和球1n O -都相切(2n ≥,且n *∈N ),则球1O 的体积等于__________,球n O 的表面积等于__________.164n π- 【解析】由正四面体的内切球的半径是高的14可求得1O 的半径,得其体积,把底面向上平移,平移到与内切球相切,这个平面以上的部分仍然是正四面体,而第二个球就是这个正四面体的内切球,此球半径是第一个球半径的一半,依次类推可得第n 个球. 【详解】如图,AO 是三棱锥A BCD -的高,O 是BCD ∆的外心,设BC a =,则OB =,3AO a ==, 1O 是三棱锥A BCD -的外接球和内切球的球心,1O 在AO 上,设外接球半径为R ,内切球半径为1r ,则由22211O B OO BO =+得222))R a R =+-,R R =,所以11r AO AO AO R =-=-==, 114r AO =,1333144()3312216O V r a a πππ====,过AO 中点作与底面BCD 平行的平面与三条棱,,AB AC AD 交于点111,,B C D ,则平面111B C D 与球1O 相切,由题意球2O 是三棱锥111A B C D -的内切球,注意到三棱锥111A B C D -的棱长是三棱锥A BCD -棱长的12,所以有其内切球半径2112r r =,同理球n O 的半径为n r ,则{}n r 是仅比为12的等比数列,所以111()2n n r r -=⨯,即1616()1222n n n r a -=⨯=, 2216644(24n n nn S r πππ-==⨯=. 6π;164n π-. 【点睛】本题考查三四面体的内切球问题,掌握正四面体的性质是解题关键.实质上正四面体的高是h ,其外接㼀半径是34h ,内切球半径是14h .三、解答题17.在ABC ∆中,内角A B C ,,所对的边分别为a b c ,,,若2a =,cos cos 2cos 0a C c A b B +=.(1)求B ;(2)若BC 边的中线AM 5ABC ∆的面积. 【答案】(1)34B π=(2)1 【解析】(1)由正弦定理化边为角,由两角和的正弦公式和诱导公式可求得cos B ,得B 角;(2)在ABM ∆中应用余弦定理求得AB c =,再用三角形面积公式求得面积. 【详解】解:(1)在ABC ∆中,sin sin sin a b cA B C==,且cos cos cos 0a C c A B +=, ∴sin cos sin cos cos 0A C C A B B +=,∴()sin()cos sin cos sin 10A C B B B B B B B +==⋅=,又∵sin 0B ≠,∴cos B =∵B 是三角形的内角,∴34B π=.(2)在ABM ∆中,314BM AM B AB c π====,,, 由余弦定理得()2222cos AM c BM c BM B =+-⋅⋅,∴2512(2c c =+-⨯-.即240c -=,(0c c -+=,∵0c >,∴c =在ABC ∆中,2a =,c =34B π=,∴ABC ∆的面积113sin 21224S ac B π==⨯=. 【点睛】本题考查正弦定理和余弦定理,考查两角和的正弦公式和诱导公式.解三角形是时,要注意已知条件,根据条件确定选用正弦定理还是余弦定理是解题关键.18.“大湖名城,创新高地”的合肥,历史文化积淀深厚,民俗和人文景观丰富,科教资源众多,自然风光秀美,成为中小学生“研学游”的理想之地.为了将来更好地推进“研学游”项目,某旅游学校一位实习生,在某旅行社实习期间,把“研学游”项目分为科技体验游、民俗人文游、自然风光游三种类型,并在前几年该旅行社接待的全省高一学生“研学游”学校中,随机抽取了100所学校,统计如下:该实习生在明年省内有意向组织高一“研学游”学校中,随机抽取了3所学校,并以统计的频率代替学校选择研学游类型的概率(假设每所学校在选择研学游类型时仅选择其中一类,且不受其他学校选择结果的影响):(1)若这3所学校选择的研学游类型是“科技体验游”和“自然风光游”,求这两种类型都有学校选择的概率;(2)设这3所学校中选择“科技体验游”学校数为随机变量X ,求X 的分布列与数学期望.【答案】(1)18125 (2)分布列见解析,65EX = 【解析】(1)统计数据说明学校选择“科技体验游”的概率为25,选择“自然风光游”的概率为15,它们相互独立,两种类型都有学校选择则分为两类:两所学校选“科技体验游”,一所学校选“自然风光游”或者一所学校选“科技体验游”,两所学校选“自然风光游”,由此可计算概率;(2)X 可能取值为0,1,2,3.,依次计算出概率可得概率分布列,由期望公式可计算期望. 【详解】(1)依题意,学校选择“科技体验游”的概率为25,选择“自然风光游”的概率为15, ∴若这3所学校选择研学游类型为“科技体验游”和“自然风光游”,则这两种类型都有学校选择的概率为:2222332112185555125P C C ⎛⎫⎛⎫⎛⎫⎛⎫=+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. (2)X 可能取值为0,1,2,3.则()30332705125P X C ⎛⎫=== ⎪⎝⎭,()2132354155125P X C ⎛⎫⎛⎫=== ⎪⎪⎝⎭⎝⎭,()2232336255125P X C ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,()3332835125P XC ⎛⎫===⎪⎝⎭, ∴X 的分布列为∴2754368601231251251251255EX =⨯+⨯+⨯+⨯=. 【点睛】本题考查用样本估计总体,考查相互独立事件同时发生的概率,考查随机变量的概率分布列与期望.掌握相互独立事件同时发生的概率是解题关键.19.如图,已知三棱柱111ABC A B C -中,平面11AA C C ⊥平面ABC ,1AA AC =,AC BC ⊥.(1)证明:1A C ⊥1AB ;(2)设2AC CB =,160A AC ∠=,求二面角11C AB B --的余弦值. 【答案】(1)证明见解析 (2)34-【解析】(1)连结1AC .由菱形得对角线垂直,再由已知及面面垂直的性质定理得线面垂直BC ⊥平面11AAC C ,11B C ⊥平面11AAC C ,从而111B C AC ⊥,于是证得线面垂直后再得线线垂直;(2)取11A C 的中点为M ,连结CM ,证得CM 与,CA CB 都垂直后,以C 为原点,CA CB CM ,,为正方向建立空间直角坐标系,写出各点坐标,求出平面的法向量,则法向量夹角得二面角,注意要判断二面角是锐角还是钝角. 【详解】 (1)连结1AC .∵1AA AC =,四边形11AAC C 为菱形,∴11A C AC ⊥. ∵平面11AA C C ⊥平面ABC ,平面11AAC C平面ABC AC =,BC ⊂平面ABC ,BC ⊥AC ,∴BC ⊥平面11AAC C . 又∵11//BC B C ,∴11B C ⊥平面11AAC C ,∴111B C AC ⊥. ∵1111AC B C C ⋂=,∴1A C ⊥平面11AB C ,而1AB ⊂平面11AB C , ∴1A C ⊥1AB(2)取11A C 的中点为M ,连结CM .∵1AA AC =,四边形11AAC C 为菱形,160A AC ∠=,∴11CM AC ⊥,CM AC ⊥. 又由(1)知CM BC ⊥,以C 为原点,CACB CM ,,为正方向建立空间直角坐标系,如图.设1CB =,22AC CB ==,1AA AC =,160A AC ∠=,∴C (0,0,0),1A (1,0),A (2,0,0),B (0,1,0),1B (-1,1. 由(1)知,平面11C AB的一个法向量为(110CA =,. 设平面1ABB 的法向量为()n x y z =,,,则1 n AB n AB ⊥⊥,,∴10n AB n AB ⎧⋅=⎪⎨⋅=⎪⎩. ∵()2 1 0AB =-,,,(13 1AB =-,,∴2030x y x y -+=⎧⎪⎨-+=⎪⎩.令1x =,得23y z ==,,即12n ⎛= ⎝,. ∴1112cos 2CA n CA n CA n⋅<>===⋅⨯,∴二面角11C AB B --的余弦值为-【点睛】本题考查用线面垂直的性质定理证明线线垂直,考查用空间向量法求二面角.立体几何中证明垂直时,线线垂直,线面垂直,面面垂直常常是相互转化,判定定理与性质定理要灵活应用.在有垂直的情况下常常建立空间直角坐标系,用向量法求空间角.20.设椭圆:C 22221x y a b+=(0a b >>)的左右顶点为12A A ,,上下顶点为12B B ,,菱形1122A B A B 的内切圆C ',椭圆的离心率为2. (1)求椭圆C 的方程;(2)设M N ,是椭圆上关于原点对称的两点,椭圆上一点P 满足PM PN =,试判断直线PM PN ,与圆C '的位置关系,并证明你的结论.【答案】(1)22163x y += (2)直线PM 、PN 与圆C '相切,证明见解析 【解析】(1)由离心率得a =,用两种方法表示出菱形1122A B A B 的面积可求得,b a ,得椭圆方程;(2)设()11M x y ,,()22P x y ,.当直线PM 的斜率存在时,设直线PM 的方程为y kx m =+,代入椭圆方程,用韦达定理得1212,x x x x +,利用OP OM ⊥,即12120x x y y +=得,k m 的关系,求出圆心C '到直线PM 的距离可得直线与圆的位置关系.直线PM 的斜率不存在时,直接计算可得,由对称性PN 的结论也可得. 【详解】(1)设椭圆的半焦距为c .知,b c a =,. 设圆C '的半径为r,则r ab ,2=,解得b =∴a =∴椭圆C 的方程为22163x y +=(2)∵M N ,关于原点对称,PM PN =,∴OP MN ⊥. 设()11M x y ,,()22P x y ,.当直线PM 的斜率存在时,设直线PM 的方程为y kx m =+.由直线和椭圆方程联立得()2226x kx m ++=,即()222124260k x kmx m +++-=,∴12221224212621km x x k m x x k ⎧+=-⎪⎪+⎨-⎪=⎪+⎩. ∵()11OM x y =,,()22OP x y =,,∴()()12121212OM OP x x y y x x kx m kx m ⋅=+=+++()()()22222121222264112121m km k x x km x x m k km m k k --=++++=+⋅+⋅+++()222322021m k k --==+, ∴22220m k --=,2222m k =+, ∴圆C '的圆心O 到直线PM 的距离为221m r k ==+,∴直线PM 与圆C '相切.当直线PM 的斜率不存在时,依题意得()11,N x y --,()11,P x y -. 由PM PN=得1122x y =,∴2211x y =,结合2211163x y +=得212x =,∴直线PM 到原点O 的距离都是2, ∴直线PM 与圆C '也相切. 同理可得,直线PN 与圆C '也相切. ∴直线PM 、PN 与圆C '相切【点睛】本题考查求椭圆的标准方程,考查直线与椭圆相交问题,考查直线与圆的位置关系.直线与椭圆相交,一般采取设而不求思想,即设交点坐标1122(,),(,)x y x y ,设直线方程y kx m =+,由直线方程与椭圆方程联立,消元后用韦达定理得1212,x x x x +,把这个结论代入其他条件求解.21.已知函数()21x x f x e-=(e 为自然对数的底数).(1)求函数()f x 的零点0x ,以及曲线()y f x =在0x x =处的切线方程;(2)设方程()f x m =(0m >)有两个实数根1x ,2x ,求证:121212x x m e ⎛⎫-<-+ ⎪⎝⎭.【答案】(1)01x =±,()21y x e=-- (2)证明见解析 【解析】(1)由()0f x =求得函数零点,由导数的几何意义可求得切线方程; (2)根据导函数研究出函数的单调性,只有在11x -<<时,()0f x >,因此12,(1,1)x x ∈-,考查(1)中切线,先证明()2(1)f x e x <+(11x -<<),只要构造函数()112x x g x e +-=+在[]1 1x ∈-,上单调递增,易得证,方程2(1)m e x =+的解为112m x e'=-,11x x '<(不妨设12x x <,则12111x x -<<<),要证不等式变形为证明2112122m x m e e ⎛⎫⎛⎫--≤-+ ⎪ ⎪⎝⎭⎝⎭,即证21x m ≤-,由2221x x m e -=,222211x x x e -≤-,构造函数,结合导数知识可证.【详解】(1)由()210x x f x e-==,得1x =±,∴函数的零点是±1. ()221x x x f x e --'=,()12f e '-=,()10f -=.曲线()y f x =在1x =-处的切线方程为()21y e x =+.()21f e '=-,()10f =,∴曲线()y f x =在1x =处的切线方程为()21y x e =-- (2)()221xx x f x e --'=.当(() 112 x ∈-∞++∞,,时,()0f x '>;当(1x ∈时,()0f x '<.∴()f x 的单调递增区间为(() 1 1-∞+∞,,,单调递减区间为(1. 由(1)知,当1x <-或1x >时,()0f x <;当11x -<<时,()0f x >.下面证明:当()1 1x ∈-,时,()()21e x f x +>. 当()1 1x ∈-,时, ()()()21112121002x x x x e x f x e x e e+--+>⇔++>⇔+>. 易知,()112x x g x e +-=+在[]1 1x ∈-,上单调递增, 而()10g -=, ∴()()10g x g >-=对()1 1x ∀∈-,恒成立, ∴当()1 1x ∈-,时,()()21e x f x +>. 由()21y e x y m ⎧=+⎨=⎩得12m x e =-.记112m x e'=-.不妨设12x x <,则12111x x -<<<, ∴121221212m x x x x x x x e ⎛⎫''-<-=-=-- ⎪⎝⎭. 要证121212x x m e ⎛⎫-<-+ ⎪⎝⎭,只要证2112122m x m e e ⎛⎫⎛⎫--≤-+ ⎪ ⎪⎝⎭⎝⎭,即证21x m ≤-. 又∵2221x x m e -=,∴只要证222211x x x e -≤-,即()()()222110x x e x -⋅-+≤.∵()21x ∈,即证()2210x e x -+≥. 令()()()11x x x e x x e ϕϕ'=-+=-,.当()1 0x ∈时,()0x ϕ'<,()x ϕ为单调递减函数;当()0,1x ∈时,()0x ϕ'>,()x ϕ为单调递增函数.∴()()00x ϕϕ≥=,∴()2210x e x -+≥, ∴121212x x m e ⎛⎫-<-+ ⎪⎝⎭【点睛】本题考查函数的零点,考查导数的几何意义,考查用导数证明不等式.本题中不等式的证明中对根12,x x 的处理采取了两种不同的方法,设12x x <,由函数知识得12111x x -<<<<,1x 利用y m =与切线2(1)y e x =+的交点横坐标1x '=12m e -放缩为证明21(1)2122m x m e e ⎛⎫--<-+ ⎪⎝⎭,2x 直接用y m =与()f x m =的解来表示,再结合函数知识获得证明,转化与化归思想在这里得到进一步的体现.22.在直角坐标系xOy 中,直线l的参数方程为31x y ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数),在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 的方程为4cos 6sin ρθθ=+. (1)求曲线C 的直角坐标方程;(2)设曲线C 与直线l 交于点M N ,,点A 的坐标为(3,1),求AM AN +.【答案】(1)()()222313x y -+-=(2)【解析】()1利用极坐标与直角坐标的互化公式:222,cos ,sin x y x y ρρθρθ+===即可求解;()2联立直线l 的方程和曲线C 的方程,整理化简得到关于t 的一元二次方程,由题知点A 在直线l 上,利用参数方程中参数的几何意义及一元二次方程中的韦达定理即可求出AM AN +的值.【详解】()1因为曲线C 的方程4cos 6sin ρθθ=+,∴24cos 6sin ρρθρθ=+,222,cos ,sin x y x y ρρθρθ=+==∴2246x y x y +=+,化简得,曲线C 的直角坐标方程为:()()222313x y -+-=. (2)把直线3:1x l y ⎧=-⎪⎪⎨⎪=+⎪⎩代入曲线C得22121322t t ⎛⎫⎛⎫-+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,整理得,280t --=.∵(2320∆=-+>,所以方程280t --=有两个不等实根,设12t t ,为方程的两个实数根,由韦达定理可得,12t t +=128t t =-,∴12t t ,为异号,又∵点A (3,1)在直线l 上,由参数方程中参数的几何意义可得,1212AM AN t t t t +=+=-=.所以AM AN +=【点睛】本题考查极坐标与直角坐标的互化、参数方程中参数的几何意义等知识,考查学生的运算能力、推理论证能力;其中正确掌握参数方程中参数的几何意义是求解本题的关键;属于中档题. 23.已知函数()2f x x m x =--+(m R ∈),不等式()20f x -≥的解集为(] 4-∞,. (1)求m 的值;(2)若0a >,0b >,3c >,且22a b c m ++=,求()()()113a b c ++-的最大值.【答案】(1)6m =(2)32【解析】()1利用绝对值不等式的解法求出不等式的解集,得到关于m 的方程,求出m 的值即可;()2由()1知6m =可得,212a b c ++=,利用三个正数的基本不等式a b c ++≥,构造和是定值即可求出()()()113a b c ++-的最大值.【详解】(1)∵()2f x x m x =--+,()2222f x x m x ∴-=----+,所以不等式()20f x -≥的解集为(] 4-∞,, 即为不等式20x m x ---≥的解集为(] 4-∞,, ∴2x m x --≥的解集为(] 4-∞,, 即不等式()222x m x --≥的解集为(] 4-∞,, 化简可得,不等式()()2220m m x ++-≥的解集为(] 4-∞,, 所以242m +=,即6m =. (2)∵6m =,∴212a b c ++=.又∵0a >,0b >,3c >,∴()()()()()()12231132a b c a b c ++-++-= ()()()333122311211232232323a b c a b c ++++-⎡⎤++⎛⎫⎛⎫≤===⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎣⎦, 当且仅当1223a b c +=+=-,212a b c ++=等号成立,即3a =,1b =,7c =时,等号成立,∴()()()113a b c ++-的最大值为32.【点睛】 本题主要考查含有两个绝对值不等式的解法和三个正数的基本不等式a b c ++≥的灵活运用;其中利用212a b c ++=构造出和为定值即()()()1223a b c ++-+-为定值是求解本题的关键;基本不等式a b +≥的条件:一正二定三相等是本题的易错点;属于中档题.。
安徽省合肥市2019届高三第一次教学质量检测数学理试题含详解
2019年4月安徽省合肥市2019届高三第一次教学质量检测数学理试题(考试时间:120分钟满分:150分)第Ⅰ卷一、选择题:本大题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知为虚数单位,,则复数的虚部为( ).A. B. C. 2 D.【答案】D【分析】本道题结合复数的运算,化简z,计算虚部,即可。
【详解】,故虚部即为i的系数,为-2,故选D。
【点睛】本道题看考查了复数的化简,关键在于化简z,属于较容易的题。
2.集合,,则=( )A. B.C. D.【答案】C【分析】先化简集合A,B,结合并集计算方法,求解,即可。
【详解】解得集合,所以,故选C。
【点睛】本道题考查了集合的运算,考查了一元二次不等式解法,关键化简集合A,B,难度较小。
3.执行如图所示的程序框图,则输出的值为( ).A. 63B. 47C. 23D. 7【答案】C【分析】本道题不断的代入i,n,直到,退出循环,即可。
【详解】n=15,i=2不满足条件,继续循环,得到n=11,i=3不满足条件 ,继续循环,n=23,i=4,满足条件,退出循环,输出n,即可。
故选C。
【点睛】本道题考查了程序框图的意义,关键找出当对应的n,输出,即可,难度较容易。
4.已知正项等差数列的前项和为(),,则的值为( ).A. 11B. 12C. 20D. 22【答案】D【分析】本道题结合等差数列性质,结合,代入,即可。
【详解】结合等差数列的性质,可得,而因为该数列为正项数列,可得,所以结合,可得,故选D。
【点睛】本道题考查了等差数列的性质,关键抓住,即可,难度中等。
5.已知偶函数在上单调递增,则对实数,“”是“”的( ).A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【分析】本道题结合偶函数满足以及单调递增关系,前后推导,即可.【详解】结合偶函数的性质可得,而当,所以结合在单调递增,得到,故可以推出.举特殊例子,,但是,故由无法得到,故是的充分不必要条件,故选A.【点睛】本道题考查了充分不必要条件的判定,关键结合偶函数的性质以及单调关系,判定,即可,属于较容易的题.6.某调查机构对全国互联网行业进行调查统计,得到整个互联网行业从业者年龄分布饼状图、90后从事互联网行业者岗位分布条形图,则下列结论中不一定正确的是( ).注:90后指1990年及以后出生,80后指1980-1989年之间出生,80前指1979年及以前出生.A. 互联网行业从业人员中90后占一半以上B. 互联网行业中从事技术岗位的人数超过总人数的20%C. 互联网行业中从事运营岗位的人数90后比80前多D. 互联网行业中从事技术岗位的人数90后比80后多【答案】D【分析】本道题分别将各个群体的比例代入,即可。
安徽省合肥市高三数学第一次教学质量检测(理)
安徽省合肥市2008年高三年级第一次教学质量检测数学(理)一、选择题:本大题共11小题,每小题5分,共55分。
1.复数21i=+ A .1i - B .1i + C .i - D .i2.如图,已知,,3AB a AC b BD DC ===,用,a b 表示AD ,则AD =A .34a b +B .1344a b +C .1144a b + D .3144a b + 3.已知角α在第一象限且3cos 5α=,则1)4sin()2παπα+-=+ A .25 B .75 C .145D .25-4.把直线20x y λ-+=按向量(2,0)a =平移后恰与224220x y y x +-+-=相切,则实数λ的值为AB.C- D.5.等比数列{}n a 中,“13a a <”是“57a a <”的A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分又不必要条件 6.已知lg lg 0a b +=,函数()xf x a =与函数()log b g x x =-的图象可能是7.已知双曲线2222:1x y C a b-=满足彖件:(1)焦点为12(5,0),(5,0)F F -;(2)离心率为53,求得双曲线C 的方程为(,)0f x y =。
若去掉条件(2),另加一个条件求得双曲线C 的方程仍为(,)0f x y =,则下列四个条件中,符合添加的条件共有①双曲线2222:1x y C a b-=上的任意点P 都满足12||||||6PF PF -=;②双曲线2222:1x y C a b-=的—条准线为253x =③双曲线2222:1x y C a b-=上的点P 到左焦点的距离与到右准线的距离比为53④双曲线2222:1x y C a b-=的渐近线方程为430x y ±=A .1个B .2个C .3个D .4个8.设偶函数()log ||a f x x b =-在(0,)+∞上单调递增,则(2)f b -与(1)f a +的大小关系是A .(2)(1)f b f a -=+B .(2)(1)f b f a ->+C .(2)(1)f b f a -<+D .不能确定 9.有两排座位,前排4个座位,后排5个座位,现安排2人就坐,并且这2人不相邻(一前一后也视为不相邻),那么不同坐法的种数是A .18B .26C .29D .5810.若二面角l αβ--为56π,直线m α⊥,直线n β⊂,则直线m 与n 所成的角取值范围是 A .(0,)2πB .[,]62ππC .[,]32ππD .[,]63ππ11.集合{(,)||1|}A x y y x =≥-,集合{(,)|5}B x y y x =≤-+。
安徽省合肥市届高三第一次教学质量检测 数学理
安徽省合肥市2018届高三第一次教学质量检测数学理试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知i 为虚数单位,则()()2342i i i+-=-()A .5B .5iC .71255i --D .71255i -+2.已知等差数{}n a ,若2510,1a a ==,则{}n a 的前7项的和是() A .112B .51C .28D .183.已知集合M 是函数y 的定义域,集合N 是函数24y x =-的值域,则M N ⋂=()A .12x x ⎧⎫≤⎨⎬⎩⎭B .142x x ⎧⎫-≤<⎨⎬⎩⎭C .()1,2x y x ⎧<⎨⎩且}4y ≥-D .∅4.若双曲线()222210,0x y a b a b-=>>的一条渐近线方程为2y x =-,该双曲线的离心率是()A B D .5.执行如图程序框图,若输入的n 等于10,则输出的结果是() A .2B .3-C .12-D .136.已知某公司生产的一种产品的质量X (单位:克)服从正态分布()100,4N .现从该产品的生产线上随机抽取10000件产品,其中质量在[]98,104内的产品估计有()(附:若X 服从()2,N μσ,则()0.6826P X μσμσ-<<+=,()220.9544P X μσμσ-<<+=) A .3413件B .4772件C .6826件D .8185件7.将函数cos sin y x x =-的图像先向右平移()0ϕϕ>个单位,再将所得的图像上每个点的横坐标变为原来的a 倍,得到cos2sin 2y x x =+的图像,则,a ϕ的可能取值为() A .,22a πϕ==B .3,28a πϕ==C .31,82a πϕ==D .1,22a πϕ== 8.已知数列{}n a 的前n 项和为n S ,若323n n S a n =-,则2018a =()A .201821-B .201836-C .20181722⎛⎫- ⎪⎝⎭D .201811033⎛⎫-⎪⎝⎭9.如图,格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的表面积为()A .518π+B .618π+C .86π+D .106π+10.已知直线210x y -+=与曲线x y ae x =+相切(其中e 为自然对数的底数),则实数a 的值是()A .12B .1C .2D .e11.某企业生产甲、乙两种产品,销售利润分别为2千元/件、1千元/件.甲、乙两种产品都需要在A B 、两种设备上加工,生产一件甲产品需用A 设备2小时,B 设备6小时;生产一件乙产品需用A 设备3小时,B 设备1小时.A B 、两种设备每月可使用时间数分别为480小时、960小时,若生产的产品都能及时售出,则该企业每月利润的最大值为() A .320千元B .360千元C .400千元D .440千元12.已知函数()()22,2xe f x x x g x x =-=+(其中e 为自然对数的底数),若函数()()h x f g x k=-⎡⎤⎣⎦有4个零点,则k 的取值范围为() A .()1,0-B .()0,1C .221,1ee ⎛⎫-⎪⎝⎭D .2210,e e ⎛⎫- ⎪⎝⎭第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若平面向量,a b r r 满足a b a b +=-=r r r r a b ⋅=r r.14.已知m 是常数,()543252054311a x a x a x a x a x a mx +++++-=,且12345533a a a a a a +++++=,则m =.15.抛物线2:4E y x =的焦点为F ,准线l 与x 轴交于点A ,过抛物线E 上一点P (第一象限内.....)作l 的垂线PQ ,垂足为Q .若四边形AFPQ 的周长为16,则点P 的坐标为.16.在四面体ABCD 中,2,60,90AB AD BAD BCD ==∠=︒∠=︒,二面角A BD C --的大小为150︒,则四面体ABCD 外接球的半径为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知ABC ∆的内角,,A B C 的对边分别为,,a b c ,()2cos cos 0a b C c A -+=.(1)求角C ;(2)若c =ABC ∆的周长的最大值.年9月,国务院发布了《关于深化考试招生制度改革的实施意见》.某地作为高考改革试点地区,从当年秋季新入学的高一学生开始实施,高考不再分文理科.每个考生,英语、语文、数学三科为必考科目并从物理、化学、生物、政治、历史、地理六个科目中任选三个科目参加高考.物理、化学、生物为自然科目,政治、历史、地理为社会科目.假设某位考生选考这六个科目的可能性相等.(1)求他所选考的三个科目中,至少有一个自然科目的概率;(2)已知该考生选考的三个科目中有一个科目属于社会科目,两个科目属于自然科目.若该考生所选的社会科目考试的成绩获A 等的概率都是,所选的自然科目考试的成绩获A 等的概率都是,且所选考的各个科目考试的成绩相互独立.用随机变量X 表示他所选考的三个科目中考试成绩获A 等的科目数,求X 的分布列和数学期望.19.如图,在多面体ABCDEF 中,ABCD 是正方形,BF ⊥平面ABCD ,DE ⊥平面ABCD ,BF DE =,点M 为棱AE 的中点.(1)求证:平面//BMD 平面EFC ;(2)若2DE AB =,求直线AE 与平面BDM 所成的角的正弦值.20.在平面直角坐标系中,圆O 交x 轴于点12,F F ,交y 轴于点12,B B .以12,B B 为顶点,12,F F 分别为左、右焦点的椭圆E ,恰好经过点2⎛ ⎝⎭. (1)求椭圆E 的标准方程;(2)设经过点()2,0-的直线l 与椭圆E 交于,M N 两点,求2F MN ∆面积的最大值. 21.已知()()()ln 21af x x a R x=-+∈. (1)讨论()f x 的单调性; (2)若()f x ax ≤恒成立,求a 的值.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,曲线13cos :2sin x C y θθ=⎧⎨=⎩(θ为参数),在以O 为极点,x 轴的正半轴为极轴的极坐标系中,曲线2:2cos 0C ρθ-=. (1)求曲线2C 的普通方程;(2)若曲线1C 上有一动点M ,曲线2C 上有一动点N ,求MN 的最小值. 23.选修4-5:不等式选讲 已知函数()21f x x =-.(1)解关于x 的不等式()()11f x f x -+≤;(2)若关于x 的不等式()()1f x m f x <-+的解集不是空集,求m 的取值范围.试卷答案一、选择题1-5:ACBCC6-10:DDACB11、12:BD 二、填空题1-()4,4三、解答题 17.解:(1)根据正弦定理,由已知得:()sin 2sin cos sin cos 0A B C C A -+=, 即sin cos sin cos 2sin cos A C C A B C +=, ∴()sin 2sin cos A C B C +=,∵A C B π+=-,∴()()sin sin sin 0A C B B π+=-=>, ∴sin 2sin cos B B C =,从而1cos 2C =. ∵()0,C π∈,∴3C π=.(2)由(1)和余弦定理得2221cos 22a b c C ab +-==,即2212a b ab +-=,∴()2212332a b a b ab +⎛⎫+-=≤ ⎪⎝⎭, 即()248a b +≤(当且仅当a b ==.所以,ABC ∆周长的最大值为c +=.18.(1)记“某位考生选考的三个科目中至少有一个科目是自然科目”为事件M ,则()3336119112020C P M C =-=-=,所以该位考生选考的三个科目中,至少有一个自然科目的概率为1920. (2)随机变量X 的所有可能取值有0,1,2,3.因为()211105480P X ⎛⎫==⨯= ⎪⎝⎭, ()2124111311545448P X C ⎛⎫==⨯+⨯⨯⨯= ⎪⎝⎭,()212413133325445480P X C ⎛⎫==⨯⨯⨯+⨯= ⎪⎝⎭,()243935420P X ⎛⎫==⨯= ⎪⎝⎭,所以X 的分布列为 所以()11033360123 2.380808080E X =⨯+⨯+⨯+⨯=. 19.(1)证明:连结AC ,交BD 于点N , ∴N 为AC 的中点,∴//MN EC . ∵MN ⊄平面EFC ,EC ⊂平面EFC , ∴//MN 平面EFC .∵,BF DE 都垂直底面ABCD , ∴//BF DE . ∵BF DE =,∴BDEF 为平行四边形,∴//BD EF . ∵BD ⊄平面EFC ,EF ⊂平面EFC , ∴//BD 平面EFC .又∵MN BD N ⋂=,∴平面//BDM 平面EFC . (2)由已知,DE ⊥平面ABCD ,ABCD 是正方形.∴,,DA DC DE 两两垂直,如图,建立空间直角坐标系D xyz -. 设2AB =,则4DE =,从而()()()()2,2,0,1,0,2,2,0,0,0,0,4B M A E , ∴()()2,2,0,1,0,2DB DM ==u u u ru u u u r,设平面BDM 的一个法向量为(),,n x y z =r,由00n DB n DM ⎧⋅=⎪⎨⋅=⎪⎩r u u u r r u u u ur 得22020x y x z +=⎧⎨+=⎩. 令2x =,则2,1y z =-=-,从而()2,2,1n =--r.∵()2,0,4AE =-u u u r,设AE 与平面BDM 所成的角为θ,则sin cos n AE n AE n AEθ⋅=⋅==⋅r u u u rr u u u r r u u u r 所以,直线AE 与平面BDM. 20.(1)由已知可得,椭圆E 的焦点在x 轴上.设椭圆E 的标准方程为()222210x y a b a b +=>>,焦距为2c ,则b c =,∴22222a b c b =+=,∴椭圆E 的标准方程为222212x y b b+=.又∵椭圆E过点⎛ ⎝⎭,∴2211212b b +=,解得21b =. ∴椭圆E 的标准方程为2212x y +=.(2)由于点()2,0-在椭圆E 外,所以直线l 的斜率存在. 设直线l 的斜率为k ,则直线():2l y k x =+,设()()1122,,,M x y N x y .由()22212y k x x y =+⎧⎪⎨+=⎪⎩消去y 得,2222)128820k x k x k +++-=(. 由 0∆>得2102k ≤<,从而22121222882,1212k k x x x x k k --+==++,∴12MN x =-=.∵点()21,0F 到直线l的距离d =,∴2F MN ∆的面积为12S MN d =⋅=令212k t +=,则[)1,2t ∈,∴S ===,当134t=即[)441,233t ⎛⎫=∈ ⎪⎝⎭时,S 有最大值,max S =,此时k =.所以,当直线l 的斜率为时,可使2F MN ∆21.(Ⅰ)()f x 的定义域为12⎛⎫+∞ ⎪⎝⎭,,()()2222222121a x ax a f x x x x x -+'=-=--. ∵2210,0x x ->>.令()222g x x ax a =-+,则 (1)若0∆≤,即当02a ≤≤时,对任意1,2x ⎛⎫∈+∞ ⎪⎝⎭,()0g x ≥恒成立,即当1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '≥恒成立(仅在孤立点处等号成立). ∴()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增.(2)若0∆>,即当2a >或0a <时,()g x 的对称轴为2ax =.①当0a <时,02a<,且11022g ⎛⎫=> ⎪⎝⎭.如图,任意1,2x ⎛⎫∈+∞ ⎪⎝⎭,()0g x >恒成立,即任意1,2x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>恒成立,∴()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增.②当2a >时,12a>,且11022g ⎛⎫=> ⎪⎝⎭.如图,记()0g x =的两根为((1211,22x a x a == ∴当()121,,2x x x ⎛⎫∈⋃+∞ ⎪⎝⎭时,()0g x >;当(11,22a ⎛⎫⎪⎝⎭时,()0g x <. ∴当()121,,2x x x ⎛⎫∈⋃+∞ ⎪⎝⎭时,()0f x '>,当()12,x x x ∈时,()0f x '<.∴()f x 在11,2x ⎛⎫ ⎪⎝⎭和()2,x +∞上单调递增,在()12,x x 上单调递减. 综上,当2a ≤时,()f x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增;当2a >时,()f x 在(11,22a ⎛⎫- ⎪⎝⎭和(1,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在((11,22a a ⎛⎫⎛⎫+⎪ ⎪⎝⎭⎝⎭上单调递减.(Ⅱ)()f x ax ≤恒成立等价于1,2x ⎛⎫∀∈+∞ ⎪⎝⎭,()0f x ax -≤恒成立.令()()()ln 21ah x f x ax x ax x =-=-+-,则()f x ax ≤恒成立等价于1,2x ⎛⎫∀∈+∞ ⎪⎝⎭,()()01h x h ≤=()*.要满足()*式,即()h x 在1x =时取得最大值. ∵()()()32222221ax a x ax ah x x x -++-+'=-.由()10h '=解得1a =.当1a =时,()()()()2212121x x x h x x x --+'=-, ∴当1,12x ⎛⎫∈ ⎪⎝⎭时,()0h x '>;当()1,x ∈+∞时,()0h x '<. ∴当1a =时,()h x 在1,12⎛⎫ ⎪⎝⎭上单调递增,在()1,+∞上单调递减,从而()()10h x h ≤=,符合题意. 所以,1a =.22.(1)由2cos 0ρθ-=得:22cos 0ρρθ-=. 因为222,cos x y x ρρθ=+=,所以2220x y x +-=, 即曲线2C 的普通方程为()2211x y -+=.(2)由(1)可知,圆2C 的圆心为()21,0C ,半径为1. 设曲线1C 上的动点()3cos ,2sin M θθ, 由动点N 在圆2C 上可得:2min min 1MN MC =-.∵2MC =当3cos 5θ=时,2min MC∴2min min 11MN MC =-=-. 23.(1)()()1121211f x f x x x -+≤⇔--+≤,1221211x x x ⎧≥⎪⇔⎨⎪---≤⎩或112212211x x x ⎧-<<⎪⎨⎪---≤⎩或1212211x x x ⎧≤-⎪⎨⎪-++≤⎩ 12x ⇔≥或1142x -≤<14x ⇔≥-, 所以,原不等式的解集为1,4⎡⎫-+∞⎪⎢⎣⎭. (2)由条件知,不等式22 11x x m -++<有解,则()min 2121 m x x >-++即可. 由于()1222112211221x x x x x x =-++≥-+++-=+, 当且仅当()()12210x x -+≥,即当11,22x ⎡⎤∈-⎢⎥⎣⎦时等号成立,故2m >. 所以,m 的取值范围是()2,+∞.。
安徽省合肥市高三数学第一次教学质量检测(理科)
安徽省合肥市2009年高三第一次教学质量检测数学(理科)试题(考试时间:120分钟,满分150分)一.选择题:(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只 有一项是符合题目要求的,) 1.不等式21x <的解集为A .{|11}x x -<<B .{|1}x x <C .{|1}x x >-D .{|11}x x x <->或2.复数21iz i=+的共轭复数z = A .1i +B .1i --C .1i -+D .1i -3.曲线2242110x y x y +---=上到直线3450x y ++=距离等于1的点的个数为A .1B .2C .3D .44.已知sin 2cos x x =,则2sin 1x +=A .65 B .95 C .43D .535.已知n S 是等差数列{}n a 的前n 项和,100S >并且110S =,若n k S S ≤对n N *∈恒成立,则正整数k 构成集合为A .{5}B .{6}C .{5,6}D .{7}6.将A .B .C .D .E排成一列,要求A .B .C 在排列中顺序为“A .B .C ”或“C .B .A ”(可以不相邻),这样的排列数有( )种。
A .12B .20C .40D .607.已知命题:“若120k a k b +=则120k k ==”是真命题,则下面对,a b 的判断正确的是A .a 与b 一定共线B .a 与b 一定不共线C .a 与b 一定垂直D .a 与b8.一个空间几何体的三视图及部分数据如图所示,则这个几何体的体积是A.3B .52C .2D .32正视图侧视图俯视图19.平面上有一组平行线,且相邻平行线间的距离为3cm ,把一枚半径为1cm 的硬币任意平掷在这个平面,则硬币不与任何一条平行线相碰的概率是A .14 B .13 C .12D .2310.曲线1y x =与直线14x x ==、及x 轴所围成的区域的面积是A .34B .ln 2C .2ln 2D .ln 21-11.如图,该程序运行后输出的结果为A .14B .16C .18D .6412.函数221,0()(1),0axax x f x a e x ⎧+≥⎪=⎨-<⎪⎩在(,)-∞+∞上单调,则a 的取值范围是 A.(,(1,2]-∞B.[1)[2,)-+∞C .D .)+∞二.填空题:(本大题共4个小题,每小题4分,共16分,把答案填在题中的横线上)13.18(x 展开式中的常数项为___________. 14.写出命题:“对任意实数m ,关于x 的方程x 2+x+m = 0有实根”的否定为:___________________15.以等腰直角△ABC 的两个顶点为焦点,并且经过另一顶点的椭圆的离心率为________. 16.观察下表的第一列,填空三.解答题(本大题共6个小题,共74分。
安徽合肥2019高三上第一次教学质量检测-数学(理)
安徽合肥2019高三上第一次教学质量检测-数学(理)考试时间:120分钟总分值:150分本卷须知1、答题前,务务在答题卷、答题卡规定的地方填写自己的姓名、座位号和座位号后两位。
2、答第I 卷时,每题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
3、答第II 卷时,必须使用0.5毫米的黑色墨水签字笔在答题卡上....书写,要求字体工整、笔迹清晰,作图题可先用铅笔在答题卡...规定的位置绘出,确认后再用0.5毫米的黑色墨水签字笔描清楚。
必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,..............在试题卷、草稿纸上答题无效。
..............4、考试结束,务必将么将答题卡和答题卷一并上交。
第I 卷〔总分值50分〕【一】选择题〔共10个小题,每题5分,总分值5分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的〕 1、复数11z i=-〔i 为虚数单位〕的共轭复数z 是〔〕A 、1-iB 、1+iC 、1122i + D 、1122i - 2、集合{|220}A x R x =∈-<<-≤,2{|20}B x R x x =∈-->,那么()R AC B =〔〕A 、〔-1,2〕B 、[-1,2]C 、〔0,2〕D 、(]0,23、与椭圆2211216x y +=是有共焦点,且离心率互为倒数的双曲线方程是 〔〕A 、2213x y -= B 、2213y x -=C 、2233148x y -= D 、2233148y x -=4、某一几何体的三视图如下图,那么该几何体的表面积为〔〕A 、54B 、58C 、60D 、63 5、α为锐角,4sin 5α=,那么tan()4πα+=〔〕A 、17- B 、17C 、-7D 、76、数列{}na 满足*111,2()n n n a a a n N +=⋅=∈,那么2012S = 〔〕 A 、201221- B 、1006323⨯-C 、1006321⨯-D 、1005322⨯-7、如下图的程序框图运行的结果是 〔〕A 、12012B 、12013C 、20112012D 、201220138、建立从集合{1,2,3,4}A =到集合{5,6,7}B =的所有函数,从中随机抽取一个函数,那么其值域是B 的概率为〔〕A 、916B 、316C 、49D 、899、2,,z x y x y =+满足2y x x y x a ≥⎧⎪+≤⎨⎪≥⎩,且z 的最大值是最小值的4倍,那么a 的值是〔〕A 、13B 、14C 、15D 、1610、函数()f x 的导函数的图像如下图,a 、b 、c 分别假设ABC ∆所对的边且222334a b c ab +-=角三角形,那么一定成立的是〔〕 A 、(sin )(cos )f A f B ≤ B 、(sin )(cos )f A f B ≥ C 、(sin )(sin )f A f B ≥D 、(cos )(cos )f A f B ≤第II 卷〔总分值100分〕【二】填空题〔共5小题,每题5分,总分值25分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
合肥市2013年高三第一次教学质量检测,
数学试题(理)
(考试时间:120分钟满分:150分)
注窻事项:
1.答趙前,务必在答题卡和答题卷规定的地方填写自己的姓名、准考证号和座位号后两位.
2.答第I 卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如 需改动,用橡皮擦干净后,再选涂其他答案标号.
3.答第II 卷时,必须使用0.5毫米的黑色墨水签字笔在答题卷上书写,要求字体工整、 笔迹清晰.作图题可先用铅笔在答题卷规定的位置绘出,确认后再用0.5毫米的黑色 墨水签字笔描清楚.必须在题号疾备佘的答题区域作答,超出答题区域书写的答案无 效,在试题卷、萆稿纸上答题无效
第I 卷(满分50分)
一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项t,只有一 项是符合题目要求的)
1. 复数311i i
-+(i 为虚数单位)的模是()
D.8 2. 已知集合M=|1,2,3,4,5|,N=2||11x x ≤-,则=()
A.{4,5} B . {1,4,5} C.{3,4,5} D.{1,3,4,5}
3. 已知命题p:若(x-1)(x-2) ≠0则x ≠1且x ≠2命题q:存在实数x 。
,
使02x <0下列选项中为真命题的是()
A p ⌝ B. q p ⌝∧ C. p q ⌝∨ D.q
4. 一个六面体的三视图如图所示,其侧视图是边长为2的正方形,则该六面体的表面积是()
A. 12+14+14+18+
5. 双曲线
22
22
1(0)
x y
a b
b b
+=>>的一条渐近线平分圆C(x-1)2+(y-2)2=1的周长,此双曲
线的离心率等于()
6. 将函数f(x)=Asin(ωx+ϕ)(A>0, ω>0)的图象向左平移
2
π个单位,所得函数的图象与函数y=f(x)的图象关于-轴对称,则ω的值不可能是()
A.2
B. 4
C. 6
D. 10
7-将包含甲、乙两队的8支队伍平均分成2个小组参加某项比赛,则甲、乙两
队被分在不同小组的分组方案有()
A.20 种
B.35 种
C.40 种
D.60 种
8以S n表示等差数列{a n}的前n项和,若S5>S6,则下列不等关系不一定成立的
是()
A.2a3>3a4
B. 5a5>a1+6a6
C.a5+a4-a3<0
D. a3+a6+a12<2a7
9执行右边的程序框图,输出的结果是()
A.63
B. 64
C. 65
D.66
10函数f(x)=e x+x2+x+1图象L关于直线 2x-y-3 =0对称的图象为M,P、Q分别是两
图象上的动点,则||
PQ的最小值为()
第II卷(满分100分)
二、填空题(本大題共5小题,每小题5分,共25分.把答案填在答題卡的相应位里)
11. 已知221(0,0)x y x y
+=>>,则x+y 的最小值为_______ 12 二项式62
1(3)x x +的展开式中,常数项等于_______(用数字作答). 13.
在不等式组30303x x x ⎧-+≥⎪⎪++≥⎨⎪≤⎪⎩
表示的平面区域内作圆M ,则最大圆M 的标准方程为_______
14. 在梯形ABCD 中,Ab//CD ,AB=2CD ,M 、N 分别为CD 、BC 的中点,若
AB AM AN λμ=+, 则λμ+=_____
15 已知函数f(x)=xlnx ,且x 2>x 1>0,则下列命题正确的是_______(写出所有正确命题的编号).
①1212().(()()0x x f x f x --< ②1212
()()1f x f x x x -<-; ③
1222()()()f x f x x f x +<;
④2112.().()x f x x f x <; ⑤当lnx 1=-1时,112221.()()2()x f x x f x x f x +>.
三、解答题(本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步驟) 16(本小题满分12分)
已知向量
a=(acosx,1)b=(cosx, ,函数.f(x)=a.b
(I)求函数f(x)的最小正周期和单调递增区间;
(II)在ΔABC 中,角A ,B,C 所对的边是a ,b ,c.若.f(A)=1,b=2,sinA=2sinC ,求边c 的长
17 (本题满分12分)
某地统计部门对城乡居民进行了主题为“你幸福吗?”的幸福指数问卷调査,共收到1万 份答卷.其统计结果如下表(表中人数保留1位小数):
(I)根据表1画出频率分布直方图;
(II)对幸福指数评分值在[50,60]分的人群月平均收人的统计结果如表2,根据表2按 月均收入分层抽样,从幸福指数评分值在[50,60 ]分的人群中随机抽取10人,再从这10 人中随机抽取6人参加“幸福愿景”座谈会.记6人中月均收人在[1000,3000)元的人数 为随机变量X ,求随机变量X 的分布列与期望.
18(本题满分13分)
已知数列{a n }的前》项和为S n ,且2S n +3=3a n (*n N ∈)
(I)求数列{a n }的通项公式;
(I I )设b n =1241,...n n n n T b b b a +=+++,求证:*7()2
n T n N <∈. 19(本題满分13分)
已知函数2()2ln(1)()f x x x ax a R =+++∈.
(I)若函数f(x)的图象上任意一点P 处的切线的倾斜角均为锐角,求实数a 的取值范 围; (I I )求函数f(x)的单调区间.
20(本题满分12分)
如图,四棱锥P-ABCD 的底面四边形ABCD 是边长 为2的正方形,PA =PB ,O
是AB 的中点, PO 丄 AD,PO=2.
(I)求二面角O-PC-B 的余弦值;
(II)设M 为PA 的中点,N 为四棱银P-ABCD 内部或表面上的一动点,且
MN//
平面PDC,请你判断满足条件的所有的N 点组成的几何图 形(或几何体)是怎样的几何图形(或几何体),并说明你的理由.
21•(本題满分13分)
已知F 1 ,F 2分别为椭圆2222:1(0)y x C a b a b
+=>>的上下焦点,其中F 1,也是抛物线
C 2:的焦点,点M 是C 1与C 2在第二象限的交点,且15||3
MF = (I)试求椭圆C 1的方程;
(II)若直线l 与椭圆C 1相交于A,B 两点(A ,B 不是上下顶点),且以AB 为直径的圆过 椭圆C 1的上顶点.求证:直线l 过定点.。