宁波地区经济指标的主成分分析
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
样本 宁波市区 余姚地区 慈溪地区 奉化地区 象山地区 宁海地区 鄞县地区 #" #! #$ # 名次 . + ’!#. , + (/!" - , + ’,(# $ + (($! " , + !,’$ - , + "",! , + !,(. - , + "(’# $ , + $$!, - " + !(,/ - , + "($" - , + .’$’ . - " + $/’) , + .$!/ - , + (!/’ - " + !",( ( - " + #’!# " + /"/# , + $,(( - " + ,/// ’ - " + #),# - , + .$’( - , + ’/$, - " + ’".! # - , + /(’) - , + "()( " + !!/! , + #’#" !
张宗余
许
冰
?>+(: ?0(@- M- N/(:
$ 宁波大学数学系, 宁波 A!O#!! %
$ E+.>63+./28 F6G+H.36(. 01 9/(:;0 K(/*6H8/.@L 9/(:;0 A!O#!! %
本文试用主成分分析方法, 对宁波市七个地区的经济生产情况作出统计评价, 利用一种加权综 合量的方法, 分析各地区在宁波的经济地位。 当前, 发展经济已成为我国各项建设的中心, 尤其是提高人均社会总产值是我们发展经济的目 标。衡量一个地区的发展程度, 不仅仅是看某一项产业的产值, 而是要从社会生产的各个方面去考 察, 看各项生产情况的综合效果。 同时通过综合评价, 帮助我们发现社会生产中存在的问题, 以及影 响总体发展水平的因素, 为各地区的效益发展提供一种理论依据。 本文利用数理统计中的主成分分析方法, 对宁波地区的经济情况进行分析, 按经济综合实力评价 各地区在全市中的地位。 为此,我们选择反映经济 表! !&&O年宁波七个地区经济指标 情况的八项主要指标:人 V+; S ! )20(03/2 /(56768 01 9/(:;0 H6:/0( /( !&&O 均国内生产总值 !!,人均 !! U 元 !# U 元 !A U 元 !D U 元 !O U 元 !B U 元 !" U 元 !P U 元 工业总产值 !#,人均农业 宁波市区 !&A"C A#&DO !APO !"A&P !!OOC P### #B& #PP& 总产值 !A,人均乡镇企业 余姚地区 !C&DC #A"B! 总收入 !D,人均全社会固 #BO" #BBBO DP&B #P!O DDD O#& 定投资总值 !O,人均第三 慈溪地区 !C!CA #OP!& !A"P #&B&A AO#P #!P" !B" D"& 产业总收入 !B,人均粮食 奉化地区 "#OO !"#C! ##PB !&BPB #OA! !OO" A"O D#" 产量 !",人均财政收入 象山地区 PPPD !!#P" O!P& !PPBB #!BB !PBP A## ABB !P,这些指标和下面的数 宁海地区 B"A" !B!!P OD#& !P"B& !DDD !!&P #PA ADO 据取 自宁波 市统计 局和 鄞县地区 !OP!B ADBOP #ABD DDD!D DOA& ACOC O#" "#& 宁波市乡镇企业局。
,+ )’$! - ,+ ."/. ,+ /!)( ,+ /!)(
"+ ,,,, - ,+ ()(/ ,+ #"." ,+ ((#,
"+ ,,,, - ,+ ’,’$ - ,+ .."/
"+ ,,,,
Biblioteka Baidu
!"#
浙江海洋学院学报 $ 自然科学版 %
第 !& 卷
,’ 余姚、 #’ 慈溪、 -’ 象山、*’ 奉化、"’ 宁 海。 为了更清楚地看 出各地区的综合量 E 值 之间的差别,我们取正 态分布概率为 &&’ ",F 的置信区间 ( , A ,, ,) 按下面公式计算各地 区 ! 值的标准百分: 标 准 百 分 G -+ H $ E A !% I
研究简报
......./
宁波地区经济指标的主成分分析
’( )*+,-+./0( 01 )20(03/2 4(56768 01 9/(:;0 <6:/0(
沈最意
=>6( ?-/@/
$ 浙江海洋学院数学系, 舟山 A!BCCD %
$ E+.>63+./28 F6G+H.36(. 01 ?>6I/+(: J26+( K(/*6H8/.@L ?>0-8>+( A!BCCD %
"
表#
标准百分率
./0 ’ # 12/34/54 6758732/97 :; 3<=075 ! :; 7/8> 4?@25?82
样本 ! 值 标准 百分 率 名次 宁波市区 余姚地区 慈溪地区 奉化地区 象山地区 宁海地区 鄞县地区
"# ’ (
#) ’ !
#* ’ (
#! ’ +
#! ’ )
,& ’ +
"*
,+ //’’ "+ ,,,, ,+ (,$’ ,+ .(#) ,+ /#)’ ,+ /)($ "+ ,,,, ,+ )()! 相关系数矩阵 " 的特征值, 贡献率及累积贡献率为: 观察第二个特征值的累积贡献率已达到 /$+ . 0 , 故我们可选择三个主成分: 1 1 1 #" * ,+ .$#$ !" 2 ,+ $)., !! - ,+ !).# !$ 2 ,+ ..)! !’ 1 2 ,+ ..,( !( 1 2 ,+ .$,’ !) 1 #! * ,+ "$/! !" 1 - ,+ ."## !! 1 2 ,+ #)#( !$ 1 2 ,+ "/!! !’ 1 2 ,+ !#’. !( 1 2 ,+ !#," !) 1 #$ * ,+ ..,$ !" 1 2 ,+ (!)( !! 1 2 ,+ .#(, !$ 1 - ,+ "’"" !’ 1 - ,+ "((! !( 1 2 ,+ $(’) !) 1 式中 !$ % 3 % * "% !% $% ’% (% ) 4 是 !% 的标准化指标, 即 !$ % & ’ !% ( ! ) % * + ,%, 其中 ! ) % 为 !% 的平均值, ,% 表示 !% 的标准差。在第 一 主 成 分 #" 中 农 业 指 标 表! 特征值与贡献率 外 均 在 ,+ . 左 右 的 正 值 , 789 + ! :;8<8=>?<@A>@= BCD9?< 8BE :FB><@9C>@FB <8>? 且其贡 献率已达 #/+ !0 , 因 此 #" 是 综 合 能 力 较 强 特 征 值 .#’#$/’ , + )’"/!’ , + $#)/$# , + ,",)(# , + ,,,)$’ , + ,,,,!$ 的指标。在第二主成分 #! 贡 献 率 #/ + !)//! ". + "/)#’ ( + $"’(! , + ")""! , + ,".!! , + ,,,$# 的表达式中,农业 ! - $ 的 累积贡献率 #/ + !)/!/ /$ + .))(# // + ),.!/ // + /)’." // + ///($ ",, 系数较大,因此 #! 主成分 反映农业指标情况。 #" 农业指标系数为负值,#! 工业指标系数为负值,#$ 第三产业指标系数为负 值, 所以三个主成分同时也反映了三大产业结构发展格局。 主成分 #" % #! % #$ 分别从不同方面反映了地区经济生产情况, 经济生产发展的水平及产业结构 的格局, 虽然主成分 #"% #! % #$ 综合原信息的能力较强, 但单独使用某个主成分并不成对各地区在 全市中的地位作出一个综合评价, 因此我们将主成分 #" % #! 和 #$ 按贡献率综合为如下加权综合量 # * #" 5 !" 6 3 !" 2 !! 2 !$ 4 2 #! 5 !! 6 3 !" 2 !! 2 !$ 4 2 #$ 5 !$ 6 3 !" 2 !! 2 !$ 4 其中 !" % !! % !$ 分别表示第一、 第二、 第三特征值。 从综合加权量 # 的构造看, # 的数值大 小反映了各地区的社 表$ 主成分 # " % # ! % # $ 和综合量 # 的值 789 + $ G<@B=@H8I J8=>F<A # " % # ! % # $ 8BE 会生产的综合效果, =FDH<?;?BA@K? K8IC? # 即 # 值愈大经济效果 愈好; 反之愈差, 现计 算各地区的 #" % #!% #$ 和 # 的值并列表: 按加权综合量 # 值大小,得到七个地 区的社会生产情况在 全市中的排名情况:" + 宁波市区 、!+ 鄞县、
第!期
沈最意等: 宁波地区经济指标的主成分分析
-# ’ #
!
,
#
*
-
"
(
J $ !+ I * % ,
表-
指标值的大小排序
其中! 表示 ! 的平均 数, # 表示 ! 的标准差。 从表 # 看,市区的标准 "#’ (,是经济发展较好的地 区、 鄞县、 余姚、 慈溪的标准 百 分 在 #- 分 K -- 分 之 间 , 其经济发展中等,象山、奉 化在 #+ 分 K #- 分,其经济 发展属中等偏下,宁海较 差。
,’ 结果分析
我们将主成分分析的结果与原始数据作比较。为此,先将原始数据中各指标值的大小进行排 序, 并计算出各地区原始数据的平均次序。 由上表的平均 样 本 宁波市区 余姚 慈溪 奉化 象山 宁海 鄞县 次序,我们得到的各 地区的粗略排名情况 ! ( ’ #&#& + ’ +-+* A + ’ !#"- A ! ’ +(,) A + ’ )(#, A ! ’ (#)! ! ’ ,!+# !’ 市区、 (’ 鄞县、 ,’ 标准百分率 *- ’ #) ’ , #" ’ " #! ’ ) #, ’ ( #+ ’ , -" ’ * 余姚、 #’ 慈溪、 -’ 象 名 次 ! , # * " ( 山、 *’ 奉化、 "’ 宁 平均次序 (’" , # * " ( 海,这和主成分分析 名 次 ! , # * " ( 结果完全吻合。说明 本文选用加权综合量 但为了说明主成分分析的可行性, 以下对三组不同指标组合进行主成分分析。 E 是可取的, 第一组: 样 本 宁波市区 余姚 慈溪 奉化 象山 宁海 鄞县 取 $! L $( L $, L ! ( ’ ),)! A + ’ !"(& A + ’ ,,"# A + ’ )&#& A + ’ ))!& A ! ’ +*#& + ’ -!,& $# L $- L $* L $) 数据进 标准百分 *, ’ & -+ ’ + #& ’ , #* ’ " #* ’ ) #- ’ & -, ’ ( 行样本主成分分析: 名 次 加权综合量 ! ! , # * " ( 公 式 是 基 于 如 下 考 平均次序 , , # -’( -’) ( 虑: 名 次 ( ( # * " ! 第二主成分的
收稿日期: #CCC Q C# Q #C
第!期
沈最意等: 宁波地区经济指标的主成分分析
"#$
" 主成分分析
根据表 " 中的数据, 考虑到乡镇企业的地域性与涵义, 进行主成分分析, 选取 !" % !!% &$% !’ % !( % 利用计算机的统计软件包可算出真关系数矩阵: !) , "+ ,,,,
./0 ’ - C347D7@ :5475 ?3 3<=075
指标 名次 样本 ! B! 人均国内生产总值 ! B( 人均工业生产总值 ! B, 人均农业生产总值 ! B- 人均固定投资总值 ! B* 人均第三产业总值 ! B) 人均财政总收入 名 次 平 均 名 次 宁波市区 余姚 慈溪 奉化 象山 宁海 鄞县 ! ( * ! ! ! ( ! , # ( , , , , ( # , " # # # #’, # * * * -’, * " ! * * " * , " " " *’( " ( ! # ( ( ( (’( (
第 !& 卷
第#期
!"# #CCC 年 B 月
浙江海洋学院学报 $ 自然科学版 % $ 自然科学版 % 浙江海洋学院学报 $ 9+.-H+, T0-H(+, 01 ?>6I/+(: J26+( K(/*6H8/.@ =2/6(26 %
R0,S !&
90S #
第 #CCC !& 卷 T-(6
../
......./ ../
张宗余
许
冰
?>+(: ?0(@- M- N/(:
$ 宁波大学数学系, 宁波 A!O#!! %
$ E+.>63+./28 F6G+H.36(. 01 9/(:;0 K(/*6H8/.@L 9/(:;0 A!O#!! %
本文试用主成分分析方法, 对宁波市七个地区的经济生产情况作出统计评价, 利用一种加权综 合量的方法, 分析各地区在宁波的经济地位。 当前, 发展经济已成为我国各项建设的中心, 尤其是提高人均社会总产值是我们发展经济的目 标。衡量一个地区的发展程度, 不仅仅是看某一项产业的产值, 而是要从社会生产的各个方面去考 察, 看各项生产情况的综合效果。 同时通过综合评价, 帮助我们发现社会生产中存在的问题, 以及影 响总体发展水平的因素, 为各地区的效益发展提供一种理论依据。 本文利用数理统计中的主成分分析方法, 对宁波地区的经济情况进行分析, 按经济综合实力评价 各地区在全市中的地位。 为此,我们选择反映经济 表! !&&O年宁波七个地区经济指标 情况的八项主要指标:人 V+; S ! )20(03/2 /(56768 01 9/(:;0 H6:/0( /( !&&O 均国内生产总值 !!,人均 !! U 元 !# U 元 !A U 元 !D U 元 !O U 元 !B U 元 !" U 元 !P U 元 工业总产值 !#,人均农业 宁波市区 !&A"C A#&DO !APO !"A&P !!OOC P### #B& #PP& 总产值 !A,人均乡镇企业 余姚地区 !C&DC #A"B! 总收入 !D,人均全社会固 #BO" #BBBO DP&B #P!O DDD O#& 定投资总值 !O,人均第三 慈溪地区 !C!CA #OP!& !A"P #&B&A AO#P #!P" !B" D"& 产业总收入 !B,人均粮食 奉化地区 "#OO !"#C! ##PB !&BPB #OA! !OO" A"O D#" 产量 !",人均财政收入 象山地区 PPPD !!#P" O!P& !PPBB #!BB !PBP A## ABB !P,这些指标和下面的数 宁海地区 B"A" !B!!P OD#& !P"B& !DDD !!&P #PA ADO 据取 自宁波 市统计 局和 鄞县地区 !OP!B ADBOP #ABD DDD!D DOA& ACOC O#" "#& 宁波市乡镇企业局。
,+ )’$! - ,+ ."/. ,+ /!)( ,+ /!)(
"+ ,,,, - ,+ ()(/ ,+ #"." ,+ ((#,
"+ ,,,, - ,+ ’,’$ - ,+ .."/
"+ ,,,,
Biblioteka Baidu
!"#
浙江海洋学院学报 $ 自然科学版 %
第 !& 卷
,’ 余姚、 #’ 慈溪、 -’ 象山、*’ 奉化、"’ 宁 海。 为了更清楚地看 出各地区的综合量 E 值 之间的差别,我们取正 态分布概率为 &&’ ",F 的置信区间 ( , A ,, ,) 按下面公式计算各地 区 ! 值的标准百分: 标 准 百 分 G -+ H $ E A !% I
研究简报
......./
宁波地区经济指标的主成分分析
’( )*+,-+./0( 01 )20(03/2 4(56768 01 9/(:;0 <6:/0(
沈最意
=>6( ?-/@/
$ 浙江海洋学院数学系, 舟山 A!BCCD %
$ E+.>63+./28 F6G+H.36(. 01 ?>6I/+(: J26+( K(/*6H8/.@L ?>0-8>+( A!BCCD %
"
表#
标准百分率
./0 ’ # 12/34/54 6758732/97 :; 3<=075 ! :; 7/8> 4?@25?82
样本 ! 值 标准 百分 率 名次 宁波市区 余姚地区 慈溪地区 奉化地区 象山地区 宁海地区 鄞县地区
"# ’ (
#) ’ !
#* ’ (
#! ’ +
#! ’ )
,& ’ +
"*
,+ //’’ "+ ,,,, ,+ (,$’ ,+ .(#) ,+ /#)’ ,+ /)($ "+ ,,,, ,+ )()! 相关系数矩阵 " 的特征值, 贡献率及累积贡献率为: 观察第二个特征值的累积贡献率已达到 /$+ . 0 , 故我们可选择三个主成分: 1 1 1 #" * ,+ .$#$ !" 2 ,+ $)., !! - ,+ !).# !$ 2 ,+ ..)! !’ 1 2 ,+ ..,( !( 1 2 ,+ .$,’ !) 1 #! * ,+ "$/! !" 1 - ,+ ."## !! 1 2 ,+ #)#( !$ 1 2 ,+ "/!! !’ 1 2 ,+ !#’. !( 1 2 ,+ !#," !) 1 #$ * ,+ ..,$ !" 1 2 ,+ (!)( !! 1 2 ,+ .#(, !$ 1 - ,+ "’"" !’ 1 - ,+ "((! !( 1 2 ,+ $(’) !) 1 式中 !$ % 3 % * "% !% $% ’% (% ) 4 是 !% 的标准化指标, 即 !$ % & ’ !% ( ! ) % * + ,%, 其中 ! ) % 为 !% 的平均值, ,% 表示 !% 的标准差。在第 一 主 成 分 #" 中 农 业 指 标 表! 特征值与贡献率 外 均 在 ,+ . 左 右 的 正 值 , 789 + ! :;8<8=>?<@A>@= BCD9?< 8BE :FB><@9C>@FB <8>? 且其贡 献率已达 #/+ !0 , 因 此 #" 是 综 合 能 力 较 强 特 征 值 .#’#$/’ , + )’"/!’ , + $#)/$# , + ,",)(# , + ,,,)$’ , + ,,,,!$ 的指标。在第二主成分 #! 贡 献 率 #/ + !)//! ". + "/)#’ ( + $"’(! , + ")""! , + ,".!! , + ,,,$# 的表达式中,农业 ! - $ 的 累积贡献率 #/ + !)/!/ /$ + .))(# // + ),.!/ // + /)’." // + ///($ ",, 系数较大,因此 #! 主成分 反映农业指标情况。 #" 农业指标系数为负值,#! 工业指标系数为负值,#$ 第三产业指标系数为负 值, 所以三个主成分同时也反映了三大产业结构发展格局。 主成分 #" % #! % #$ 分别从不同方面反映了地区经济生产情况, 经济生产发展的水平及产业结构 的格局, 虽然主成分 #"% #! % #$ 综合原信息的能力较强, 但单独使用某个主成分并不成对各地区在 全市中的地位作出一个综合评价, 因此我们将主成分 #" % #! 和 #$ 按贡献率综合为如下加权综合量 # * #" 5 !" 6 3 !" 2 !! 2 !$ 4 2 #! 5 !! 6 3 !" 2 !! 2 !$ 4 2 #$ 5 !$ 6 3 !" 2 !! 2 !$ 4 其中 !" % !! % !$ 分别表示第一、 第二、 第三特征值。 从综合加权量 # 的构造看, # 的数值大 小反映了各地区的社 表$ 主成分 # " % # ! % # $ 和综合量 # 的值 789 + $ G<@B=@H8I J8=>F<A # " % # ! % # $ 8BE 会生产的综合效果, =FDH<?;?BA@K? K8IC? # 即 # 值愈大经济效果 愈好; 反之愈差, 现计 算各地区的 #" % #!% #$ 和 # 的值并列表: 按加权综合量 # 值大小,得到七个地 区的社会生产情况在 全市中的排名情况:" + 宁波市区 、!+ 鄞县、
第!期
沈最意等: 宁波地区经济指标的主成分分析
-# ’ #
!
,
#
*
-
"
(
J $ !+ I * % ,
表-
指标值的大小排序
其中! 表示 ! 的平均 数, # 表示 ! 的标准差。 从表 # 看,市区的标准 "#’ (,是经济发展较好的地 区、 鄞县、 余姚、 慈溪的标准 百 分 在 #- 分 K -- 分 之 间 , 其经济发展中等,象山、奉 化在 #+ 分 K #- 分,其经济 发展属中等偏下,宁海较 差。
,’ 结果分析
我们将主成分分析的结果与原始数据作比较。为此,先将原始数据中各指标值的大小进行排 序, 并计算出各地区原始数据的平均次序。 由上表的平均 样 本 宁波市区 余姚 慈溪 奉化 象山 宁海 鄞县 次序,我们得到的各 地区的粗略排名情况 ! ( ’ #&#& + ’ +-+* A + ’ !#"- A ! ’ +(,) A + ’ )(#, A ! ’ (#)! ! ’ ,!+# !’ 市区、 (’ 鄞县、 ,’ 标准百分率 *- ’ #) ’ , #" ’ " #! ’ ) #, ’ ( #+ ’ , -" ’ * 余姚、 #’ 慈溪、 -’ 象 名 次 ! , # * " ( 山、 *’ 奉化、 "’ 宁 平均次序 (’" , # * " ( 海,这和主成分分析 名 次 ! , # * " ( 结果完全吻合。说明 本文选用加权综合量 但为了说明主成分分析的可行性, 以下对三组不同指标组合进行主成分分析。 E 是可取的, 第一组: 样 本 宁波市区 余姚 慈溪 奉化 象山 宁海 鄞县 取 $! L $( L $, L ! ( ’ ),)! A + ’ !"(& A + ’ ,,"# A + ’ )&#& A + ’ ))!& A ! ’ +*#& + ’ -!,& $# L $- L $* L $) 数据进 标准百分 *, ’ & -+ ’ + #& ’ , #* ’ " #* ’ ) #- ’ & -, ’ ( 行样本主成分分析: 名 次 加权综合量 ! ! , # * " ( 公 式 是 基 于 如 下 考 平均次序 , , # -’( -’) ( 虑: 名 次 ( ( # * " ! 第二主成分的
收稿日期: #CCC Q C# Q #C
第!期
沈最意等: 宁波地区经济指标的主成分分析
"#$
" 主成分分析
根据表 " 中的数据, 考虑到乡镇企业的地域性与涵义, 进行主成分分析, 选取 !" % !!% &$% !’ % !( % 利用计算机的统计软件包可算出真关系数矩阵: !) , "+ ,,,,
./0 ’ - C347D7@ :5475 ?3 3<=075
指标 名次 样本 ! B! 人均国内生产总值 ! B( 人均工业生产总值 ! B, 人均农业生产总值 ! B- 人均固定投资总值 ! B* 人均第三产业总值 ! B) 人均财政总收入 名 次 平 均 名 次 宁波市区 余姚 慈溪 奉化 象山 宁海 鄞县 ! ( * ! ! ! ( ! , # ( , , , , ( # , " # # # #’, # * * * -’, * " ! * * " * , " " " *’( " ( ! # ( ( ( (’( (
第 !& 卷
第#期
!"# #CCC 年 B 月
浙江海洋学院学报 $ 自然科学版 % $ 自然科学版 % 浙江海洋学院学报 $ 9+.-H+, T0-H(+, 01 ?>6I/+(: J26+( K(/*6H8/.@ =2/6(26 %
R0,S !&
90S #
第 #CCC !& 卷 T-(6
../
......./ ../