第四章指数函数与对数函数

合集下载

中职教育-数学(基础模块)上册课件:第4章 指数函数与对数函数.ppt

中职教育-数学(基础模块)上册课件:第4章  指数函数与对数函数.ppt
图4-6
接下来,我们再用描点法作出函数y log 1 x 和y log 1 x
的图像.
2
3
对数函数的定义域为(0,+∞),在定义域内取若干个x 值,分别求出对应的y值,然后列表,如表4-8、表4-9所示.
表4-8
x
… 1/4 1/2 1
2
4

y

2
1
0 -1 -2 …
表4-9
x
… 1/9 1/3 1
3
9

y

2
1
0 -1 -2 …
以表中的x值为横坐标,对应的y值为纵坐标,在直角坐标
系中依次描出相应的点(x,y),然后用光滑的曲线依次连接
这些点,即可得到函数y log 1 x 和 y log 1 x 的图像,如图4-7
所示.
2
3
图4-7
一般地,对数函数 y loga x (a 0 且 a 1)具有下列性质:
第4章 指数函数与对数函数
4.1 • 实数指数幂 4.2 • 指数函数 4.3 • 对数 4.4 • 对数函数
内容简介:本章完成了由正整数指数幂到实数指数幂 及其运算的逐步推广过程,介绍了指数函数的概念、图像和 性质,引入了对数概念及运算法则,并在此基础上介绍了对 数函数的概念、图像和性质。
学习目标:理解有理数指数幂;掌握实数指数幂及其 运算法则;了解幂函数,理解指数函数的图像和性质;了解 指数函数的实际应用,理解对数的概念;掌握利用计算器求 对数值;了解积、商、幂的对数、对数函数的图像和性质及 对数函数的实际应用。
m
an
1 n am
计算器辅助求值
下面,我们以用CASIO
fx-82ES

全国通用2023高中数学必修一第四章指数函数与对数函数基础知识点归纳总结

全国通用2023高中数学必修一第四章指数函数与对数函数基础知识点归纳总结

全国通用2023高中数学必修一第四章指数函数与对数函数基础知识点归纳总结单选题1、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解.因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增,所以f(x)在R 上单调递增,所以lgx >2,解得x >100.故选:D.2、已知0<a <1,b <−1,则函数y =a x +b 的图像必定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限答案:A解析:根据指数函数的图象结合图象的平移可得正确的选项.因为0<a <1,故y =a x 的图象经过第一象限和第二象限,且当x 越来越大时,图象与x 轴无限接近.因为b <−1,故y =a x 的图象向下平移超过一个单位,故y =a x +b 的图象不过第一象限.故选:A .3、果农采摘水果,采摘下来的水果会慢慢失去新鲜度.已知某种水果失去新鲜度h 与其采摘后时间t (天)满足的函数关系式为ℎ=m ⋅a t .若采摘后10天,这种水果失去的新鲜度为10%,采摘后20天,这种水果失去的新鲜度为20%.那么采摘下来的这种水果在多长时间后失去50%新鲜度(已知lg2≈0.3,结果取整数)( )A .23天B .33天C .43天D .50天答案:B分析:根据题设条件先求出m 、a ,从而得到ℎ=120⋅2110t ,据此可求失去50%新鲜度对应的时间. {10%=m ⋅a 1020%=m ⋅a 20⇒{a 10=2,m =120,故a =2110,故ℎ=120⋅2110t , 令ℎ=12,∴2t 10=10,∴t 10lg2=1,故t =100.3≈33,故选:B.4、已知函数f(x)=9+x 2x ,g(x)=log 2x +a ,若存在x 1∈[3,4],对任意x 2∈[4,8],使得f(x 1)≥g(x 2),则实数a 的取值范围是( )A .(−∞,134]B .(134,+∞)C .(0,134)D .(1,4)答案:A分析:将问题化为在对应定义域内f(x 1)max ≥g(x 2)max ,结合对勾函数和对数函数性质求它们的最值,即可求参数范围.由题意知:f(x)在[3,4]上的最大值大于或等于g(x)在[4,8]上的最大值即可.当x ∈[3,4]时,f(x)=9x +x ,由对勾函数的性质得:f(x)在[3,4]上单调递增,故f(x)max =f(4)=94+4=254.当x ∈[4,8]时,g(x)=log 2x +a 单调递增,则g(x)max =g(8)=log 28+a =3+a ,所以254≥3+a ,可得a ≤134.故选:A5、已知函f (x )=log 2(√1+4x 2+2x)+3,且f (m )=−5,则f (−m )=( )A .−1B .−5C .11D .13答案:C分析:令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,则先判断函数g (−x )+g (x )=0,进而可得f (−x )+f (x )=6,即f (m )+f (−m )=6,结合已知条件即可求f (−m )的值.令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,因为g (x )+g (−x )=log 2(√1+4x 2+2x)+log 2(√1+4x 2−2x)=log 2(1+4x 2−4x 2)=0,所以f (−x )+f (x )=g (−x )+3+g (x )+3=6,则f (m )+f (−m )=6,又因为f (m )=−5,则f (−m )=11,故选:C.6、设函数f (x )=ln |2x +1|﹣ln |2x ﹣1|,则f (x )( )A .是偶函数,且在 (12,+∞)单调递增B .是奇函数,且在 (−12,12)单调递增C .是偶函数,且在(−∞,−12)单调递增D .是奇函数,且在 (−∞,−12)单调递增答案:B分析:先求出f (x )的定义域结合奇偶函数的定义判断f (x )的奇偶性,设t =|2x+12x−1|,则y =ln t ,由复合函数的单调性判断f (x )的单调性,即可求出答案.解:由{2x +1≠02x −1≠0 ,得x ≠±12. 又f (﹣x )=ln |﹣2x +1|﹣ln |﹣2x ﹣1|=﹣(ln |2x +1|﹣ln |2x ﹣1|)=﹣f (x ),∴f (x )为奇函数,由f (x )=ln |2x +1|﹣ln |2x ﹣1|=ln |2x+12x−1|, ∵2x+12x−1=1+22x−1=1+1x−12.可得内层函数t =|2x+12x−1|的图象如图,在(﹣∞,−12),(12,+∞)上单调递减,在(−12,12)上单调递增, 又对数式y =lnt 是定义域内的增函数,由复合函数的单调性可得,f (x )在(−12,12)上单调递增,在(﹣∞,−12),(12,+∞)上单调递减.故选:B .7、已知y 1=(13)x,y 2=3x ,y 3=10−x ,y 4=10x ,则在同一平面直角坐标系内,它们的图象大致为()A .B .C .D .答案:A分析:根据指数函数的单调性及图像特征进行比较,即可判断.y 2=3x 与y 4=10x 是增函数,y 1=(13)x与y 3=10−x =(110)x 是减函数,在第一象限内作直线x =1,该直线与四条曲线交点的纵坐标的大小对应各底数的大小,易知:选A .故选:A8、化简√a 3b 2√ab 23(a 14b 12)4⋅√b a 3 (a >0,b >0)的结果是( )A .b aB .a bC .a 2bD .b 2a 答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可.√a 3b 2√ab 23(a 14b 12)4⋅√a 3=a 32b⋅a 16b 13(a 14b 12)4⋅a −13⋅b 13 =a 32+16−1+13b 1+13−2−13=ab −1=a b 故选:B 9、函数f (x )=√3−x +log 13(x +1)的定义域是( ) A .[−1,3)B .(−1,3)C .(−1,3]D .[−1,3]答案:C分析:由题可得{3−x ≥0x +1>0,即得. 由题意得{3−x ≥0x +1>0, 解得−1<x ≤3,即函数的定义域是(−1,3].故选:C.10、若函数y =(m 2−m −1)⋅m x 是指数函数,则m 等于( )A .−1或2B .−1C .2D .12答案:C分析:根据题意可得出关于实数m 的等式与不等式,即可解得实数m 的值.由题意可得{m 2−m −1=1m >0m ≠1,解得m =2. 故选:C.填空题11、方程lg (x 2−x −2)=lg (6−x −x 2)的解为 __________ .答案:x =−2分析:由题意知lg (x 2−x −2)=lg (6−x −x 2),可求出x 的值,再结合真数大于零进行检验,从而可求出最终的解.由lg (x 2−x −2)=lg (6−x −x 2),得x 2−x −2=6−x −x 2,所以x =±2,又因为x 2−x −2>0且6−x −x 2>0,所以x =−2;所以答案是:x =−2.12、已知函数f (x )的定义域是[-1,1],则函数f (log 2x )的定义域为____.答案:[12,2]分析:根据给定条件列出使函数f (log 2x )有意义的不等式组,再求出其解集即可.因函数f (x )的定义域是[-1,1],则在f (log 2x )中,必有−1≤log 2x ≤1,解不等式可得:{12≤x ≤2x >0,即12≤x ≤2, 所以函数f (log 2x )的定义域为[12,2].所以答案是:[12,2]13、函数f(x)=4+log a (x −1)(a >0且a ≠1)的图象恒过定点_________答案:(2,4)分析:令对数的真数为1,即可求出定点的横坐标,再代入求值即可;解:因为函数f(x)=4+log a(x−1)(a>0且a≠1),令x−1=1,解得x=2,所以f(2)=4+log a1=4,即函数f(x)恒过点(2,4);所以答案是:(2,4)解答题14、对于函数f(x),若其定义域内存在实数x满足f(−x)=−f(x),则称f(x)为“伪奇函数”.(1)已知函数f(x)=x−2x+1,试问f(x)是否为“伪奇函数”?说明理由;(2)若幂函数g(x)=(n−1)x3−n(n∈R)使得f(x)=2g(x)+m为定义在[−1,1]上的“伪奇函数”,试求实数m的取值范围;(3)是否存在实数m,使得f(x)=4x−m⋅2x+1+m2−3是定义在R上的“伪奇函数”,若存在,试求实数m的取值范围;若不存在,请说明理由.答案:(1)不是;(2)[−54,−1];(3)[1−√3,2√2].分析:(1)先假设f(x)为“伪奇函数”,然后推出矛盾即可说明;(2)先根据幂函数确定出g(x)的解析式,然后将问题转化为“2m=−(2x+2−x)在[−1,1]上有解”,根据指数函数的值域以及对勾函数的单调性求解出m的取值范围;(3)将问题转化为“2m2−6=−(4x+4−x)+2m(2x+2−x)在R上有解”,通过换元法结合二次函数的零点分布求解出m的取值范围.(1)假设f(x)为“伪奇函数”,∴存在x满足f(−x)=−f(x),∴−x−2−x+1=−x−2x+1有解,化为x2+2=0,无解,∴f(x)不是“伪奇函数”;(2)∵g(x)=(n−1)x3−n(n∈R)为幂函数,∴n=2,∴g(x)=x,∴f(x)=2x+m,∵f(x)=2x+m为定义在[−1,1]的“伪奇函数”,∴2−x+m=−2x−m在[−1,1]上有解,∴2m=−(2x+2−x)在[−1,1]上有解,令2x=t∈[12,2],∴2m=−(t+1t)在t∈[12,2]上有解,又对勾函数y=t+1t 在[12,1)上单调递减,在(1,2]上单调递增,且t=12时,y=52,t=2时,y=52,∴y min=1+1=2,y max=52,∴y=t+1t的值域为[2,52],∴2m∈[−52,−2],∴m∈[−54,−1];(3)设存在m满足,即f(−x)=−f(x)在R上有解,∴4−x−m⋅2−x+1+m2−3=−(4x−m⋅2x+1+m2−3)在R上有解,∴2m2−6=−(4x+4−x)+2m(2x+2−x)在R上有解,令2x+2−x=t∈[2,+∞),取等号时x=0,∴2m2−6=−(t2−2)+2mt在[2,+∞)上有解,∴t2−2mt+2m2−8=0在[2,+∞)上有解(*),∵Δ=4m2−4(2m2−8)≥0,解得m∈[−2√2,2√2],记ℎ(t)=t2−2mt+2m2−8,且对称轴t=m,当m∈[−2√2,2]时,ℎ(t)在[2,+∞)上递增,若(*)有解,则ℎ(2)=22−2mt+2m2−8≤0,∴m∈[1−√3,2],当m∈(2,2√2]时,ℎ(t)在[2,m)上递减,在(m,+∞)上递增,若(*)有解,则ℎ(m)=m2−2m2+2m2−8=m2−8≤0,即m2−8≤0,此式恒成立,∴m∈(2,2√2],综上可知,m∈[1−√3,2√2].小提示:关键点点睛:解答本题(2)(3)问题的关键在于转化思想的运用,通过理解“伪奇函数”的定义,将问题转化为方程有解的问题,利用换元的思想简化运算并完成计算.15、吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x万盒,需投入成本ℎ(x)万元,当产量小于或等于50万盒时ℎ(x)=180x+100;当产量大于50万盒时ℎ(x)=x2+60x+3500,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y(万元)关于产量x(万盒)的函数关系式;(2)当产量为多少万盒时,该企业在生产中所获利润最大?答案:(1)y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N(2)70万盒分析:(1)根据题意分0≤x≤50和x>50两种情况求解即可;(2)根据分段函数中一次与二次函数的最值求解即可.(1)当产量小于或等于50万盒时,y=200x−200−180x−100=20x−300,当产量大于50万盒时,y=200x−200−x2−60x−3500=−x2+140x−3700,故销售利润y(万元)关于产量x(万盒)的函数关系式为y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N (2)当0≤x≤50时,y≤20×50−300=700;当x>50时,y=−x2+140x−3700,当x=1402=70时,y=−x2+140x−3700取到最大值,为1200.因为700<1200,所以当产量为70万盒时,该企业所获利润最大.。

高中数学必修一新教材第四章指数函数与对数函数

高中数学必修一新教材第四章指数函数与对数函数

第四章指数函数与对数函数4.1指数第1课时根式1.根式及相关概念(1)a的n次方根定义如果x n=a,那么x叫做a的n次方根,其中n>1,且n∈N*.(2)a的n次方根的表示式子na叫做根式,这里n叫做根指数,a叫做被开方数.2.根式的性质(n>1,且n∈N*)(1)n为奇数时,na n=a.(2)n为偶数时,na n=|a|=⎩⎨⎧a,a≥0,-a,a<0.(3)n0=0.(4)负数没有偶次方根.思考:(na )n 中实数a 的取值范围是任意实数吗? 提示:不一定,当n 为大于1的奇数时,a ∈R ; 当n 为大于1的偶数时,a ≥0.1.481的运算结果是( )A .3B .-3C .±3D .±32.m 是实数,则下列式子中可能没有意义的是( ) A.4m 2 B.5m C.6m D.5-m 3.下列说法正确的个数是( )①16的4次方根是2;②416的运算结果是±2;③当n 为大于1的奇数时,na 对任意a ∈R 都有意义;④当n 为大于1的偶数时,na 只有当a ≥0时才有意义.A .1B .2C .3D .4 4.若x 3=-5,则x =________. n 次方根的概念问题【例1】 (1)27的立方根是________.(2)已知x 6=2 019,则x =________. (3)若4x +3有意义,则实数x 的取值范围为________.n 次方根的个数及符号的确定(1)n 的奇偶性决定了n 次方根的个数; (2)n 为奇数时,a 的正负决定着n 次方根的符号.1.已知a ∈R ,n ∈N *,给出下列4个式子:①6(-3)2n ;②5a 2;③6(-5)2n +1;④9-a 2,其中无意义的有( ) A .1个 B .2个 C .3个 D .0个利用根式的性质化简求值【例2】 化简下列各式:(1)5(-2)5+(5(-2))5;(2)6(-2)6+(62)6;(3)4(x +2)4.正确区分n a n 与(na )n(1)(n a )n 已暗含了na 有意义,据n 的奇偶性可知a 的范围; (2)n a n 中的a 可以是全体实数,na n 的值取决于n 的奇偶性.2.若9a 2-6a +1=3a -1,求a 的取值范围. 有限制条件的根式的运算[探究问题]1.当a >b 时,(a -b )2等于多少? 提示:当a >b 时,(a -b )2=a -b . 2.绝对值|a |的代数意义是什么? 提示:|a |=⎩⎨⎧a ,a ≥0,-a ,a <0.【例3】 (1)若x <0,则x +|x |+x 2x =________. (2)若-3<x <3,求x 2-2x +1-x 2+6x +9的值. [思路点拨] (1)由x <0,先计算|x |及x 2,再化简. (2)结合-3<x <3,开方、化简,再求值.带条件根式的化简(1)有条件根式的化简问题,是指被开方数或被开方的表达式可以通过配方、拆分等方式进行化简.(2)有条件根式的化简经常用到配方的方法.当根指数为偶数时,在利用公式化简时,要考虑被开方数或被开方的表达式的正负.1.注意n a n 同(na )n 的区别.前者求解时,要分n 为奇数还是偶数,同时要注意实数a 的正负,而后者(n a )n =a 是恒等式,只要(na )n 有意义,其值恒等于a .2.一个数到底有没有n 次方根,我们一定先考虑被开方数到底是正数还是负数,还要分清n 为奇数或偶数这两种情况.1.思考辨析(1)实数a 的奇次方根只有一个.( )(2)当n ∈N *时,(n-2)n =-2.( ) (3)(π-4)2=π-4.( ) 2.已知m 10=2,则m 等于( ) A.102 B .-102 C.210 D .±1023.(π-4)2+3(π-3)3=________.4.已知-1<x <2,求x 2-4x +4-x 2+2x +1的值.第2课时 指数幂及运算1.分数指数幂的意义思考:在分数指数幂与根式的互化公式a m n=na m中,为什么必须规定a>0?提示:①若a=0,0的正分数指数幂恒等于0,即na m=a m n=0,无研究价值.②若a<0,a m n=na m不一定成立,如(-2)32=2(-2)3无意义,故为了避免上述情况规定了a>0.2.有理数指数幂的运算性质(1)a r a s=a r+s(a>0,r,s∈Q).(2)(a r)s=a rs(a>0,r,s∈Q).(3)(ab)r=a r b r(a>0,b>0,r∈Q).3.无理数指数幂一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.1.下列运算结果中,正确的是()A.a2a3=a5B.(-a2)3=(-a3)2 C.(a-1)0=1 D.(-a2)3=a62.425等于()A .25 B.516 C.415 D.543.已知a >0,则a -23等于( ) A.a 3 B.13a 2C.1a 3D .-3a 24.(m 12)4+(-1)0=________.根式与分数指数幂的互化【例1】 将下列根式化成分数指数幂的形式:(1)a a (a >0);(2)13x (5x 2)2;(3)⎝ ⎛⎭⎪⎫4b-23-23(b >0).根式与分数指数幂互化的规律 (1)根指数分数指数的分母,被开方数(式)的指数分数指数的分子.(2)在具体计算时,通常会把根式转化成分数指数幂的形式,然后利用有理数指数幂的运算性质解题.1.将下列根式与分数指数幂进行互化: (1)a 3·3a 2;(2)a -4b23ab 2(a >0,b >0).利用分数指数幂的运算性质化简求解【例2】 化简求值:指数幂运算的常用技巧(1)有括号先算括号里的,无括号先进行指数运算. (2)负指数幂化为正指数幂的倒数.(3)底数是小数,先要化成分数;底数是带分数,要先化成假分数,然后要尽可能用幂的形式表示,便于用指数幂的运算性质.提醒:化简的结果不能同时含有根式和分数指数,也不能既含有分母又含有负指数.2.(1)计算:⎝ ⎛⎭⎪⎫2350+2-2×⎝ ⎛⎭⎪⎫214-12-(0.01)0.5;(2)化简:3a 72a -3÷3a -8·3a 15÷3a -3·a -1(a >0).指数幂运算中的条件求值[探究问题]1.⎝ ⎛⎭⎪⎫a +1a 2和⎝ ⎛⎭⎪⎫a -1a 2存在怎样的等量关系? 提示:⎝ ⎛⎭⎪⎫a +1a 2=⎝ ⎛⎭⎪⎫a -1a 2+4.2.已知a +1a 的值,如何求a +1a 的值?反之呢?提示:设a +1a=m ,则两边平方得a +1a =m 2-2;反之若设a +1a =n ,则n =m 2-2,∴m =n +2.即a +1a=n +2. 【例3】 已知a 12+a -12=4,求下列各式的值: (1)a +a -1;(2)a 2+a -2. [思路点拨]a 12+a -12=4――――→两边平方得a +a -1的值――――→两边平方得a 2+a -2的值1.在本例条件不变的条件下,求解决条件求值的思路(1)在利用条件等式求值时,往往先将所求式子进行有目的的变形,或先对条件式加以变形,沟通所求式子与条件等式的联系,以便用整体代入法求值.(2)在利用整体代入的方法求值时,要注意完全平方公式的应用.1.对根式进行运算时,一般先将根式化成分数指数幂,这样可以方便使用同底数幂的运算律.2.解决较复杂的条件求值问题时,“整体思想”是简化求解的“利器”.1.思考辨析(1)0的任何指数幂都等于0.()(2)523=53.()(3)分数指数幂与根式可以相互转化,如4a2=a12.()(4)a m n可以理解为mn个a.()2.把根式a a化成分数指数幂是() A.(-a)32B.-(-a)32C.-a32D.a323.已知x12+x-12=5,则x2+1x的值为()A.5 B.23 C.25 D.274.2指数函数第1课时指数函数的概念、图象与性质1.指数函数的概念一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R.2.指数函数的图象和性质思考1:指数函数y =a x (a >0且a ≠1)的图象“升”“降”主要取决于什么? 提示:指数函数y =a x (a >0且a ≠1)的图象“升”“降”主要取决于字母a .当a >1时,图象具有上升趋势;当0<a <1时,图象具有下降趋势.思考2::指数函数值随自变量有怎样的变化规律? 提示:指数函数值随自变量的变化规律.1.下列函数一定是指数函数的是( ) A .y =2x +1 B .y =x 3 C .y =3·2x D .y =3-x 2.函数y =3-x 的图象是( )A B C D3.若指数函数f (x )的图象过点(3,8),则f (x )的解析式为( ) A .f (x )=x 3B .f (x )=2xC .f (x )=⎝ ⎛⎭⎪⎫12xD .f (x )=x 134.函数y =a x (a >0且a ≠1)在R 上是增函数,则a 的取值范围是________. 指数函数的概念【例1】 (1)下列函数中,是指数函数的个数是( ) ①y =(-8)x;②y =2x 2-1;③y =a x ;④y =2·3x .A .1B .2C .3D .0(2)已知函数f (x )为指数函数,且f ⎝ ⎛⎭⎪⎫-32=39,则f (-2)=________.1.判断一个函数是否为指数函数,要牢牢抓住三点: (1)底数是大于0且不等于1的常数;(2)指数函数的自变量必须位于指数的位置上;(3)a x的系数必须为1.2.求指数函数的解析式常用待定系数法.1.已知函数f(x)=(2a-1)x是指数函数,则实数a的取值范围是________.指数函数的图象的应用【例2】(1)函数f(x)=a x-b的图象如图所示,其中a,b为常数,则下列结论正确的是()A.a>1,b<0 B.a>1,b>0 C.0<a<1,b>0 D.0<a<1,b<0(2)函数y=a x-3+3(a>0,且a≠1)的图象过定点________.指数函数图象问题的处理技巧(1)抓住图象上的特殊点,如指数函数的图象过定点.(2)利用图象变换,如函数图象的平移变换(左右平移、上下平移).(3)利用函数的奇偶性与单调性.奇偶性确定函数的对称情况,单调性决定函数图象的走势.2.已知f(x)=2x的图象,指出下列函数的图象是由y=f(x)的图象通过怎样的变化得到:(1)y=2x+1;(2)y=2x-1;(3)y=2x+1;(4)y=2-x;(5)y=2|x|.指数函数的定义域、值域问题[探究问题]1.函数y=2x2+1的定义域与f(x)=x2+1的定义域什么关系?提示:定义域相同.2.如何求y =2x 2+1的值域?提示:可先令t =x 2+1,则易求得t 的取值范围为[1,+∞),又y =2t 在[1,+∞)上是单调递增函数,故2t ≥2,所以y =2x 2+1的值域为[2,+∞).【例3】 求下列函数的定义域和值域: (1)y =1-3x ;(2)y =⎝ ⎛⎭⎪⎫12x 2-2x -3;(3)y =4x +2x +1+2.[思路点拨] 函数式有意义―→原函数的定义域 ――→指数函数的值域原函数的值域1.若本例(1)的函数换为“y =⎝ ⎛⎭⎪⎫13x-1”,求其定义域. 2.若本例(3)的函数增加条件“0≤x ≤2”,再求函数的值域.1.函数y =a f (x )的定义域与y =f (x )的定义域相同. 2.函数y =a f (x )的值域的求解方法如下: (1)换元,令t =f (x ); (2)求t =f (x )的定义域x ∈D ; (3)求t =f (x )的值域t ∈M ;(4)利用y =a t 的单调性求y =a t ,t ∈M 的值域.3.形如y =f (a x )的值域,要先求出u =a x 的值域,再结合y =f (u )确定出y =f (a x )的值域.1.判断一个函数是否为指数函数只需判定其解析式是否符合y =a x (a >0且a ≠1)这一结构形式.2.指数函数在同一直角坐标系中的图象的相对位置与底数大小的关系:在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小,即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.3.由于指数函数y =a x (a >0且a ≠1)的定义域为R ,所以函数y =a f (x )(a >0且a ≠1)与函数f (x )的定义域相同,求与指数函数有关的函数的值域时,要考虑并利用指数函数本身的要求,并利用好指数函数的单调性.1.思考辨析(1)y =x 2是指数函数.( ) (2)函数y =2-x 不是指数函数.( ) (3)指数函数的图象一定在x 轴的上方.( )2.如图是指数函数①y =a x ,②y =b x ,③y =c x ,④y =d x 的图象,则a ,b ,c ,d 与1的大小关系是()A .a <b <1<c <dB .b <a <1<d <cC .1<a <b <c <dD .a <b <1<d <c3.函数y =1-⎝ ⎛⎭⎪⎫12x的定义域是________.4.设f (x )=3x,g (x )=⎝ ⎛⎭⎪⎫13x.(1)在同一坐标系中作出f (x ),g (x )的图象;(2)计算f (1)与g (-1),f (π)与g (-π),f (m )与g (-m )的值,从中你能得到什么结论?第2课时 指数函数的性质的应用利用指数函数的单调性比较大小【例1】 比较下列各组数的大小:(1)1.52.5和1.53.2;(2)0.6-1.2和0.6-1.5;(3)1.70.2和0.92.1;(4)a 1.1与a 0.3(a >0且a ≠1).比较幂的大小的方法(1)同底数幂比较大小时构造指数函数,根据其单调性比较.(2)指数相同底数不同时分别画出以两幂底数为底数的指数函数图象,当x 取相同幂指数时可观察出函数值的大小.(3)底数、指数都不相同时,取与其中一底数相同与另一指数相同的幂与两数比较,或借助“1”与两数比较.(4)当底数含参数时,要按底数a >1和0<a <1两种情况分类讨论.1.比较下列各值的大小:⎝ ⎛⎭⎪⎫4313,223,⎝⎛⎭⎪⎫-233,⎝ ⎛⎭⎪⎫3412.利用指数函数的单调性解不等式【例2】 (1)解不等式⎝ ⎛⎭⎪⎫123x -1≤2;(2)已知ax 2-3x +1<a x +6(a >0,a ≠1),求x 的取值范围.1.利用指数型函数的单调性解不等式,需将不等式两边都凑成底数相同的指数式.2.解不等式a f (x )>a g (x )(a >0,a ≠1)的依据是指数型函数的单调性,要养成判断底数取值范围的习惯,若底数不确定,就需进行分类讨论,即a f (x )>a g (x )⇔⎩⎨⎧f (x )>g (x ),a >1,f (x )<g (x ),0<a <1.2.若ax +1>⎝ ⎛⎭⎪⎫1a 5-3x(a >0且a ≠1),求x 的取值范围. 指数型函数单调性的综合应用[探究问题]1.试结合图象,分析y =2-x ,y =2|x |,y =⎝ ⎛⎭⎪⎫12x +1的单调性,并写出相应单调区间.提示:减区间为(-∞,+∞)增区间为(0,+∞)减区间为(-∞,0)减区间为(-∞,+∞)2.结合探究1,分析函数y =2|x |与函数y =|x |的单调性是否一致? 提示:y =2|x |的单调性与y =|x |的单调性一致.3.函数y =a -x 2(a >0,且a ≠1)的单调性与y =-x 2的单调性存在怎样的关系? 提示:分两类:(1)当a >1时,函数y =a -x 2的单调性与y =-x 2的单调性一致;(2)当0<a <1时,函数y =a -x 2的单调性与y =-x 2的单调性相反. 【例3】 判断f (x )=⎝ ⎛⎭⎪⎫13x 2-2x的单调性,并求其值域.[思路点拨] 令u =x 2-2x ―→函数u (x )的单调性 ―→函数y =⎝ ⎛⎭⎪⎫13u 的单调性――→同增异减函数f (x )的单调性把本例的函数改为“f (x )=2-x 2+2x ”,求其单调区间.函数y=a f(x)(a>0,a≠1)的单调性的处理技巧(1)关于指数型函数y=a f(x)(a>0,且a≠1)的单调性由两点决定,一是底数a>1还是0<a<1;二是f(x)的单调性,它由两个函数y=a u,u=f(x)复合而成.(2)求复合函数的单调区间,首先求出函数的定义域,然后把函数分解成y=f(u),u=φ(x),通过考查f(u)和φ(x)的单调性,求出y=f(φ(x))的单调性.1.比较两个指数式值的大小的主要方法(1)比较形如a m与a n的大小,可运用指数函数y=a x的单调性.(2)比较形如a m与b n的大小,一般找一个“中间值c”,若a m<c且c<b n,则a m<b n;若a m>c且c>b n,则a m>b n.2.解简单指数不等式问题的注意点(1)形如a x>a y的不等式,可借助y=a x的单调性求解.如果a的值不确定,需分0<a<1和a>1两种情况进行讨论.(2)形如a x>b的不等式,注意将b化为以a为底的指数幂的形式,再借助y=a x的单调性求解.(3)形如a x>b x的不等式,可借助图象求解.3.(1)研究y=a f(x)型单调区间时,要注意a>1还是0<a<1.当a>1时,y=a f(x)与f(x)单调性相同.当0<a<1时,y=a f(x)与f(x)单调性相反.(2)研究y=f(a x)型单调区间时,要注意a x属于f(u)的增区间还是减区间.1.思考辨析(1)y=21-x是R上的增函数.()(2)若0.1a>0.1b,则a>b.()(3)a,b均大于0且不等于1,若a x=b x,则x=0.()(4)由于y=a x(a>0且a≠1)既非奇函数,也非偶函数,所以指数函数与其他函数也组不成具有奇偶性的函数.()2.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1) 3.下列判断正确的是( )A .1.72.5>1.73B .0.82<0.83C .π2<π 2D .0.90.3>0.90.5 4.已知函数f (x )=a x(a >0且a ≠1)的图象经过点⎝ ⎛⎭⎪⎫2,19. (1)比较f (2)与f (b 2+2)的大小; (2)求函数g (x )=ax 2-2x (x ≥0)的值域.4.3 对数 4.3.1 对数的概念1.对数(1)指数式与对数式的互化及有关概念:(2)底数a 的范围是a >0,且a ≠1.2.常用对数与自然对数3.对数的基本性质(1)负数和零没有对数.(2)log a 1=0(a>0,且a≠1).(3)log a a=1(a>0,且a≠1).思考:为什么零和负数没有对数?提示:由对数的定义:a x=N(a>0且a≠1),则总有N>0,所以转化为对数式x =log a N时,不存在N≤0的情况.1.若a2=M(a>0且a≠1),则有()A.log2M=a B.log a M=2 C.log22=M D.log2a=M2.若log3x=3,则x=()A.1 B.3 C.9 D.273.在b=log a(5-a)中,实数a的取值范围是()A.a>5或a<0 B.0<a<1或1<a<5 C.0<a<1 D.1<a<54.ln 1=________,lg 10=________.指数式与对数式的互化【例1】将下列对数形式化为指数形式或将指数形式化为对数形式:(1)2-7=1128;(2)log1232=-5;(3)lg 1 000=3;(4)ln x=2.指数式与对数式互化的方法(1)将指数式化为对数式,只需要将幂作为真数,指数当成对数值,底数不变,写出对数式;(2)将对数式化为指数式,只需将真数作为幂,对数作为指数,底数不变,写出指数式.1.将下列指数式化为对数式,对数式化为指数式:(1)3-2=19;(2)⎝⎛⎭⎪⎫14-2=16;(3)log1327=-3; (4)log x64=-6.利用指数式与对数式的关系求值【例2】求下列各式中的x的值:(1)log64x=-23;(2)log x 8=6;(3)lg 100=x; (4)-ln e2=x.求对数式log a N(a>0,且a≠1,N>0)的值的步骤(1)设log a N=m;(2)将log a N=m写成指数式a m=N;(3)将N写成以a为底的指数幂N=a b,则m=b,即log a N=b.2.计算:(1)log9 27;(2)log 43 81;(3)log354625.应用对数的基本性质求值[探究问题]1.你能推出对数恒等式a log a N=N(a>0且a≠1,N >0)吗?提示:因为a x=N,所以x=log a N,代入a x=N可得a log a N=N.2.若方程log a f(x)=0,则f(x)等于多少?若方程log a f(x)=1呢?(其中a>0且a≠1)提示:若log a f(x)=0,则f(x)=1;若log a f(x)=1,则f(x)=a.【例3】设5log5(2x-1)=25,则x的值等于()A.10B.13 C.100 D.±100(2)若log3(lg x)=0,则x的值等于________.[思路点拨](1)利用对数恒等式a log a N=N求解;(2)利用log a a=1,log a1=0求解.1.若本例(2)的条件改为“ln(log3x)=1”,则x的值为________.2.在本例(2)条件不变的前提下,计算x-12的值.1.利用对数性质求解的两类问题的解法(1)求多重对数式的值解题方法是由内到外,如求log a(log b c)的值,先求log b c 的值,再求log a(log b c)的值.(2)已知多重对数式的值,求变量值,应从外到内求,逐步脱去“log”后再求解.2.性质a log a N=N与log a a b=b的作用(1)a log a N=N的作用在于能把任意一个正实数转化为以a为底的指数形式.(2)log a a b=b的作用在于能把以a为底的指数转化为一个实数.1.对数的概念:a b=N⇔b=log a N(a>0且a≠1)是解决指数、对数问题的有利工具.2.指数式、对数式的互化反映了数学上的等价转化思想,在涉及到对数式求值问题时,常转化为指数幂的运算问题.3.对数恒等式a log a N=N,其成立的条件是a>0,a≠1,N>0.1.思考辨析(1)log a N是log a与N的乘积.()(2)(-2)3=-8可化为log(-2)(-8)=3.()(3)对数运算的实质是求幂指数.()(4)在b=log3(m-1)中,实数m的取值范围是(1,+∞).() 2.下列指数式与对数式互化不正确的一组是()A.100=1与lg 1=0 B.27-13=13与log2713=-13C.log39=2与912=3 D.log55=1与51=53.若log 2(log x 9)=1,则x =________. 4.求下列各式中的x 值:(1)log x 27=32; (2)log 2 x =-23 (3)x =log 2719; (4)x =log 1216.4.3.2 对数的运算1.对数的运算性质如果a >0,且a ≠1,M >0,N >0,那么:(1)log a (MN )=log a M +log a N ;(2)log a MN =log a M -log a N ; (3)log a M n =n log a M (n ∈R ).思考:当M >0,N >0时,log a (M +N )=log a M +log a N ,log a (MN )=log a M ·log a N 是否成立?提示:不一定. 2.对数的换底公式若a >0且a ≠1;c >0且c ≠1;b >0,则有log a b =log c b log ca .1.计算log 84+log 82等于( ) A .log 86 B .8 C .6 D .12.计算log510-log52等于() A.log58 B.lg 5 C.1 D.2 3.log23·log32=________.对数运算性质的应用【例1】计算下列各式的值:(1)12lg3249-43lg 8+lg 245;(2)lg 52+23lg 8+lg 5·lg 20+(lg 2)2;(3)lg 2+lg 3-lg 10lg 1.8.1.利用对数性质求值的解题关键是化异为同,先使各项底数相同,再找真数间的联系.2.对于复杂的运算式,可先化简再计算.化简问题的常用方法:(1)“拆”:将积(商)的对数拆成两对数之和(差);(2)“收”:将同底对数的和(差)收成积(商)的对数.1.求下列各式的值:(1)lg25+lg 2·lg 50;(2)23lg 8+lg25+lg 2·lg 50+lg 25.对数的换底公式【例2】(1)计算:(log2125+log425+log85)·(log1258+log254+log52).(2)已知log189=a,18b=5,求log3645(用a,b表示).(变结论)在本例1.在化简带有对数的表达式时,若对数的底不同,需利用换底公式.2.常用的公式有:log a b ·log b a =1,log an b m=m n log a b ,log a b =1log ba 等.2.求值:(1)log 23·log 35·log 516;(2)(log 32+log 92)(log 43+log 83). 对数运算性质的综合应用[探究问题]1.若2a =3b ,则ab 等于多少?提示:设2a =3b =t ,则a =log 2t ,b =log 3t ,∴ab =log 23. 2.对数式log a b 与log b a 存在怎样的等量关系? 提示:log a b ·log b a =1, 即log a b =1log ba .【例3】 已知3a =5b =c ,且1a +1b =2,求c 的值.应用换底公式应注意的两个方面(1)化成同底的对数时,要注意换底公式的正用、逆用以及变形应用. (2)题目中有指数式和对数式时,要注意将指数式与对数式统一成一种形式.1.应用对数的运算法则,可将高一级(乘、除、乘方)的运算转化为低一级(加、减、乘)的运算.2.换底公式反映了数学上的化归思想,其实质是将不同底的对数运算问题转化为同底的对数运算.3.熟练掌握对数的运算法则,注意同指数运算法则区别记忆.1.思考辨析(1)log2x2=2log2x.()(2)log a[(-2)×(-3)]=log a(-2)+log a(-3).()(3)log a M·log a N=log a(M+N).()(4)log x2=1log2x.()2.计算log92·log43=()A.4B.2 C.12 D.143.设10a=2,lg 3=b,则log26=()A.ba B.a+ba C.ab D.a+b4.计算:(1)log535-2log573+log57-log51.8;(2)log2748+log212-12log242-1.4.4对数函数第1课时对数函数的概念、图象及性质1.对数函数的概念函数y =log a x (a >0,且a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).思考1:函数y =2log 3x ,y =log 3(2x )是对数函数吗? 提示:不是,其不符合对数函数的形式. 2.对数函数的图象及性质提示:底数a 与1的关系决定了对数函数的升降.当a >1时,对数函数的图象“上升”;当0<a <1时,对数函数的图象“下降”. 3.反函数指数函数y =a x (a >0,且a ≠1)与对数函数y =log a x (a >0且a ≠1)互为反函数.1.函数y =log a x 的图象如图所示,则实数a 的可能取值为( ) A .5 B.15 C.1e D.122.若对数函数过点(4,2),则其解析式为________.3.函数f (x )=log 2(x +1)的定义域为________. 对数函数的概念及应用【例1】 (1)下列给出的函数:①y =log 5x +1; ②y =log a x 2(a >0,且a ≠1);③y =log (3-1)x ;④y =13log 3x ;⑤y =log x 3(x >0,且x ≠1); ⑥y =log 2πx .其中是对数函数的为( )A .③④⑤B .②④⑥C .①③⑤⑥D .③⑥(2)若函数y =log (2a -1)x +(a 2-5a +4)是对数函数,则a =________. (3)已知对数函数的图象过点(16,4),则f ⎝ ⎛⎭⎪⎫12=__________.判断一个函数是对数函数的方法1.若函数f (x )=(a 2+a -5)log a x 是对数函数,则a =________. 对数函数的定义域【例2】 求下列函数的定义域: (1)f (x )=1log 12x +1;(2)f (x )=12-x +ln(x +1);(3)f (x )=log (2x -1)(-4x +8).求对数型函数的定义域时应遵循的原则 (1)分母不能为0.(2)根指数为偶数时,被开方数非负.(3)对数的真数大于0,底数大于0且不为1.提醒:定义域是使解析式有意义的自变量的取值集合,求与对数函数有关的定义域问题时,要注意对数函数的概念,若自变量在真数上,则必须保证真数大于0;若自变量在底数上,应保证底数大于0且不等于1.2.求下列函数的定义域:(1)f(x)=lg(x-2)+1x-3;(2)f(x)=log(x+1)(16-4x).对数函数的图象问题[探究问题]1.如图,曲线C1,C2,C3,C4分别对应y=log a1x,y=log a2x,y=log a3x,y=log a4x的图象,你能指出a1,a2,a3,a4以及1的大小关系吗?提示:作直线y=1,它与各曲线C1,C2,C3,C4的交点的横坐标就是各对数的底数,由此可判断出各底数的大小必有a4>a3>1>a2>a1>0.2.函数y=a x与y=log a x(a>0且a≠1)的图象有何特点?提示:两函数的图象关于直线y=x对称.【例3】(1)当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象为()A B C D(2)已知f(x)=log a|x|,满足f(-5)=1,试画出函数f(x)的图象.1.把本例函数图象的变换规律(1)一般地,函数y =f (x ±a )+b (a ,b 为实数)的图象是由函数y =f (x )的图象沿x 轴向左或向右平移|a |个单位长度,再沿y 轴向上或向下平移|b |个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.一般地,y =f (|x -a |)的图象是关于直线x =a 对称的轴对称图形;函数y =|f (x )|的图象与y =f (x )的图象在f (x )≥0的部分相同,在f (x )<0的部分关于x 轴对称.1.判断一个函数是不是对数函数关键是分析所给函数是否具有y =log a x (a >0且a ≠1)这种形式.2.在对数函数y =log a x 中,底数a 对其图象直接产生影响,学会以分类的观点认识和掌握对数函数的图象和性质.3.涉及对数函数定义域的问题,常从真数和底数两个角度分析.1.思考辨析(1)对数函数的定义域为R .( )(2)函数y =log a (x +2)恒过定点(-1,0).( ) (3)对数函数的图象一定在y 轴右侧.( ) (4)函数y =log 2x 与y =x 2互为反函数.( ) 2.下列函数是对数函数的是( )A .y =2+log 3xB .y =log a (2a )(a >0,且a ≠1)C .y =log a x 2(a >0,且a ≠1)D .y =ln x 3.函数f (x )=lg x +lg(5-3x )的定义域是( ) A.⎣⎢⎡⎭⎪⎫0,53 B.⎣⎢⎡⎦⎥⎤0,53 C.⎣⎢⎡⎭⎪⎫1,53 D.⎣⎢⎡⎦⎥⎤1,53 4.已知f (x )=log 3x . (1)作出这个函数的图象;(2)若f (a )<f (2),利用图象求a 的取值范围.第2课时 对数函数及其性质的应用比较对数值的大小【例1】 比较下列各组值的大小:(1)log 534与log 543;(2)log 132与log 152;(3)log 23与log 54.比较对数值大小的常用方法 (1)同底数的利用对数函数的单调性.(2)同真数的利用对数函数的图象或用换底公式转化. (3)底数和真数都不同,找中间量.提醒:比较数的大小时先利用性质比较出与零或1的大小.1.比较下列各组值的大小:(1)log 230.5,log 230.6;(2)log 1.51.6,log 1.51.4; (3)log 0.57,log 0.67;(4)log 3π,log 20.8. 解对数不等式【例2】 已知函数f (x )=log a (x -1),g (x )=log a (6-2x )(a >0,且a ≠1). (1)求函数φ(x )=f (x )+g (x )的定义域;(2)试确定不等式f(x)≤g(x)中x的取值范围.[思路点拨](1)直接由对数式的真数大于0联立不等式组求解x的取值集合.(2)分a>1和0<a<1求解不等式得答案.常见的对数不等式的三种类型(1)形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论;(2)形如log a x>b的不等式,应将b化为以a为底数的对数式的形式,再借助y=log a x的单调性求解;(3)形如log a x>log b x的不等式,可利用图象求解.2.(1)已知log a 12>1,求a的取值范围;(2)已知log0.7(2x)<log0.7(x-1),求x的取值范围.对数函数性质的综合应用[探究问题]1.类比y=a f(x)单调性的判断法,你能分析一下y=log12(2x-1)的单调性吗?提示:形如y=a f(x)的单调性满足“同增异减”的原则,由于y=log12(2x-1)由函数y=log12t及t=2x-1复合而成,且定义域为2x-1>0,即x>12,结合“同增异减”可知,y=log12(2x-1)的减区间为⎝⎛⎭⎪⎫12,+∞.2.如何求形如y=log a f(x)的值域?提示:先求y=f(x)的值域,注意f(x)>0,在此基础上,分a>1和0<a<1两种情况,借助y=log a x的单调性求函数y=log a f(x)的值域.【例3】(1)已知y=log a(2-ax)是[0,1]上的减函数,则a的取值范围为() A.(0,1)B.(1,2) C.(0,2) D.[2,+∞)(2)函数f(x)=log 12(x2+2x+3)的值域是________.1.已知对数型函数的单调性求参数的取值范围,要结合复合函数的单调性规律,注意函数的定义域求解;若是分段函数,则需注意两段函数最值的大小关系.2.求对数型函数的值域一般是先求真数的范围,然后利用对数函数的单调性求解.1.比较两个对数值的大小及解对数不等式问题,其依据是对数函数的单调性,若对数的底数是字母且范围不明确,一般要分a>1和0<a<1两类分别求解.2.解决与对数函数相关的问题时要树立“定义域优先”的原则,同时注意数形结合思想和分类讨论思想在解决问题中的应用.1.思考辨析(1)y=log2x2在[0,+∞)上为增函数.()(2)y=log 12x2在(0,+∞)上为增函数.()(3)ln x<1的解集为(-∞,e).()(4)函数y=log 12(x2+1)的值域为[0,+∞).()2.设a=log32,b=log52,c=log23,则()A.a>c>b B.b>c>a C.c>b>a D.c>a>b3.函数f(x)=log2(1+2x)的单调增区间是______.4.已知a>0且满足不等式22a+1>25a-2.(1)求实数a的取值范围;(2)求不等式log a(3x+1)<log a(7-5x)的解集;(3)若函数y=log a(2x-1)在区间[1,3]上有最小值为-2,求实数a的值.第3课时不同函数增长的差异三种函数模型的性质1.已知变量y =1+2x ,当x 减少1个单位时,y 的变化情况是( ) A .y 减少1个单位 B .y 增加1个单位 C .y 减少2个单位 D .y 增加2个单位2.下列函数中随x 的增大而增大且速度最快的是( ) A .y =e x B .y =ln x C .y =2x D .y =e -x3.某工厂8年来某种产品总产量C 与时间t (年)的函数关系如图所示.以下四种说法:①前三年产量增长的速度越来越快;②前三年产量增长的速度越来越慢;③第三年后这种产品停止生产;④第三年后产量保持不变.其中说法正确的序号是________. 几类函数模型的增长差异【例1】 (1)下列函数中,增长速度最快的是( )A .y =2 019xB .y =2019C .y =log 2 019xD .y =2 019x (2)下面对函数f (x )=log 12x ,g (x )=⎝ ⎛⎭⎪⎫12x与h (x )=-2x 在区间(0,+∞)上的递减情况说法正确的是( )A .f (x )递减速度越来越慢,g (x )递减速度越来越快,h (x )递减速度越来越慢B .f (x )递减速度越来越快,g (x )递减速度越来越慢,h (x )递减速度越来越快C .f (x )递减速度越来越慢,g (x )递减速度越来越慢,h (x )递减速度不变D .f (x )递减速度越来越快,g (x )递减速度越来越快,h (x )递减速度越来越快常见的函数模型及增长特点 (1)线性函数模型线性函数模型y =kx +b (k >0)的增长特点是直线上升,其增长速度不变. (2)指数函数模型指数函数模型y =a x (a >1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型对数函数模型y =log a x (a >1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓.1.四个变量y 1,y 2,y 3,y 4随变量x 变化的数据如表:指数函数、对数函数与一次函数模型的比较【例2】 函数f (x )=2x 和g (x )=2x 的图象如图所示,设两函数的图象交于点A (x 1,y 1),B (x 2,y 2),且x 1<x 2.(1)请指出图中曲线C 1,C 2分别对应的函数;(2)结合函数图象,判断f ⎝ ⎛⎭⎪⎫32与g ⎝ ⎛⎭⎪⎫32,f (2 019)与g (2 019)的大小.由图象判断指数函数、一次函数的方法根据图象判断增长型的指数函数、一次函数时,通常是观察函数图象上升得快慢,即随着自变量的增大,图象最“陡”的函数是指数函数.2.函数f (x )=lg x ,g (x )=0.3x -1的图象如图所示. (1)试根据函数的增长差异指出曲线C 1,C 2分别对应的函数;(2)比较两函数的增长差异(以两图象交点为分界点,对f (x ),g (x )的大小进行比较).直线上升、指数爆炸、对数增长对于直线y =kx +b (k ≥0)、指数函数y =a x (a >1)、对数函数y =log b x (b >1),当自变量变得很大时,指数函数比一次函数增长得快,一次函数比对数函数增长得快,并且直线上升,其增长量固定不变.。

人教版高中数学必修1--第四章指数函数、对数函数有关的复合函数问题 4

人教版高中数学必修1--第四章指数函数、对数函数有关的复合函数问题 4

高中数学 必修 第一册
返回导航
第四章 指数函数与对数函数
知识点三 对数函数在实际问题中的应用 某公司制订了一个激励销售人员的奖励方案:当销售利润不 超过 10 万元时,按销售利润的 15%进行奖励;当销售利润超过 10 万 元时,若超出 A 万元,则超出部分按 2log5(A+1)进行奖励.记奖金为 y(单位:万元),销售利润为 x(单元:万元). (1)写出奖金 y 关于销售利润 x 的解析式; (2)如果业务员老江获得 5.5 万元的奖金,那么他的销售利润是多 少万元?
强弱等级 L/dB
10
m
பைடு நூலகம்
求 a 和 m 的值.
很嘈杂 的马路 1×10-3
90
高中数学 必修 第一册
返回导航
第四章 指数函数与对数函数
解:将 I0=1×10-12 W/m2,I=1×10-11 W/m2 代入 L=a lg
I I0

得 10=alg
1×10-11 1×10-12
=a lg 10=a,即 a=10,m=10lg
解:由题意知(x-3)(x+3)>0, 解得 x<-3 或 x>3, ∴函数 y=loga(x-3)(x+3)的定义域为(-∞,-3)∪(3,+∞).
高中数学 必修 第一册
返回导航
第四章 指数函数与对数函数
求含对数式的函数定义域的关键是真数大于 0,底数大于 0 且不 为 1.如需对函数式变形,须注意真数底数的取值范围是否改变.
高中数学 必修 第一册
返回导航
第四章 指数函数与对数函数
角度 2
求对数函数的解析式
3
已知函数
f(x)是对数函数,且
f

(带答案)高中数学第四章指数函数与对数函数基础知识点归纳总结

(带答案)高中数学第四章指数函数与对数函数基础知识点归纳总结

(每日一练)高中数学第四章指数函数与对数函数基础知识点归纳总结高中数学第四章指数函数与对数函数基础知识点归纳总结单选题1、若x 1,x 2是二次函数y =x 2−5x +6的两个零点,则1x 1+1x 2的值为( ) A .−12B .−13C .−16D .56 答案:D分析:解方程可得x 1=2,x 2=3,代入运算即可得解.由题意,令x 2−5x +6=0,解得x =2或3,不妨设x 1=2,x 2=3,代入可得1x 1+1x 2=12+13=56. 故选:D.2、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( )A .90<a <100B .90<a <110C .100<a <110D .80<a <100答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y>0,即x2−10x<0,得0<x<10,∴90<x+90<100,所以a的取值为90<a<100.故选:A3、设m,n都是正整数,且n>1,若a>0,则不正确的是()A.a mn=√a mn B.(a12+a−12)2=a+a−1C.a−mn=√a mn D.a0=1答案:B解析:由指数运算公式直接计算并判断. 由m,n都是正整数,且n>1,a>0,、得(a 12+a−12)2=(a12)2+2a12⋅a−12+(a−12)2=a+a−1+2,故B选项错误,故选:B.4、已知函数f(x)={x−2,x∈(−∞,0) lnx,x∈(0,1)−x2+4x−3,x∈[1,+∞),若函数g(x)=f(x)−m恰有两个零点,则实数m不可能...是()A.−1B.0C.1D.2答案:D解析:依题意画出函数图象,函数g(x)=f(x)−m的零点,转化为函数y=f(x)与函数y=m的交点,数形结合即可求出参数m的取值范围;解:因为f(x)={x−2,x∈(−∞,0) lnx,x∈(0,1)−x2+4x−3,x∈[1,+∞),画出函数图象如下所示,函数g(x)=f(x)−m的有两个零点,即方程g(x)=f(x)−m=0有两个实数根,即f(x)=m,即函数y=f(x)与函数y =m 有两个交点,由函数图象可得m ≤0或m =1,故选:D小提示:函数零点的求解与判断方法:(1)直接求零点:令f (x )=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.5、化简√−a 3·√a 6的结果为( )A .−√aB .−√−aC .√−aD .√a答案:A分析:结合指数幂的运算性质,可求出答案.由题意,可知a ≥0,∴√−a3·√a6=(−a)13⋅a16=−a13⋅a16=−a13+16=−a12=−√a. 故选:A.6、若ln2=a,ln3=b,则log818=()A.a+3ba3B.a+2b3aC.a+2ba3D.a+3b3a答案:B分析:先换底,然后由对数运算性质可得.log818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a3a.故选:B7、设4a=3b=36,则1a +2b=()A.3B.1C.−1D.−3答案:B分析:先求出a=log436,b=log336,再利用换底公式和对数的运算法则计算求解. 因为4a=3b=36,所以a=log436,b=log336,则1a =log364,2b=log369,所以则1a +2b=log364+log369=log3636=1.故选:B.8、已知a=lg2,10b=3,则log56=()A.a+b1+a B.a+b1−aC.a−b1+aD.a−b1−a答案:B分析:指数式化为对数式求b,再利用换底公式及对数运算性质变形. ∵a=lg2,10b=3,∴b=lg3,∴log56=lg6lg5=lg2×3lg102=lg2+lg31−lg2=a+b1−a.故选:B.9、已知f(x)=a−x(a>0,且a≠1),且f(-2)>f(-3),则a的取值范围是()A.a>0B.a>1C.a<1D.0<a<1答案:D分析:把f(-2),f(-3)代入解不等式,即可求得.因为f(-2)=a2,f(-3)=a3,f(-2)>f(-3),即a2>a3,解得:0<a<1.故选:D10、我国某科研机构新研制了一种治疗新冠肺炎的注射性新药,并已进入二期临床试验阶段.已知这种新药在注射停止后的血药含量c(t)(单位:mg/L)随着时间t(单位:h)的变化用指数模型c(t)=c0e−kt描述,假定某药物的消除速率常数k=0.1(单位:h−1),刚注射这种新药后的初始血药含量c0=2000mg/L,且这种新药在病人体内的血药含量不低于1000mg/L时才会对新冠肺炎起疗效,现给某新冠病人注射了这种新药,则该新药对病人有疗效的时长大约为()(参考数据:ln2≈0.693,ln3≈1.099)A.5.32hB.6.23hC.6.93hD.7.52h答案:C分析:利用已知条件c(t)=c0e−kt=2000e−0.1t,该药在机体内的血药浓度变为1000mg/L时需要的时间为t1,转化求解即可.解:由题意得:c (t )=c 0e −kt =2000e −0.1t设该要在机体内的血药浓度变为1000mg/L 需要的时间为t 1c (t 1)=2000e −0.1t 1≥1000e −0.1t 1≥12故−0.1t ≥−ln2,t ≤ln20.1≈6.93故该新药对病人有疗效的时长大约为6.93ℎ故选:C多选题11、下列各选项中,值为1的是( )A .log 26·log 62B .log 62+log 64C .(2+√3)12⋅(2−√3)12D .(2+√3)12−(2−√3)12答案:AC解析:对选项逐一化简,由此确定符合题意的选项.对于A 选项,根据log a b ⋅log b a =1可知,A 选项符合题意.对于B 选项,原式=log 6(2×4)=log 68≠1,B 选项不符合题意.对于C 选项,原式=[(2+√3)⋅(2−√3)]12=112=1,C 选项符合题意.对于D 选项,由于[(2+√3)12−(2−√3)12]2=2+√3+2−√3−2(2+√3)12⋅(2−√3)12=4−2=2≠1,D选项不符合题意.故选:AC小提示:本小题主要考查对数、根式运算,属于基础题.12、已知函数f (x )=lnx +ln (2−x ),则( )A .f (x )在(0,2)单调递增B .f (x )在(0,1)单调递增,在(1,2)单调递减C .y =f (x )的图象关于直线x =1对称D .y =f (x )的图象关于点(1,0)对称答案:BC分析:由题可得函数的定义域,化简函数f (x )=lnx (2−x )=ln (−x 2+2x ),分析函数的单调性和对称性,从而判断选项.函数的定义域满足{x >02−x >0,即0<x <2, 即函数的定义域是{x |0<x <2 },∵f (x )=lnx (2−x )=ln (−x 2+2x ),设t =−x 2+2x =−(x −1)2+1,则函数在(0,1)单调递增,在(1,2)单调递减,又函数y =lnt 单调递增,由复合函数单调性可知函数f (x )在(0,1)单调递增,在(1,2)单调递减,故A 错误,B 正确;因为f (1+x )=ln (1+x )+ln (1−x ),f (1−x )=ln (1−x )+ln (1+x ),所以f (1−x )=f (1+x ),即函数y =f (x )图象关于直线x =1对称,故C 正确;又f (12)=ln 12+ln (2−12)=ln 34,f (32)=ln 32+ln (2−32)=ln 34,所以f (12)=f (32)=ln 34,所以D 错误.故选:BC .13、已知函数f(x)=|lgx |,则( )A .f(x)是偶函数B .f(x)值域为[0,+∞)C.f(x)在(0,+∞)上递增D.f(x)有一个零点答案:BD分析:画出f(x)的函数图象即可判断.画出f(x)=|lgx|的函数图象如下:由图可知,f(x)既不是奇函数也不是偶函数,故A错误;f(x)值域为[0,+∞),故B正确;f(x)在(0,1)单调递减,在(1,+∞)单调递增,故C错误;f(x)有一个零点1,故D正确.故选:BD.14、已知函数f(x)=2x−1,下面说法正确的有()2x+1A.f(x)的图象关于y轴对称B.f(x)的图象关于原点对称C.f(x)的值域为(−1,1)<0恒成立D.∀x1,x2∈R,且x1≠x2,f(x1)−f(x2)x1−x2答案:BC解析:判断f(x)的奇偶性即可判断选项AB,求f(x)的值域可判断C,证明f(x)的单调性可判断选项D,即可得正确选项.f(x)=2x−12x+1的定义域为R关于原点对称,f(−x)=2−x−12−x+1=(2−x−1)2x(2−x+1)2x=1−2x1+2x=−f(x),所以f(x)是奇函数,图象关于原点对称,故选项A不正确,选项B正确;f(x)=2x−12x+1=2x+1−22x+1=1−22x+1,因为2x>0,所以2x+1>1,所以0<12x+1<1,−2<−22x+1<0,所以−1<1−22x+1<1,可得f(x)的值域为(−1,1),故选项C正确;设任意的x1<x2,则f(x1)−f(x2)=1−22x1+1−(1−22x2+1)=22x2+1−22x1+1=2(2x1−2x2)(2x1+1)(2x2+1),因为2x1+1>0,2x2+1>0,2x1−2x2<0,所以2(2x1−2x2)(2x1+1)(2x2+1)<0,即f(x1)−f(x2)<0,所以f(x1)−f(x2)x1−x2>0,故选项D不正确;故选:BC小提示:方法点睛:利用定义证明函数单调性的方法(1)取值:设x1,x2是该区间内的任意两个值,且x1<x2;(2)作差变形:即作差,即作差f(x1)−f(x2),并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差f(x1)−f(x2)的符号;(4)下结论:判断,根据定义作出结论.即取值---作差----变形----定号----下结论.15、(多选)下列函数中,既是偶函数又在(0,+∞)上单调递增的函数是()A.y=x2B.y=|x−1| C.y=|x|−1 D.y=2x答案:AC分析:由偶函数的定义及单调性依次判断选项即可.易得四个函数定义域均为R,对于A,令f(x)=x2,则f(−x)=(−x)2=x2=f(x),且在(0,+∞)上单调递增,A正确;对于B,令g(x)=|x−1|,g(−x)=|−x−1|=|x+1|≠g(x),B错误;对于C,令ℎ(x)=|x|−1,ℎ(−x)=|−x|−1=|x|−1=ℎ(x),且在(0,+∞)上单调递增,C正确;对于D,令m(x)=2x,m(−x)=2−x≠m(x), D错误.故选:AC.填空题16、已知函数f(x)=ln(√1+x2−x)−1,若f(2x−1)+f(4−x2)+2>0,则实数x的取值范围为______.答案:x<−1或x>3分析:令g(x)=f(x)+1=ln(√x2+1−x),分析出函数g(x)为R上的减函数且为奇函数,将所求不等式变形为g(x2−4)<g(2x−1),可得出关于x的不等式,解之即可.令g(x)=f(x)+1=ln(√x2+1−x),对任意的x∈R,√x2+1−x>|x|−x≥0,故函数g(x)的定义域为R,因为g(x)+g(−x)=ln(√x2+1−x)+ln(√x2+1+x)=ln(x2+1−x2)=0,则g(−x)=−g(x),所以,函数g(x)为奇函数,当x≤0时,令u=√1+x2−x,由于函数u1=√1+x2和u2=−x在(−∞,0]上均为减函数,故函数u=√1+x2−x在(−∞,0]上也为减函数,因为函数y=lnu在(0,+∞)上为增函数,故函数g(x)在(−∞,0]上为减函数,所以,函数g(x)在[0,+∞)上也为减函数,因为函数g(x)在R上连续,则g(x)在R上为减函数,由f(2x−1)+f(4−x2)+2>0可得g(2x−1)+g(4−x2)>0,即g(x2−4)<g(2x−1),所以,x2−4>2x−1,即x2−2x−3>0,解得x<−1或x>3.所以答案是:x<−1或x>3.17、牛奶中细菌的标准新国标将最低门槛(允许的最大值)调整为200万个/毫升,牛奶中的细菌常温状态下大约20分钟就会繁殖一代,现将一袋细菌含量为3000个/毫升的牛奶常温放置于空气中,经过________分钟就不宜再饮用.(参考数据:lg2≈0.301,lg3≈0.477)答案:188分析:根据题意列出不等式计算即可.设经过x个周期后细菌含量超标,即3000×2x>2000000,即2x>20003,所以x>log220003=lg2000−lg3lg2=lg2+3−lg3lg2≈9.4,而20×9.4=188,因此经过188分钟就不宜再饮用.所以答案是:188.18、函数f(x)=a x−1+2(a>0,a≠1)的图象恒过定点_____________. 答案:(1,3)分析:根据指数函数的性质,即可得答案.令x−1=0,可得x=1,所以f(1)=a0+2=3,即f(x)图象恒过定点(1,3).所以答案是:(1,3)解答题19、已知a>0,且a≠1,m>n>0,比较A=a m+1a m 和B=a n+1a n的大小.答案:只要a>0且a≠1,都有A>B.分析:利用作差法结合指数函数的性质比较大小即可A−B=(a m+1a m)−(a n+1a n)=(a m−a n)+(1a m−1a n)=(a m−a n)+a n−a ma m a n =(a m−a n)(a m+n−1)a m+n.∵a>0,∴a m+n>0.①当a>1时,∵m>n>0,∴a m>a n,a m+n>a0=1. ∴A−B>0,即A>B.②当0<a<1时,∵a m<a n,a m+n<a0=1,∴仍有A−B>0,即有A>B.综上所述,只要a>0且a≠1,都有A>B.20、计算:(1)lg14−2lg73+lg7−lg18;(2)log535+2log5√2−log515−log514;(3)12lg3249−43lg√8+lg√245.答案:(1)0(2)2(3)12分析:直接利用对数的运算性质进行运算即可.(1)原式=lg(2×7)−2(lg7−lg3)+lg7−lg(32×2) =lg2+lg7−2lg7+2lg3+lg7−2lg3−lg2=0.(2)原式=log535+log52−log515−log514=log535×215×14=log535014=log525=2.(3)原式=12(5lg2−2lg7)−43×32lg2+12(2lg7+lg5)=52lg2−lg7−2lg2+lg7+12lg5=12lg2+12lg5=12(lg2+lg5)=12lg10=12.。

高中数学第四章指数函数与对数函数知识点总结归纳完整版(带答案)

高中数学第四章指数函数与对数函数知识点总结归纳完整版(带答案)

高中数学第四章指数函数与对数函数知识点总结归纳完整版单选题1、青少年视力是社会普遍关注的问题,视力情况可借助视力表测量.通常用五分记录法和小数记录法记录视力数据,五分记录法的数据L 和小数记录表的数据V 的满足L =5+lgV .已知某同学视力的五分记录法的数据为4.9,则其视力的小数记录法的数据为( )(√1010≈1.259) A .1.5B .1.2C .0.8D .0.6 答案:C分析:根据L,V 关系,当L =4.9时,求出lgV ,再用指数表示V ,即可求解. 由L =5+lgV ,当L =4.9时,lgV =−0.1, 则V =10−0.1=10−110=√1010≈11.259≈0.8.故选:C.2、已知2a =5,log 83=b ,则4a−3b =( ) A .25B .5C .259D .53 答案:C分析:根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出. 因为2a=5,b =log 83=13log 23,即23b=3,所以4a−3b=4a 43b =(2a )2(23b )2=5232=259.故选:C.3、中国茶文化博大精深,某同学在茶艺选修课中了解到,茶水的口感与茶叶类型和水的温度有关,某种绿茶用80℃左右的水泡制可使茶汤清澈明亮,营养也较少破坏.为了方便控制水温,该同学联想到牛顿提出的物体在常温环境下温度变化的冷却模型:如果物体的初始温度是θ1℃,环境温度是θ0℃,则经过t 分钟后物体的温度θ℃将满足θ=θ0+(θ1−θ0)e −kt ,其中k 是一个随着物体与空气的接触状况而定的正常数.该同学通过多次测量平均值的方法得到初始温度为100℃的水在20℃的室温中,12分钟以后温度下降到50℃.则在上述条件下,100℃的水应大约冷却( )分钟冲泡该绿茶(参考数据:ln2≈0.7,ln3≈1.1) A .3B .3.6C .4D .4.8 答案:B分析:根据题意求出k的值,再将θ=80℃,θ1=100℃,θ0=20℃代入θ=θ0+(θ1−θ0)e−kt即可求得t的值.由题可知:50=20+(100−20)e−12k⇒(e−k)12=38⇒e−k=(38)112,冲泡绿茶时水温为80℃,故80=20+(100−20)⋅e−kt⇒(e−k)t=34⇒t⋅lne−k=ln34⇒t=ln 3 4ln(38)112=12(ln3−2ln2)ln3−3ln2≈12(1.1−2×0.7)1.1−3×0.7=3.6.故选:B.4、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I1I2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍.故选:B.5、中国的5G技术领先世界,5G技术的数学原理之一便是著名的香农公式:C=Wlog2(1+SN).它表示:在受噪声干扰的信道中,最大信息传递速度C取决于信道带宽W,信道内信号的平均功率S,信道内部的高斯噪声功率N 的大小,其中SN叫做信噪比.当信噪比比较大时,公式中真数中的1可以忽略不计.按照香农公式,若不改变带宽W ,而将信噪比SN从1000提升至4000,则C 大约增加了( )附:lg2≈0.3010A .10%B .20%C .50%D .100% 答案:B分析:根据题意,计算出log 24000log 21000的值即可;当SN=1000时,C =Wlog 21000,当SN=4000时,C =Wlog 24000,因为log 24000log 21000=lg4000lg1000=3+2lg23≈3.60203≈1.2所以将信噪比SN从1000提升至4000,则C 大约增加了20%,故选:B.小提示:本题考查对数的运算,考查运算求解能力,求解时注意对数运算法则的运用. 6、指数函数 y =a x 的图象经过点(3,18),则a 的值是( )A .14B .12C .2D .4 答案:B分析:将已知点的坐标代入指数函数的表达式,求得a 的值. 因为y =a x 的图象经过点(3,18),所以a 3=18,解得a =12,故选:B.7、用二分法求函数f (x )的一个正实数零点时,经计算f (0.64)<0,f (0.72)>0,f (0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为( ) A .0.9B .0.7C .0.5D .0.4 答案:B分析:利用二分法求函数零点的近似值的条件及方法分析判断即得.依题意,函数的零点在(0.68,0.72)内,四个选项中只有0.7∈(0.68,0.72),且满足|0.72-0.68|<0.1, 所以所求的符合条件的近似值为0.7.故选:B8、若ln2=a ,ln3=b ,则log 818=( ) A .a+3b a 3B .a+2b 3aC .a+2b a 3D .a+3b 3a答案:B分析:先换底,然后由对数运算性质可得. log 818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a 3a.故选:B 多选题9、(多选)某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少13,则使产品达到市场要求的过滤次数可以为(参考数据:lg2≈0.301,lg3≈0.477) A .6B .9C .8D .7 答案:BC分析:因为每过滤一次杂质含量减少13,所以每过滤一次杂志剩余量为原来的23,由此列式可解得.设经过n 次过滤,产品达到市场要求,则 2100×(23)n⩽11000,即(23)n⩽120,由 nlg 23⩽−lg20,即 n(lg2−lg3)⩽−(1+lg2),得 n ⩾1+lg2lg3−lg2≈7.4, 故选BC .小提示:本题考查了指数不等式的解法,属于基础题. 10、已知a =log 3e,b =log 23,c =ln3,则( ) A .a <b <c B .a <c <b C .D .a +c <b 答案:BC分析:由对数函数的单调性结合换底公式比较a,b,c 的大小,计算出a +c ,利用基本不等式得a +c >2,而b <2,从而可比较大小.a cb +>由题意可知,对于选项AB ,因为b =log 23=ln3ln2>ln3lne =ln3=c ,所以b >c ,又因为a =log 3e <log 33=1,且c =ln3>lne =1,所以,则b >c >a ,所以选项A 错误,选项B 正确;对于选项CD ,a +c =log 3e +ln3=lne ln3+ln3=1ln3+ln3>2√1ln3⋅ln3=2,且b =log 23<b =log 24=2,所以,故选项C 正确,选项D 错误; 故选:BC.小提示:关键点点睛:本题考查对数函数的单调性,利用单调性比较对数的大小,对于不同底的对数,可利用换底公式化为同底,再由用函数的单调性及不等式的性质比较大小,也可结合中间值如0或1或2等比较后得出结论.11、甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量y (个)与加工时间x (分)之间的函数关系,A 点横坐标为12,B 点坐标为(20,0),C 点横坐标为128.则下面说法中正确的是( )A .甲每分钟加工的零件数量是5个B .在60分钟时,甲比乙多加工了120个零件C .D 点的横坐标是200D .y 的最大值是216 答案:ACD分析:甲每分钟加工的数量是600120=5,所以选项A 正确;在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B 错误;设D 的坐标为(t,0),由题得△AOB ∽△CBD ,则有1220=128−20t−20,解可得t =200,所以选项C 正确;当x =128时,y =216,所以y 的最大值是216.所以选项D 正确. 根据题意,甲一共加工的时间为(12−0)+(128−20)=120分钟,c a >a c b +>一共加工了600个零件,则甲每分钟加工的数量是600120=5,所以选项A正确,设D的坐标为(t,0),在区间(128,t)和(12,20 )上,都是乙在加工,则直线AB和CD的斜率相等,则有∠ABO=∠CDB,在区间(20,128)和(0,12)上,甲乙同时加工,同理可得∠AOB=∠CBD,则△AOB∽△CBD,则有1220=128−20t−20,解可得t=200;即点D的坐标是(200,0),所以选项C正确;由题得乙每分钟加工的零件数为600200=3个,所以甲每分钟比乙多加工5-3=2个,在60分钟时,甲比乙多加工了(60-20)×2=80个零件,所以选项B错误;当x=128时,y=(128−20)×2=216,所以y的最大值是216.所以选项D正确. 故选:ACD12、已知函数f(x)=a x(a>1),g(x)=f(x)−f(−x),若x1≠x2,则()A.f(x1)f(x2)=f(x1+x2)B.f(x1)+f(x2)=f(x1x2)C.x1g(x1)+x2g(x2)>x1g(x2)+x2g(x1)D.g(x1+x22)⩽g(x1)+g(x2)2答案:AC分析:对选项A、B,利用指数幂的运算性质即可判断选项A正确,选项B错误;对选项C、利用g(x)=f(x)−f(−x)=a x−a−x(a>1)在R上单调递增即可判断,选项C正确;对选项D、根据f(x)=a x(a>1),且x1≠x2,由凹凸性有f(x1+x22)<12[f(x1)+f(x2)],又f(−x)=(1 a )x(a>1),由凹凸性有f(−x1−x22)>12[f(−x1)+f(−x2)]即可判断选项D错误;解:对选项A:因为a x1⋅a x2=a x1+x2,所以f(x1)f(x2)=f(x1+x2),故选项A正确;对选项B:因为a x1+a x2≠a x1x2,所以f(x1)+f(x2)≠f(x1x2),故选项B错误;对选项C:由题意,因为a>1,所以g(x)=f(x)−f(−x)=a x−a−x在R上单调递增,不妨设x1>x2,则g(x1)>g(x2),所以(x1−x2)g(x1)>(x1−x2)g(x2),即x1g(x1)+x2g(x2)>x1g(x2)+ x2g(x1),故选项C正确;对选项D:因为f(x)=a x(a>1),且x1≠x2,所以由凹凸性有f(x1+x22)<12[f(x1)+f(x2)],又f(−x)=(1a )x(a>1),所以由凹凸性有f(−x1−x22)>12[f(−x1)+f(−x2)],所以有f(x1+x22)+12[f(−x1)+f(−x2)]<f(−x1−x22)+12[f(x1)+f(x2)],即f(x1+x22)−f(−x1−x22)<12[f(x1)+f(x2)]−12[f(−x1)+f(−x2)],即g(x1+x22)<g(x1)+g(x2)2,故选项D错误;故选:AC.13、已知函数f(x)={lnx,x>0,−x2−4x,x≤0.关于x的方程f(x)−t=0的实数解个数,下列说法正确的是()A.当t≤0时,方程有两个实数解B.当t>4时,方程无实数解C.当0<t<4时,方程有三个实数解D.当t=4时,方程有两个实数解答案:CD分析:方程f(x)−t=0即f(x)=t,作出函数f(x)的简图,数形结合可得结果.方程f(x)−t=0即f(x)=t,作出函数f(x)的简图,由图可知:当t<0时,函数y=f(x)的图象与直线y=t有2个交点,即方程f(x)−t=0有2个实数解;当t=0时,函数y=f(x)的图象与直线y=t有3个交点,即方程f(x)−t=0有3个实数解,故A错误;当t>4时,函数y=f(x)的图象与直线y=t有1个交点,即方程f(x)−t=0有1个实数解,故B错误;当0<t<4时,函数y=f(x)的图象与直线y=t有3个交点,即方程f(x)−t=0有3个实数解,故C正确;当t=4时,函数y=f(x)的图象与直线y=t有2个交点,即方程f(x)−t=0有2个实数解,故D正确.故选:CD.填空题14、已知函数f(x)=1+log a(x−1)(a>0且a≠1)的图像恒过定点P,又点P的坐标满足方程mx+ny=1,则mn的最大值为_____.答案:18##0.125分析:根据对数型函数的过定点(2,1),代入方程中可得2m+n=1,根据基本不等式即可求解.f(x)=1+log a(x−1)(a>0且a≠1)过定点(2,1),所以P(2,1),所以2m+n=1故2m⋅n≤(2m+n2)2⇒m⋅n≤18,当且仅当m=14,n=12时等号成立.所以答案是:1815、已知f(x)是奇函数,且当x<0时,f(x)=−e ax.若f(ln2)=8,则a=__________.答案:-3分析:当x>0时−x<0,f(x)=−f(−x)=e−ax代入条件即可得解.因为f(x)是奇函数,且当x>0时−x<0,f(x)=−f(−x)=e−ax.又因为ln2∈(0,1),f(ln2)=8,所以e−aln2=8,两边取以e为底的对数得−aln2=3ln2,所以−a=3,即a=−3.小提示:本题主要考查函数奇偶性,对数的计算.渗透了数学运算、直观想象素养.使用转化思想得出答案.16、函数y=log12(3x−1)的单调递减区间为_____答案:(13,+∞)分析:根据复合函数单调性规律即可求解 函数y =log 12(3x −1)的定义域为(13,+∞)又y =log 12(3x −1)是由y =log 12u 与u =3x −1复合而成,因为外层函数y =log 12u 单调递减,所以求函数y =log 12(3x −1)的单调递减区间即是求内层函数u =3x −1的增区间,而内层函数u =3x −1在(13,+∞)上单调递增,所以函数y =log 12(3x −1)的减区间为(13,+∞)所以答案是:(13,+∞)解答题17、已知函数f (x )是定义在R 上的偶函数,且当x ≤0时,f (x )=x 2+mx ,函数f (x )在y 轴左侧的图象如图所示.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )−a =0有4个不相等的实数根,求实数a 的取值范围. 答案:(1)f (x )={x 2+2x,x ≤0x 2−2x,x >0(2)(−1,0)分析:(1)利用f (−2)=0可求x ≤0时f (x )的解析式,当x >0时,利用奇偶性f (x )=f (−x )可求得x >0时的f (x )的解析式,由此可得结果;(2)作出f (x )图象,将问题转化为f (x )与y =a 有4个交点,数形结合可得结果.(1)由图象知:f (−2)=0,即4−2m =0,解得:m =2,∴当x ≤0时,f (x )=x 2+2x ; 当x >0时,−x <0,∴f (−x )=(−x )2−2x =x 2−2x ,∵f (x )为R 上的偶函数,∴当x >0时,f (x )=f (−x )=x 2−2x ; 综上所述:f (x )={x 2+2x,x ≤0x 2−2x,x >0;(2)∵f (x )为偶函数,∴f (x )图象关于y 轴对称,可得f (x )图象如下图所示,f (x )−a =0有4个不相等的实数根,等价于f (x )与y =a 有4个不同的交点, 由图象可知:−1<a <0,即实数a 的取值范围为(−1,0).18、吉祥物“冰墩墩”在北京2022年冬奥会强势出圈,并衍生出很多不同品类的吉祥物手办.某企业承接了“冰墩墩”玩具手办的生产,已知生产此玩具手办的固定成本为200万元.每生产x 万盒,需投入成本ℎ(x )万元,当产量小于或等于50万盒时ℎ(x )=180x +100;当产量大于50万盒时ℎ(x )=x 2+60x +3500,若每盒玩具手办售价200元,通过市场分析,该企业生产的玩具手办可以全部销售完(利润=售价-成本,成本=固定成本+生产中投入成本)(1)求“冰墩墩”玩具手办销售利润y (万元)关于产量x (万盒)的函数关系式; (2)当产量为多少万盒时,该企业在生产中所获利润最大? 答案:(1)y ={20x −300,0≤x ≤50−x 2+140x −3700,x >50,x ∈N(2)70万盒分析:(1)根据题意分0≤x ≤50和x >50两种情况求解即可; (2)根据分段函数中一次与二次函数的最值求解即可.(1)当产量小于或等于50万盒时,y =200x −200−180x −100=20x −300, 当产量大于50万盒时,y =200x −200−x 2−60x −3500=−x 2+140x −3700, 故销售利润y (万元)关于产量x (万盒)的函数关系式为y={20x−300,0≤x≤50−x2+140x−3700,x>50,x∈N (2)当0≤x≤50时,y≤20×50−300=700;当x>50时,y=−x2+140x−3700,当x=1402=70时,y=−x2+140x−3700取到最大值,为1200.因为700<1200,所以当产量为70万盒时,该企业所获利润最大.。

高中数学第4章指数函数与对数函数4.2指数函数4.2.1指数函数的概念4.2.2指数函数的图象和性质

高中数学第4章指数函数与对数函数4.2指数函数4.2.1指数函数的概念4.2.2指数函数的图象和性质

1.判一判(正确的打“√”,错误的打“×”) (1)指数函数的图象一定在 x 轴的上方.( √ ) (2)当 a>1 时,对于任意 x∈R 总有 ax>1.( × ) (3)函数 f(x)=2-x 在 R 上是增函数.( × )
2.做一做(请把正确的答案写在横线上) (1)若 f(x)=(a2-3)ax 是指数函数,则 a=________. (2)若函数 f(x)=ax(a>0,且 a≠1)的图象过点(2,9),则 f(x)=________. (3)函数 y=2 1-3x的定义域为________,值域为________. 答案 (1)2 (2)3x (3)(-∞,0] [1,2)
+ff43+ff65+…+ff22002109=(
)
A.1010 B.2020 C.2019 D.1009
答案 B
解析
不妨设
f(x)

2x


f2 f1

f4 f3



f2020 f2019

2






1010×2=2020.
答案
解析
2.若函数 y=(1-2a)x 是实数集 R 上的增函数,则实数 a 的取值范围为
教学难点:1.指数函数的图象与性质.2.底数 a 对函数的影响.
核心概念掌握
【知识导学】
知识点一 指数函数的定义
□01 函数 y=ax(a>0,且 a≠1)叫做指数函数,其中指数 x 是自变量,定义
域是 R
.
知识点二 指数增长模型
在实际问题中,经常会遇到指数增长模型:设原有量为 N,每次的增长率

4.2 指数函数课件-2023届广东省高职高考数学第一轮复习第四章指数函数与对数函数

4.2 指数函数课件-2023届广东省高职高考数学第一轮复习第四章指数函数与对数函数

A
B
C
D
【解析】 ∵0<a<1,∴y=ax在R上是减函数,y=x+a与y轴的交点
在(0,1)点的下方,(0,0)点的上方,故选C.
10.函数 f(x)=22xx-+11是( A )
A.奇函数
B.偶函数
C.既是奇函数又是偶函数 D.非奇非偶函数
【解析】 该函数的定义域是 R,f(1)=22- +11=13,f(-1)=22- -11- +11=1212- +11
因为a0=1,令x+2=0,即x=-2时,y=a0+1=1+1=2,则定点
为(-2,2),故选B.
【融会贯通】 函数y=ax-3+5(a>0且a≠1)恒过的定点是__(_3_,__6_)_ _. 【解析】 因为a0=1,令x-3=0,即x=3时,y=a0+5=1+5=6, 即定点为(3,6).
1.下列函数中,指数函数的个数是( B )
2.下列函数在其定义域内单调递增的是( A )
A.=3x
B.y=-3x
C.y=3-x
D.y=x2
【解析】 y=-3x,y=3-x均为单调递减函数;y=x2先减后增;y=
3x为单调递增函数,故选A.
3.已知方程3x-3-3=0,则x=___4___. 【解析】 3x-3-3=0⇒3x-3=3⇒x-3=1⇒x=4.
=-13,f(-1)=-f(1),则函数为奇函数,故选 A.
二、填 空 题
11.若 f(3x)=2x,则 f(9)=___8___. 【解析】 令 3x=9,∴x=3,则 f(9)=23=8.
12.已知 f(x)是偶函数,且 x≥0 时,f(x)=2x,则 f(-2)=___4___. 【解析】 x≥0 时,f(x)=2x,∴f(2)=22=4.∵f(x)是偶函数,∴f(-2) =f(2)=4.

第四章 指数函数与对数函数单元总结(思维导图+知识记诵+能力培养)(含解析)

第四章   指数函数与对数函数单元总结(思维导图+知识记诵+能力培养)(含解析)

第四章 指数函数与对数函数知识点一、指数及指数幂的运算 1.根式的概念a 的n 次方根的定义:一般地,如果n x a =,那么x 叫做a 的n 次方根,其中*1,n n N >∈当n 为奇数时,正数的n 次方根为正数,负数的n 次方根是负数,当n 为偶数时,正数的n次方根有两个,这两个数互为相反数可以表示为 负数没有偶次方根,0的任何次方根都是0.n 叫做根指数,a 叫做被开方数. 2.n 次方根的性质:(1)当n a =;当n ,0,,0;a a a a a ≥⎧==⎨-<⎩(2)na =3.分数指数幂的意义:)0,,,1m na a m n N n =>∈>;()10,,,1m nm naa m n N n a-=>∈>要点诠释:0的正分数指数幂等于0,负分数指数幂没有意义. 4.有理数指数幂的运算性质:()0,0,,a b r s Q >>∈(1)r s r s a a a += (2)()r srsa a = (3)()rr rab a b =知识点二、指数函数及其性质 1.指数函数概念一般地,函数()0,1x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为R . 2.指数函数函数性质:1.对数的定义(1)若(0,1)xa N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.(2)负数和零没有对数.(3)对数式与指数式的互化:log (0,1,0)xa x N a N a a N =⇔=>≠>.2.几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.3.常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). 4.对数的运算性质如果0,1,0,0a a M N >≠>>,那么 ①加法:log log log ()a a a M N MN += ②减法:log log log a a aM M N N-= ③数乘:log log ()na a n M M n R =∈④log a NaN =⑤log log (0,)b n a a nM M b n R b=≠∈ ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且知识点四:对数函数及其性质 1.对数函数定义一般地,函数()log 0,1a y x a a =>≠且叫做对数函数,其中x 是自变量,函数的定义域()0,+∞. 2.对数函数性质:1.函数零点的判定(1)利用函数零点存在性的判定定理如果函数()y f x =在一个区间[]a b ,上的图象不间断,并且在它的两个端点处的函数值异号,即()()0f a f b <,则这个函数在这个区间上,至少有一个零点,即存在一点()0x a b ∈,,使()00f x =,这个0x 也就是方程()0f x =的根.要点诠释:①满足上述条件,我们只能判定区间内有零点,但不能确定有几个.若函数在区间内单调,则只有一个;若不单调,则个数不确定.②若函数()f x 在区间[],a b 上有()()0f a f b ⋅>,()f x 在(,)a b 内也可能有零点,例如2()f x x =在[]1,1-上,2()23f x x x =--在区间[]2,4-上就是这样的.故()f x 在(),a b 内有零点,不一定有()()0f a f b ⋅<.③若函数()f x 在区间[],a b 上的图象不是连续不断的曲线,()f x 在(),a b 内也可能是有零点,例如函数1()1f x x=+在[]2,2-上就是这样的. (2)利用方程求解法求函数的零点时,先考虑解方程()0f x =,方程()0f x =无实根则函数无零点,方程()0f x =有实根则函数有零点.(3)利用数形结合法函数()()()F x f x g x =-的零点就是方程()()f x g x =的实数根,也就是函数()y f x =的图象与()y g x =的图象交点的横坐标.2.用二分法求函数零点的一般步骤: 已知函数()y f x =定义在区间D 上,求它在D 上的一个零点x 0的近似值x ,使它满足给定的精确度. 第一步:在D 内取一个闭区间[]00,a b D ⊆,使()0f a 与()0f b 异号,即()()000f a f b ⋅<,零点位于区间[]00,a b 中.第二步:取区间[]00,a b 的中点,则此中点对应的坐标为()()0000001122x a b a a b =+-=+. 计算()0f x 和()0f a ,并判断:①如果()00f x =,则0x 就是()f x 的零点,计算终止;②如果()()000f a f x ⋅<,则零点位于区间[]00,a x 中,令1010,a a b x ==;③如果()()000f a f x ⋅>,则零点位于区间[]00,x b 中,令1010,a x b b == 第三步:取区间[]11,a b 的中点,则此中点对应的坐标为()()1111111122x a b a a b =+-=+. 计算()1f x 和()1f a ,并判断:①如果()10f x =,则1x 就是()f x 的零点,计算终止;②如果()()110f a f x ⋅<,则零点位于区间[]11,a x 中,令2121,a a b x ==;③如果()()110f a f x ⋅>,则零点位于区间[]11,x b 中,令2121,a x b b ==;……继续实施上述步骤,直到区间[],n n a b ,函数的零点总位于区间[],n n a b 上,当n a 和n b 按照给定的精确度所取的近似值相同时,这个相同的近似值就是函数()y f x =的近似零点,计算终止.这时函数()y f x =的近似零点满足给定的精确度.要点诠释:(1)第一步中要使:①区间长度尽量小;②()f a 、()f b 的值比较容易计算且()() <0f a f b .(2)根据函数的零点与相应方程的根的关系,求函数的零点和求相应方程的根式等价的.对于求方程()()f x g x =的根,可以构造函数()()()F x f x g x =-,函数()F x 的零点即为方程()()f x g x =的根. 知识点六:函数的实际应用求解函数应用题时一般按以下几步进行: 第一步:审题弄清题意,分清条件和结论,理顺数量关系,初步选择模型. 第二步:建模在细心阅读与深入理解题意的基础上,引进数学符号,将问题的非数学语言合理转化为数学语言,然后根据题意,列出数量关系,建立函数模型.这时,要注意函数的定义域应符合实际问题的要求.第三步:求模运用数学方法及函数知识进行推理、运算,求解数学模型,得出结果. 第四步:还原把数学结果转译成实际问题作出解答,对于解出的结果要代入原问题中进行检验、评判,使其符合实际背景.上述四步可概括为以下流程:实际问题(文字语言)⇒数学问题(数量关系与函数模型)⇒建模(数学语言)⇒求模(求解数学问题)⇒反馈(还原成实际问题的解答).类型一:指数、对数运算 例1.计算(1) 2221log log 12log 422-; (2)33lg 2lg 53lg 2lg5++; (3)222lg5lg8lg5lg 20lg 23+++;(4)lg0.7lg20172⎛⎫⋅ ⎪⎝⎭【思路点拨】运算时尽量把根式转化为分数指数幂,而小数也要化为分数为好. 【答案】(1)12-;(2)1;(3)3;(4)14。

高中数学第四章指数函数与对数函数知识点梳理(带答案)

高中数学第四章指数函数与对数函数知识点梳理(带答案)

高中数学第四章指数函数与对数函数知识点梳理单选题1、已知函数f(x)={2,x>mx2+4x+2,x≤m,若方程f(x)−x=0恰有三个根,那么实数m的取值范围是()A.[−1,2)B.[−1,2]C.[2,+∞)D.(−∞,−1]答案:A分析:由题意得,函数y=f(x)与函数y=x有三个不同的交点,结合图象可得出结果.解:由题意可得,直线y=x与函数f(x)=2(x>m)至多有一个交点,而直线y=x与函数f(x)=x2+4x+2(x≤m)至多两个交点,函数y=f(x)与函数y=x有三个不同的交点,则只需要满足直线y=x与函数f(x)=2(x>m)有一个交点直线y=x与函数f(x)=x2+4x+2(x≤m)有两个交点即可,如图所示,y=x与函数f(x)=x2+4x+2的图象交点为A(−2,−2),B(−1,−1),故有m≥−1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[−1,2).故选:A.2、已知函数f(x)=9+x2x,g(x)=log2x+a,若存在x1∈[3,4],对任意x2∈[4,8],使得f(x1)≥g(x2),则实数a的取值范围是()A.(−∞,134]B.(134,+∞)C.(0,134)D.(1,4)答案:A分析:将问题化为在对应定义域内f(x 1)max ≥g(x 2)max ,结合对勾函数和对数函数性质求它们的最值,即可求参数范围.由题意知:f(x)在[3,4]上的最大值大于或等于g(x)在[4,8]上的最大值即可.当x ∈[3,4]时,f (x )=9x +x ,由对勾函数的性质得:f(x)在[3,4]上单调递增,故f (x )max =f (4)=94+4=254.当x ∈[4,8]时,g (x )=log 2x +a 单调递增,则g (x )max =g (8)=log 28+a =3+a ,所以254≥3+a ,可得a ≤134.故选:A3、已知f (x )是定义在R 上的奇函数,当x ≥0时,f(x)=log 2(x +2)+t ,f (−6)=( )A .−2B .2C .−4D .4答案:A分析:因f (x )是定义在R 上的奇函数,所以f (0)=0,从而可求t ,再由奇函数的定义即可求出f (−6)的值. 解:∵f (x )是定义在R 上的奇函数,又当x ≥0时,f(x)=log 2(x +2)+t ,∴f (0)=log 2(0+2)+t =0,∴t =−1,∴当x ≥0时,f(x)=log 2(x +2)−1,∴f (−6)=−f (6)=−[log 2(6+2)−1]=−(log 223−1)=−2,故选:A.4、关于函数f (x )={2x −a,0≤x <2b −x,x ≥2,其中a,b ∈R ,给出下列四个结论: 甲:6是该函数的零点; 乙:4是该函数的零点;丙:该函数的零点之积为0; 丁:方程f (x )=52有两个不等的实根 若上述四个结论中有且只有一个结论错误,则该错误的结论是( )A .甲B .乙C .丙D .丁答案:B分析:由已知函数的单调性判断甲乙中有一个结论错误,假设甲正确,结合丙正确求得a,b 的值,得到函数解析式,再说明丁正确,则答案可求.当x ∈[0,2)时,f (x )=2x −a 为增函数,当x ∈[2,+∞),f (x )=b −x 为减函数,故6和4只有一个是函数的零点,即甲乙中有一个结论错误,一个结论正确,故丙丁均正确.由两零点之积为0,则必有一个零点为0,则f (0)=20−a =0⇒a =1,①若甲正确,则f (6)=0,即b −6=0,则b =6,可得f (x )={2x −1,0≤x <26−x,x ≥2, 由f (x )=52可得:{0≤x <22x −1=52或{x ≥26−x =52, 解得:x =log 272或x =72,方程f (x )=52有两个不等的实根, 故丁正确,故甲正确,乙错误.②若乙正确,则f (4)=0,即b −4=0,则b =4,可得f (x )={2x −1,0≤x <24−x,x ≥2, 由f (x )=52可得:{0≤x <22x −1=52或{x ≥24−x =52, 解得:x =log 272,方程f (x )=52只有一个实根,故丁错误,不满足题意.故甲正确,乙错误.故选:B.5、已知函数f(x)={log 12x,x >0,a ⋅(13)x ,x ≤0,若关于x 的方程f[f(x)]=0有且只有一个实数根,则实数a 的取值范围是( )A .(−∞,0)∪(0,1)B .(−∞,0)∪(1,+∞)C .(−∞,0)D .(0,1)∪(1,+∞)答案:B分析:利用换元法设t =f (x ),则等价为f (t )=0有且只有一个实数根,分a <0,a =0,a >0 三种情况进行讨论,结合函数的图象,求出a 的取值范围.令f(x)=t ,则方程f[f(x)]=0等价于f(t)=0,当a =0时,此时当x ≤0时,f (x )=a ⋅(13)x =0,此时函数有无数个零点,不符合题意; 当a ≠0,则f(x)=a ⋅(13)x≠0,所以由f(t)=log 12t =0,得t =1,则关于x 的方程f[f(x)]=0有且只有一个实数根等价于关于x 的方程f(x)=1有且只有一个实数根,作出f(x)的图象如图:当a <0时,由图象可知直线y =1与y =f(x)的图象只有一个交点,恒满足条件;当a >0时,要使直线y =1与y =f(x)的图象只有一个交点,则只需要当x ≤0时,直线y =1与f(x)=a ⋅(13)x的图象没有交点,因为x ≤0 时,f (x )=a ⋅(13)x ∈[a,+∞),此时f (x ) 最小值为a ,所以a >1,综上所述,实数a 的取值范围是(−∞,0)∪(1,+∞),故选:B.6、已知函数f(x)=11+2x ,则对任意实数x ,有( )A .f(−x)+f(x)=0B .f(−x)−f(x)=0C .f(−x)+f(x)=1D .f(−x)−f(x)=13答案:C分析:直接代入计算,注意通分不要计算错误.f(−x)+f(x)=11+2−x +11+2x=2x1+2x+11+2x=1,故A错误,C正确;f(−x)−f(x)=11+2−x −11+2x=2x1+2x−11+2x=2x−12x+1=1−22x+1,不是常数,故BD错误;故选:C.7、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125> 0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375=0.0625<0.1,所以满足精确度0.1;所以方程x3+x2−2x−2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B .故选:B8、若√4a2−4a+1=√(1−2a)33,则实数a的取值范围是()A.[12,+∞)B.(−∞,12]C.[−12,12]D.R答案:B分析:根据根式与指数幂的运算性质,化简得到√(2a−1)2=√(1−2a)33,即可求解.根据根式和指数幂的运算性质,因为√4a 2−4a +1=√(1−2a)33,可化为√4a 2−4a +1=√(1−2a)33,即√(2a −1)2=√(1−2a)33,可得|2a −1|=1−2a ,所以1−2a ≥0,即a ≤12.故选:B.多选题9、已知a ,b 均为正实数,若log a b +log b a =52,a b =b a ,则a b =( )A .12B .√22C .√2D .2答案:AD分析:令t =log a b ,代入可求出t ,可得a 与b 的关系式,再代入a b =b a 即可求出a ,b 的值.令t =log a b ,则t +1t =52,所以2t 2−5t +2=0,即(2t −1)(t −2)=0,解得t =12或t =2,即log a b =12或log a b =2,所以a =b 2或a 2=b ,因为a b =b a ,代入得2b =a =b 2或b =2a =a 2,所以a =4,b =2或a =2,b =4,所以a b =2或a b =12.故选:AD.小提示:本题主要考查了对数的运算及性质,属于中档题.10、已知函数y =f (x )的图象在区间上是一条连续不断的曲线,则下列结论正确的是()A .若f (0)⋅f (1)<0,则y =f (x )在(0,1)内至少有一个零点B .若f (0)⋅f (1)>0,则y =f (x )在(0,1)内没有零点C .若y =f (x )在(0,1)内没有零点,则必有f (0)⋅f (1)≥0D .若y =f (x )在(0,1)内有唯一零点,f (0)⋅f (1)<0,则f (x )在(0,1)上是单调函数答案:AC分析:根据零点存在定理逐一判断即可. []0,1因为f(x)在[0,1]上连续,A.f(0)⋅f(1)<0,由零点存在定理可知,y=f(x)在(0,1)内至少有一个零点,故正确;B.当f(x)=x2−x+14时,满足f(0)⋅f(1)>0,但在(0,1)内有一个零点12,故错误;C.y=f(x)在(0,1)内没有零点,则必有f(0)⋅f(1)⩾0等价于f(0)⋅f(1)<0,则y=f(x)在(0,1)内有零点,由零点存在定理可知此命题是真命题,故正确;D.y=f(x)在(0,1)内有唯一零点,f(0)⋅f(1)<0,但f(x)在(0,1)上不一定是单调函数,比如f(x)=14−(x−14)2,故错误.故选:AC.11、某池塘中野生水葫芦的面积与时间的函数关系的图象,如图所示.假设其关系为指数函数,并给出下列说法,其中正确的说法有()A.野生水葫芦的每月增长率为1B.野生水葫芦从4m2蔓延到12m2只需1.5个月C.设野生水葫芦蔓延到10m2,20m2,30m2所需的时间分别为t1,t2,t3,则有t1+t3<2t2D.野生水葫芦在第1个月到第3个月之间蔓延的平均速度等于在第2个月到第4个月之间蔓延的平均速度答案:AC分析:根据指数函数的图象过点(4,16),求得函数的解析式,结合指数函数的解析式,逐项判定,即可求解. 设指数函数的解析式为f(x)=a t(a>0,a≠1),由函数的图象可知图象过点(4,16),代入可得16=a 4,解得a =2,即f (x )=2t ,则f(n)−f(n−1)f(n−1)=2n −2n−12n−1=1,所以野生水葫芦的每月增长率为1,所以A 正确;由当t =2时,y =4,又由y =12时,可得2t =12,解得t =log 212≠3.5,所以B 不正确;令y =10,可得2t 1=10,解得t 1=log 210,同理可得t 2=log 220,t 3=log 230,则t 1+t 3=log 210+log 230=log 2300,2t 2=2log 220=log 2400,所以t 1+t 3<2t 2,所以C 正确;由平均变化率的定义,可得1月到3月的平均变化率为8−23−1=3, 2月到4月的平均变化率为16−44−2=6,所以D 不正确. 故选:AC.12、已知正数x ,y ,z 满足3x =4y =6z ,则下列说法中正确的是( )A .1x +12y =1zB .3x >4y >6zC .x +y >(32+√2)z D .xy >2z 2 答案:ACD分析:设3x =4y =6z =t >1,则x =log 3t ,y =log 4t ,z =log 6t ,分别代入选项中,根据对数运算法则化解,判断是否正确即可.设3x =4y =6z =t >1,则x =log 3t ,y =log 4t ,z =log 6t ,则1x +12y =log t 3+12log t 4=log t 6=1z ,故A 正确; 由3x =log 313t ,4y =log 414t ,6z =log 616t , 又313>414>616,t >1,则3x <4y <6z ,故B 错误;x +y z =log 3t +log 4t log 6t=log 36+log 46=log 32+log 33+log 42+log 43 =log 32+1+12log 23+12=32+log 32+12log 23>32+√2,因此x +y >(32+√2)z ,故C 正确;xy z2=log3t⋅log4tlog6t⋅log6t=log36⋅log46=(log32+log33)⋅(log42+log43)=12(log32+1)⋅(log23+1)=12(2+log32+log23)>2,因此xy>2z2,故D正确;故选:ACD13、已知函数f(x)=x−1,g(x)=2x .记max{a,b}={a,a≥bb,a<b,则下列关于函数F(x)=max{f(x),g(x)}(x≠0)的说法正确的是()A.当x∈(0,2)时,F(x)=2xB.函数F(x)的最小值为−2C.函数F(x)在(−1,0)上单调递减D.若关于x的方程F(x)=m恰有两个不相等的实数根,则−2<m<−1或m>1答案:ABD分析:得到函数F(x)={x−1,−1≤x<0或x≥22x,x<−1或0<x<2,作出其图象逐项判断.由题意得:F(x)={x−1,−1≤x<0或x≥22x,x<−1或0<x<2,其图象如图所示:由图象知:当x∈(0,2)时,F(x)=2x,故A正确;函数F(x)的最小值为−2,故正确;函数F(x)在(−1,0)上单调递增,故错误;方程F(x)=m恰有两个不相等的实数根,则−2<m<−1或m>1,故正确;故选:ABD填空题14、若定义域为I=(0,m]的函数f(x)=e x满足:对任意能构成三角形三边长的实数a,b,c∈I,均有f(a),f(b),f(c)也能构成三角形三边长,则m的最大值为______.(e≈2.718281828是自然对数的底)答案:ln4##2ln2分析:不妨设三边的大小关系为:0<a≤b≤c,利用函数的单调性,得出f(a),f(b),f(c)的大小关系,作为三角形三边则有任意两边之和大于第三边,再利用基本不等式求出边的范围得出m的最大值即可.f(x)=e x在I=(0,m]上严格增,所以f(x)∈(1,e m],不妨设0<a≤b≤c,因为对任意能构成三角形三边长的实数a,b,c∈I,均有f(a),f(b),f(c)也能构成三角形三边长,所以e a+e b>e c,a+b>c,因为e a+e b≥2√e a e b=2√e a+b>e c,所以4e a+b>e2c,因为对任意a,b,c∈I都成立,所以4e c≥e2c,所以e c≤4,所以c≤ln4,所以m≤ln4,所以m的最大值为ln4.所以答案是:ln4.15、设实数x满足log x4−log2x=1,则x=________.答案:14或2分析:结合对数的换底公式整理得(log2x)2+log2x−2=0,求出log2x,结合对数和指数式的互化即可求出x.由于log x4=2log x2=2log2x ,所以原式转化为2log2x−log2x=1,即(log2x)2+log2x−2=0,解得log2x=−2或log2x=1,所以x=14或x=2.故答案为: 14或2.16、已知函数f(x)={e x−1,x≥0,ax2+x+a,x<0恰有2个零点,则a=__________.答案:12##0.5分析:先求得f(x)在[0,+∞)上恰有1个零点,则方程ax2+x+a=0有1个负根,a=0时不成立,a≠0时,由一元二次方程的性质分Δ=0和Δ>0讨论求解即可.当x≥0时,令f(x)=e x−1=0,解得x=0,故f(x)在[0,+∞)上恰有1个零点,即方程ax2+x+a=0有1个负根.当a=0时,解得x=0,显然不满足题意;当a≠0时,因为方程ax2+x+a=0有1个负根,所以Δ=1−4a2≥0.当Δ=1−4a2=0,即a=±12时,其中当a=12时,12x2+x+12=0,解得x=−1,符合题意;当a=−12时,−12x2+x−12=0,解得x=1,不符合题意;当Δ=1−4a2>0时,设方程ax2+x+a=0有2个根x1,x2,因为x1x2=1>0,所以x1,x2同号,即方程ax2+x+a=0有2个负根或2个正根,不符合题意.综上,a=12.所以答案是:0.5.解答题17、已知函数f(x)=a⋅2x−21−x是定义在R上的奇函数.(1)求实数a的值;(2)求不等式f(f(x)−2)>3的解集;(3)若关于x的不等式f(x)>k2x−1+2恒成立,求实数k的取值范围.答案:(1)a=2(2)(1,+∞)(3)(−∞,−54)分析:(1)根据奇函数满足f(−x)+f(x)=0,即可求解;(2)根据f(x)的单调性,即可根据函数值的大小确定自变量的大小,即可转化求解,(3)将恒成立问题转化为最值问题,即可利用二次函数的性质求最值进行求解.(1)因为f(x)=a ⋅2x −21−x 是定义在R 上的奇函数,所以f(−x)+f(x)=0,即a ⋅2−x −21+x +a ⋅2x −21−x =0,即(a −2)(2x +12x )=0,因为2x +12x >0,所以a −2=0,所以a =2(经检验,a =2符合题意) (2)由(1)得f(x)=21+x −21−x ,因为y =21+x 与y =−21−x 在R 上均为增函数,所以f(x)=21+x −21−x 在R 上为增函数, 又f(1)=3,所以f(f(x)−2)>f(1),所以f(x)−2>1,即f(x)>3=f(1),所以x >1,所以不等式f[f(x)−2]>3的解集是(1,+∞).(3)因为关于x 的不等式f(x)>k2x−1+2恒成立,即21+x −21−x >k 2x−1+2恒成立,所以k <22x −2x −1恒成立,所以k <(22x −2x −1)min ,因为22x −2x −1=(2x −12)2−54, 所以当2x =12,即x =−1时,22x −2x −1取得最小值−54. 所以k <−54,即实数k 的取值范围是(−∞,−54) 18、已知函数f(x)=log ax ,g(x)=log a (2x +m −2),其中x ∈[1,3],a >0且a ≠1,m ∈R .(1)若m =6且函数F (x)=f(x)+g(x)的最大值为2,求实数a 的值.(2)当a >1时,不等式f(x)<2g(x)在x ∈[1,3]时有解,求实数m 的取值范围. 答案:(1)a =√30;(2)m >0.分析:(1)由题设可得F (x )=log a [x (2x +4)],讨论a >1、0<a <1,结合已知最大值求参数a ,注意判断a 值是否符合题设.(2)由对数函数的性质可得m >0,再由对数函数的单调性可得m >−2x +√x +2,利用二次函数的性质求不等式右边的最小值,即可得m 的取值范围.(1)m=6,g(x)=log a(2x+4),则F(x)=f(x)+g(x)=log a[x(2x+4)],x∈[1,3]. 当a>1时,[F(x)]max=F(3)=log a30=2,所以a=√30;当0<a<1时,[F(x)]max=F(1)=log a6=2,所以a=√6,不合题意.综上,a=√30.(2)要使g(x)在[1,3]上有意义,则2+m−2>0,解得m>0.由f(x)<2g(x),即log a x<log a(2x+m−2)2,又a>1,∴x<(2x+m−2)2,即√x<2x+m−2,得m>−2x+√x+2.令t=√x,t∈[1,√3],记ℎ(t)=−2t2+t+2,对称轴t=1,4∴[ℎ(t)]min=ℎ(√3)=√3−4,故m>√3−4.综上,m>0.。

中职数学第四章指数函数与对数函数地位和作用

中职数学第四章指数函数与对数函数地位和作用

中职数学第四章指数函数与对数函数地位和作用首先,指数函数是一种形式为y=a^x(其中a>0且a≠1)的函数,其中x是实数,a被称为底数。

指数函数可以描述许多自然现象和规律,如生物的增长、物质的衰变、金融中的复利计算等。

指数函数具有以下特点和作用:1.增长与衰减:指数函数具有指数增长和指数衰减的特性。

当底数a>1时,指数函数呈现指数增长,即随着自变量x的增加,函数值y呈现出迅速增加的趋势;当底数0<a<1时,指数函数呈现指数衰减,即随着自变量x的增加,函数值y呈现出迅速减小的趋势。

2.图像特点:指数函数的图像呈现出特定的形状。

当底数a>1时,指数函数的图像从左下方逐渐上升;当底数0<a<1时,指数函数的图像从左上方逐渐下降。

3.应用领域:指数函数在科学、经济学、生物学和工程学等领域有着广泛的应用。

例如,在生物学中,指数函数可以描述动物和植物的生长和繁殖规律;在经济学中,指数函数用于计算复利利息;在工程学中,指数函数用于描述电信号的变化规律等。

其次,对数函数是一种形式为y=loga⁡x(其中a>0且a≠1)的函数,其中y是实数,a被称为底数。

对数函数是指数函数的逆运算,可以用来解决指数方程、指数不等式等问题。

对数函数具有以下特点和作用:1.指数与对数的互逆性:对数函数与指数函数具有互逆的关系。

如果a^y=x,则y=loga⁡x,两者互为逆运算。

2.图像特点:对数函数的图像与指数函数的图像有着关联。

当底数a>1时,对数函数的图像从左上方逐渐下降;当底数0<a<1时,对数函数的图像从左下方逐渐上升。

3.解决指数方程和指数不等式:对数函数可以用来解决指数方程和指数不等式问题。

通过求解对数方程或将指数不等式转化为对数不等式,可以得到问题的解集。

4.应用领域:对数函数在科学、工程学、统计学等领域有着广泛的应用。

例如,在电子工程中,对数函数用于描述信号的幅度变化;在统计学中,对数函数用于处理数量的差异较大的数据等。

第四章指数函数与对数函数知识点清单总结梳理-高一上学期数学人教A版

第四章指数函数与对数函数知识点清单总结梳理-高一上学期数学人教A版

新教材人教A版2019版数学必修第一册第四章知识点清单目录第四章指数函数与对数函数4. 1 指数4. 2 指数函数4. 3 对数4. 4 对数函数4. 5 函数的应用(二)第四章 指数函数与对数函数4. 1 指数一、根式1. n 次方根(1)定义:一般地,如果x n =a ,那么x 叫做a 的n 次方根,其中n>1,且n∈N *.(2)表示:注意:负数没有偶次方根;0的任何次方根都是0,记作√0=0.2. 根式(1)定义:式子√a n 叫做根式,这里n 叫做根指数,a 叫做被开方数.(2)性质(其中n>1,且n∈N *): ①(√a n )n =a.②当n 为奇数时, √a n n =a ;当n 为偶数时, √a n n =|a|={a ,a ≥0,−a ,a <0.二、分数指数幂1. 正数的正分数指数幂: a m n =√a m n (a>0,m ,n∈N *,n>1).2. 正数的负分数指数幂: a −mn =1a m n =√a mn (a>0,m ,n∈N *,n>1). 规定:0的正分数指数幂等于0,0的负分数指数幂没有意义.三、实数指数幂1. 一般地,无理数指数幂a α(a>0,α为无理数)是一个确定的实数. 这样,指数幂a x (a>0)中指数x 的取值范围就从整数逐步拓展到了实数. 实数指数幂是一个确定的实数.四、实数指数幂的运算性质1. a r a s = a r+s(a>0,r ,s∈R);2. (a r )s =a rs (a>0,r ,s∈R);3. (ab)r =a r b r (a>0,b>0,r∈R).4. 拓展:a r a s =a r-s (a>0,r ,s∈R). 五、根式与分数指数幂的化简、求值1. 运用根式的性质解题时的注意点(1)分清根式是奇次根式还是偶次根式:n>1,且n 为奇数时,( √a n )n =√a n n=a ,a 为任意实数;n>1,且n 为偶数,a ≥0时,(√a n )n 才有意义,且(√a n )n =a ;n>1,且n 为偶数,a 为任意实数时, √a n n 均有意义,且√a n n =|a|.(2)注意变式、整体代换,以及平方差公式、立方差(和)公式、完全平方公式、完全立方公式的运用,必要时要进行分类讨论.2. 根式与分数指数幂化简、求值的技巧(1)将根式化为幂的形式,小数指数幂化为分数指数幂,负指数幂化为正指数幂的倒数.(2)底数是小数的,要先化成分数;底数是带分数的,要先化成假分数,然后要尽可能用幂的形式表示,便于利用指数幂的运算性质.注意:化简的结果不能同时含有根式和分数指数,也不能既含有分母又含有负指数.六、指数幂的条件求值问题解决指数幂的条件求值问题的一般方法——整体代换法1. 将已知条件或所求代数式进行恰当变形,从而通过“整体代换法”求出代数式 的值. 整体代换法是数学变形与计算常用的方法,分析观察条件与所求代数式的 结构特点,灵活运用恒等式是关键.2. 常用的变形公式如下:(1)a±2a 12b12+b=(a12±b12)2;(2)(a 12+b12)(a12-b12)=a-b;(3)a 32+b32=(a12+b12)(a-a12b12+b);(4)a 32-b32=(a12-b12)(a+a12b12+b).4. 2 指数函数一、指数函数的概念1. 一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中指数x是自变量,定义域是R.二、指数函数的图象和性质指数函数y=a x(a>0,且a≠1)0<a<1 a>1图象定义域R值域(0,+∞)性质过定点过定点(0,1),即x=0时,y=1单调性在R上是减函数在R上是增函数函数值的变化当x>0时,0<y<1;当x<0时,y>1当x>0时,y>1;当x<0时,0<y<1对称性y=a x与y=(1a)x的图象关于y轴对称三、与指数函数有关的函数的定义域、值域问题1. 与指数函数有关的函数的定义域、值域的求法(1)函数y=a f(x)的定义域与f(x)的定义域相同;(2)求函数y=a f(x)的值域,需先确定f(x)的值域,再根据指数函数y=a x的单调性确定函数y=a f(x)的值域;(3)求函数y=f(a x)的定义域,需先确定y=f(u)的定义域,即u的取值范围,亦即a x的取值范围,由此构造关于x的不等式(组),确定x的取值范围,即y=f(a x)的定义域;(4)求函数y=f(a x)的值域,需先利用函数u=a x的单调性确定其值域,即u的取值范围,再确定函数y=f(u)的值域,即y=f(a x)的值域. (以上a均满足a>0,且a≠1)四、与指数函数有关的函数的单调性问题1. 形如y=a f(x)(a>0,且a≠1)的函数的单调性的判断方法:当a>1时,函数u=f(x)的单调递增(减)区间即为函数y=a f(x)的单调递增(减)区间;当0<a<1时,函数u=f(x)的单调递减(增)区间即为函数y=a f(x)的单调递增(减)区间.2. 形如y=f(a x)(a>0,且a≠1)的函数的单调性的判断方法:通过内层函数u=a x的值域确定外层函数y=f(u)的定义域,在此定义域内讨论外层函数的单调区间,再根据复合函数“同增异减”的规律确定复合函数的单调性.五、指数幂的大小比较1. 比较指数幂大小的方法(1)底数形同,指数不同:利用指数函数的单调性来判断(2)底数不同,指数相同:利用幂函数的单调性来判断(3)底数不同,指数不同:通过中间量来比较六、指数方程与不等式的解法1. 指数方程的解法(1)对于a f(x)=b(a>0,且a≠1)型的指数方程,通常将方程两边化为同底数幂的形式,用指数相等进行求解.(2)解复杂的指数方程时,常用换元法转化为解一元二次方程. 用换元法时要特别 注意“元”的范围,用一元二次方程求解时,要注意对二次方程根的取舍.2. 简单指数不等式的解法(1)形如a f(x)>a g(x)的不等式,可借助y=a x (a>0,且a ≠1)的单调性求解;(2)形如a f(x)>b 的不等式,可将b 化成以a 为底数的幂的形式,再借助y=a x (a>0,且a ≠1)的单调性求解;(3)形如a x >b x 的不等式,可借助函数y=a x 与y=b x (a ,b>0,且a ,b ≠1)的图象求解.4. 3 对数一、对数的概念1. 对数的概念:一般地,如果a x =N(a>0,且a ≠1),那么数x 叫做以a 为底N 的对数,记作x=log a N ,其中a 叫做对数的底数,N 叫做真数.2. 常用对数与自然对数(1)以10为底的对数叫做常用对数,并把log 10N 记为lg N ;(2)以e(e=2. 718 28…)为底的对数称为自然对数,并把log e N 记为ln N.3. 对数与指数的关系当a>0,a ≠1时,a x =N ⇔x=log a N ,这是指数式与对数式互化的依据. 相关结论如下:(1)负数和0没有对数;(2)log a 1=0,log a a=1(a>0,且a ≠1);(3) log a N a =N ,log a a N =N(a>0,且a ≠1,N>0).二、对数的运算性质1. 如果a>0,且a≠1,M>0,N>0,那么(1)log a(MN)=log a M+log a N;(2)log a MN=log a M-log a N;(3)log a M n=nlog a M (n∈R).三、对数换底公式1. 对数换底公式:log a b=log c blog c a(a>0,且a≠1;b>0;c>0,且c≠1).2. 相关结论:log a b=1log b a ,log a n b m=mnlog a b(a>0,且a≠1;b>0,且b≠1;n≠0).四、对数的运算1. 利用对数的运算性质求值的关键是化异为同,先使各项底数相同,再找真数间的关系2. 对于复杂的算式,可先化简再计算. 化简的常用方法:①“拆”,将积(商)的对数拆成两对数之和(差);②“收”,将同底对数的和(差)收成积(商)的对数.3. 在利用换底公式进行化简、求值时,一般情况下是根据题中所给对数式的具体特点选择恰当的底数进行换底,一般可以选择以10为对数式的底数进行换底.4. 利用换底公式化简与求值的思路:(1)用对数的运算性质进行部分运算→换成同一底数.(2)统一换为常用对数(或自然对数、指定底的对数) →化简、求值.五、对数运算性质的综合应用1. 在对数式、指数式的互化运算中,要注意灵活运用定义和运算性质,尤其要注意条件和待求式之间的关系.2. 解决对数应用问题时,首先要理解题意,弄清关键词及字母的含义,然后恰当设未知数,建立数学模型,最后转化为对数问题求解.4. 4 对数函数一、对数函数的概念1. 一般地,函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,定义域是(0,+∞).二、对数函数的图象与性质对数函数y=log a x(a>0,且a≠1)0<a<1 a>1图象定义域(0,+∞)值域R性质过定点过定点(1,0),即x=1时,y=0单调性在(0,+∞)上是减函数在(0,+∞)上是增函数函数值的变化当x>1时,y<0;当0<x<1时,y>0当x>1时,y>0;当0<x<1时,y<0对称性y=log a x与y=log1ax的图象关于x轴对称三、反函数1. 一般地,指数函数y=a x(a>0,且a≠1)与对数函数y=log a x(a>0,且a≠1)互为反函数. 它们的定义域与值域正好互换.2. 拓展:(1)互为反函数的两个函数的单调性相同,但单调区间不一定相同.当a>1时,函数y=a x在R上是增函数,函数y=log a x在(0,+∞)上是增函数;当0<a<1时,函数y=a x在R上是减函数,函数y=log a x在(0,+∞)上是减函数. (2)互为反函数的两个函数图象关于直线y=x对称.四、不同函数增长的差异五、对数函数的图象及其应用1. 对数型函数图象过定点问题:求函数y=m+log a f(x)(a>0,且a≠1,f(x)>0)的图象所过定点时,只需令f(x)=1,求出x,即得定点为(x,m).2. 根据对数函数图象判断底数大小的方法作直线y=1与所给图象相交,比较交点的横坐标即得各个底数的大小关系.3. 函数图象的变换规律(1)一般地,函数y=f(x+a)+b(a,b为实数)的图象是由函数y=f(x)的图象沿x轴向左或向右平移|a|个单位长度后,再沿y轴向上或向下平移|b|个单位长度得到的.(2)含有绝对值的函数的图象一般是经过对称变换得到的.六、与对数函数有关的函数的定义域、值域问题1. 对数型函数的定义域(1)求对数型函数的定义域,要注意真数大于0,即在y=log a f(x)(a>0,且a≠1)中应首先保证f(x)>0;(2)若底数中也含有变量,则底数应大于0且不等于1.2. 求对数型函数值域的常用方法(1)直接法:根据函数解析式的特征,从函数自变量的范围出发,通过对函数定义域、性质的观察,结合解析式,直接得出函数的值域.(2)配方法:当所给的函数可化为二次函数形式(形如y=m[f(log a x)]2+nf(log a x)+c(m≠0,a>0,且a≠1))时,可以用配方法求函数的值域.(3)单调性法:根据所给函数在其定义域(或定义域的某个子集)上的单调性,求出函数的值域.(4)换元法:求形如y=log a f(x)(a>0,且a≠1,f(x)>0)的函数的值域的步骤:①换元,令u=f(x),利用函数的图象和性质求出u的范围;②利用y=log a u的单调性、图象求出y的取值范围.七、与对数函数有关的函数的单调性1. 求与对数函数有关的函数的单调性的要点(1)单调区间是定义域的子集.(2)若a>1,则y=log a f(x)的单调性与y=f(x)的单调性相同;若0<a<1,则y=log a f(x)的单调性与y=f(x)的单调性相反.八、比较对数值的大小1. 比较对数值大小常用的四种方法(1)同底数的利用对数函数的单调性进行比较.(2)同真数的利用对数函数的图象或用换底公式转化进行比较.(3)底数和真数都不同的,找中间量比较.(4)若底数为同一参数,则根据底数对对数函数单调性的影响,对底数进行分类讨论.九、解对数不等式1. 对数不等式的常见类型及解题方法(1)形如log a f(x)>log a b的不等式,借助函数y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况进行讨论;(2)形如log a f(x)>b的不等式,应将b化成以a为底数的对数式的形式(即b=log a a b),再借助函数y=log a x的单调性求解;(3)形如log f(x)a>log g(x)a的不等式,利用换底公式化为同底的对数进行求解,或利用图象求解.十、几种常见的函数模型的选择1. 常见的函数模型及增长特点(1)线性函数模型y=kx+b(k>0)的增长特点是增长速度不变,可称为“直线上升”.(2)指数函数模型y=a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越快,即增长速度急剧,形象地称为“指数爆炸”.(3)对数函数模型y=log a x(a>1)的增长特点是随着自变量的增大,函数值增大的速度越来越慢,即增长速度平缓,可称为“对数增长”.2. 不同的函数模型能刻画现实生活中不同的变化规律(1)线性函数模型适合描述增长速度不变的变化规律;(2)指数函数模型适合描述增长速度急剧的变化规律;(3)对数函数、幂函数模型适合描述增长速度平缓的变化规律.因此,需抓住题中蕴含的数学信息,恰当、准确地建立相应变化规律的函数模型来解决实际问题.4. 5 函数的应用(二)4. 5. 1 函数的零点与方程的解4. 5. 2 用二分法求方程的近似解一、函数的零点1. 函数的零点的概念:对于一般函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点.2. 方程、函数、函数图象之间的关系:方程f(x)=0有实数解⇔函数y=f(x)有零点⇔函数y=f(x)的图象与x轴有公共点.二、函数零点存在定理1. 如果函数y=f(x)在区间[a,b]上的图象是一条连续不断的曲线,且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内至少有一个零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的解.三、用二分法求函数y=f(x)零点的近似值1. 二分法:对于在区间[a,b]上图象连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.2. 用二分法求函数y=f(x)零点近似值的步骤给定精确度ε,用二分法求函数y=f(x)零点x0的近似值的一般步骤如下:(1)确定零点x0的初始区间[a,b],验证f(a)f(b)<0.(2)求区间(a,b)的中点c.(3)计算f(c),并进一步确定零点所在的区间:①若f(c)=0(此时x0=c),则c就是函数的零点;②若f(a)f(c)<0 (此时x0∈(a,c)),则令b=c;③若f(c)f(b)<0(此时x0∈(c,b)),则令a=c.(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复步骤2~4.四、一元二次方程ax2+bx+c=0(a>0)的根的分布问题1. 设x 1,x 2是实系数一元二次方程ax 2+bx+c=0 (a>0)的两个实数根,,令f(x)=ax 2+bx+c (a>0),则x 1,x 2的分布情况如下表: 根的分布 图象等价条件 x 1<x 2<k 0,f (k)0,b 2a k ⎧⎪∆>⎪>⎨⎪⎪-<⎩k<x 1<x 2 0,f (k)0,b 2a k ⎧⎪∆>⎪>⎨⎪⎪->⎩m<x 1<k<x 2<nf (m)0,f (k)0,f (n)0>⎧⎪<⎨⎪>⎩x 1,x 2∈(k 1,k 2)12120,f (k )0,f (k )0,b k k 2a ∆≥⎧⎪>⎪⎪⎨>⎪⎪<-<⎪⎩ 只有一根在(k 1,k 2)内120,b k k 2a ∆=⎧⎪⎨<-<⎪⎩ 或f(k 1)·f(k 2)<0五、函数零点个数的判断及应用1. 判断函数f(x)的零点个数的主要方法 (1)转化为解相应的方程,根据方程的解进行判断.(2)画出函数y=f(x)的图象,判断它与x 轴的交点个数,从而判断零点的个数.(3)利用函数零点存在定理进行判断,若函数f(x)在区间[a,b]上的图象是一条连续不断的曲线,且在区间(a,b)上单调,满足f(a)·f(b)<0,则函数f(x)在区间(a,b)上有且仅有一个零点.(4)转化成两个函数图象的交点个数问题.2. 已知函数f(x)的零点个数求参数范围,通常要对已知条件进行变形,变形的方向:(1)化为常见的基本初等函数;(2)尽量使参数与变量分离,实在不能分离,也要使含参数的函数解析式尽可能简单.六、用二分法求方程的近似解1. 二分法求方程近似解的适用条件(1)在初始区间内函数图象是连续不断的;(2)函数在初始区间的两个端点的函数值异号,即是变号零点.2. 利用二分法求方程近似解的步骤(1)构造函数,选好计算的初始区间,这个区间既要包含函数的零点,又要使其长度尽量小.(2)用列表法清晰地表达函数零点所在的区间,依次进行计算.(3)求出满足精确度的方程的解所在的区间M.(4)区间M内的任一实数均是方程的近似解,通常取区间M的一个端点.4. 5. 3 函数模型的应用一、常见的函数模型二、利用函数模型解决实际问题的基本过程三、利用函数模型解决实际问题1. 利用函数模型解决实际问题的步骤(1)审题——弄清题意,分清条件和要求的结论,理顺数量关系;(2)建模——将自然语言转化为数学语言,将文字语言转化为符号语言,利用数学知识建立相应的函数模型;(3)求模——推理并求解函数模型;(4)还原——用得到的函数模型描述实际问题的变化规律.2. 建立拟合函数模型解决实际问题函数拟合与预测的一般步骤(1)根据原始数据、表格,绘制散点图;(2)通过观察散点图,画出拟合直线或拟合曲线;(3)求出拟合直线或拟合曲线的函数关系式;(4)利用函数关系式,根据条件对所给问题进行预测,为决策和管理提供依据.。

2021年人教版高一数学必修一第4单元 指数函数与对数函数(讲解和习题)

2021年人教版高一数学必修一第4单元 指数函数与对数函数(讲解和习题)

人教版高一数学必修一第4单元指数函数与对数函数(讲解和习题)基础知识讲解一.指数函数的定义、解析式、定义域和值域【基础知识】1、指数函数的定义:一般地,函数y=a x(a>0,且a≠1)叫做指数函数,其中x是自变量,函数的定义域是R,值域是(0,+∞).2、指数函数的解析式:y=a x(a>0,且a≠1)【技巧方法】①因为a>0,x是任意一个实数时,a x是一个确定的实数,所以函数的定义域为实数集R.①规定底数a大于零且不等于1的理由:如果a=0,当x>0时,a x恒等于0;当x≤0时,a x无意义;如果a<0,比如y=(﹣4)x,这时对于x=,x=在实数范围内函数值不存在.如果a=1,y=1x=1是一个常量,对它就没有研究的必要,为了避免上述各种情况,所以规定a>0且a≠1.二.指数函数的图象与性质【基础知识】1、指数函数y=a x(a>0,且a≠1)的图象和性质:y =a x a >1 0<a <1图象定义域 R 值域 (0,+∞) 性质过定点(0,1)当x >0时,y >1; x <0时,0<y <1当x >0时,0<y <1;x <0时,y >1在R 上是增函数在R 上是减函数2、底数与指数函数关系①在同一坐标系内分别作函数的图象,易看出:当a >l 时,底数越大,函数图象在第一象限越靠近y 轴;同样地,当0<a <l 时,底数越小,函数图象在第一象限越靠近x 轴. ①底数对函数值的影响如图.①当a >0,且a ≠l 时,函数y =a x 与函数y =的图象关于y 轴对称.3、利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较: 若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值.三.二次函数的性质与图象【二次函数】二次函数相对于一次函数而言,顾名思义就知道它的次数为二次,且仅有一个自变量,因变量随着自变量的变化而变化.它的一般表达式为:y=ax2+bx+c(a≠0)【二次函数的性质】二次函数是一个很重要的知识点,不管在前面的选择题填空题还是解析几何里面,或是代数综合体都有可能出题,其性质主要有初中学的开口方向、对称性、最值、几个根的判定、韦达定理以及高中学的抛物线的焦点、准线和曲线的平移.这里面略谈一下他的一些性质.①开口、对称轴、最值与x轴交点个数,当a>0(<0)时,图象开口向上(向下);对称轴x=﹣;最值为:f(﹣);判别式①=b2﹣4ac,当①=0时,函数与x轴只有一个交点;①>0时,与x轴有两个交点;当①<0时无交点.①根与系数的关系.若①≥0,且x1、x2为方程y=ax2+bx+c的两根,则有x1+x2=﹣,x1•x2=;①二次函数其实也就是抛物线,所以x2=2py的焦点为(0,),准线方程为y=﹣,含义为抛物线上的点到到焦点的距离等于到准线的距离.①平移:当y=a(x+b)2+c向右平移一个单位时,函数变成y=a(x﹣1+b)2+c;四.指数型复合函数的性质及应用【基础知识】指数型复合函数性质及应用:指数型复合函数的两个基本类型:y=f(a x)与y=a f(x)复合函数的单调性,根据“同增异减”的原则处理U=g(x)y=a u y=a g(x)增增增减减增增减减减增减.五.指数函数的单调性与特殊点【基础知识】1、指数函数单调性的讨论,一般会以复合函数的形式出现,所以要分开讨论,首先讨论a 的取值范围即a>1,0<a<1的情况.再讨论g(x)的增减,然后遵循同增、同减即为增,一减一增即为减的原则进行判断.2、同增同减的规律:(1)y=a x如果a>1,则函数单调递增;(2)如果0<a<1,则函数单调递减.3、复合函数的单调性:(1)复合函数为两个增函数复合:那么随着自变量X的增大,Y值也在不断的增大;(2)复合函数为两个减函数的复合:那么随着内层函数自变量X的增大,内层函数的Y值就在不断的减小,而内层函数的Y值就是整个复合函数的自变量X.因此,即当内层函数自变量X的增大时,内层函数的Y值就在不断的减小,即整个复合函数的自变量X不断减小,又因为外层函数也为减函数,所以整个复合函数的Y值就在增大.因此可得“同增”若复合函数为一增一减两个函数复合:内层函数为增函数,则若随着内层函数自变量X的增大,内层函数的Y值也在不断的增大,即整个复合函数的自变量X不断增大,又因为外层函数为减函数,所以整个复合函数的Y值就在减小.反之亦然,因此可得“异减”.六.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.特别提醒:(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.七.指数式与对数式的互化【基础知识】a b=N①log aN=b;指数方程和对数方程主要有以下几种类型:(1)a f(x)=b①f(x)=log a b;log a f(x)=b①f(x)=a b(定义法)(2)a f(x)=a g(x)①f(x)=g(x);log a f(x)=log a g(x)①f(x)=g(x)>0(同底法)(3)a f(x)=b g(x)①f(x)log m a=g(x)log m b;(两边取对数法)(4)log a f(x)=log b g(x)①log a f(x)=;(换底法)(5)A log x+B log a x+C=0(A(a x)2+Ba x+C=0)(设t=log a x或t=a x)(换元法)八.对数的运算性质【基础知识】对数的性质:①=N;①log a a N=N(a>0且a≠1).log a(MN)=log a M+log a N;log a=log a M﹣log a N;log a M n=n log a M;log a=log a M.九.换底公式的应用【基础知识】换底公式及换底性质:(1)log a N=(a>0,a≠1,m>0,m≠1,N>0).(2)log a b=,(3)log a b•log b c=log a c,十.对数函数的定义域【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.十一.对数函数的值域与最值【基础知识】一般地,我们把函数y=log a x(a>0,且a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞),值域是R.定点:函数图象恒过定点(1,0)十二.对数值大小的比较【基础知识】1、若两对数的底数相同,真数不同,则利用对数函数的单调性来比较.2、若两对数的底数和真数均不相同,通常引入中间变量(1,﹣1,0)进行比较3、若两对数的底数不同,真数也不同,则利用函数图象或利用换底公式化为同底的再进行比较.(画图的方法:在第一象限内,函数图象的底数由左到右逐渐增大)十三.对数函数的单调性与特殊点【基础知识】对数函数的单调性和特殊点:1、对数函数的单调性当a>1时,y=log a x在(0,+∞)上为增函数当0<a <1时,y =log a x 在(0,+∞)上为减函数 2、特殊点对数函数恒过点(1,0)十四.对数函数图象与性质的综合应用 【基础知识】1、对数函数的图象与性质:a >10<a <1图象定义域 (0,+∞)值域 R 定点 过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x >1时,y >0;当0<x <1,y <0当x >1时,y <0;当0<x <1时,y >02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【技巧方法】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十五.指数函数与对数函数的关系【基础知识】指数函数和对数函数的关系:(1)对数函数与指数函数互为反函数,它们的定义域、值域互换,图象关于直线y=x对称.(2)它们都是单调函数,都不具有奇偶性.当a>l时,它们是增函数;当O<a<l时,它们是减函数.(3)指数函数与对数函数的联系与区别:十六.反函数【基础知识】【定义】一般地,设函数y=f(x)(x①A)的值域是C,根据这个函数中x,y的关系,用y把x表示出,得到x=g(y).若对于y在中的任何一个值,通过x=g(y),x在A中都有唯一的值和它对应,那么,x=g(y)就表示y是自变量,x是因变量是y的函数,这样的函数y=g(x)(y①C)叫做函数y=f(x)(x①A)的反函数,记作y=f(﹣1)(x)反函数y=f (﹣1)(x)的定义域、值域分别是函数y=f(x)的值域、定义域.【性质】反函数其实就是y=f(x)中,x和y互换了角色(1)函数f(x)与他的反函数f﹣1(x)图象关于直线y=x对称;函数及其反函数的图形关于直线y=x对称(2)函数存在反函数的重要条件是,函数的定义域与值域是一一映射;(3)一个函数与它的反函数在相应区间上单调性一致;(4)大部分偶函数不存在反函数(当函数y=f(x),定义域是{0} 且f(x)=C(其中C 是常数),则函数f(x)是偶函数且有反函数,其反函数的定义域是{C},值域为{0} ).奇函数不一定存在反函数,被与y轴垂直的直线截时能过2个及以上点即没有反函数.若一个奇函数存在反函数,则它的反函数也是奇函数.(5)一切隐函数具有反函数;(6)一段连续的函数的单调性在对应区间内具有一致性;(7)严格增(减)的函数一定有严格增(减)的反函数【反函数存在定理】;(8)反函数是相互的且具有唯一性;(9)定义域、值域相反对应法则互逆(三反);(10)原函数一旦确定,反函数即确定(三定)(在有反函数的情况下,即满足(2)).十七.对数函数图象与性质的综合应用【基础知识】1、对数函数的图象与性质:a>10<a<1图象定义域(0,+∞)值域R定点过点(1,0)单调性在(0,+∞)上是增函数在(0,+∞)上是减函数函数值正负当x>1时,y>0;当0<x<1,y<0当x>1时,y<0;当0<x<1时,y>02、由对数函数的图象确定参数的方法已知对数型函数的图象研究其解析式及解析式中所含参数的取值范围问题,通常是观察图象,获得函数的单调性、对称性、奇偶性、经过的特殊点等,由此确定函数解析式以及其中所含参数的取值范围.【解题方法点拨】1、4种方法﹣﹣解决对数运算问题的方法(1)将真数化为底数(或已知对数的数)的幂的积,再展开;(2)将同底对数的和、差、倍合并;(3)利用换底公式将不同底的对数式转化成同底的对数式,要注意换底公式的正用、逆用及变形应用;(4)利用常用对数中的lg 2+lg 5=1.2、3个基本点﹣﹣对数函数图象的三个基本点(1)当a>1时,对数函数的图象“上升”;当0<a<1时,对数函数的图象“下降”.(2)对数函数y=log a x(a>0,且a≠1)的图象过定点(1,0),且过点(a,1),(,﹣1)函数图象只在第一、四象限.(3)底数的大小与对数函数的图象位置之间的关系.3、2个应用﹣﹣对数函数单调性的应用(1)比较对数式的大小:①若底数为同一常数,则可由对数函数的单调性直接进行判断;若底数为同一字母,需对底数进行分类讨论.①若底数不同,真数相同,则可以先用换底公式化为同底后,再进行比较.①若底数与真数都不同,则常借助1,0等中间量进行比较.(2)解对数不等式:形如log a x>log a b的不等式,借助y=log a x的单调性求解,如果a的取值不确定,需分a>1与0<a<1两种情况讨论.形如log a x>b的不等式,需先将b化为以a为底的对数式的形式.十八.函数的零点【基础知识】一般地,对于函数y=f(x)(x①R),我们把方程f(x)=0的实数根x叫作函数y=f (x)(x①D)的零点.即函数的零点就是使函数值为0的自变量的值.函数的零点不是一个点,而是一个实数.十九.函数零点的判定定理【基础知识】1、函数零点存在性定理:一般地,如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)•f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c①(a,b),使得f(c)=O,这个c也就是f(x)=0的根.【技巧方法】(1)根据该定理,能确定f(x)在(a,b)内有零点,但零点不一定唯一.(2)并不是所有的零点都可以用该定理来确定,也可以说不满足该定理的条件,并不能说明函数在(a,b)上没有零点,例如,函数f(x)=x2﹣3x+2有f(0)•f(3)>0,但函数f(x)在区间(0,3)上有两个零点.(3)若f(x)在[a,b]上的图象是连续不断的,且是单调函数,f(a).f(b)<0,则f(x)在(a,b)上有唯一的零点.2、函数零点个数的判断方法:(1)几何法:对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点.特别提醒:①“方程的根”与“函数的零点”尽管有密切联系,但不能混为一谈,如方程x2﹣2x+1=0在[0,2]上有两个等根,而函数f(x)=x2﹣2x+1在[0,2]上只有一个零点;①函数的零点是实数而不是数轴上的点.(2)代数法:求方程f(x)=0的实数根.二十.函数的零点与方程根的关系【基础知识】函数的零点表示的是函数与x轴的交点,方程的根表示的是方程的解,他们的含义是不一样的.但是,他们的解法其实质是一样的.二十一. 二分法【基础知识】二分法即一分为二的方法.设函数f(x)在[a,b]上连续,且满足f(a)•f(b)<0,我们假设f(a)<0,f(b)>0,那么当x1=时,若f(x1)=0,这说x1为零点;若不为0,假设大于0,那么继续在[x1,b]区间取中点验证它的函数值为0,一直重复下去,直到找到满足要求的点为止.这就是二分法的基本概念.习题演练一.选择题(共12小题)1.已知函数()21x f x x =--,则不等式()0f x >的解集是( ) A .()1,1- B .()(),11,-∞-+∞C .()0,1D .()(),01,-∞⋃+∞2.下列式子计算正确的是( ) A .m 3•m 2=m 6 B .(﹣m )2=21m - C .m 2+m 2=2m 2D .(m +n )2=m 2+n 23.在同一直角坐标系中,函数11,log (02a x y y x a a ⎛⎫==+> ⎪⎝⎭且1)a ≠的图象可能是( ) A . B .C .D .4.设2,8()(8),8x x f x f x x ⎧≤=⎨->⎩,则(17)f =( )A .2B .4C .8D .165.函数13x y a +=-(0a >,且1a ≠)的图象一定经过的点是( ) A .()0,2-B .()1,3--C .()0,3-D .()1,2--6.设0.3log 0.6m =,21log 0.62n =,则( ) A .m n m n mn ->+> B .m n mn m n ->>+ C .m n m n mn +>->D .mn m n m n >->+7.已知函数1()ln 1f x x x =--,则()y f x =的图象大致为( ).A .B .C .D .8.已知2log a e =,ln 2b =,121log 3c =,则a ,b ,c 的大小关系为 A .a b c >> B .b a c >>C .c b a >>D .c a b >>9.函数()2xf 的定义域为[1,1]-,则()2log y f x =的定义域为( )A .[1,1]-B.C .1,22⎡⎤⎢⎥⎣⎦D .[1,4]10.设函数()ln |21|ln |21|f x x x =+--,则f (x )( ) A .是偶函数,且在1(,)2+∞单调递增B .是奇函数,且在11(,)22-单调递减C .是偶函数,且在1(,)2-∞-单调递增D .是奇函数,且在1(,)2-∞-单调递减11.已知函数()ln 1,01,0xx x f x e x ⎧+>=⎨+≤⎩,()22g x x x =--,若方程()()0f g x a -=有4个不相等的实根,则实数a 的取值范围是( ) A .(),1-∞B .(]0,1C .(]1,2D .[)2,+∞12.在下列区间中,函数()43xf x e x =+-的零点所在的区间为( )A .1,04⎛⎫-⎪⎝⎭B .10,4⎛⎫ ⎪⎝⎭C .11,42⎛⎫⎪⎝⎭D .13,24⎛⎫⎪⎝⎭二.填空题(共6小题)13.计算:13021lg8lg 25327e -⎛⎫-++= ⎪⎝⎭__________.14.不等式2log 5x a -<对任意[]4,16x ∈恒成立,则实数a 的取值范围为____________. 15.已知当(]1,2x ∈时,不等式()21log a x x -≤恒成立,则实数a 的取值范围为________.16.若关于x 的方程11224a x x =-++-的解集为空集,求实数a 的取值范围______. 17.已知函数223,3()818,3x x f x x x x -⎧<=⎨-+≥⎩,则函数()()2g x f x =-的零点个数为_________.18.已知定义在R 上的函数()f x 满1(2)()f x f x +=,当[0,2)x ∈时,()x f x x e =+,则(2019)f =_______.三.解析题(共6小题)19.已知函数()log (1)log (3)(01)a a f x x x a =-++<<.(1)求函数()f x 的定义域; (2)求函数()f x 的零点;(3)若函数()f x 的最小值为-4,求a 的值.20.已知定义域为R 的函数,12()2x x bf x a+-+=+是奇函数.(1)求a ,b 的值;(2)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围.21.设()log (1)log (3)(0,1)a a f x x x a a =++->≠,且(1)=2f . (1)求a 的值;(2)求()f x 在区间30,2⎡⎤⎢⎥⎣⎦上的最大值.22.已知实数0a >,定义域为R 的函数()x x e af x a e=+是偶函数,其中e 为自然对数的底数.(①)求实数a 值;(①)判断该函数()f x 在(0,)+∞上的单调性并用定义证明;(①)是否存在实数m ,使得对任意的t R ∈,不等式(2)(2)f t f t m -<-恒成立.若存在,求出实数m 的取值范围;若不存在,请说明理由.23.函数()f x 对任意的实数m ,n ,有()()()f m n f m f n +=+,当0x >时,有()0f x >. (1)求证:()00=f .(2)求证:()f x 在(),-∞+∞上为增函数.(3)若()11f =,解不等式()422x xf -<.24.甲商店某种商品4月份(30天,4月1日为第一天)的销售价格P (元)与时间t (天)的函数关系如图所示(1),该商品日销售量Q (件)与时间t (天)的函数关系如图(2)所示.(1)(2)(1)写出图(1)表示的销售价格与时间的函数关系式()P f t =,写出图(2)表示的日销售量与时间的函数关系式()Q g t =及日销售金额M (元)与时间的函数关系式()M h t =. (2)乙商店销售同一种商品,在4月份采用另一种销售策略,日销售金额N (元)与时间t (天)之间的函数关系式为22102750N t t =--+,试比较4月份每天两商店销售金额的大小关系。

第4章 幂函数、指数函数、对数函数

第4章 幂函数、指数函数、对数函数

第四章:幂函数、指数函数和对数函数4、1 幂函数的图像与性质1、幂函数的概念一般地,函数(k y x k =为常数,k Q ∈)叫做幂函数。

思考:(1)在我们学过的函数中,有哪些是幂函数?举例说明。

2y x =、y x =、1y x=、0y x =、12y x =⋅⋅⋅(2)下列函数是否为幂函数: (1)2y x =; (2)17(2)y x -=;(3)13(2)y x =-; (4)y =。

2、幂函数的图像 画幂函数图像分两步:(1)画出幂函数在第一象限的图像(如图)(2)由定义域和奇偶性画出幂函数在其它象限的图像。

例1、分别画出下列幂函数的大致图像。

(1)43y x =; (2)12y x -=; (3)13y x =; (4)0y x =;(5)2y x-=; (6)12y x =; (7)32y x =; (8)23y x =(9)53y x =; (10)y x =; (11)13y x -=。

3、幂函数()ky x k Q =∈的性质:(1)幂函数的图像恒过点(1,1);(2)当0k >时,幂函数在区间[0,)+∞是上增函数; 当0k <时,幂函数在区间(0,)+∞上是减函数。

例2、已知幂函数21(732)35(1)()t t y t t xt Z +-=-+∈是偶函数,且在区间[)0,+∞上是单调增函数。

求整数t 的值,并作出相应幂函数的大致图像。

解:0t =(舍去),或1t =±,图像略。

例3、分别画出下列函数的大致图像。

(1)y = (2)3(1)y x =+;(3)y = (4)()231y x -=-。

例4、设01a b c d <<<<<,正数,,,m n k r 满足:01a b c dm n k r <===<,则,,,,1mnkr之间的大小关系为_________。

解:在同一坐标系内作出函数,,,a b c dy x y x y x y x ====与直线(01)y p p =<<相交,得交点的横坐标分别为,,,n r k m 可以得出:1n r k m <<<<。

第四章,指数函数与对数函数,教材分析

第四章,指数函数与对数函数,教材分析

第四章,指数函数与对数函数,教材分析第四章指数函数与对数函数教材分析本章为指数函数与对数函数函数,分两个单元共4节,内容如下实数指数幂、指数函数、对数、对数函数。

本章共需课时,具体分配如下:4.1有理数指数幂4课时4.2指数函数2课时4.3对数2课时4.4对数函数2课时小结与复习2课时一、内容与要求本章内容是在初中以及第三章函数的基础上研究指数函数、对数函数的概念、图象和性质,使学生在学习中获得较为系统的函数知识,并初步培养了学生的函数应用意识,为今后学习打下良好的基础。

内容安排:第一单元是实数指数幂指数与指数函数,指数函数是基本初等函数之一,应用非常广泛它是在第三章学习完函数概念和两个基本性质之后较为系统地研究的第一个初等函数为了学习指数函数应该将初中学过的指数概念进行扩展,初中代数中学习了正整数指数、零指数和负整数指数的概念和运算性质本章在此基础上将指数概念扩充到实数指数幂,并给出了实数指数幂的运算性质之后,又简单的研究了幂函数的概念、图象和性质,并充分的利用课件进行演示指数函数的概念从实际问题引入,这样既说明指数函数的概念来源于客观实际,也便于学生接受和培养学生用数学的意识函数图象是研究函数性质的直观图形指数函数的性质是利用图象总结出来的,这样便于学生记忆其性质和研究变化规律本节安排的例题与上一章的性质所呼应,充分的研究了函数的概念、图象和性质。

并在应用举例中,与生活紧密的结合起来。

第二单元是对数与对数函数对数产生于17世纪初叶,为了适应航海事业的发展,需要确定航程和船舶的位置,为了适应天文事业的发展,需要处理观测行星运动的数据,就是为了解决很多位数的数字繁杂的计算而产生了对数恩格斯曾把对数的发明与解析几何学的产生、微积分学的创始并称为17世纪数学的三大成就,给予很高的评价今天随着计算器的普及和电子计算机的广泛使用以及航天航海技术的不断进步,利用对数进行大数的计算功能的历史使命已基本完成,已被新的运算工具所取代,因此中学对于传统的对数内容进行了大量的删减但对数函数应用还是广泛的,后续的教学内容也经常用到本单元讲对数的定义和运算性质的目的主要是为了学习对数函数对数概念与指数概念有关,是在指数概念的基础上定义的,在一般对数定义logaN(a>0,a≠1)之后,给出两个特殊的对数:一个是当底数a=10时,称为常用对数,简记作lgN=b;另一个是底数a=e(一个无理数)时,称为自然对数,简记作lnN=b这样既为学生以后学习或读有关的科技书给出了初步知识,也使教材大大简化,只保留到学习对数函数知识够用即可本章在对数函数概念的引入上并没有采用指数函数反函数的形式,而是将指数形式性质改写成对数形式,降低了难度。

高考数学 第四章 指数函数、对数函数与幂函数 4.3 指数函数与对数函数的关系讲义

高考数学 第四章 指数函数、对数函数与幂函数 4.3 指数函数与对数函数的关系讲义

指数函数与对数函数的关系课标解读课标要求核心素养1.了解反函数的概念,知道指数函数和对数函数互为反函数,以及它们的图像间的对称关系.(重点)2.利用图像比较指数函数、对数函数增长的差异.3.利用指数函数、对数函数的图像性质解决一些简单问题.(难点)1.通过反函数的概念及指数函数与对数函数图像间的关系的学习,培养直观想象的核心素养.2.借助指数函数与对数函数综合应用的学习,提升数学运算、逻辑推理的核心素养.观察下面的变换:y=a x x=log a y y=log a x.问题1:指数函数y=a x的值域与对数函数y=log a x的定义域是否相同?答案相同.问题2:指数函数y=a x的定义域与对数函数y=log a x的值域相同吗?答案相同.1.反函数的概念与记法(1)反函数的概念:一般地,如果在函数y=f(x)中,给定值域中任意一个y的值,只有①唯一的x与之对应,那么②x是③y的函数,这个函数称为y=f(x)的反函数,此时,称y=f(x)存在④反函数.(2)反函数的记法:一般地,函数y=f(x)的反函数通常用⑤y=f-1(x)表示.思考:如何准确理解反函数的定义?什么样的函数存在反函数?提示反函数的定义域和值域正好是原函数的值域和定义域,反函数也是函数,因为它符合函数的定义.对于任意一个函数y=f(x),不一定总有反函数,只有当一个函数是单调函数时,这个函数才存在反函数.2.指数函数与对数函数的关系(1)指数函数y=a x与对数函数y=log a x⑥互为反函数.(2)指数函数y=a x与对数函数y=log a x的图像关于直线⑦y=x对称.探究一求函数的反函数例1 求下列函数的反函数.(1)y=;(2)y=x2(x≤0).解析(1)由y=,得x=lo y,且y>0,所以f-1(x)=lo x(x>0).(2)由y=x2得x=±.因为x≤0,所以x=-.所以f-1(x)=-(x≥0).1.(1)已知函数y=e x的图像与函数y=f(x)的图像关于直线y=x对称,则( )A.f(2x)=e2x(x∈R)B.f(2x)=ln2×lnx(x>0)C.f(2x)=2e x(x∈R)D.f(2x)=ln2+lnx(x>0)(2)求函数y=0.2x+1(x≤1)的反函数.答案(1)D解析(1)由题意知函数y=e x与函数y=f(x)互为反函数,y=e x>0,∴f(x)=lnx(x>0),则f(2x)=ln2x=ln2+lnx(x>0).(2)由y=0.2x+1得x=log0.2(y-1),对换x、y得y=log0.2(x-1).∵原函数中x≤1,∴y≥1.2,∴反函数的定义域为[1.2,+∞),因此y=0.2x+1(x≤1)的反函数是y=log0.2(x-1),x∈[1.2,+∞).探究二指数函数与对数函数图像之间的关系例2 (1)已知a>0,且a≠1,则函数y=a x与y=log a x的图像只能是( )(2)当a>1时,函数y=a-x与y=log a x在同一平面直角坐标系中的图像是( )答案(1)C (2)A解析(1)y=a x与y=log a x的单调性一致,故排除A、B;当0<a<1时,排除D;当a>1时,C正确.(2)因为当a>1时,0<<1,所以y=a-x=是减函数,其图像恒过(0,1)点,y=log a x为增函数,其图像恒过(1,0)点,故选A.思维突破互为反函数的两个函数图像的特点(1)互为反函数的两个函数图像关于直线y=x对称;图像关于直线y=x对称的两个函数互为反函数.(2)互为反函数的两个函数在相应区间上的单调性一致.2.(1)已知函数f(x)=a x+b的图像过点(1,7),其反函数f-1(x)的图像过点(4,0),则f(x)的表达式为( )A.f(x)=4x+3B.f(x)=3x+4C.f(x)=5x+2D.f(x)=2x+5(2)若函数y=的图像关于直线y=x对称,则a的值为.答案(1)A (2)-1解析(1)∵f(x)的反函数的图像过点(4,0),∴f(x)的图像过点(0,4),又f(x)=a x+b的图像过点(1,7),故有方程组解得故f(x)的表达式为f(x)=4x+3,选A.(2)由y=可得x=,则原函数的反函数是y=,所以=,解得a=-1. 探究三指数函数与对数函数的综合应用例3 已知f(x)=(a∈R),f(0)=0.(1)求a的值,并判断f(x)的奇偶性;(2)求f(x)的反函数;(3)对任意的k∈(0,+∞),解不等式f-1(x)>log2.解析(1)由f(0)=0,得a=1,所以f(x)=.f(x)的定义域为R,关于原点对称.因为f(x)+f(-x)=+=+=0,所以f(-x)=-f(x),即f(x)为奇函数.(2)因为f(x)=y==1-,所以2x=(-1<y<1),所以f-1(x)=log2(-1<x<1).(3)因为f-1(x)>log2,即log2>log2,所以化简得所以当0<k<2时,原不等式的解集为{x|1-k<x<1};当k≥2时,原不等式的解集为{x|-1<x<1}.3.(变结论)本例中的条件不变,判断f-1(x)的单调性,并给出证明.解析f-1(x)为(-1,1)上的增函数.证明:由原题知f-1(x)=log2(-1<x<1).任取x1,x2∈(-1,1)且x1<x2,令t(x)===-1+,则t(x1)-t(x2)=-=-==.因为-1<x1<x2<1,所以1-x1>0,1-x2>0,x1-x2<0,所以t(x1)-t(x2)<0,t(x1)<t(x2),所以log2t(x1)<log2t(x2),即f-1(x1)<f-1(x2),所以函数f-1(x)为(-1,1)上的增函数.1.若函数y=f(x)是函数y=a x(a>0且a≠1)的反函数,且f(2)=1,则f(x)=( )A.log2xB.C.lo xD.2x-2答案 A y=a x的反函数为f(x)=log a x,又f(2)=1,所以1=log a2,所以a=2,所以f(x)=log2x.2.若函数y=f(x)的反函数的图像过点(1,5),则函数y=f(x)的图像必过点( )A.(1,1)B.(1,5)C.(5,1)D.(5,5)答案 C 原函数的图像与它的反函数的图像关于直线y=x对称,因为y=f(x)的反函数的图像过点(1,5),而点(1,5)关于直线y=x的对称点为(5,1),所以函数y=f(x)的图像必过点(5,1).3.若函数y=log3x的定义域为(0,+∞),则其反函数的值域是( )A.(0,+∞)B.RC.(-∞,0)D.(0,1)答案 A 由原函数与反函数的关系知,反函数的值域为原函数的定义域.4.已知f(x)=2x+b的反函数为f-1(x),若y=f-1(x)的图像过点Q(5,2),则b= .答案 1解析由f-1(x)的图像过点Q(5,2),得f(x)的图像过点(2,5),即22+b=5,解得b=1.数学抽象——指数函数和对数函数关系的理解和应用设方程2x+x-3=0的根为a,方程log2x+x-3=0的根为b,求a+b的值.素养探究:方程根的问题可以借助图像转化为两个函数的图像的交点问题,进而形象、直观地解决问题,过程中体现数形结合的思想和数学抽象核心素养.解析将两个方程整理得2x=-x+3,log2x=-x+3.在同一平面直角坐标系中作出函数y=2x,y=log2x的图像及直线y=-x+3,如图.由图可知,a是指数函数y=2x的图像与直线y=-x+3的交点A的横坐标,b是对数函数y=log2x的图像与直线y=-x+3的交点B的横坐标.因为函数y=2x与y=log2x互为反函数,所以它们的图像关于直线y=x对称,易知A,B两点也关于直线y=x对称,于是A,B两点的坐标可设为A(a,b),B(b,a).因为点A,B都在直线y=-x+3上,所以b=-a+3(A点坐标代入)或a=-b+3(B点坐标代入),故a+b=3.实数x、y满足x+lnx=8,y+e y=8,求x+y的值.解析由x+lnx=8,得lnx=8-x,由y+e y=8,可得e y=8-y,在同一平面直角坐标系中作出直线y=8-x及函数y=lnx,y=e x的图像,如图所示,联立y=8-x与y=x,解得x=y=4,所以点C的坐标为(4,4),方程x+lnx=8的根可视为直线y=8-x与函数y=lnx图像的交点B的横坐标,方程y+e y=8的根可视为直线y=8-x与函数y=e x图像的交点A的横坐标,由图像可知,点A、B关于直线y=x对称,因此,x+y=8.——————————————课时达标训练—————————————1.函数y=log3x的反函数是( )A.y=lo xB.y=3xC.y=D.y=x3答案 B ∵y=log3x,∴3y=x,∴函数y=log3x的反函数是y=3x,故选B.2.若函数y=f(x)是函数y=a x(a>0,且a≠1)的反函数,其图像经过点(,a),则f(x)=( )A.log2xB.lo xC. D.x2答案 B 因为y=a x的反函数为y=log a x,且函数f(x)的图像经过点(,a),所以log a=a,解得a=,所以f(x)=lo x.3.(2019山东沂水第一中学高一期中)函数f(x)=log2(3x+1)的反函数y=f-1(x)的定义域为( )A.(1,+∞)B.[0,+∞)C.(0,+∞)D.[1,+∞)答案 C y=f-1(x)的定义域即为其原函数的值域,∵3x+1>1,∴log2(3x+1)>0.故选C.4.函数y=e x+1的反函数是( )A.y=1+lnx(x>0)B.y=1-lnx(x>0)C.y=-1-lnx(x>0)D.y=-1+lnx(x>0)答案 D 由y=e x+1得x+1=lny,即x=-1+lny,所以所求反函数为y=-1+lnx(x>0).故选D.5.已知函数y=f(x)的图像与y=a x(a>0,a≠1)的图像关于直线y=x对称,则下列结论正确的是( )A.f(x2)=2f(|x|)B.f(2x)=f(x)·f(2)C.f=f(x)+f(2)D.f(2x)=2f(x)答案 A y=f(x)的图像与y=a x(a>0,a≠1)的图像关于直线y=x对称,则f(x)=log a x,f(x2)=log a x2=2log a|x|=2f(|x|),A中结论正确;log a(2x)≠log a x·log a2,B中结论错误;log a≠log a x+log a2=log a(2x),C中结论错误;log a(2x)≠2log a x,D中结论错误.故选A.6.已知函数f(x)=1+log a x,y=f-1(x)是函数y=f(x)的反函数,若y=f-1(x)的图像过点(2,4),则a的值为.答案 4解析因为y=f-1(x)的图像过点(2,4),所以函数y=f(x)的图像过点(4,2),又因为f(x)=1+log a x,所以2=1+log a4,即a=4.7.如果函数f(x)=的反函数为g(x),那么g(x)的图像一定过点.答案(1,0)解析函数f(x)=的反函数为g(x)=lo x,所以g(x)的图像一定过点(1,0).8.已知函数f(x)=log2(x+a)的反函数为y=f-1(x),且f-1(2)=1,则实数a= .答案 3解析函数f(x)=log2(x+a)的反函数为y=f-1(x),且f-1(2)=1,则2=log2(1+a),解得a=3.9.(多选)已知函数f(x)=log a x(a>0,且a≠1)的图像经过点(4,2),则下列说法中正确的是( )A.函数f(x)为增函数B.函数f(x)为偶函数C.若x>1,则f(x)>0D.函数f(x)的反函数为g(x)=2x答案ACD 由题意得2=log a4,解得a=2,故f(x)=log2x,则f(x)为增函数且为非奇非偶函数,故A正确,B错误.当x>1时,f(x)=log2x>log21=0成立,故C正确.f(x)=log2x的反函数为g(x)=2x,故D正确.故选ACD.10.将函数y=2x的图像,再作关于直线y=x对称的图像,可得到函数y=log2(x+1)的图像.( )A.先向上平移一个单位长度B.先向右平移一个单位长度C.先向左平移一个单位长度D.先向下平移一个单位长度答案 D 将函数y=2x的图像向下平移一个单位长度得到y=2x-1的图像,再作关于直线y=x对称的图像即可得到函数y=log2(x+1)的图像.故选D.11.函数y=log a(2x-3)+过定点,函数y=lo x的反函数是.答案;y=()x解析∵对数函数y=log a x过定点(1,0),∴函数y=log a(2x-3)+过定点.函数y=lo x的反函数是y=()x.12.若函数f(x)=log a x(a>0,且a≠1)满足f(27)=3,则f-1(log92)= . 答案解析∵f(27)=3,∴log a27=3,解得a=3.∴f(x)=log3x,∴f-1(x)=3x,∴f-1(log92)===.13.已知f(x)=log a(a x-1)(a>0,且a≠1).(1)求f(x)的定义域;(2)讨论f(x)的单调性;(3)解方程f(2x)=f-1(x).解析(1)要使函数有意义,必须满足a x-1>0,当a>1时,x>0;当0<a<1时,x<0.∴当a>1时,f(x)的定义域为(0,+∞);当0<a<1时,f(x)的定义域为(-∞,0).(2)当a>1时,任取x1,x2,且0<x1<x2,则1<<,故0<-1<-1,∴log a(-1)<log a(-1),∴f(x1)<f(x2).故当a>1时,f(x)在(0,+∞)上单调递增;类似地,当0<a<1时,f(x)在(-∞,0)上单调递增.(3)令y=log a(a x-1),则a y=a x-1,∴x=log a(a y+1),∴f-1(x)=log a(a x+1).由f(2x)=f-1(x),得log a(a2x-1)=log a(a x+1),∴a2x-1=a x+1,解得a x=2或a x=-1(舍去),∴x=log a2.14.已知函数f(x)=,函数g(x)的图像与f(x)的图像关于直线y=x对称.(1)若g(mx2+2x+1)的定义域为R,求实数m的取值范围;(2)当x∈[-1,1]时,求函数y=[f(x)]2-2af(x)+3的最小值h(a).解析(1)由题意得g(x)=lo x,∵g(mx2+2x+1)=lo(mx2+2x+1)的定义域为R,∴mx2+2x+1>0恒成立,所以解得m>1.故实数m的取值范围是(1,+∞).(2)令t=,则t∈,y=t2-2at+3=(t-a)2+3-a2,当a>2时,可得t=2时,y min=7-4a;当≤a≤2时,可得t=a时,y min=3-a2;当a<时,可得t=时,y min=-a.∴h(a)=。

4.4 对数函数课件-2023届广东省高职高考数学第一轮复习第四章指数函数与对数函数

4.4 对数函数课件-2023届广东省高职高考数学第一轮复习第四章指数函数与对数函数

A.(1,0) B.(0,1)
C.(-1,5) D.(1,5)
【分析】 本题考查对数函数y=loga x恒过点(1,0),然后类比求 出.
因为loga 1=0,令x+2=1时,则x=-1时,有f(-1)=loga 1+5=0 +5=5,
即过定点(-1,5),故选C.
【融会贯通】 函数 f(x)=loga(3-x)-2 必过定点__(_2_,__-__2_)__. 【解析】 ∵loga 1=0,∴3-x=1 时,即 x=2 时,f(x)=loga 1-2=0 -2=-2,即过定点(2,-2).
(3)原不等式化为 loga 8<loga a,分类讨论:
当 0<a<1 时,y=loga x 在(0,+∞)上单调递减,即08< >aa<1,故 0
<a<1;

a>1
时,y=loga
x
a>1 在(0,+∞)上单调递增,即8<a,故
a>8,
综上所述,a 的取值范围是(0,1)∪(8,+∞).
例4 函数f(x)=loga(x+2)+5必过定点( C )
【融会贯通】 比较下列各组数的大小.
(1)log3 14 与 log3 6;
(2)log0.7 3 与 0;
解:(1)函数 y=log3 x 在(0,+∞)上的单调递增,14>6,∴log3 14>
log3 6;
(2)将 0 看成同底 1 的对数,即 0=log0.7 1,且函数 y=log0.7 x 在(0,+
个单位,所以值域为 R,故选 B.
4.若 loga 23<0,则 a 的取值范围为( B )
A.a>23且 a≠1 B.a析】 ∵loga 23<0,即 loga 23<loga 1,由23<1 可知 y=loga x 在(0,

人教版高中数学第四章指数函数与对数函数考点总结

人教版高中数学第四章指数函数与对数函数考点总结

人教版高中数学第四章指数函数与对数函数考点总结单选题1、设函数f(x)=ln|2x +1|−ln|2x −1|,则f (x )( )A .是偶函数,且在(12,+∞)单调递增B .是奇函数,且在(−12,12)单调递减C .是偶函数,且在(−∞,−12)单调递增D .是奇函数,且在(−∞,−12)单调递减 答案:D分析:根据奇偶性的定义可判断出f (x )为奇函数,排除AC ;当x ∈(−12,12)时,利用函数单调性的性质可判断出f (x )单调递增,排除B ;当x ∈(−∞,−12)时,利用复合函数单调性可判断出f (x )单调递减,从而得到结果.由f (x )=ln |2x +1|−ln |2x −1|得f (x )定义域为{x |x ≠±12},关于坐标原点对称, 又f (−x )=ln |1−2x |−ln |−2x −1|=ln |2x −1|−ln |2x +1|=−f (x ), ∴f (x )为定义域上的奇函数,可排除AC ;当x ∈(−12,12)时,f (x )=ln (2x +1)−ln (1−2x ),∵y =ln (2x +1)在(−12,12)上单调递增,y =ln (1−2x )在(−12,12)上单调递减, ∴f (x )在(−12,12)上单调递增,排除B ;当x ∈(−∞,−12)时,f (x )=ln (−2x −1)−ln (1−2x )=ln 2x+12x−1=ln (1+22x−1), ∵μ=1+22x−1在(−∞,−12)上单调递减,f (μ)=lnμ在定义域内单调递增, 根据复合函数单调性可知:f (x )在(−∞,−12)上单调递减,D 正确.故选:D.小提示:本题考查函数奇偶性和单调性的判断;判断奇偶性的方法是在定义域关于原点对称的前提下,根据f(−x)与f(x)的关系得到结论;判断单调性的关键是能够根据自变量的范围化简函数,根据单调性的性质和复合函数“同增异减”性得到结论.2、已知函数f(x)={x−2,x∈(−∞,0) lnx,x∈(0,1)−x2+4x−3,x∈[1,+∞),若函数g(x)=f(x)−m恰有两个零点,则实数m不可能...是()A.−1B.0C.1D.2答案:D解析:依题意画出函数图象,函数g(x)=f(x)−m的零点,转化为函数y=f(x)与函数y=m的交点,数形结合即可求出参数m的取值范围;解:因为f(x)={x−2,x∈(−∞,0) lnx,x∈(0,1)−x2+4x−3,x∈[1,+∞),画出函数图象如下所示,函数g(x)=f(x)−m的有两个零点,即方程g(x)=f(x)−m=0有两个实数根,即f(x)=m,即函数y= f(x)与函数y=m有两个交点,由函数图象可得m≤0或m=1,故选:D小提示:函数零点的求解与判断方法:(1)直接求零点:令f(x)=0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间[a,b]上是连续不断的曲线,且f(a)·f(b)<0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点.3、声强级L1(单位:dB)与声强I的函数关系式为:L1=10lg(I10−12).若普通列车的声强级是95dB,高速列车的声强级为45dB,则普通列车的声强是高速列车声强的()A.106倍B.105倍C.104倍D.103倍答案:B分析:设普通列车的声强为I1,高速列车的声强为I2,由声强级得95=10lg(I110−12),45=10lg(I210−12),求出I1、I2相除可得答案.设普通列车的声强为I1,高速列车的声强为I2,因为普通列车的声强级是95dB,高速列车的声强级为45dB,所以95=10lg(I110−12),45=10lg(I210−12),95=10lg(I110−12)=10(lgI1+12),解得−2.5=lgI1,所以I1=10−2.5,45=10lg(I210−12)=10(lgI2+12),解得−7.5=lgI2,所以I2=10−7.5,两式相除得I1I2=10−2.510−7.5=105,则普通列车的声强是高速列车声强的105倍.故选:B.4、函数f(x)=2x−1x的零点所在的区间可能是()A .(1,+∞)B .(12,1)C .(13,12)D .(14,13)答案:B分析:结合函数的单调性,利用零点存在定理求解.因为f(1)=2−11=1>0,f(12)=√2−2<0,f(13)=√23−3<0f(14)=√24−4<0, 所以f(12)⋅f(1)<0,又函数f(x)图象连续且在(0,+∞)单调递增, 所以函数f(x)的零点所在的区间是(12,1), 故选:B .小提示:本题主要考查函数的零点即零点存在定理的应用,属于基础题. 5、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( ) A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞) 答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x 2+2=f(x),则f(x)为偶函数,当x ⩾0时,f(x)=3x +x 2+2,又y =3x ,y =x 2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x −1)>f(3−x),即|2x −1|>|3−x|,解得x <−2或x >43, 所以f(2x −1)>f(3−x)的解集为(−∞,−2)∪(43,+∞).故选:D.6、已知实数a,b∈(1,+∞),且log2a+log b3=log2b+log a2,则()A.a<√b<b B.√b<a<b C.b<√a<a D.√a<b<a答案:B分析:对log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,结合y=x−1x 的单调性判断b<a,同理利用换底公式得log2a−1log2a<log3b−1log3b,即log2a>log3b,再根据对数运算性质得log2a>log2√b,结合y=log2x单调性,a>√b,继而得解.由log2a+log b3=log2b+log a2,变形可知log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,由函数f(x)=x−1x在(0,+∞)上单调递增知,log2a<log2b,即a<b,排除C,D;其次,因为log2b>log3b,得log2a+log b3>log3b+log a2,即log2a−log a2>log3b−log b3,同样利用f(x)=x−1x的单调性知,log2a>log3b,又因为log3b=log√3√b>log2√b,得log2a>log2√b,即a>√b,所以√b<a<b.故选:B.7、基本再生数R0与世代间隔T是新冠肺炎的流行病学基本参数.基本再生数指一个感染者传染的平均人数,世代间隔指相邻两代间传染所需的平均时间.在新冠肺炎疫情初始阶段,可以用指数模型:I(t)=e rt描述累计感染病例数I(t)随时间t(单位:天)的变化规律,指数增长率r与R0,T近似满足R0 =1+rT.有学者基于已有数据估计出R0=3.28,T=6.据此,在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间约为(ln2≈0.69)()A.1.2天B.1.8天C.2.5天D.3.5天答案:B分析:根据题意可得I (t )=e rt =e 0.38t ,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t 1天,根据e 0.38(t+t 1)=2e 0.38t ,解得t 1即可得结果. 因为R 0=3.28,T =6,R 0=1+rT ,所以r =3.28−16=0.38,所以I (t )=e rt =e 0.38t ,设在新冠肺炎疫情初始阶段,累计感染病例数增加1倍需要的时间为t 1天, 则e 0.38(t+t 1)=2e 0.38t ,所以e 0.38t 1=2,所以0.38t 1=ln2, 所以t 1=ln20.38≈0.690.38≈1.8天. 故选:B.小提示:本题考查了指数型函数模型的应用,考查了指数式化对数式,属于基础题.8、已知对数式log (a+1)24−a(a ∈Z )有意义,则a 的取值范围为( )A .(−1,4)B .(−1,0)∪(0,4)C .{1,2,3}D .{0,1,2,3} 答案:C分析:由对数的真数大于0,底数大于0且不等于1列出不等式组,然后求解即可. 由题意可知:{a +1>0a +1≠124−a >0 ⇔{a >−1a ≠0a <4 ,解之得:−1<a <4且a ≠0.∵a ∈Z ,∴a 的取值范围为{1,2,3}. 故选:C.9、已知函数y =a x 、y =b x 、y =c x 、y =d x 的大致图象如下图所示,则下列不等式一定成立的是( )A.b+d>a+c B.b+d<a+c C.a+d>b+c D.a+d<b+c 答案:B分析:如图,作出直线x=1,得到c>d>1>a>b,即得解.如图,作出直线x=1,得到c>d>1>a>b,所以b+d<a+c.故选:B10、若n<m<0,则√m2+2mn+n2−√m2−2mn+n2等于()A.2m B.2n C.−2m D.−2n答案:C分析:根据根式的计算公式,结合参数范围,即可求得结果.原式=|m +n|−|m −n|,∵n <m <0,∴m +n <0,m −n >0, ∴原式=−(m +n)−(m −n)=−2m . 故选:C小提示:本题考查根式的化简求值,属简单题,注意参数范围即可. 多选题11、已知函数f (x )=2x −12x +1,则下列说法正确的是( )A .f (x )为奇函数B .f (x )为减函数C .f (x )有且只有一个零点D .f (x )的值域为[−1,1) 答案:AC分析:化简函数解析式,分析函数的奇偶性,单调性,值域,零点即可求解. ∵f (x )=2x −12x +1,x ∈R ,=1−22x +1 ∴f(−x)=2−x −12−x +1=1−2x 1+2x=−f(x),故f (x )为奇函数,又∵f (x )=2x −12x +1=1−22x +1,∴f(x)在R 上单调递增,∵2x >0,∴2x +1>1,∴0<22x +1<2,∴−2<−22x +1<0,∴−1<f(x)<1,即函数值域为(−1,1)令f (x )=2x −12x +1=0,即2x =1,解得x =0,故函数有且只有一个零点0. 综上可知,AC 正确,BD 错误.12、已知函数f(x)=log a x(a>0,且a≠1)的图象经过点(9,2),则下列说法正确的是()A.a=2B.函数f(x)为增函数C.若x>3,则f(x)>1D.若0<x1<x2,则f(x1)+f(x2)2>f(x1+x22)答案:BC分析:根据题意可得log a9=2,从而求出f(x)=log3x,即可根据对数的运算性质,对数函数的性质,基本不等式判断各选项的真假.由题意知,log a9=2,解得a=3,所以f(x)=log3x,所以函数f(x)为增函数,故A错误,B正确;当x>3时,f(x)=log3x>log33=1,所以f(x)>1,故C正确;因为f(x1)+f(x2)2=log3x1+log3x22=log3√x1x2,f(x1+x22)=log3x1+x22,又0<x1<x2,所以√x1x2<x1+x22,所以log3√x1x2<log3x1+x22,即f(x1)+f(x2)2<f(x1+x22),故D错误.故选:BC.13、已知函数f(x)=2x−12x+1,下面说法正确的有()A.f(x)的图象关于y轴对称B.f(x)的图象关于原点对称C.f(x)的值域为(−1,1)D.∀x1,x2∈R,且x1≠x2,f(x1)−f(x2)x1−x2<0恒成立答案:BC解析:判断f(x)的奇偶性即可判断选项AB,求f(x)的值域可判断C,证明f(x)的单调性可判断选项D,即可得f(x)=2x −12x +1的定义域为R 关于原点对称,f(−x)=2−x −12−x +1=(2−x −1)2x (2−x +1)2x=1−2x 1+2x=−f(x),所以f (x )是奇函数,图象关于原点对称,故选项A 不正确,选项B 正确;f(x)=2x −12x +1=2x +1−22x +1=1−22x +1,因为2x >0,所以2x +1>1,所以0<12x +1<1,−2<−22x +1<0,所以−1<1−22x +1<1,可得f(x)的值域为(−1,1),故选项C 正确; 设任意的x 1<x 2,则f(x 1)−f(x 2)=1−22x 1+1−(1−22x 2+1)=22x 2+1−22x 1+1=2(2x 1−2x 2)(2x 1+1)(2x 2+1), 因为2x 1+1>0,2x 2+1>0,2x 1−2x 2<0,所以2(2x 1−2x 2)(2x 1+1)(2x 2+1)<0,即f(x 1)−f(x 2)<0,所以f (x 1)−f (x 2)x 1−x 2>0,故选项D 不正确;故选:BC小提示:方法点睛:利用定义证明函数单调性的方法 (1)取值:设x 1,x 2是该区间内的任意两个值,且x 1<x 2;(2)作差变形:即作差,即作差f(x 1)−f(x 2),并通过因式分解、配方、有理化等方法,向有利于判断符号的方向变形;(3)定号:确定差f(x 1)−f(x 2)的符号; (4)下结论:判断,根据定义作出结论. 即取值---作差----变形----定号----下结论.14、设函数f (x )={|x 2+3x |,x ≤1log 2x,x >1,若函数f (x )+m =0有五个零点,则实数m 可取( )A .−3B .1C .−12D .−2答案:CD分析:函数f (x )+m =0有五个零点等价于y =f(x)与y =−m 有五个不同的交点,作出f(x)图像,利用图像求解即可函数f (x )+m =0有五个零点等价于y =f(x)与y =−m 有五个不同的交点,作出f(x)图像可知,当x =−32时,f (−32)=|(−32)2+3×(−32)|=94若y =f(x)与y =−m 有五个不同的交点,则−m ∈(0,94),∴m ∈(−94,0),故选:CD .15、为了得到函数y =ln (ex)的图象,可将函数y =ln x 的图象()A .纵坐标不变,横坐标伸长为原来的e 倍B .纵坐标不变,横坐标缩短为原来的1eC .向上平移一个单位长度D .向下平移一个单位长度答案:BC分析:根据函数图像变换求得结果.解:由题意函数y =lnx 的图象纵坐标不变,横坐标缩短为原来的1e ,可得到函数y =ln (ex)的图象,则A 错误,B 正确;因为y =ln (ex)=ln x +1,则将函数y =ln x 的图象向上平移一个单位可得到函数y =ln (ex)的图象,则C 正确,D 错误.故选:BC.双空题16、已知函数f(x)={−x 2−2x +4,x ≤1log 12x,x >1,则f(f(2))=_____________,函数f(x)的单调递减区间是_______. 答案: 5 (−1,+∞)##[−1,+∞)分析:根据分段函数依次计算即可得f(f(2))的值;分段求出函数f(x)的单调区间即可得解.因函数f(x)={−x 2−2x +4,x ≤1log 12x,x >1,则f(2)=log 122=−1,所以f(f(2))=f(−1)=5; 当x ≤1时,f(x)=−x 2−2x +4在(−∞,−1)上单调递增,在(−1,1]上单调递减,f(1)=1,当x >1时,f(x)=log 12x 在(1,+∞)上单调递减,且log 121=0<1, 所以函数f(x)的单调递减区间是(−1,+∞).所以答案是:5;(−1,+∞)17、设函数f(x)={e x −1,x ≤0−x 2+x,x >0,则f(f(−ln2))=_______;当 x ∈(−∞,m] 时,函数f (x )的值域为 (−1,14] ,则m 的取值范围是____________.答案: e −12−1; 12≤m <1+√52分析:第一空:根据x 范围,代入对应函数解析式求值即可;第二空:先求出f (x )在R 上的值域,结合图象即可求出m 的取值范围.第一空:由题意知:f(−ln2)=e −ln2−1=−12,f(f(−ln2))=f(−12)=e −12−1;第二空:当x ≤0时,f (x )=e x −1在(−∞,0]上为增函数,值域为(−1,0];当x >0时,f (x )=−x 2+x =−(x −12)2+14,值域为(−∞,14],画出图象如下:令−x 2+x =−1,解得x =1±√52,由图象可知,要使函数f (x ) 的值域为 (−1,14],有12≤m <1+√52. 所以答案是:e −12−1;12≤m <1+√52.18、某辆汽车以xkm/ℎ的速度在高速公路上匀速行驶(考虑到高速公路行车安全,要求60≤x ≤120)时,每小时的油耗(所需要的汽油量)为15(x −k +4500x )L ,其中k 为常数.若汽车以120km/ℎ的速度行驶时,每小时的油耗为11.5L ,则k =_____,欲使每小时的油耗不超过...9L ,则速度x 的取值范围为_______. 答案: 100 [60,100]分析:把x =120代入15(x −k +4500x )=11.5,求得k ,再解不等式15(x −k +4500x )≤9,注意定义域. 由题意,当x =120时,15(x −k +4500x )=11.5,所以k =100. 由15(x −100+4500x )⩽9,得x 2−145x +4500≤0,所以45≤x ≤100.又因为60≤x ≤120,所以60≤x ≤100.故答案为100;[60,100].小提示:本题考查函数的应用题.解题关键是列出函数解析式,再根据函数的性质求解.1 .求解已知函数模型解决实际问题的关注点.(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.2 .利用该函数模型,借助函数的性质、导数等求解实际问题,并进行检验.解答题19、溶液酸碱度是通过pH计量的.pH的计算公式为pH=−lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升.(1)根据对数函数性质及上述pH的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;(2)已知胃酸中氢离子的浓度为[H+]=2.5×10−2摩尔/升,计算胃酸的pH.(精确到0.001)(参考数据:lg2≈0.301)答案:(1)溶液中氢离子的浓度越大,溶液的酸性就越强(2)1.602分析:(1)根据复合函数的单调性判断说明;(2)由已知公式计算.(1).根据对数的运算性质,有pH=−lg[H+]=lg[H+]−1=lg1[H+]减小,在(0,+∞)上,随着[H+]的增大,1[H+]相应地,lg1也减小,即pH减小,[H+]所以,随着[H+]的增大,pH减小,即溶液中氢离子的浓度越大,溶液的酸性就越强.(2)当[H+]=2.5×10−2时,pH=−lg2.5×10−2=2lg2+1≈1.602.20、已知函数f(x)=ln(2x2+ax+3).(1)若f(x)是定义在R上的偶函数,求a的值及f(x)的值域;(2)若f(x)在区间[−3,1]上是减函数,求a的取值范围.答案:(1)a=0,[ln3,+∞);(2)a∈(−5,−4]解析:(1)根据偶函数的定义,求出a=0,得f(x)=ln(2x2+3),验证定义域是否关于原点对称,求出真数的范围,再由对数函数的单调性,即可求出值域;(2)u(x)=2x2+ax+3,g(u)=lnu,由条件可得,u(x)=2x2+ax+3在[−3,1]上是减函数,且u(x)>0在[−3,1]上恒成立,根据二次函数的单调性,得出参数a的不等式,即可求解.解:(1)因为f(x)是定义在R上的偶函数,所以f(x)=f(−x),所以ln(2x2+ax+3)=ln(2x2−ax+3),故a=0,此时,f(x)=ln(2x2+3),定义域为R,符合题意.令t=2x2+3,则t⩾3,所以lnt⩾ln3,故f(x)的值域为[ln3,+∞).(2)设u(x)=2x2+ax+3,g(u)=lnu.因为f(x)在[−3,1]上是减函数,所以u(x)=2x2+ax+3在[−3,1]上是减函数,且u(x)>0在[−3,1]上恒成立,故{−a4⩾1,u(x)min=u(1)=5+a>0,解得−5<a≤−4,即a∈(−5,−4].小提示:本题考查函数的性质,涉及到函数的奇偶性、单调性、值域,研究函数的性质要注意定义域,属于中档题.。

第4章 指数函数与对数函数(复习课件)高一数学(人教A版2019必修第一册)

第4章 指数函数与对数函数(复习课件)高一数学(人教A版2019必修第一册)

9=
7.
典例
例 1 (2)已知 log ax=4,logay=5,试求 A
1
解法一 log a A
1 5
2 6
2
2
1
1
+ 3 - 2 log -2log
log
log - 3 log
故 A=1.
1
5
2
6
2
× 4- 3 × 5 =0.
解法二∵log ax=4,loga y=5,∴x=a 4,y=a5 ,
以有2m-3<1,解得m<2.故实数m的取值范围为(-∞,2).
解题技巧
1.求定义域注意事项
(1)分母不等于零;(2)偶次方根大于等于零;(3)对数
函数中真数大于零.
2.一般采用换元法转化为两个函数,再利用两个函数的单调性
与图像求值域,换元后注意新元范围.
3.分别判断a,b,c与0和1的大小,利用中间量法比较大小.
5
=lg 5(lg 5+lg 2)+2lg 2-lg 2+1-2
=lg 5+lg 2-1=1-1=0.
题型二 指数函数、对数函数的定义和性质
典例
例 2 (1)求函数 f(x)
3 2
1-3
lg(3
1-3
>
0,
解:要使函数有意义,则
解得
3 + 1 > 0,
1 1
故函数f(x)的定义域为 - 3 , 3 .
4. 恒成立问题,采用分离参数,转化为求最值问题.
专题三
指数函数、对数函数图象的应用
典例
例3(1)已知a>0,且a≠1,函数y=ax与y=loga(-x)的图象可能是( )
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章 《指数函数与对数函数》测试题
姓名:_________ 考号:________ 分数:__________ 一、选择题:(每小题3分,共计36分)
1.下列运算错误的是( )
A.1
(0)n
n a
a a
-=
≠ B.()n n n ab a b = C.()m n mn a a = D.01a = 2.若集合{2,}x A y y x R ==∈,2{log ,}B y y x x R +==∈,则( )
A.A B
B.A B ⊆
C.A B
D.A B =
3.已知函数⎩⎨⎧>≤=)
0(log )0(3)(2x x x x f x ,那么)]41
([f f 的值为 ( )
B.91
C.9-
D.9
1
-
4.函数2()(1)x
f x a =-在R 上是减函数,则a 的取值范围是( )
A.1>a
B.2a >
C.2a
D.12a <5.若2lg(2)lg lg x y x y -=+,则2
log x
y
的值为( ) B.-2 C.2 或2 6.考察如下四个结论:
①x x a a log 2)(log 2
= ②
y x
y x a a a log log log = ③n a a x n
x log log =
④)(log log log xy y x a a a =⋅ 其中正确的结论有( )
A. 1个
B. 2个
C. 3个
D. 4个
7.3
log 9
log 28的值是( ) A. 32 B. 1 C. 2
3
D. 2
8.函数2)1(log 282
11+-+-=
+x y x 的定义域是( )
A.{x │x >1}
B.{x │x ≤2}
C.{x │1<x <2}
D.{x │1<x ≤2} 9.下列命题中为真命题的是( )
①函数2x y =与2x
y -=的图象关于y 轴对称;②函数2log y x =与12
log y x =的图象关于x 轴对
称;③函数2x
y =与2log y x =的图象关于直线y=x 对称
A.①③
B.②③
C.①②
D.①②③ 10.若a >b >1,P=b a lg lg ⋅,Q=
)lg (lg 21b a +,R=2
lg b a +,则( ) A. R <P <Q B. P <Q <R <P <R D. P <R <Q
11.函数2x
y=(0<a<1)的大致图象是(
)
12.已知()x
f x a
=,()log
a
g x x
=,如果a(a-1)<0恒成立,则
1
()
2
f、(2)
f、(2)
g的大小关系是( )
A.
1
()
2
f<(2)
f<(2)
g B.
1
()
2
f>(2)
f>(2)
g
C. (2)
f<
1
()
2
f<(2)
g D. (2)
f>
1
()
2
f>(2)
g
二、填空题:(每小题3分,共计12分)
13.化简
x
x
x
x32
的结果是_________________.
14.若2
log2,log3,m n
a a
m n a+
===________________.
15.若
4
log1
5
a
>,则a的取值范围是_________________.
16.设0.9
0.7 1.1
log0.8,log0.9, 1.1
a b c
===,则,,
a b c的大小关系是_______________________.
三、解答题:(17~19题每题8分,19~21题每题14分,共计52分)
17.计算: 3
1
2
1
3
1
25
.0
1
4
1
027
.0
10
]
)
8
3
3(
81
[
]
)
8
7
(
3[
)
0081
.0(⨯
-
+


--
-
-
-
-
.
18.求25
lg
50
lg
2
lg
)2
(lg2+

+的值
19.设
2
log3,37,
b
a
==试用,a b表示
42
log56的值.
20.已知函数
1
()(1)
1
x
x
a
f x a
a
-
=>
+
,
(1)判断函数的奇偶性;(2)求该函数的值域;(3)证明()
f x是R上的增函数.
21.已知函数
1
()log
1a
x
f x
x
+
=
-
(a>0且a≠1).
(1)求()
f x的定义域; (2)判断()
f x的奇偶性; (3)讨论()
f x的单调性.
第四章 《指数函数与对数函数》测试题参考答案
一、选择题:(每小题3分,共计36分)
二、填空题:(每小题3分,共计12分)
13. 1112
x 14. 12 15. 4
(,1)5
16. c a b >>
三、解答题:(17~19题每题8分,19~21题每题14分,共计52分)
17.解: 111
1
010.25
334
273(0.0081)[3()][81
(3)]100.02788
------⨯⋅+-⨯ 1111
1440.25333342
21310112[(0.3)]{(3)[()]}10[(0.3)][]30323333
-----=-⋅+-⨯=-⋅+-=
18.解: 25lg 50lg 2lg )2(lg 2
+⋅+ 22(lg 2)lg 2(lg 22lg5)2lg52(lg 2)2lg 2lg52lg52lg 2(lg 2lg5)2lg52lg 22lg52
=+++=++=++=+=
19.解:
37,b =3log 7b ∴=,又2log 3a =,由232log 7
log 7log 3
=
得2log 7,ab = 3222422222log 56log (72)log 733
log 56log 42log (732)log 7log 311
ab ab a ⨯++∴====
⨯⨯++++
20.解:(1)∵定义域为x R ∈,且11()(),()11x x
x
x
a a f x f x f x a a
-----===-∴++是奇函数; (2)∵1222()1,11,02,111
x x
x x x a f x a a a a +-==-+>∴<<+++∵即()f x 的值域为(-1,1);
(3)设12,x x R ∈,且12x x <,∴1212
122121122()()011(1)(1)
x x x x x x x x
a a a a f x f x a a a a ----=-=<++++ ∵分母大于零,且1x
a 2x
a < ∴()f x 是R 上的增函数.
21.解:(1)∵011>-+x
x
,∴ -1<x<1,即f(x)的定义域为(-1,1). (2)∵x ∈(-1,1)且11()log log (),()11a a x x
f x f x f x x x
-+-==-=-∴+-为奇函数.
(3) ∵12111x x x
+=---在(-1,1)上是增函数,
1()log 1a x
f x x
+∴=-在a >1时是增函数;在0<a <1时是减函数.。

相关文档
最新文档