习题答案-第2章
第2章 逻辑门电路-习题答案
第2章逻辑门电路2.1 题图2.1(a)画出了几种两输入端的门电路,试对应题图2.1(b)中的A、B波形画出各门的输出F1~F6的波形。
题图2.1解:2.2 求题图2.2所示电路的输出逻辑函数F1、F2。
题图2.2解:2.3 题图2.3中的电路均为TTL门电路,试写出各电路输出Y1~Y8状态。
题图2.3解: Y1=0, Y2=0, Y3=Hi-Z, Y4=0, Y5=0, Y6=0, Y7=0, Y8=0.2.4 题图2.4中各门电路为CMOS电路,试求各电路输出端Y1、Y2和Y的值。
题图2.4解: Y1=1, Y2=0, Y3=0.2.5 6个门电路及A、B波形如题图2.5所示,试写出F1~F6的逻辑函数,并对应A、B波形画出F1~F6的波形。
题图2.5解:2.6 电路及输入波形分别如题图2.6(a)和2.6(b)所示,试对应A、B、C、x1、x2、x3波形画出F端波形。
题图2.6解:2.7 TTL与非门的扇出系数N是多少?它由拉电流负载个数决定还是由灌电流负载决定?解: N≤8 N由灌电流负载个数决定.2.8 题图2.8表示三态门用于总线传输的示意图,图中三个三态门的输出接到数据传输总线,D1D2、D3D4、…、D m D n为三态门的输入端,EN1、EN2、EN n分别为各三态门的片选输入端。
试问:EN信号应如何控制,以便输入数据D1D2、D3D4、…、D m D n顺序地通过数据总线传输(画出EN1~EN n 的对应波形)。
题图2.8解:用下表表示数据传输情况2.9 某工厂生产的双互补对称反相器(4007)引出端如题图2.9所示,试分别连接成:(1)反相器;(2)三输入与非门;(3)三输入或非门。
题图2.9解: (1) 反向器(2)与非门 (3)或非门2.10 按下列函数画出NMOS 电路图。
123()()()F AB CD E H G F A B CD AB CD F A B=+++=+++=⊕解:(1)(2) (3)2.11 将两个OC门如题图2.11连接,试写出各种组合下的输出电压u o及逻辑表达式。
第二章 习题答案
第二章 需求、供给和均衡价格2. 假定表2—1(即教材中第54页的表2—5)是需求函数Q d =500-100P 在一定价格范围内的需求表:表2—1某商品的需求表 价格(元) 1 2 3 4 5需求量 400 300 200 100 0(1)求出价格2元和4元之间的需求的价格弧弹性。
(2)根据给出的需求函数,求P =2元时的需求的价格点弹性。
(3)根据该需求函数或需求表作出几何图形,利用几何方法求出P =2元时的需求的价格点弹性。
它与(2)的结果相同吗?解答:(1)根据中点公式e d =-ΔQ ΔP ·P 1+P 22,Q 1+Q 22),有e d =2002·2+42,300+1002)=1.5(2)由于当P =2时,Q d =500-100×2=300,所以,有e d =-d Q d P ·P Q =-(-100)·2300=23(3)根据图2—4,在a 点即P =2时的需求的价格点弹性为e d =GB OG =200300=23或者 e d =FO AF =23图2—4显然,在此利用几何方法求出的P =2时的需求的价格点弹性系数和(2)中根据定义公式求出的结果是相同的,都是e d =23。
3. 假定表2—2(即教材中第54页的表2—6)是供给函数Q s =-2+2P 在一定价格范围内的供给表:表2—2某商品的供给表 价格(元) 2 3 4 5 6供给量 2 4 6 8 10(1)求出价格3元和5元之间的供给的价格弧弹性。
(2)根据给出的供给函数,求P =3元时的供给的价格点弹性。
(3)根据该供给函数或供给表作出几何图形,利用几何方法求出P =3元时的供给的价格点弹性。
它与(2)的结果相同吗?解答:(1)根据中点公式e s =ΔQ ΔP ·P 1+P 22,Q 1+Q 22),有e s =42·3+52,4+82)=43(2)由于当P =3时,Q s =-2+2×3=4,所以,e s =d Q d P ·P Q =2·34=1.5。
第二章习题答案
162 第2章习题1 下列化合物中,哪些是路易斯酸,哪些是路易斯碱?BH 4-, PH 3, BeCl 2, CO 2, CO , Hg(NO 3)2, SnCl 2解答:路易斯酸:BeCl 2,PH 3,CO 2,CO ,Hg(NO 3)2,SnCl 2路易斯碱:PH 3,CO ,SnCl 22 写出下列物种的共轭酸和共轭碱:NH 3, NH 2-, H 2O , HI , HSO 4-解答: 共轭酸 共轭碱 共轭酸 共轭碱NH 3 NH 4+ NH 2- NH 2- NH 3 NH 2-H 2O H 3O + OH - HI H 2I + I -HSO 4- H 2SO 4 SO 42-3 下列各对中哪一个酸性较强? 并说明理由。
(a) [Fe(H 2O)6]3+和[Fe(H 2O)6]2+ (b) [Al(H 2O)6]3+和[Ga(H 2O)6]3+(c) Si(OH)4和Ge(OH)4 (d) HClO 3和HClO 4(e) H 2CrO 4和HMnO 4 (f) H 3PO 4和H 2SO 4解答:(a) [Fe(H 2O)6]3+和[Fe(H 2O)6]2+路易斯酸性:前者,中心离子电荷高、半径小,吸引电子能力大;质子酸性:前者,中心离子电荷高,对O 的极化能力大,H +易离解;(b) [Al(H 2O)6]3+和[Ga(H 2O)6]3+、(c) Si(OH)4和Ge(OH)4路易斯酸性:均为前者,中心离子半径小,d 轨道能量低;质子酸性:均为前者,中心离子半径小,对O 的极化能力大,H +易离解;(d) HClO 3和HClO 4、(e) H 2CrO 4和HMnO 4和(f) H 3PO 4和H 2SO 4路易斯酸性和质子酸性均为后者,中心原子氧化数高、半径小,非羟基氧原子多。
4 应用Pauling 规则,(1) 判断H 3PO 4(pK a =2.12)、H 3PO 3(pK a =1.80)和H 3PO 2(pK a =2.0)的结构;(2) 粗略估计H 3PO 4、H 2PO 4-和HPO 42-的pK a 值。
第二章课后习题答案
第二章课后习题答案第二章牛顿定律2-1如图(a)所示,质量为m的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A)ginθ(B)gcoθ(C)gtanθ(D)gcotθ分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcotθ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2用水平力FN把一个物体压着靠在粗糙的竖直墙面上保持静止.当FN逐渐增大时,物体所受的静摩擦力Ff的大小()(A)不为零,但保持不变(B)随FN成正比地增大(C)开始随FN增大,达到某一最大值后,就保持不变(D)无法确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μFN范围内取值.当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()μgR(B)必须等于μgR(C)不得大于μgR(D)还应由汽车的质量m决定(A)不得小于分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μFN.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则()(A)它的加速度方向永远指向圆心,其速率保持不变(B)它受到的轨道的作用力的大小不断增加(C)它受到的合外力大小变化,方向永远指向圆心(D)它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(mgcoθ)使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程v2FNmginθm可判断,随θ角的不断增大过程,轨道支持力FN也将不R断增大,由此可见应选(B).2-5图(a)示系统置于以a=1/4g的加速度上升的升降机内,A、B两物体质量相同均为m,A所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为()(A)58mg(B)12mg(C)mg(D)2mg分析与解本题可考虑对A、B两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A、B两物体受力情况如图(b)所示,图中a′为A、B两物体相对电梯的加速度,ma′为惯性力.对A、B两物体应用牛顿第二定律,可解得FT=5/8mg.故选(A).讨论对于习题2-5这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度aA和aB均应对地而言,本题中aA和aB的大小与方向均不相同.其中aA应斜向上.对aA、aB、a和a′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6图示一斜面,倾角为α,底边AB长为l=2.1m,质量为m的物体从题2-6图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短?其数值为多少?解取沿斜面为坐标轴O某,原点O位于斜面顶点,则由牛顿第二定律有mginαmgμcoαma(1)又物体在斜面上作匀变速直线运动,故有l11at2ginαμcoαt2coα22则t2l(2)gcoαinαμcoα为使下滑的时间最短,可令dt0,由式(2)有dαinαinαμcoαcoαcoαμinα0则可得tan2α1o,49μ此时t2l0.99gcoαinαμcoα2-7工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1=2.00某102kg,乙块质量为m2=1.00某102kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1)两物块以10.0m·s-2的加速度上升;(2)两物块以1.0m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a上升时,有FT-(m1+m2)g=(m1+m2)a(1)FN2-m2g=m2a(2)解上述方程,得FT=(m1+m2)(g+a)(3)FN2=m2(g+a)(4)(1)当整个装置以加速度a=10m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94某103N乙对甲的作用力为F′N2=-FN2=-m2(g+a)=-1.98某103N(2)当整个装置以加速度a=1m·s-2上升时,得绳张力的值为FT=3.24某103N此时,乙对甲的作用力则为F′N2=-1.08某103N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8如图(a)所示,已知两物体A、B的质量均为m=3.0kg物体A以加速度a=1.0m·s-2运动,求物体B与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B及滑轮列动力学方程,有mAg-FT=mAa(1)F′T1-Ff=mBa′(2)F′T-2FT1=0(3)考虑到mA=mB=m,FT=F′T,FT1=F′T1,a′=2a,可联立解得物体与桌面的摩擦力Ffmgm4ma7.2N2讨论动力学问题的一般解题步骤可分为:(1)分析题意,确定研究对象,分析受力,选定坐标;(2)根据物理的定理和定律列出原始方程组;(3)解方程组,得出文字结果;(4)核对量纲,再代入数据,计算出结果来.2-9质量为m′的长平板A以速度v′在光滑平面上作直线运动,现将质量为m的木块B轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析当木块B平稳地轻轻放至运动着的平板A上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1以地面为参考系,在摩擦力Ff=μmg的作用下,根据牛顿定律分别对木块、平板列出动力学方程Ff=μmg=ma1F′f=-Ff=m′a2a1和a2分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a=a1+a2,木块相对平板以初速度-v′作匀减速运动直至最终停止.由运动学规律有-v′2=2a由上述各式可得木块相对于平板所移动的距离为mv22μgmm解2以木块和平板为系统,它们之间一对摩擦力作的总功为W=Ff(+l)-Ffl=μmg式中l为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m′v′=(m′+m)v″由系统的动能定理,有μmg由上述各式可得11mv2mmv222mv22μgmm2-10如图(a)所示,在一只半径为R的半球形碗内,有一粒质量为m的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?分析维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力FN的分力来提供的,由于支持力FN始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示O某y坐标,列出动力学方程,即可求解钢球距碗底的高度.解取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程FNinθmanmRω2inθ(1)Rh(3)且有coθR由上述各式可解得钢球距碗底的高度为hR可见,h随ω的变化而变化.gω22-11火车转弯时需要较大的向心力,如果两条铁轨都在同一水平面内(内轨、外轨等高),这个向心力只能由外轨提供,也就是说外轨会受到车轮对它很大的向外侧压力,这是很危险的.因此,对应于火车的速率及转弯处的曲率半径,必须使外轨适当地高出内轨,称为外轨超高.现有一质量为m的火车,以速率v沿半径为R的圆弧轨道转弯,已知路面倾角为θ,试求:(1)在此条件下,火车速率v0为多大时,才能使车轮对铁轨内外轨的侧压力均为零?(2)如果火车的速率v≠v0,则车轮对铁轨的侧压力为多少?分析如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量FNinθ提供(式中θ角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v0行驶.当火车行驶速率v≠v0时,则会产生两种情况:如图所示,如v>v0时,外轨将会对车轮产生斜向内的侧压力F1,以补偿原向心力的不足,如v<v0时,则内轨对车轮产生斜向外的侧压力F2,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解(1)以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有v2FNinθm(1)解(1)(2)两式可得火车转弯时规定速率为v0gRtanθ(2)当v>v0时,根据分析有v2FNinθF1coθm(3)RFNcoθF1inθmg0(4)解(3)(4)两式,可得外轨侧压力为v2F1mcoθginθR当v<v0时,根据分析有v2FNinθF2coθm(5)RFNcoθF2inθmg0(6)解(5)(6)两式,可得内轨侧压力为v2F2mginθcoθR2-12一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为m,圆筒半径为R,演员骑摩托车在直壁上以速率v作匀速圆周螺旋运动,每绕一周上升距离为h,如图所示.求壁对演员和摩托车的作用力.分析杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v1和v2两个分量,显然v1是竖直向上作匀速直线运动的分速度,而v2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力FN的水平分量FN2提供,而竖直分量FN1则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向解设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有FN1mg0(1)FN2v2m(2)Rv2vcoθv2πR2πR2h2(3)22FNFN1FN2(4)以式(3)代入式(2),得FN2m4π2R2v24π2Rmv222(5)2222R4πRh4πRh将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22FNFN1FN224π2Rv22mg4π2R2h2与壁的夹角φ为FN24π2Rv2arctanarctan222FN14πRhg讨论表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2-13一质点沿某轴运动,其受力如图所示,设t=0时,v0=5m·s-1,某0=2m,质点质量m=1kg,试求该质点7s末的速度和位置坐标.分析首先应由题图求得两个时间段的F(t)函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解由题图得0t52t,Ft5t7355t,由牛顿定律可得两时间段质点的加速度分别为a2t,0t5a355t,5t7对0<t<5s时间段,由adv得dtvtv00dvadt积分后得v5t再由v2d某得dtd某vdt某00某t积分后得某25tt将t=5s代入,得v5=30m·s-1和某5=68.7m对5s<t<7s时间段,用同样方法有133dvv0vt5a2dt得v35t2.5t82.5t再由得某=17.5t2-0.83t3-82.5t+147.87将t=7s代入分别得v7=40m·s-1和某7=142m2-14一质量为10kg的质点在力F的作用下沿某轴作直线运动,已知F =120t+40,式中F的单位为N,t的单位的s.在t=0时,质点位于某=5.0m处,其速度v0=6.0m·s-1.求质点在任意时刻的速度和位置.分析这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a=dv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v(t);由速度的定义v=d某/dt,用积分的方法可求出质点的位置.解因加速度a=dv/dt,在直线运动中,根据牛顿运动定律有2某某5d某vdt5t120t40mdvdt依据质点运动的初始条件,即t0=0时v0=6.0m·s-1,运用分离变量法对上式积分,得vv0dv12.0t4.0dt0tv=6.0+4.0t+6.0t2又因v=d某/dt,并由质点运动的初始条件:t0=0时某0=5.0m,对上式分离变量后积分,有d某6.04.0t6.0tdt某t2某00某=5.0+6.0t+2.0t2+2.0t32-15轻型飞机连同驾驶员总质量为1.0某103kg.飞机以55.0m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0某102N·s-1,空气对飞机升力不计,求:(1)10s后飞机的速率;(2)飞机着陆后10s内滑行的距离.分析飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有dvαtdtvtαtdvv00mdtα2t得vv02mFmam因此,飞机着陆10s后的速率为v=30m·s-1又tα2d某vdt某0002mt某故飞机着陆后10s内所滑行的距离某某0v0tα3t467m6m2-16质量为m的跳水运动员,从10.0m高台上由静止跳下落入水中.高台距水面距离为h.把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为bv2,其中b为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求:(1)运动员在水中的速率v与y的函数关系;(2)如b/m=0.40m-1,跳水运动员在水中下沉多少距离才能使其速率v减少到落水速率v0的1/10?(假定跳水运动员在水中的浮力与所受的重力大小恰好相等)分析该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F和水的阻力Ff的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解(1)运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P-Ff-F=ma由题意P=F、Ff=bv2,而a=dv/dt=v(dv/dy),代入上式后得-bv2=mv(dv/dy)考虑到初始条件y0=0时,v0t2gh,对上式积分,有vdvmdy0v0vbvv0eby/m2gheby/m(2)将已知条件b/m=0.4m-1,v=0.1v0代入上式,则得ymvln5.76mbv0某2-17直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m=136kg,长l=3.66m.求当它的转速n=320r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)分析螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解设叶片根部为原点O,沿叶片背离原点O的方向为正向,距原点O为r处的长为dr一小段叶片,其两侧对它的拉力分别为FT(r)与FT(r+dr).叶片转动时,该小段叶片作圆周运动,由牛顿定律有dFTFTrFTrdr由于r=l时外侧FT=0,所以有m2ωrdrltFTrdFTlrmω2rdrlmω2222πmn222FTrlrlr2ll上式中取r=0,即得叶片根部的张力FT0=-2.79某105N负号表示张力方向与坐标方向相反.2-18一质量为m的小球最初位于如图(a)所示的A点,然后沿半径为r 的光滑圆轨道ADCB下滑.试求小球到达点C时的角速度和对圆轨道的作用力.分析该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度at,与其相对应的外力Ft是重力的切向分量mginα,而与法向加速度an相对应的外力是支持力FN和重力的法向分量mgcoα.由此,可分别列出切向和法向的动力学方程Ft=mdv/dt和Fn=man.由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解小球在运动过程中受到重力P和圆轨道对它的支持力FN.取图(b)所示的自然坐标系,由牛顿定律得Ftmginαmdv(1)dtmv2FnFNmgcoαm(2)R由vdrdαrdα,得dt,代入式(1),并根据小球从点A运动到点Cdtdtv的始末条件,进行积分,有vv0vdvα90orginαdα得v则小球在点C的角速度为2rgcoαωv2gcoα/rrmv2mgcoα3mgcoα由式(2)得FNmr由此可得小球对圆轨道的作用力为FN3mgcoαFN负号表示F′N与en反向.2-19光滑的水平桌面上放置一半径为R的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0,求:(1)t时刻物体的速率;(2)当物体速率从v0减少到12v0时,物体所经历的时间及经过的路程.解(1)设物体质量为m,取图中所示的自然坐标,按牛顿定律,有mv2FNmanRFfmatdvdt由分析中可知,摩擦力的大小Ff=μFN,由上述各式可得v2dvμRdt取初始条件t=0时v=v0,并对上式进行积分,有t0dtRvdvμv0v2vRv0Rv0μt(2)当物体的速率从v0减少到1/2v0时,由上式可得所需的时间为t物体在这段时间内所经过的路程Rμv0vdt0tt0Rv0dtRv0μtRln2μ2-20质量为45.0kg的物体,由地面以初速60.0m·s-1竖直向上发射,物体受到空气的阻力为Fr=kv,且k=0.03N/(m·s-1).(1)求物体发射到最大高度所需的时间.(2)最大高度为多少?分析物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解(1)物体在空中受重力mg和空气阻力Fr=kv作用而减速.由牛顿定律得mgkvmdv(1)dt某2-25如图(a)所示,电梯相对地面以加速度a竖直向上运动.电梯中有一滑轮固定在电梯顶部,滑轮两侧用轻绳悬挂着质量分别为m1和m2的物体A和B.设滑轮的质量和滑轮与绳索间的摩擦均略去不计.已知m1>m2,如以加速运动的电梯为参考系,求物体相对地面的加速度和绳的张力.分析如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.解取如图(b)所示的坐标,以电梯为参考系,分别对物体A、B作受力分析,其中F1=m1a,F2=m2a分别为作用在物体A、B上的惯性力.设ar为物体相对电梯的加速度,根据牛顿定律有m1gm1aFT1m1ar(1)m2gm2aFT2m2ar(2)FT2FT2(3)由上述各式可得arm1m2gam1m22m1m2gam1m2FT2FT2由相对加速度的矢量关系,可得物体A、B对地面的加速度值为a1aram1m2g2m2am1m22m1am1m2gm1m2a2araa2的方向向上,a1的方向由ar和a的大小决定.当ar<a,即m1g-m2g-2m2a>0时,a1的方向向下;反之,a1的方向向上.某2-26如图(a)所示,在光滑水平面上,放一质量为m′的三棱柱A,它的斜面的倾角为α.现把一质量为m的滑块B放在三棱柱的光滑斜面上.试求:(1)三棱柱相对于地面的加速度;(2)滑块相对于地面的加速度;(3)滑块与三棱柱之间的正压力.分析这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意:(1)参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为aA的运动,这时,滑块沿斜面的加速度aBA,不再是它相对于地面的加速度aB了.必须注意到它们之间应满足相对加速度的矢量关系,即aB=aA+aBA.若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F,且有F=maA.(2)坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.(3)在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mgcoα,事实上只有当aA=0时,正压力才等于mgcoα.解1取地面为参考系,以滑块B和三棱柱A为研究对象,分别作示力图,如图(b)所示.B受重力P1、A施加的支持力FN1;A受重力P2、B施加的压力FN1′、地面支持力FN2.A的运动方向为O某轴的正向,Oy轴的正向垂直地面向上.设aA为A对地的加速度,aB为B对的地加速度.由牛顿定律得FN1inαmaA(1)FN1inαmaB某(2)FN1coαmgmaBy(3)FN1FN1(4)设B相对A的加速度为aBA,则由题意aB、aBA、aA三者的矢量关系如图(c)所示.据此可得aB某aAaBAcoα(5)aByaBAinα(6)解上述方程组可得三棱柱对地面的加速度为aAmginαcoα2mminαmginαcoαmmin2α滑块相对地面的加速度aB在某、y轴上的分量分别为aB某aBymmgin2αmmin2α则滑块相对地面的加速度aB的大小为aBaa2B某2Bym22mmm2in2αginαmmin2α其方向与y轴负向的夹角为amcotαθarctanB某arctanaBymmA与B之间的正压力FN1mmgcoα2mminα解2若以A为参考系,O某轴沿斜面方向[图(d)].在非惯性系中运用牛顿定律,则滑块B的动力学方程分别为mginαmaAcoαmaBA(1)mgcoαFN1maAinα0(2)又因FN1inαmaA0(3)FN1FN1(4)由以上各式可解得aAaBAmginαcoαmmin2αmmginαmmin2α由aB、aBA、aA三者的矢量关系可得m22mmm2in2αaBginαmmin2α以aA代入式(3)可得FN1mmgcoαmmin2α。
第2章习题答案
第2章2-1 半径为a的无限薄带电圆盘上面电荷密度为ρ=r2,r为圆盘上任意点到圆心的距离,求圆盘上的总电量。
解:Q=∬ρ∙rdφdrS =∫r3∙dra∙∫dφ2π=πr42。
2-2 半径为a的球体内有均匀分布的电荷,其总电量为Q,若该球以角速度ω绕其自身的任意中轴旋转,求球体内的体电流密度。
解:J V⃗⃗⃗ =3qωrsinθ4πa3φ⃗⃗ 。
2-3 无限薄的导电面放置于z=0平面内的0<x<0.05m的区域中,流向y⃗方向的5A电流按正弦规律分布于该面内,在x=0和x=0.05m处线电流密度为0,在x=0.025m处线电流密度为最大,求J S⃗⃗ 的表达式。
解:电流分布如下图所示:x0.025 0.05J S⃗⃗ =5sin(πx0.05)a y⃗⃗⃗⃗ 。
2-4 三根长度为l、电荷均匀分布、线密度分别为ρl1,ρl2和ρl3的线电荷构成的等边三角形,设ρl1=2ρl2=2ρl3,计算三角形中心处的电场。
解:E y⃗⃗⃗⃗ =ρh4πε0∫√(h2+x2)3l2−l2=4πεh√4h2+l2,由电荷密度关系可知:2|E1|=|E2|=|E3|,|E2|=2E,|E1|=E,|E3|=2E,因此,E1⃗⃗⃗⃗ +E2⃗⃗⃗⃗ +E3⃗⃗⃗⃗ =0。
2-5 两无限长的同轴圆柱壳面,半径为a 和b ,内外导体上均匀分布电荷,密度分别为ρS1,ρS2,求r <a ,a <r <b ,r >b 时各点的电场及两导体间的电压。
解:用高斯定理求E 。
做高斯面(闭合面), ∵轴对称∴高斯面为圆柱闭合面,为左图所示 ①E1(r <a ,内导体内) 设导体为理想导体,则E 1=0;②E2(a <r <b ,内导体与外导体之间圆柱空间)∵同轴无限长,∴圆柱侧面(高斯面)上E 2处处相等,且E只有ρ方向分量d 矢量为高斯封闭面的外法线n ds n s,=E 2·d s : 上下底面:E 2·d s =0(∵E 2⊥d s,cos90°=0) 侧面:E 2·d s =E 2·ds (∵E 2∥d s,cos 0°=1)10222222επρεπρalQlE dS E dS E S d E s S=====⋅∴⎰⎰⎰⎰⎰⎰侧侧∴ρρερˆ012aE s = ③3E( r >b ,外导体壳外)E 32πl ρ=212επρπρblal s s +∴3E =ρρερρˆ021ba s s + (2)两导体内电压ab Va ba d a d E d E l d E V sb a s b aba b a ab ln 10101ερρρερρρρρ===⋅=⋅=⎰⎰⎰⎰ 当r <a 时,E⃗ =0;当a <r <b 时,E ⃗ =ρS1a+ρS2brε0r ,U =∫E ⃗ ∙dr b a =(ρS1a +ρS2b )ε0ln ab 。
运筹学习题答案(第二章)
School of Management
运筹学教程
第二章习题解答
2.4 给出线性规划问题
min Z = 2 x1 + 3 x 2 + 5 x 3 + 6 x 4 x1 + 2 x 2 + 3 x 3 + x 4 ≥ 2 st . − 2 x1 + x 2 − x 3 + 3 x 4 ≤ − 3 x j ≥ 0 , ( j = 1, L , 4 )
page 14 30 December 2010
School of Management
运筹学教程
第二章习题解答
是原问题的可行解。 解:x1=1,x2=x3=0是原问题的可行解。原问题的对 是原问题的可行解 偶问题为: 偶问题为:
min W = 2 y1 + y 2 − y1 − 2 y 2 ≥ 1 (1) y + y ≥1 (2) 1 2 st . ( 3) y1 − y 2 ≥ 0 y1 , y 2 ≥ 0 (4)
运筹学教程
第二章习题解答
2.1 写出下列线性规划问题的对偶问题。 写出下列线性规划问题的对偶问题。
min Z = 2 x1 + 2 x 2 + 4 x 3 x1 + 3 x 2 + 4 x 3 ≥ 2 2 x + x + 3x ≤ 3 2 3 st 1 x1 + 4 x 2 + 3 x 3 = 5 x1 , x 2 , ≥ 0 , x 3 无约束
School of Management
运筹学教程
第二章习题解答
max Z = 5 x1 + 6 x2 + 3 x3 x1 + 2 x2 + 2 x3 = 5 − x + 5 x − 3 x ≥ 3 2 3 st 1 4 x1 + 7 x2 + 3 x3 ≤ 8 x1无约束 , x2 , ≥ 0, x3 ≤ 0
第二章习题答案
2-1举出现实生活中的一些相互对立的、处于矛盾状态的事物。
试着给这些对立的事物赋予逻辑“0”和逻辑“1”。
2-2为什么称布尔代数为“开关代数”?2-3基本逻辑运算有哪些?写出它们的真值表。
答:与、或、非。
2-4什么是逻辑函数?它与普通代数中的函数在概念上有什么异同?2-5如何判定两个逻辑函数的相等?2-6逻辑函数与逻辑电路的关系是什么? 答:逻辑电路是能完成某一逻辑运算的电子线路,而逻辑函数可以描述该电路的逻辑功能。
2-7什么是逻辑代数公理?逻辑代数公理与逻辑代数基本定律或定理的关系是什么?2-8用真值表证明表2.3.2中的“0-1律”,“自等律”,“互补律”,“重叠律”和“还原律”。
2-9分别用真值表和逻辑代数基本定律或定理证明下列公式。
1.)C A )(B A (BC A ++=+ 证明:右边=A+AB+AC+BC=A+BC=左边2.B A B A A +=+证明:左边=AB+AB+AB=AB+AB+AB+AB=A+B=右边 3.A AB A =+证明:左边=A(1+B)=A=右边 4.C A B A C A AB +=+证明:左边=(A+B)(A+C)=0+AB+AC+BC=AB+AC=右边 5.AC B A BCD C A AB +=++A B F 0 0 0 0 1 0 1 0 0 1 11与A B F 0 0 0 0 1 1 1 0 1 1 11或A F 0 1 1 0非证明:左边=AB+AC+ABCD+ABCD=AB+AC=右边6.)(+BA+)(+++C=AB)()(CAA(CB)证明:两边取对偶,得AB+AC+BC=AB+AC,得证。
7.)(+B+)(++A=AB)(CAA()C证明:左边右边=AB+AC+BC=AB+AC得证。
8.AA(=B++))(BA证明:设F=(A+B)(A+B)则F’=AB+AB=AF=(F’)’=A得证。
9.A(A=+AB)证明:左边=A+AB=A=右边,得证。
第二章课后习题及答案
第二章心理辅导的理论基础一、理论测试题(一)单项选择题1.()是根据操作性条件反射原理,强调行为的改变是依据行为后果而定的。
A •强化法B •系统脱敏法C.代币法D •来访者中心疗法2•在对学生进行心理辅导时,常使用的“强化法”属于()。
A •行为改变技术B •认知改变法C.运动改变法D •精神分析法3•在心理辅导的行为演练中,系统脱敏法是由()首创。
A .皮亚杰B •沃尔帕C艾利斯D •罗杰斯4•心理辅导老师帮李晓明建立焦虑等级,让他想象引起焦虑的情境,然后逐渐减少焦虑等级,直至完全放松,以缓解其考试焦虑,这种方法是()。
A •强化法B •系统脱敏法C.理性一情绪疗法D •来访者中心疗法5 •行为塑造法是根据()的操作条件反射研究结果而设计的培育和养成新反应或行为模式的一项行为治疗技术,是操作条件作用法强化原则的有力应用之一。
A .皮亚杰B •斯金纳C.艾利斯D .奥苏贝尔6.()就是运用代币并编制一套相应的激励系统来对符合要求的目标行为的表现进行肯定和奖励。
A .强化法B .理性一情绪疗法C.代币法D .来访者中心疗法7.李老师通过奖励小红花来表扬学生的行为,这种心理辅导方法属于()。
A .系统脱敏法B •代币法C.行为塑造法D .来访者中心疗法8.晓红是韩老师班上的学生,她孤僻、羞涩,当她主动与同学交谈或请教老师时,韩老师就给予肯定或激励。
这种心理辅导方法是()。
A .强化法B •系统脱敏法C.来访者中心法D .理性一情绪疗法9.()不是行为改变的基本方法。
A .强化法B .代币法C.自我控制法D .演练法10.小伟过分害怕狗,通过让他看狗的照片,谈论狗,远看狗到近看狗、摸狗、抱狗,消除对狗的惧怕反应,这是行为训练的()。
A .全身松弛训练B .系统脱敏法C.行为塑造法D .肯定性训练11.当一位胆小的学生敢于主动向教师提问时,教师教师耐心解答并给予表扬和鼓励。
的这种做法属于行为改变方法中的()。
习题答案—第二章
第二章 正交曲线坐标系下的张量分析与场论1、用不同于书上的方法求柱坐标系和球坐标系的拉梅系数及两坐标间的转换关系ij β。
解:①柱坐标系k z j i r++=ϕρϕρs i n c o s ,2222222dz H d H d H ds z ++=ϕρϕρ ()()k dz j d d i d d r d+++-=ϕϕρρϕϕϕρρϕcos sin sin cos()()222222222222222222222222222222c o s s i n s i n c o s c o s s i n 2c o s s i n s i n c o s s i n 2c o s c o s s i n s i n c o s dz d d dz d d d d dz d d d d d d d d dz d d d d r d r d ds ++=++++=+++++-=+++-=⋅=ϕρρϕϕρϕϕρρϕρϕϕρϕϕρϕϕρρϕϕϕρϕρϕϕρρϕϕϕρρϕϕϕρρϕ故:1=ρH ,ρϕ=H ,1=z H ②球坐标系k R j R i R r θφθφθc o s s i n s i n c o s s i n ++=,2222222φθφθd H d H dR H ds R ++=()()()kd R dR j d R d R dR id R d R dR r dθθθφφθθφθφθφφθθφθφθsin cos cos sin sin cos sin sin sin sin cos cos cos sin -++++-+= ()()()2222222222s i n s i n c o s c o s s i n s i n c o s s i n s i ns i n s i n c o s c o s c o s s i n φθθθθθφφθθφθφθφφθθφθφθd R d R dR d R dR d R d R dR d R d R dR r d r d ds ++=-++++-+=⋅=故:1=R H ,R H =θ,θφsin R H = ③两坐标间的转换关系ij βφr re e θe φPθru re e zu ze r(1)圆柱坐标系 (2)球坐标系由球坐标系与直角坐标系的坐标变换矩阵为:sin cos sin sin cos cos cos cos sin sin sin cos 0r e i e j e k θφθφθφθθφθφθφφ⎧⎫⎧⎫⎡⎤⎪⎪⎪⎪⎢⎥=-⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥-⎣⎦⎩⎭⎩⎭注意,圆柱坐标系中的θ和球坐标系的φ相等。
第二章习题答案参考
第二章 金属切削机床设计22. 什么是传动组的级比和级比指数?常规变速传动系的各传动组的级比指数有什么规律性? 传动组的级比是指主动轴上同一点传往被动轴相邻两传动线的比值,用ϕxi 表示。
级比ϕxi 中的指数X i 值称为级比指数,它相当于由上述相邻两传动线与被动轴交点之间相距的格数。
设计时要使主轴转速为连续的等比数列,必须有一个变速组的级比指数为1,此变速组称为基本组。
基本组的级比指数用X 0表示,即X 0 = 1,后面变速组因起变速扩大作用,所以统称为扩大组。
第一扩大组的级比指数X 1一般等于基本组的传动副数P 0,即X 1 = P 0。
第二扩大组的作用是将第一扩大组扩大的变速范围第二次扩大,其级比指数X 2等于基本组的传动副数和第一扩大组传动副数的乘积,即X 2 = P 0×P 1。
如有更多的变速组,则依次类推。
上述设计是传动顺序和扩大顺序相一致的情况,若将基本组和各扩大组采取不同的传动顺序,还有许多方案。
25. 某机床主轴转速n =100~1120 r/min ,转速级数z =8,电动机转速n 电=1440 r/min ,试设计该机床主传动系,包括拟定结构式和转速图,画出主传动系图。
解:2.111001120min max ===n n R n ===-712.11Z n R φ 1.41查表可获得8级转速为 100,140,200,280,400,560,800,1120拟定8级转速的结构式:根据级比规律和传动副前多后少、传动线前密后疏的的原则确定4212228⨯⨯=241.141.111max ≤===ϕ主u 符合要求4/182.2/141.133min ≥===--ϕ主u 符合要求最后扩大组的变速范围:8441.1)12(4)1(≤===--i i P x i R ϕ符合要求 绘制传动系统图如下:26. 试从ϕ=1.26,z =18级变速机构的各种传动方案中选出其最佳方案,并写出结构式,画出转速图和传动系图。
第2章习题参考答案
R12 (Rab // 8 Rbc //12) //(Rac //10) 4
(b) R12 (10 // 14) //(6 // 12 8) 3.92 5. 对图 x2.5 所示电桥电路, 应用 Y 等效变换求: (1) 对角线电压 U ; (2) 电压 U ab 。
。
A 为 0。因为已经被短路掉,没有电流。
2. 电路如图 x2.2 所示,求电压 U 12 以及电流表 A1 和 A2 的读数。
解:如图 x2.2a 所示: R12 20 // 20 10 , R13 4 // 6 2.4
i2
30 0.97 A , i1 i2 0.5 0.48 A 31
解: R12 4 得到 R1
R13 6
R23 10
R2 R12 R23 2 R12 R23 R13
R13 R12 6 R12 R23 R13 5 R23 R13 3 R12 R23 R13
R3
3 2 U 5 3 5 2 5V 5 5
A. U S 40V 的理想电压源 B. I S 4A 的理想电流源 C. U S 0.4V 的理想电压源与 R 10 的电阻相并联的电路 D. U S 40V 的理想电压源与 R 10 的电阻相并联的电路 3.有 3 个电阻相并联,已知 R1 2,R2 3,R3 6 。在 3 个并联电阻的两端 外加电流 I S 18A 的电流源,则对应各电阻中的电流值分别为( A. I R1 3A, I R 2 6A,I R 3 9A C. I R1 6A,I R 2 9A,I R 3 3A B ) 。
U ab (
24 6 24) 5 150V 5 5
第二章习题答案
1
011…1B (231–1) > 100…0B (–231)
1
11…1B (–1) > 11…10B (–2)
1
11…1B (232–1) > 11…10B (232–2)
9.以下是一个 C 语言程序,用来计算一个数组 a 中每个元素的和。当参数 len 为 0 时,返回值应该是 0,
但是在机器上执行时,却发生了存储器访问异常。请问这是什么原因造成的,并说明程序应该如何
10. 设某浮点数格式为:
数符 1位
阶码 5 位移码
尾数 6 位补码
其中,移码的偏置常数为 16,补码采用一位符号位,基数为 4。 (1) 用这种格式表示下列十进制数:+1.7,–0.12,+19,–1/8。 (2) 写出该格式浮点数的表示范围,并与 12 位定点补码整数表示范围比较。 参考答案:(假定采用 0 舍 1 入法进行舍入) (1) +1.7 = +1.1011001B = 0.011011B× 41, 故阶码为 1 +16 = 17 = 10001B, 尾数为+0.011011 的补码,
7 位原码
参考答案: (1)无符号整数:0~216–1。 (2)原码定点小数:–(1–2–15) ~ + (1–2–15)。 (3)补码定点小数:–1 ~ + (1–2–15)。 (4)补码定点整数:–32768 ~ +32767。 (5)浮点数:负数:– (1–2–7)×2+127 ~ –2–7×2–128。
(2)[x]补=10000000 (4)[x]补=11010011
x = –0.0011001B x = –10000000B = –128 x = +0.101001B x = – 101101B = – 45
第二章习题答案
第二章主机习题答案一、名词解释1.中央处理器:又叫做CPU,它是微型计算机的核心部件,它反映了不同时代微型计算机的档次和基本性能2.主频:CPU的时钟频率称为主频, 主频越高, 则计算机工作速度越快。
3.外频:系统的前端总线频率(FSB)也就是所谓的外频,是由主板为CPU提供的基准的时钟频率。
4.倍频:倍频即主频与外频之比。
5.BIOS:即计算机的基本输入输出系统(Basic Input-Output S ystem),是集成在主板上的一个ROM芯片,其中保存有计算机重要的基本输入/输出程序、系统信息设置、开机通电自检程序和系统启动自检程序。
6.CMOS:本意是指互补金属氧化物半导体,一种大规模应用于集成电路芯片制造的原料。
在计算机中是指微机主板上的一块可擦写的RAM芯片,用来保存当前系统的硬件配置和用户对某些参数的设定。
7.只读存储器:它是一种存储芯片,其中的内容一经写入就不能修改,并且在主机关掉后内容也不会消失。
8.随机存储器:它是一种可以通过在紫外线的照射或者使用电来擦除其中内容的特殊的PROM芯片。
其中的内容被擦除后,可以重新写入新内容。
9.SDRAM:SDRAM是同步动态存储器的缩写,其时钟频率与CPU前端总线的系统时钟频率相同,利用一个单一的系统时钟同步所有的地址数据和控制信号。
使用SDRAM不但能提高系统表现,还能简化设计、提供高速的数据传输。
在功能上,它类似常规的DRAM,且也需时钟进行刷新。
可以说,SDRAM是一种改善了结构的增强型DRAM。
目前的SDRAM有10ns和8ns两种参数类型。
10.DDR SDRAM:DDR SDRAM是双速同步动态存储器,是内存的一种,它支持数据在每个时钟周期的两个边沿进行数据传输,从而使内存芯片的数据吞吐率提高了一倍。
DDR-SDRAM还降低了能耗,是目前主流的内存。
二、填空题1.CPU的主频与外频的关系:主频是cpu的频率,外聘是主板的频率。
第2章平稳过程习题答案
第二章平稳过程1指出下面所给的习题中,哪些是平稳过程,哪些不是平稳过程?(1)设随机过程X(t) r e",t>0,其中X具有在区间(0,T)中的均匀分布解:••• 该随机过程的数学期望为T 3 1 1 At T 1 .Ttmx (t) = EX (t)=[e — dx = ——e o = ——[e —1]式const4T Tt Tt•••该随机过程不是平稳过程。
(2)设随机过程{X(t),_::::: ::}在每一时刻的状态只取0或1数值,而在不同时刻的状态是相互独立的,且对任意固定的t有P{X(t)=1}=p P{X(t)=0} =1 _p 其中0:;p:::1解:•••该随机过程的数学期望为mx(t)二EX(t) =1 P{X(t) =1} 0 P{X(t) =0} = p (常数)该随机过程的自相关函数为:R X(t,t •) =E[X(t)X(t )] =1 P{X(t)X(t ) =1} 0 P{X(t)X(t ) = 0} = P{X(t)=1}P{X(t J =1} - p2结果与t 无关• 该随机过程是平稳随机过程。
(3 )设{X n, n _1}n定义Y n =7 X j,试对随机序列{Y n, n 一1},讨论其平稳性。
1 1解:••• EX j=1 P{X j =1} (-1)P{X j - -1} =1 1 0n n•- EY n =E(V X j) EX j -0 (常数)又因为随机序列Y n的自相关函数。
n n "m |R Y( n,n +m) = EY( n)Y(n +m)=E# X j 无X k m 为自然数n m二 EY n 2、'、EX j EX k 二 EY n 2二 DY n (EY n )2二 DY nj 4 k 出 1nn「Ex 2 — (EX j )2「EX : = npj 」jj即 R Y( n, n m)=npuR^m)•••该随机过程不是平稳过程。
电磁场原理习题与解答(第2章)
由
所以: 第二步 单独作用产生的电场强度为,如图(c)所示。
第三步 将和在空洞中产生的场进行叠加,即 注: 2-7半径为 a介电常数为ε的介质球内,已知极化强度 (k为常数)。 试求:(1)极化电荷体密度和面密度 ;
(2)自由电荷体密度 ; (3)介质球内、外的电场强度。 解:(1) ,
(2) 因为是均匀介质,有
的电场与方位角无关,这样处取的元电荷,它产生的电场与点电荷产生
的场相同,为:
z
y
l/2
图2-2长直线电荷周围的电场
l/2
P
其两个分量:
(1)
(2)
又
所以:
(3)
式(3)分别代入式(1)(2)得:
;
(4)
又
(5)
式(5)代入式(4)得:
由于对称性,在z方向 分量互相抵消,故有
(2)建立如图所示的坐标系
应用叠加原理计算电场强度时,要注意是矢量的叠加。
2-4 真空中的两电荷的量值以及它们的位置是已知的,如题图2-4所示, 试写出电位和电场的表达式。 解:为子午面场,对称轴为极轴,因此选球坐标系,由点电荷产生的电 位公式得:
又,
题图2-4
2-5解, (1) 由静电感应的性质和电荷守恒原理,充电到U0后将ቤተ መጻሕፍቲ ባይዱ源拆去,各极 板带电情况如图(1)所示
解:设导电平板的面积为S。两平行板间的间隔为d=1cm。显然, 绝缘导电片的厚度。平板间的电压为。
(1) 忽略边缘效应,未插入绝缘导电片时
插入导电片后
所以,导电片中吸收的能量为
这部分能量使绝缘导电片中的正、负电荷分离,在导电片进入极板间 时,做机械工。
第二章课后习题答案
1. 已知某一时期内某商品的需求函数为Q =50-5P ,供给函数为Qs=-10+5p。
(1)求均衡价格Pe和均衡数量Qe,并作出几何图形。
(2)假定供给函数不变,由于消费者收入水平提高,使需求函数变为Qd=60-5P。
求出相应的均衡价格Pe 和均衡数量Qe ,并作出几何图形。
(3)假定需求函数不变,由于生产技术水平提高,使供给函数变为Qs=-5+5p。
求出相应的均衡价格Pe 和均衡数量Qe ,并作出几何图形。
(4)利用(1)(2 )(3),说明静态分析和比较静态分析的联系和区别。
(5)利用(1)(2 )(3),说明需求变动和供给变动对均衡价格和均衡数量的影响.解答: (1)将需求函数Qd = 50-5P和供给函数Qs =-10+5P 代入均衡条件Qd = Qs ,有: 50- 5P= -10+5P得: Pe=6以均衡价格Pe =6 代入需求函数Qd =50-5p ,得: Qe=20所以,均衡价格和均衡数量分别为Pe =6 , Qe=20 (图略)(2)将由于消费者收入提高而产生的需求函数Qd=60-5p 和原供给函数Qs=-10+5P, 代入均衡条件Q d= Qs ,有: 60-5P=-10+5P 得Pe=7以均衡价格Pe=7代入Qd方程,得Qe=25所以,均衡价格和均衡数量分别为Pe =7 , Qe=25 (图略)(3) 将原需求函数Qd =50-5p和由于技术水平提高而产生的供给函数Q =-5+5p ,代入均衡条件Qd =Qe ,有: 50-5P=-5+5P得Pe= 5.5以均衡价格Pe= 5.5 代入Qd =50-5p ,得22.5所以,均衡价格和均衡数量分别为Pe=5.5 Qe=22.5(4)所谓静态分析是考察在既定条件下某一经济事物在经济变量的相互作用下所实现的均衡状态及其特征.也可以说,静态分析是在一个经济模型中根据所给的外生变量来求内生变量的一种分析方法.以(1)为例,在图中,均衡点 E 就是一个体现了静态分析特征的点.它是在给定的供求力量的相互作用下所达到的一个均衡点.在此,给定的供求力量分别用给定的供给函数Q=-10+5P 和需求函数Q=50-5P表示,均衡点具有的特征是:均衡价格P=6 且当P =6 时,有Q= Q d= Qe =20 ,同时,均衡数量Qe= 20 ,且当Qe=20 时,有Pd=Ps=Pe=6 ,也可以这样来理解静态分析:在外生变量包括需求函数的参数(50,-5) 以及供给函数中的参数(-10,5)给定的条件下,求出的内生变量分别为P= 6 ,Qe =20依此类推,以上所描素的关于静态分析的基本要点,在(2)及其图和(3)及其图中的每一个单独的均衡点上都得到了体现。
(完整版)第二章习题答案
甲企业计划利用一笔长期资金投资购买股票 。现有 m 公司股票 n 公司股票可供选
,甲企业只准备投资一家公司股票,已知 m 公司股票现行市价为每股 9 元,上年每股股
0.15 元,预计以后每年以 6% 的增长率增长。n 公司股票现行市价为每股 7 元 ,上年
0.60 元,股利分配政策将一贯坚持固定股利政策 ,甲企业所要求的投资必要报
1 000元?
=(P/A,i,n)
=(P/A,i,8)
(P/A,i,8)
,当利率为3%时,系数是7.0197;当利率为4%时,系数
6.4632。因此判断利率应在3%~4%之间,设利率为x,则用内插法计算x值。
利率 年金现值系数
i=3%+0.0354%≈3.04%
=10.78%
某公司在2004年1月1日平价发行新债券,每张面值1000元,票面利率为10%,5
12月31日付息。(计算过程中至少保留小数点后4位,计算结果取整)。
要求:
1)2004年1月1日到期收益率是多少?
2)假定2008年1月1日的市场利率下降到8%,那么此时债券的价值是多少?
1)保持第2年的净利润水平;(2)保持第2年的净利润增长率水平;(3)第三年的净利
6%,第四、五年的股利和第三年相同,从第六年开始保持5%的净利润增长率。
10%,计算上述三种情形下该股票的价值。
答案]
/净利润,由于股利支付率不变,普通股股数不变,则净利润增
1年的每股股利=1×(1+4%)=1.04(元)
n 股票股票现行市价为 7 元,低于其投资价值 7.50 元, 故值得投资购买。甲企业
n 公司股票 。
第2章习题答案
答:设备的额定值与实际工作值是两种不同的概念,100A 是发电机的额定电流值,60A
是发电机的实际工作值,实际工作值小于额定值,表明发电机工作在轻载状态。
(5) 根据日常观察,电灯在深夜要比黄昏时亮一些,为什么?
答:深夜时分,大多数家庭都关灯休息,用电量下降,输电线路上的电流减小,输电线
路上的压降减小,加在电灯上的工作电压升高,流过电灯灯丝的电流增大,所以电灯发光强
质进行科学抽象和概括而得到的实体模型。它将实际元器件理想化(或称模型化)。
(2) 标识电压参考方向的方法有哪几种?你最喜欢使用哪一种?为什么?
答:标识电压参考方向的方法有如下三种:用 “ ”、 “ ”极性端表示; 用双下标表
示;在电路图上用箭头表示。
我最喜欢在电路图上用箭头表示电压参考方向这一种。原因如下:一是图形表示直观明 了;二是如果在心中假设流过电阻的电压和电流的参考方向相同,则在图中可省略不划。
(3) Uab 是否表示 a 端的实际电位高于 b 端的实际电位?
答:不一定,Uab 表示电压方向从 a 点指向 b 点,如果Uab 0 ,则 a 点电位高于 b 点;
否则 a 点电位低于 b 点。 (4) 额定电流为 100A 的发电机,只接 60A 的照明负载,还有电流 40A 的电流流到哪去
的 电 灯上 的 电 压
U2
302.5 220V=157.1V>110V 302.5 121
,因此 40W 的电灯会烧毁。
4) 在如图 2-36 的电路中,电压和电流之间的关系为( )
(A) U E RI
答案:B
(B) U E RI (C) U E RI
5) 在图 2-37 所示电路中,当电阻 R2 增大时,则电流 I1 ( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2-7 如习题图1所示的16m 等跨度钢筋混凝土梁,梁全长16.5m ,粱缝6cm ,采用列车中-活载,计算不同加载图式的列车竖向静活载在桥墩基底产生上的荷载大小。
解:(1)单孔重载,活载布置如图(a )所示。
根据∑=0M ,可得支点反力1R 为()40.1134328.056.16522028.0206.906.9921611=⎥⎦⎤⎢⎣⎡--⨯⨯+⎪⎭⎫⎝⎛-⨯⨯=R kN 作用在基底上的竖向活载为40.113411活==R NkN(a)单孔重载(b)单孔轻载(c)双孔重载(d)双孔空车荷载10kN/m活载布置令基底横桥方向中心轴为x x -轴,顺桥方向中心轴为y y -轴,则 1R 对基底x x -轴的力矩1活M 为63.31740.113428.01活=⨯=M kN.m(2)单孔轻载,活载布置如图(b )所示。
支点反力2R 为()12.799206.928.05.706.99228.0352201612=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛+-⨯⨯+-⨯⨯=R kN作用在基底上的竖向活载为12.79922活==R NkN2R 对基底x x -轴的力矩2活M 为75.22312.79928.02活=⨯=M kN.m(3)双孔重载,活载布置如图(c )所示。
根据2211L G L G =确定最不利荷载位置x 。
本题为等跨梁,故21G G =,1G 和2G 分别为左右两跨上活载重量,()x x G 9276.19075.728.169252201-=--⨯+⨯= 52.152356.16922=⨯=G由21G G =解得18.4=x m 。
则支点反力3R 、4R 为()()()40.86318.45.728.162128.1618.45.728.1692318.452201613⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡--⨯-⨯--⨯++⨯⨯==R kN 76.76156.1692214=⨯⨯=R kN作用在基底上的竖向活载为16.162576.76140.863433活=+=+R =R NkN3R 、4R 对基底x x -轴的力矩3活M 为()46.2828.076.76140.8633活=⨯-=MkN.m(4)双孔空车荷载,活载布置如图(d )所示。
支点反力80.821056.162165=⨯⨯==R R kN 作用在基底上的竖向活载为60.165280.82654活=⨯=+R =R NkN5R 、6R 对基底x x -轴的力矩04活=M2-8 某混凝土简支梁桥墩基础位于水中,采用矩形浅基础,基础埋深3.5m ,基底平面尺寸为3.5m (顺桥方向)⨯6.4m (横桥方向),地基土层为中密中砂,其饱和重度为20kN/m 3,基本承载力为350kPa ,作用在基础底面上的荷载如习题表1所示,检算地基强度、基底偏心距、基础的稳定性是否满足要求。
习题表1 作用在基础底面上的荷载(顺桥方向)解:(1)地基强度检算基底应力为常水位、单孔重载或双孔重载、主力+纵向附加力控制。
①地基承载力的修正()()01122[](2)(3)350210 3.52410 3.53400kPak b k h σσγγ=+-+-=+⨯⨯-+⨯⨯-= ②基底截面特性基底面积 4.224.65.3=⨯=A m 2 截面模量 07.135.34.6612=⨯⨯=W m 3 核心半径 58.04.2207.13===A W ρm ③作用在基底上的荷载 单孔重载5117111040071活1恒=+=+=∑N N N i kN 26891172261311H3H11活=++=++=∑M M M M ikN.m双孔重载5633162640073活1恒=+=+=∑N N N i kN 2407117226129H3H23活=++=++=∑M M M M ikN.m④地基强度检算 单孔重载max min434.2kPa 5117268922.7kPa22.413.07i i N M AWσ=±=±=∑∑[]max 434.2kPa<1.2 1.2400480.0kPa σσ==⨯= 满足地基强度要求。
双孔重载maxmin 435.6kPa 5633240767.3kPa22.413.07i i N M AWσ=±=±=∑∑ []max 435.6kPa<1.2 1.2400480.0kPa σσ==⨯= 满足地基强度要求。
(2)基底偏心距检算基底偏心距一般为常水位、单孔轻载、主力+纵向附加力所控制。
①作用在基底上的荷载480679940072活1恒=+=+=∑N N N i kN 26021172261224H3H12活=++=++=∑M M M M ikN.m②容许偏心距查表2-14,建于非岩石地基(包括土状的风化岩层)上的墩台,当承受主力加附加力时,[] 1.00.58m e ρ==③基底偏心距检算26020.54m []0.98m 4806i i M e e N ===<=∑∑ 基底偏心距满足要求。
(3)基础倾覆、滑动稳定性检算基础倾覆、滑动稳定性通常受设计频率水位、单孔轻载、主力+纵向附加力控制。
①作用在基底上的荷载471079939112活2恒=+=+=∑N N N i kN2051219331=+=+=∑H H H i kN25901052261224H3H12活=++=++=∑M M M M ikN.m②基础倾覆稳定性检算0 3.547102 3.2 1.52590s K e ⨯===> 满足基础倾覆稳定性要求。
③基础滑动稳定性检算 0.447109.2 1.3205i c if N K H ⋅⨯==>∑∑= 满足基础滑动稳定性要求。
2-9 某直线平坡单线桥上的圆端形桥墩及其下矩形台阶基础的尺寸、水位线和冲刷线如习题图2所示。
上部结构为16m 长的混凝土等跨简支梁,梁长16.5m ,梁缝6cm ,梁重(含橡胶支座)1030kN ,橡胶支座厚9cm ;梁上设双侧人行道,其重量与线路上部建筑重量按36kN/m 计算;墩身和基础采用C25混凝土,顶帽采用C40钢筋混凝土。
地基土层为中密砾砂,其饱和重度为20kN/m 3,基本承载力4000=σkPa 。
该桥所在地区的基本风压为800Pa ,桥梁位于平坦空旷区。
采用最不利荷载组合,检算桥墩基础的地基强度、基底偏心距、基础的稳定性是否满足要求。
解:一、恒载计算(1)由桥跨传来的恒载压力等跨梁的桥墩,桥跨通过桥墩传至基底的恒载压力1N 为单孔梁重及左右孔梁跨中间的梁上线路设备、人行道的重量,即()16.162606.05.163610301=+⨯+=NkN习题图2 桥墩及基础图(图中尺寸单位为cm )(2)顶帽重量顶帽体积 99.0233.00.15.112=⨯⨯⨯=-V m 3 75.55.03.20.522=⨯⨯=-V m 3()()[]69.68.095.08.09.15.19.15.19.16.49.16.431232=⨯⨯+⨯⨯+⨯⨯⨯+⨯⨯=-πVm 343.1369.675.599.03222122=++=++=---V V V V m 3 顶帽重量 75.33543.13252钢筋混凝土2=⨯==V N γkN (3)墩身重量墩身体积 ()27.24.095.09.15.1213=⨯⨯+⨯=-πV m 3()()[][]15.626.912.112.195.095.0316.924.25.124.25.19.15.19.15.1312223=⨯+⨯++⨯⨯+⨯⨯+⨯⨯⨯+⨯⨯=-πV m 3 42.6415.6227.223133=+=+=--V V V m 3 墩身重量 66.148142.64233混凝土3=⨯==V N γ kN (4)基础重量基础体积 96.380.164.404.60.164.214.44=⨯⨯+⨯⨯=V m 3 基础重量 08.8962396.384=⨯=N kN (5)基础台阶上土体重量 台阶上土体体积()10.170.164.214.464.404.65=⨯⨯-⨯=V m 3 台阶上土体重量 ()0.171102010.175=-⨯=N kN (6)水浮力 ①常水位时正面图的墩身顶面宽度为61.34.321585.36.9=+⨯⨯- m 侧面图的墩身顶面宽度为11.29.121585.36.9=+⨯⨯- m水下圬工体积()()[][]25.6496.385.312.112.1105.1105.1315.324.25.124.25.121.25.121.25.1312216=+⨯+⨯+⨯⨯+⨯⨯+⨯⨯⨯+⨯⨯=-πV m 3水浮力 5.6421025.6416=⨯=-N kN ②设计频率水位时 正面图的墩身顶面宽度为54.34.321585.56.9=+⨯⨯- m 侧面图的墩身顶面宽度为04.29.121585.56.9=+⨯⨯- m水下圬工体积()()[][]41.7696.385.512.112.102.102.1315.524.25.124.25.104.25.104.25.1312226=+⨯+⨯+⨯⨯+⨯⨯+⨯⨯⨯+⨯⨯=-πV m 3水浮力 1.7641041.7626=⨯=-N kN (7)作用在基底上的恒载①常水位时,作用在基底上的恒载为15.38685.6420.17108.89666.148175.33516.16261654321恒1=-++++=-++++=-N N N N N N N kN②设计频率水位时,作用在基底上的恒载为55.37461.7643.36968.124587.13495.34134102654321恒2=-++++=-++++=-N N N N N N N kN二、活载计算 见习题2-7。
三、附加力计算(1)制动力(或牵引力)①单孔重载与单孔轻载的制动力(或牵引力)因单孔重载与单孔轻载作用在梁上的竖向静活载相同,故其制动力(或牵引力)也相等,为()[]35.1935.756.16925220%101=-⨯+⨯⨯=H kN1H 对基底x x -轴的力矩1H M 为()06.2644045.063.110235.1931=+++⨯=H M kN.m②双孔重载的制动力(或牵引力)左孔梁为固定支座传递的制动力(或牵引力) ()[]32.152%10018.45.728.16925220%1012=⨯--⨯+⨯⨯=-H kN右孔梁为滑动支座传递的制动力(或牵引力) 18.76%509256.16%1022=⨯⨯⨯=-H kN传到桥墩上的制动力(或牵引力)为5.22818.7632.1522=+=H kN 35.1931=>H kN故双孔重载时采用的制动力(或牵引力)为35.1932=H kN2H 对基底x x -轴的力矩为 06.26442=H M kN.m(2)纵向风力 ①风荷载强度8808000.100.11.10321=⨯⨯⨯==W K K K W Pa 88.0=kPa其中,1K 根据长边迎风的圆端形截面5.1/>b l 由表2-8查得为1.1;2K 根据轨顶离常水位的高度小于20m 由表2-9查得为1.00;3K 根据地形为一般平坦空旷地区由表2-10查得为1.0。