分式测试(一)
分式测试题
分式测试题班级:__________姓名:__________座号:__________一、单选题(共10题;共20分)1、下列各式:(1﹣x),,,,,其中分式共有()A、5个B、4个C、3个D、2个2、若分式有意义,则()A、B、C、≥ D、3、若分式的值为零,则x的值为()A、0B、1C、﹣1D、±14、分式,,的最简公分母为()A、(a2﹣b2)(a+b)(b﹣a)B、(a2﹣b2)(a+b)C、(a2﹣b2)(b﹣a)D、a2﹣b25、(2017•天门)下列运算正确的是()A、(π﹣3)0=1B、=±3C、2﹣1=﹣2D、(﹣a2)3=a66、分式,,的公分母可能是()A、aB、12aC、8a2D、12a27、下列约分正确的是()A、B、C、D、8、下列各式中,变形不正确的是( )A、B、C、D、9、下列式子是分式方程的是( )A、B、C、D、10、将分式方程去分母,得到正确的整式方程是( )A、B、C、D、二、填空题(共5题;共5分)11、计算的结果为________.12、(2017•湖州)要使分式有意义,的取值应满足________.13、(2017•黄冈)化简:(+ )• =________.14、(2017•怀化)计算:=________.15、计算:________.三、计算题(共5题;共25分)16、(2017•济宁)解方程:=1﹣.17、(2015•呼伦贝尔)解方程:+=1.18、解方程:.19、(2017•连云港)化简• .20、先化简,(﹣)÷,再选一个合适的数作为a的值计算.四、解答题(共2题;共10分)21、(2017•大连)某工厂现在平均每天比原计划多生产25个零件,现在生产600个零件所需时间与原计划生产450个零件所需时间相同,原计划平均每天生产多少个零件?22、甲、乙两公司各为“希望工程”捐款2000元.已知乙公司比甲公司人均多捐20元,且乙公司的人数是甲公司人数的,问甲、乙两公司人均捐款各多少元?答案解析部分一、单选题1、【答案】D【考点】分式的定义【解析】【解答】解:,是分式,故选:D.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.2、【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得2x-1≠0,解得x≠ ;故选B.3、【答案】 B【考点】分式的值为零的条件【解析】【解答】解:∵分式的值为零,∴x﹣1=0,解得:x=1.故选:B.【分析】直接利用分式的值为零即分子为零,注意分母不为零,进而得出答案.4、【答案】D【考点】最简公分母【解析】【解答】解:分式,,的分母分别是a+b、a2﹣b2=(a+b)(a﹣b),b﹣a=﹣(a﹣b),故最简公分母是a2﹣b2;故选D.【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.5、【答案】A【考点】算术平方根,幂的乘方与积的乘方,零指数幂,负整数指数幂【解析】【解答】解:解:A、(π﹣3)0=1,故A正确;B、=3,故B错误;C、2﹣1= ,故C错误;D、(﹣a2)3=-a6,故D错误.故选:A.【分析】根据零指数幂、算术平方根、负整数指数幂、积的乘方的计算法则计算,对各选项分析判断后利用排除法求解.6、【答案】D【考点】最简公分母【解析】【解答】解:如果各分母都是单项式,那么最简公分母就是各系数的最小公倍数,相同字母的最高次幂,所有不同字母都写在积里.所以所求分式的最简公分母为12a2,故选D.【分析】最简公分母,通常取各分母系数的最小公倍数与字母因式的最高次幂的积.7、【答案】D【考点】同底数幂的除法,约分【解析】【解答】解:A. ,故A错误;B. 不能约分,故B错误;C. ,故C错误;D. ,故D正确;故选D.8、【答案】B【考点】约分【解析】【解答】解:A. ∵,故A正确;B. ∵,故B不正确;C. ∵,故C正确;D. ∵,故D正确;故选B.9、【答案】C【考点】分式方程的定义【解析】【解答】解:A. 是一元二次方程,故A不正确;B. 不是任何方程,故B不正确;C. 是分式方程,故C正确;D. 是一元一次方程,故D不正确;故选C.10、【答案】A【考点】解分式方程【解析】【解答】解:将分式方程去分母得,故选A.二、填空题11、【答案】【考点】分式的乘除法【解析】【解答】解:原式=(﹣)÷ = × = .故答案为.【分析】首先把括号里式子进行通分,然后把除法运算转化成乘法运算,再进行约分.12、【答案】x≠2【考点】分式有意义的条件【解析】【解答】解:依题可得:∴x-2≠0.∴x≠2.故答案为x≠2.【分析】根据分式有意义的条件分母不为0即可得出答案.13、【答案】1【考点】分式的混合运算【解析】【解答】解:原式=(﹣)• = •=1.故答案为1.【分析】首先计算括号內的加法,然后计算乘法即可化简.14、【答案】x+1【考点】分式的加减法【解析】【解答】解:原式= .故答案为x+1.【分析】本题考查了分式的加减运算.解决本题主要是因式分解,然后化简.15、【答案】【考点】零指数幂,负整数指数幂【解析】【解答】解:原式= ×1= .三、计算题16、【答案】解:去分母得:2x=x﹣2+1,移项合并得:x=﹣1,经检验x=﹣1是分式方程的解.【考点】解分式方程【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.17、【答案】解:方程两边乘以(x+1)(x﹣1)得:(x+1)2+4=(x+1)(x﹣1),解这个方程得:x=﹣3,检验:当x=﹣3时,(x+1)(x﹣1)≠0,x=﹣3是原方程的解;∴原方程的解是:x=﹣3.【考点】解分式方程【解析】【分析】首先方程两边乘以最简公分母,把分式方程化成整式方程,求出整式方程的解,再代入最简公分母检验即可.18、【答案】解:设3x﹣1=y则原方程可化为:3y﹣2=5,解得y= ,∴有3x﹣1= ,解得x= ,将x= 代入最简公分母进行检验,6x﹣2≠0,∴x= 是原分式的解.【考点】换元法解分式方程【解析】【分析】此题应先设3x﹣1为y,然后将原方程化为3y﹣2=5解得y= ,最后求出x的值.19、【答案】解:原式= • = .【考点】分式的乘除法【解析】【分析】根据分式的乘法,可得答案.20、【答案】解:原式=(﹣)•(a+1)(a﹣1) =2a(a+1)﹣a(a﹣1)=2a2+2a﹣a2+a=a2+3a.当a=0时,原式=0【考点】分式的化简求值【解析】【分析】首先把除法转化为乘法,利用分配律计算,然后合并同类项即可化简,然后代入使分式有意义的a的值求解.四、解答题21、【答案】解:设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据题意得:= ,解得:x=75,经检验,x=75是原方程的解.答:原计划平均每天生产75个零件【考点】分式方程的应用【解析】【分析】设原计划平均每天生产x个零件,现在平均每天生产(x+25)个零件,根据现在生产600个零件所需时间与原计划生产450个零件所需时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.22、【答案】解:设甲公司人均捐款x元,则乙公司人均捐款x+20元,× =解得:x=80,经检验,x=80为原方程的根,80+20=100(元)答:甲、乙两公司人均捐款分别为80元、100元.【考点】分式方程的应用【解析】【分析】首先根据题意,设甲公司人均捐款x元,则乙公司人均捐款x+20元,然后根据:甲公司的人数× =乙公司的人数,列出方程,求出x的值,即可求出甲、乙两公司人均捐款各多少元.。
分式测试题及答案
分式测试题及答案一、选择题1. 下列哪个选项不是分式?A. \( \frac{1}{x} \)B. \( 3x + 2 \)C. \( \frac{x}{y} \)D. \( \frac{3}{2x} \)答案:B2. 分式 \( \frac{x^2 - 1}{x - 1} \) 可以化简为:A. \( x \)B. \( x + 1 \)C. \( x - 1 \)D. \( 1 \)答案:B3. 如果 \( \frac{a}{b} \) 是一个分式,且 \( a \) 和 \( b \) 都是正整数,那么 \( \frac{a}{b} \) 的值:A. 总是大于1B. 总是小于1C. 可以是任何实数D. 总是等于1答案:C二、填空题4. 分式 \( \frac{2x^2 - 3x}{x - 3} \) 的值为0的条件是_______ 。
答案:\( x = \frac{3}{2} \)5. 如果 \( \frac{1}{x} + \frac{2}{y} = 1 \),那么\( \frac{x}{y} + \frac{y}{x} \) 的值为 _______ 。
答案:3三、解答题6. 化简分式 \( \frac{3x^2 - 12x + 12}{x^2 - 4} \) 。
答案:首先分解分子和分母的因式,得到 \( \frac{3(x -2)^2}{(x - 2)(x + 2)} \),然后约去公共因子 \( (x - 2) \),得到 \( \frac{3(x - 2)}{x + 2} \)。
7. 解分式方程 \( \frac{1}{x} - \frac{1}{x + 1} = \frac{2}{x(x + 1)} \)。
答案:首先找到分母的最小公倍数,即 \( x(x + 1) \),然后将方程两边同乘以 \( x(x + 1) \) 以消除分母,得到 \( x + 1 - x = 2 \),解得 \( x = 3 \)。
分式与分式方程专项测试题(一)
第五章分式与分式方程专项测试题(一)一、单项选择题(本大题共有15小题,每小题3分,共45分)1、若分式的值为,则的值为()A.B.C.D.2、某班在“世界读书日”开展了图书交换活动,第一组同学共带图书本,第二组同学共带图书本.已知第一组同学比第二组同学平均每人多带本图书,第二组人数是第一组人数的倍.则第一组的人数( )A. 人B. 人C. 人D. 人3、杭州到北京的铁路长千米.火车的原平均速度为千米时,提速后平均速度增加了千米时,由杭州到北京的行驶时间缩短了小时,则可列方程为()A.B.C.D.4、炎炎夏日,甲安装队为小区安装台空调,乙安装队为小区安装台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装台.设乙队每天安装台,根据题意,下列所列方程正确的是 ( )A.B.C.D.5、若关于的分式方程有增根,则的值是()A.B.C.D. 或6、分式可变形为()A.B.C.D.7、在下列方程中,关于的分式方程的个数有()①;②;③;④;⑤;⑥A. 个B. 个C. 个D. 个8、化简的结果为()A.B.C.D.9、的运算结果正确的是()A.B.C.D.10、把分式中的分子、分母的、同时扩大倍,那么分式的值()A. 扩大倍B. 缩小倍C. 改变原来的D. 不改变11、下列三个式子、、的最简公分母是()A.B.C.D.12、下列分式是最简分式的是()A.B.C.D.13、下列代数式中,属于分式的是()A.B.C.D.14、分式方程的解为()A.B.C.D.15、用换元法解方程,若设,则原方程可化为()A.B.C.D.二、填空题(本大题共有5小题,每小题5分,共25分)16、方程的根是 .17、下列方程:①;②;③(为已知数);④.其中是分式方程的是______.18、方程的解是.(若结果为分数,写成a/b形式)19、化简:______.20、若,则____________.三、解答题(本大题共有3小题,每小题10分,共30分)21、若分式方程的解为正数,求的取值范围.22、计算:.23、计算:•.第五章分式与分式方程专项测试题(一) 答案部分一、单项选择题(本大题共有15小题,每小题3分,共45分)1、若分式的值为,则的值为()A.B.C.D.【答案】B【解析】解:由题意知且且故答案应选:.2、某班在“世界读书日”开展了图书交换活动,第一组同学共带图书本,第二组同学共带图书本.已知第一组同学比第二组同学平均每人多带本图书,第二组人数是第一组人数的倍.则第一组的人数( )A. 人B. 人C. 人D. 人【答案】A【解析】解:设第一组有人.根据题意,得解得.经检验,是原方程的解,且符合题意.答:第一组有人.3、杭州到北京的铁路长千米.火车的原平均速度为千米时,提速后平均速度增加了千米时,由杭州到北京的行驶时间缩短了小时,则可列方程为()A.B.C.D.【答案】A【解析】解:根据题意得:4、炎炎夏日,甲安装队为小区安装台空调,乙安装队为小区安装台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装台.设乙队每天安装台,根据题意,下列所列方程正确的是 ( )A.B.C.D.【答案】A【解析】解:根据两队同时开工且恰好同时完工可得两队所用时间相等.由题意得甲队每天安装台,所以甲安装所有时间为,乙队所用时间为,利用时间相等建立方程得:.5、若关于的分式方程有增根,则的值是()A.B.C.D. 或【答案】A【解析】解:去分母得:,由题知方程的增根为,所以代入上式得:,解得.故正确答案为:.6、分式可变形为()A.B.C.D.【答案】D【解析】解:==,故正确答案为:.7、在下列方程中,关于的分式方程的个数有()①;②;③;④;⑤;⑥A. 个B. 个C. 个D. 个【答案】B【解析】解:①;②⑥的分母不含有未知数,它们是整式方程,不是分式方程;③;④;⑤的分母中含有未知数,故是分式方程.8、化简的结果为()A.B.C.D.【答案】A【解析】解:9、的运算结果正确的是()A.B.C.D.【答案】C【解析】解:10、把分式中的分子、分母的、同时扩大倍,那么分式的值()A. 扩大倍B. 缩小倍C. 改变原来的D. 不改变【答案】D【解析】解:分子、分母的、同时扩大倍,即,根据分式的基本性质,则分式的值不变.11、下列三个式子、、的最简公分母是()A.B.C.D.【答案】D【解析】解:分式、、的分母分别是、、,故最简公分母为.12、下列分式是最简分式的是()A.B.C.D.【答案】B【解析】解:中,分子、分母含有公因式,则它不是最简分式,故本选项错误;的分子、分母不能再分解,且不能约分,是最简分式,故本选项正确;中,分子、分母含有公因式,则它不是最简分式,故本选项错误;分子、分母含有公因式,则它不是最简分式,故本选项错误.13、下列代数式中,属于分式的是()A.B.C.D.【答案】C【解析】解:是整式,不符合题意;是整式,不符合题意;是分式,符合题意;是根式,不符合题意.故正确答案是:14、分式方程的解为()A.B.C.D.【答案】B【解析】解:去分母,得,解得.15、用换元法解方程,若设,则原方程可化为()A.B.C.D.【答案】A【解析】解:把代入原方程得:,方程两边同乘以整理得:.二、填空题(本大题共有5小题,每小题5分,共25分)16、方程的根是 .【答案】【解析】解:,去分母,得.化简整理,得.经检验是原方程的根,原方程的根为.故答案为:.17、下列方程:①;②;③(为已知数);④.其中是分式方程的是______.【答案】①④【解析】解:①是分式方程;②是整式方程;③(为已知数)是整式方程;④是分式方程.18、方程的解是.(若结果为分数,写成a/b形式)【答案】30【解析】解:去分母得:,移项合并得:,解得:,经检验是分式方程的解.19、化简:______.【答案】【解析】解:20、若,则____________.【答案】【解析】由,得,则三、解答题(本大题共有3小题,每小题10分,共30分)21、若分式方程的解为正数,求的取值范围.【解析】解:在方程两边同乘以最简公分母得:,整理,得,.原方程的解为正数,,即.原方程可能的增根为和,把代入得,;把代入得,.当或时,原方程分别有增根和,无解.当且时方程的解为正数.22、计算:.【解析】解:.23、计算:•.【解析】解:原式•.。
分式测试题及答案
分式测试题一、选择题:(每小题3分,共30分) 1.下列说法正确的是(B ).(A )形如AB的式子叫分式 (B )分母不等于零,分式有意义(C )分式的值等于零,分式无意义 (D )分子等于零,分式的值就等于零 2.已知有理式:4x ,a 4 ,1x-y ,3x 4 ,12 x 2,1a +4其中分式有( B ).(A )2个 (B )3个 (C )4个 (D )5个 3. 与分式-x+y x+y相等的是( C ).(A )x+y x-y (B )x-y x+y (C )- x-y x+y (D )x+y-x-y4.下列分式一定有意义的是( A).(A )x x 2+1 (B )x+2x 2 (C )-x x 2-2 (D )x 2x+35. 使分式3aa-1 有意义的字母a 的取值范围( C )(A )a >1 (B )a ≧1 (C )a ≠1 (D )a≠06. 下列各式的约分运算中,正确的是( D ).(A )x 6x 2 =x 3 (B )a+c b+c = a b (C )a+b a+b = 0 (D )a+b a+b=17. 如果分式x 2-1x+1 的值为零,那么x 的值为( D ).(A )0 (B )±1 (C ) -1 (D )18. 将分式12x-y x 5 +y 3的分子和分母中的各项系数都化为整数,应为(C ).(A )x-2y 3x+5y (B )15x-15y 3x+5y (C ) 15x-30y 6x+10y (D )x-2y5x+3y9. 若分式 12a-1的值为正,则a 的取值范围( D )(A )a >2 (B )a ≧12 (C )a <12(D )a >12 10. 已知21a b =,则2a ba b+-的值是( B )(A )-5(B )5(C )-4(D )4二、填空题:(每空3分,共24分) 11.当x= 3 时,分式2x-3 没有意义. 12. 当x= 时,分式3x+2x+1的值是零. 13.3(x+5)x (x+5)= 3x14.若分式13-x 的值为整数,则整数x= 2或4 .15. 不改变分式的值,把下列各式的分子、分母中的各项系数都化为整数23-①23 x-32 y 56x+y = ; ② 0.3a-2b -a+0.7b = . 16. ①x=3是方程11x a --=1的一个根,则a= 3 ; ②已知x=1是方程111x k xx x x +=--+的一个增根,则k=_______。
分式单元测试一(附答案)
分式1、(1)当x 为何值时,分式2122---x x x 有意义?(2)当x 为何值时,分式2122---x x x 的值为零?2、计算:(1)()212242-⨯-÷+-a a a a (2)222---x x x (3)x x x x x x 2421212-+÷⎪⎭⎫⎝⎛-+-+ (4)x yx y x x y x y x x -÷⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--++-3232 (5)4214121111xx x x ++++++-3、计算(1)已知211222-=-x x ,求⎪⎭⎫⎝⎛+-÷⎪⎭⎫ ⎝⎛+--x x x x x 111112的值。
(2)当()00130sin 4--=x 、060tan =y 时,求y x y xy x y x x 3322122++-÷⎪⎪⎭⎫ ⎝⎛+-222y x xyx -++ 的值。
(3)已知02322=-+y xy x (x ≠0,y ≠0),求xyy x x y y x 22+--的值。
(4)已知0132=+-a a ,求142+a a 的值。
4、已知a 、b 、c 为实数,且满足()()02)3(432222=---+-+-c b c b a ,求c b b a -+-11的值。
5、解下列分式方程:(1)x x x x --=-+222; (2)41)1(31122=+++++x x x x(3)1131222=⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+x x x x (4)3124122=---x x x x6、解方程组:⎪⎪⎩⎪⎪⎨⎧==-92113111y x y x7、已知方程11122-+=---x x x m x x ,是否存在m 的值使得方程无解?若存在,求出满足条件的m 的值;若不存在,请说明理由。
8、某商店在“端午节”到来之际,以2400元购进一批盒装粽子,节日期间每盒按进价增加20%作为售价,售出了50盒;节日过后每盒以低于进价5元作为售价,售完余下的粽子,整个买卖过程共盈利350元,求每盒粽子的进价. 9、某书店老板去图书批发市场购买某种图书.第一次用1200元购书若干本,并按该书定价7元出售,很快售完.由于该书畅销,第二次购书时,每本书的批发价已比第一次提高了20%,他用1500元所购该书数量比第一次多10本.当按定价售出200本时,出现滞销,便以定价的4折售完剩余的书.试问该老板这两次售书总体上是赔钱了,还是赚钱了(不考虑其它因素)?若赔钱,赔多少?若赚钱,赚多少?10、进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:11、 建筑学要求,家用住宅房间窗户的面积m 必须小于房间地面的面积n ,但窗户的面积与地面面积的比值越大,采光条件越好。
2022年八年级数学上册第十五章分式测试卷1新版新人教版
第15章分式一、选择题1.已知关于x的分式方程=1的解是非正数,则a的取值范围是()A.a≤﹣1 B.a≤﹣1且a≠﹣2 C.a≤1且a≠﹣2 D.a≤12.下列计算正确的是()A.﹣2﹣1=2 B.(﹣2)2=﹣4 C.20=0 D.=23.甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A.甲乙同时到达B地 B.甲先到达B地C.乙先到达B地 D.谁先到达B地与速度v有关4.若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠15.若x=3是分式方程﹣=0的根,则a的值是()A.5 B.﹣5 C.3 D.﹣36.关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0 C.a≠5 D.a≠5且a≠07.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)8.分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=99.分式方程=1的解为()A.1 B.2 C.D.010.关于x的分式方程的解是负数,则m的取值范围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠011.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠312.关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣113.已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<4二、填空题14.若分式方程=a无解,则a的值为.15.关于x的分式方程﹣=0无解,则m= .16.关于x的方程x2﹣4x+3=0与=有一个解相同,则a= .17.已知关于x的方程的解是负数,则n的取值范围为.18.分式方程=的解是.19.方程=的解是.20.方程﹣=1的解是.21.若关于x的分式方程=﹣2有非负数解,则a的取值范围是.22.计算:20130﹣2﹣1= .23.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.24.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是.25.若关于x的方程无解,则m= .26.若关于x的分式方程的解为正数,那么字母a的取值范围是.27.关于x的方程=﹣1的解是正数,则a的取值范围是.28.已知关于x的方程的解是正数,则m的取值范围是.29.若关于x的方程=+1无解,则a的值是.三、解答题30.小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.参考答案与试题解析一、选择题1.已知关于x的分式方程=1的解是非正数,则a的取值范围是()A.a≤﹣1 B.a≤﹣1且a≠﹣2 C.a≤1且a≠﹣2 D.a≤1【考点】分式方程的解.【分析】先解关于x的分式方程,求得x的值,然后再依据“解是非正数”建立不等式求a 的取值范围.【解答】解:去分母,得a+2=x+1,解得,x=a+1,∵x≤0且x+1≠0,∴a+1≤0且a+1≠﹣1,∴a≤﹣1且a≠﹣2,∴a≤﹣1且a≠﹣2.故选:B.【点评】本题考查了分式方程的解,解一元一次不等式,需注意在任何时候都要考虑分母不为0,这也是本题最容易出错的地方.2.下列计算正确的是()A.﹣2﹣1=2 B.(﹣2)2=﹣4 C.20=0 D.=2【考点】负整数指数幂;有理数的乘方;算术平方根;零指数幂.【分析】根据有理数乘方的法则、算术平方根的定义以及负整数指数幂为正整数指数的倒数,任何非0数的0次幂等于1,分别进行计算,即可得出答案.【解答】解:A、﹣2﹣1=﹣,故本选项错误;B、(﹣2)2=4,故本选项错误;C、20=1,故本选项错误;D、=2,故本选项正确;故选D.【点评】此题考查了负整数指数幂、有理数的乘方、算术平方根以及零指数幂,注意:负整数指数为正整数指数的倒数;任何非0数的0次幂等于1.3.甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是()A.甲乙同时到达B地 B.甲先到达B地C.乙先到达B地 D.谁先到达B地与速度v有关【考点】列代数式(分式).【分析】设从A地到B地的距离为2s,根据时间=路程÷速度可以求出甲、乙两人同时从A 地到B地所用时间,然后比较大小即可判定选择项.【解答】解:设从A地到B地的距离为2s,而甲的速度v保持不变,∴甲所用时间为,又∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为,∴甲先到达B地.故选:B.【点评】此题主要考查了一元一次方程在实际问题中的应用,解题时首先正确理解题意,根据题意设未知数,然后利用已知条件和速度、路程、时间之间的关系即可解决问题.4.若关于x的分式方程=2的解为非负数,则m的取值范围是()A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,表示出整式方程的解,根据解为非负数及分式方程分母不为0求出m的范围即可.【解答】解:去分母得:m﹣1=2x﹣2,解得:x=,由题意得:≥0且≠1,解得:m≥﹣1且m≠1,故选D【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.5.若x=3是分式方程﹣=0的根,则a的值是()A.5 B.﹣5 C.3 D.﹣3【考点】分式方程的解.【分析】首先根据题意,把x=3代入分式方程﹣=0,然后根据一元一次方程的解法,求出a的值是多少即可.【解答】解:∵x=3是分式方程﹣=0的根,∴,∴,∴a﹣2=3,∴a=5,即a的值是5.故选:A.【点评】(1)此题主要考查了分式方程的解,要熟练掌握,解答此题的关键是要明确:在解方程的过程中因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根,增根是令分母等于0的值,不是原分式方程的解.(2)此题还考查了一元一次方程的求解方法,要熟练掌握.6.关于x的分式方程=有解,则字母a的取值范围是()A.a=5或a=0 B.a≠0 C.a≠5 D.a≠5且a≠0【考点】分式方程的解.【分析】先解关于x的分式方程,求得x的值,然后再依据“关于x的分式方程=有解”,即x≠0且x≠2建立不等式即可求a的取值范围.【解答】解:=,去分母得:5(x﹣2)=ax,去括号得:5x﹣10=ax,移项,合并同类项得:(5﹣a)x=10,∵关于x的分式方程=有解,∴5﹣a≠0,x≠0且x≠2,即a≠5,系数化为1得:x=,∴≠0且≠2,即a≠5,a≠0,综上所述:关于x的分式方程=有解,则字母a的取值范围是a≠5,a≠0,故选:D.【点评】此题考查了求分式方程的解,由于我们的目的是求a的取值范围,根据方程的解列出关于a的不等式.另外,解答本题时,容易漏掉5﹣a≠0,这应引起同学们的足够重视.7.解分式方程+=3时,去分母后变形为()A.2+(x+2)=3(x﹣1)B.2﹣x+2=3(x﹣1) C.2﹣(x+2)=3(1﹣x) D.2﹣(x+2)=3(x﹣1)【考点】解分式方程.【分析】本题考查对一个分式确定最简公分母,去分母得能力.观察式子x﹣1和1﹣x互为相反数,可得1﹣x=﹣(x﹣1),所以可得最简公分母为x﹣1,因为去分母时式子不能漏乘,所以方程中式子每一项都要乘最简公分母.【解答】解:方程两边都乘以x﹣1,得:2﹣(x+2)=3(x﹣1).故选D.【点评】考查了解分式方程,对一个分式方程而言,确定最简公分母后要注意不要漏乘,这正是本题考查点所在.切忌避免出现去分母后:2﹣(x+2)=3形式的出现.8.分式方程=的解为()A.x=0 B.x=3 C.x=5 D.x=9【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故选D.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.9.分式方程=1的解为()A.1 B.2 C.D.0【考点】解分式方程.【专题】计算题.【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2﹣3x=x﹣2,解得:x=1,经检验x=1是分式方程的解.故选A.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.10.关于x的分式方程的解是负数,则m的取值范围是()A.m>﹣1 B.m>﹣1且m≠0 C.m≥﹣1 D.m≥﹣1且m≠0【考点】分式方程的解.【分析】由题意分式方程的解为负数,解方程求出方程的解x,然后令其小于0,解出m的范围.注意最简公分母不为0.【解答】解:方程两边同乘(x+1),得m=﹣x﹣1解得x=﹣1﹣m,∵x<0,∴﹣1﹣m<0,解得m>﹣1,又x+1≠0,∴﹣1﹣m+1≠0,∴m≠0,即m>﹣1且m≠0.故选:B.【点评】此题主要考查分式的解,关键是会解出方程的解,此题难度中等,容易漏掉隐含条件最简公分母不为0.11.已知关于x的分式方程+=1的解是非负数,则m的取值范围是()A.m>2 B.m≥2 C.m≥2且m≠3 D.m>2且m≠3【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解表示出x,根据方程的解为非负数求出m的范围即可.【解答】解:分式方程去分母得:m﹣3=x﹣1,解得:x=m﹣2,由方程的解为非负数,得到m﹣2≥0,且m﹣2≠1,解得:m≥2且m≠3.故选:C【点评】此题考查了分式方程的解,时刻注意分母不为0这个条件.12.关于x的分式方程=1的解为正数,则字母a的取值范围为()A.a≥﹣1 B.a>﹣1 C.a≤﹣1 D.a<﹣1【考点】分式方程的解.【专题】计算题.【分析】将分式方程化为整式方程,求得x的值然后根据解为正数,求得a的范围,但还应考虑分母x+1≠0即x≠﹣1.【解答】解:分式方程去分母得:2x﹣a=x+1,解得:x=a+1,根据题意得:a+1>0且a+1+1≠0,解得:a>﹣1且a≠﹣2.即字母a的取值范围为a>﹣1.故选:B.【点评】本题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.13.已知方程﹣a=,且关于x的不等式组只有4个整数解,那么b的取值范围是()A.﹣1<b≤3 B.2<b≤3 C.8≤b<9 D.3≤b<4【考点】分式方程的解;一元一次不等式组的整数解.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a的值,经检验确定出分式方程的解,根据已知不等式组只有4个正整数解,即可确定出b的范围.【解答】解:分式方程去分母得:3﹣a﹣a2+4a=﹣1,即(a﹣4)(a+1)=0,解得:a=4或a=﹣1,经检验a=4是增根,故分式方程的解为a=﹣1,已知不等式组解得:﹣1<x≤b,∵不等式组只有4个整数解,∴3≤b<4.故选:D【点评】此题考查了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解本题的关键.二、填空题(共16小题)14.若分式方程=a无解,则a的值为1或﹣1 .【考点】分式方程的解.【专题】计算题.【分析】由分式方程无解,得到最简公分母为0求出x的值,分式方程去分母转化为整式方程,把x的值代入计算即可求出a的值.【解答】解:去分母得:x﹣a=ax+a,即(a﹣1)x=﹣2a,显然a=1时,方程无解;由分式方程无解,得到x+1=0,即x=﹣1,把x=﹣1代入整式方程得:﹣a+1=﹣2a,解得:a=﹣1,综上,a的值为1或﹣1,故答案为:1或﹣1【点评】此题考查了分式方程的解,需注意在任何时候都要考虑分母不为0.15.关于x的分式方程﹣=0无解,则m= 0或﹣4 .【考点】分式方程的解.【分析】分式方程无解的条件是:去分母后所得整式方程无解,或解这个整式方程得到的解使原方程的分母等于0.【解答】解:方程去分母得:m﹣(x﹣2)=0,解得:x=2+m,∴当x=2时分母为0,方程无解,即2+m=2,∴m=0时方程无解.当x=﹣2时分母为0,方程无解,即2+m=﹣2,∴m=﹣4时方程无解.综上所述,m的值是0或﹣4.故答案为:0或﹣4.【点评】本题考查了分式方程无解的条件,是需要识记的内容.16.关于x的方程x2﹣4x+3=0与=有一个解相同,则a= 1 .【考点】分式方程的解;解一元二次方程-因式分解法.【分析】利用因式分解法求得关于x的方程x2﹣4x+3=0的解,然后分别将其代入关于x的方程=,并求得a的值.【解答】解:由关于x的方程x2﹣4x+3=0,得(x﹣1)(x﹣3)=0,∴x﹣1=0,或x﹣3=0,解得x1=1,x2=3;当x1=1时,分式方程=无意义;当x2=3时,=,解得a=1,经检验a=1是原方程的解.故答案为:1.【点评】本题考查了一元二次方程的解、分式方程的解.解分式方程时,注意:分式的分母不为零.17.已知关于x的方程的解是负数,则n的取值范围为n<2且n≠.【考点】分式方程的解.【分析】求出分式方程的解x=n﹣2,得出n﹣2<0,求出n的范围,根据分式方程得出n﹣2≠﹣,求出n,即可得出答案.【解答】解:,解方程得:x=n﹣2,∵关于x的方程的解是负数,∴n﹣2<0,解得:n<2,又∵原方程有意义的条件为:x≠﹣,∴n﹣2≠﹣,即n≠.故答案为:n<2且n≠.【点评】本题考查了分式方程的解和解一元一次不等式,关键是得出n﹣2<0和n﹣2≠﹣,注意题目中的隐含条件2x+1≠0,不要忽略.18.分式方程=的解是x=2 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:3x=2x+2,解得:x=2,经检验x=2是分式方程的解.故答案为:x=2.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.19.方程=的解是x=9 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可确定出分式方程的解.【解答】解:去分母得:2x=3x﹣9,解得:x=9,经检验x=9是分式方程的解,故答案为:x=9【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.20.方程﹣=1的解是x=2 .【考点】解分式方程.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:x2﹣2x+2=x2﹣x,解得:x=2,经检验x=2是分式方程的解,故答案为:x=2【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.21.若关于x的分式方程=﹣2有非负数解,则a的取值范围是a且a.【考点】分式方程的解.【分析】将a看做已知数,表示出分式方程的解,根据解为非负数列出关于a的不等式,求出不等式的解集即可得到a的范围.【解答】解:分式方程去分母得:2x=3a﹣4(x﹣1),移项合并得:6x=3a+4,解得:x=,∵分式方程的解为非负数,∴≥0且﹣1≠0,解得:a≥﹣且a≠.故答案为:a且a.【点评】此题考查了分式方程的解,分式方程的解即为能使方程左右两边相等的未知数的值,本题注意x﹣1≠0这个隐含条件.22.计算:20130﹣2﹣1= .【考点】负整数指数幂;零指数幂.【分析】根据任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数进行计算即可得解.【解答】解:20130﹣2﹣1=1﹣=.故答案为:.【点评】本题考查了任何数的零次幂等于1,负整数指数次幂等于正整数指数次幂的倒数,是基础题,熟记两个性质是解题的关键.23.如果从一卷粗细均匀的电线上截取1米长的电线,称得它的质量为a克,再称得剩余电线的质量为b克,那么原来这卷电线的总长度是米.【考点】列代数式(分式).【专题】计算题.【分析】这卷电线的总长度=截取的1米+剩余电线的长度.【解答】解:根据1米长的电线,称得它的质量为a克,只需根据剩余电线的质量除以a,即可知道剩余电线的长度.故总长度是(+1)米.故答案为:(+1).【点评】注意代数式的正确书写,还要注意后边有单位,故该代数式要带上括号.解决问题的关键是读懂题意,找到所求的量的等量关系.24.已知关于x的分式方程﹣=1的解为负数,则k的取值范围是k>且k≠1 .【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,根据解为负数确定出k的范围即可.【解答】解:去分母得:(x+k)(x﹣1)﹣k(x+1)=x2﹣1,去括号得:x2﹣x+kx﹣k﹣kx﹣k=x2﹣1,移项合并得:x=1﹣2k,根据题意得:1﹣2k<0,且1﹣2k≠±1解得:k>且k≠1故答案为:k>且k≠1.【点评】此题考查了分式方程的解,本题需注意在任何时候都要考虑分母不为0.25.若关于x的方程无解,则m= ﹣8 .【考点】分式方程的解.【专题】计算题.【分析】分式方程去分母转化为整式方程,将x=5代入计算即可求出m的值.【解答】解:分式方程去分母得:2(x﹣1)=﹣m,将x=5代入得:m=﹣8.故答案为:﹣8【点评】此题考查了分式方程的解,方程的解即为能使方程左右两边相等的未知数的值.26.若关于x的分式方程的解为正数,那么字母a的取值范围是a>1且a≠2 .【考点】分式方程的解.【专题】计算题.【分析】将a看做已知数求出分式方程的解得到x的值,根据解为正数列出不等式,求出不等式的解集即可得到a的范围.【解答】解:分式方程去分母得:2x﹣a=x﹣1,解得:x=a﹣1,根据题意得:a﹣1>0且a﹣1﹣1≠0,解得:a>1且a≠2.故答案为:a>1且a≠2.【点评】此题考查了分式方程的解,弄清题意是解本题的关键.注意分式方程分母不等于0.27.关于x的方程=﹣1的解是正数,则a的取值范围是a>﹣1且a≠﹣.【考点】分式方程的解.【分析】根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得答案.【解答】解:=﹣1,解得x=,∵=﹣1的解是正数,∴x>0且x≠2,即0且≠2,解得a>﹣1且a≠﹣.故答案为:a>﹣1且a≠﹣.【点评】本题考查了分式方程的解,先求出分式方程的解,再求出a的取值范围.28.已知关于x的方程的解是正数,则m的取值范围是m>﹣6且m≠﹣4.【考点】分式方程的解.【分析】首先求出关于x的方程的解,然后根据解是正数,再解不等式求出m的取值范围.【解答】解:解关于x的方程得x=m+6,∵方程的解是正数,∴m+6>0且m+6≠2,解这个不等式得m>﹣6且m≠﹣4.故答案为:m>﹣6且m≠﹣4.【点评】本题考查了分式方程的解,是一个方程与不等式的综合题目,解关于x的方程是关键,解关于x的不等式是本题的一个难点.29.若关于x的方程=+1无解,则a的值是2或1 .【考点】分式方程的解.【专题】压轴题.【分析】把方程去分母得到一个整式方程,把方程的增根x=2代入即可求得a的值.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.【点评】首先根据题意写出a的新方程,然后解出a的值.三、解答题30.小明解方程﹣=1的过程如图.请指出他解答过程中的错误,并写出正确的解答过程.【考点】解分式方程.【专题】图表型.【分析】小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验,写出正确的解题过程即可.【解答】解:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少检验;正确解法为:方程两边乘以x,得:1﹣(x﹣2)=x,去括号得:1﹣x+2=x,移项得:﹣x﹣x=﹣1﹣2,合并同类项得:﹣2x=﹣3,解得:x=,经检验x=是分式方程的解,则方程的解为x=.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.。
分式测试题及答案
分式测试题及答案一、选择题1. 已知分式\( \frac{a}{b} \),若\( a \)和\( b \)同号,则该分式的值为()A. 正数B. 负数C. 0D. 无法确定2. 下列分式中,哪个分式的值是负数?A. \( \frac{-3}{4} \)B. \( \frac{-3}{-4} \)C. \( \frac{3}{-4} \)D. \( \frac{3}{4} \)3. 如果\( \frac{x}{y} = 2 \),当\( y \)增加时,分式的值会()A. 变大B. 变小C. 不变D. 无法确定二、填空题4. 将分式\( \frac{2x^2}{3x} \)化简为\( \frac{x}{\_\_\_} \)。
5. 若\( \frac{a}{b} = \frac{c}{d} \),且\( b \)和\( d \)不为0,则\( a \)和\( c \)成______比例。
三、解答题6. 已知\( \frac{2}{x+1} = \frac{3}{y+1} \),求\( \frac{x}{y} \)的值。
7. 计算下列分式的和:\( \frac{1}{2x+1} + \frac{2}{3x-1} \)。
四、应用题8. 一个水池的容积是\( 2000 \)升,水管A每秒可以注入\( 5 \)升水,水管B每秒可以排出\( 3 \)升水。
如果同时打开水管A和B,求水池注满需要的时间。
答案:一、选择题1. A2. C3. B二、填空题4. 35. 正三、解答题6. 由题意可得\( 2y+2 = 3x+3 \),化简得\( 2y = 3x+1 \),所以\( \frac{x}{y} = \frac{2}{3} \)。
7. 通分后计算得:\( \frac{1}{2x+1} + \frac{2}{3x-1} = \frac{3x-1}{(2x+1)(3x-1)} + \frac{4(2x+1)}{(2x+1)(3x-1)} = \frac{3x-1+8x+4}{(2x+1)(3x-1)} = \frac{11x+3}{(2x+1)(3x-1)} \)。
分式测试题及答案
分式测试题及答案一、选择题1. 分式的基本性质是()A. 分子分母同时乘以一个不为0的数,分式的值不变B. 分子分母同时除以一个不为0的数,分式的值不变C. 分子分母同时乘以或除以一个不为0的数,分式的值不变D. 以上都不对答案:C2. 已知分式\(\frac{a}{b}\),如果\(b=0\),则分式()A. 无意义B. 有意义C. 等于0D. 等于1答案:A3. 将分式\(\frac{3x^2}{2x^2-4x+2}\)化为最简形式,正确的是()A. \(\frac{3x}{2-x}\)B. \(\frac{3x}{x-1}\)C. \(\frac{3x}{2x-1}\)D. \(\frac{3x}{x-2}\)答案:B二、填空题1. 计算分式\(\frac{2}{x-1}+\frac{3}{x+1}\)的和,结果为______。
答案:\(\frac{5x+1}{x^2-1}\)2. 若分式\(\frac{2x-3}{x^2-4}\)有意义,则x不能等于______。
答案:±2三、计算题1. 计算并简化\(\frac{2x^2-4x+2}{x^2-9}\)。
答案:\(\frac{2(x-1)^2}{(x-3)(x+3)} = \frac{2}{x+3}\)(当\(x \neq 3\))2. 计算并简化\(\frac{1}{x-1} - \frac{1}{x+1} + \frac{2}{x^2-1}\)。
答案:\(\frac{2}{x^2-1}\)四、解答题1. 已知\(\frac{a}{b} = \frac{c}{d}\),求\(\frac{ad}{bc} = \)。
答案:12. 若\(\frac{2}{3} \leq \frac{a}{b} < 1\),求\(\frac{a}{b} +\frac{1}{a}\)的取值范围。
答案:\(\frac{5}{3} \leq \frac{a}{b} + \frac{1}{a} < 2\)五、证明题1. 证明:若\(\frac{a}{b} = \frac{c}{d}\),则\(\frac{a+c}{b+d} = \frac{a}{b}\)。
八年级上册数学《分式》单元测试题(带答案)
[答案]B
[解析]
[详解]解:去分母得:
由分式方程无解,得到 即
把 代入整式方程得:
故选B.
5.一份工作,甲单独做需A天完成,乙单独做需B天完成,则甲乙两人合作一天的工作量是()
A.A+BB. C. D.
[答案]D
[解析]
[分析]
甲、乙合做一天的工作量=甲一天的工作量+乙一天的工作量,把相关数值代入即可.
15.已知 ,则 =_____.
16.某人骑自行车比步行每小时多走8千米,如果他步行12千米所用时间与骑车行36千米所用时间相等,那么他 步行速度为_____千米/小时.
三.解答题(共72分,共8小题)
17.解下列分式方程:
(1) ;
(2) .
18.化简求值: ,其中x=1.
19.开学初,小芳和小亮去学校商店购买学习用品,小芳用30元钱购买钢笔的数量是小亮用25元钱购买笔记本数量的2倍,已知每支钢笔的价格比每本笔记本的价格少2元
参考答案
第Ⅰ卷(选择题)
一.选择题(每小题3分,共10小题)
1.若把 变形为 ,则下列方法正确的是
A.分子与分母同时乘 B.分子与分母同时除以
C.分子与分母同时乘 D.分子与分母同时除以
[答案]B
[解析]
[分析]
把 中的分母利用平方差因式分解,再根据分式的基本性质即可解答.
[详解]根据分式的基本性质可得:
∴ = × ,
解得x=27,
经检验x=27是原方程的解,且符合题意.
即:小王用自驾车方式上班平均每小时行驶27千米.
故答案选:B.
[点睛]本题考查了分式方程的应用,解题的关键是熟练的掌握分式方程的应用.
分式全章综合测试题1
第十六章 分式全章标准检测卷一、选择题:(每小题3分,共30分)1.下列运算正确的是( ) A.x 10÷x 5=x 2; B.x -4·x=x -3; C.x 3·x 2=x 6; D.(2x -2)-3=-8x62.如果m 个人完成一项工作需要d 天,则(m+n)个人完成这项工作需要的天数为 ( ) A.d+n B.d-n C.md m n + D.dm n+3.化简a ba b a b--+等于( )A.2222a b a b +-;B.222()a b a b +-; C.2222a b a b -+; D.222()a b a b +- 4.若分式2242x x x ---的值为零,则x 的值是( )A.2或-2B.2C.-2D.45.不改变分式52223x yx y -+的值,把分子、分母中各项系数化为整数,结果是( ) A.2154x y x y -+ B.4523x y x y-+ C.61542x y x y -+ D.121546x y x y -+6.分式:①223a a ++,②22a ba b --,③412()aa b -,④12x -中,最简分式有 ( )A.1个B.2个C.3个D.4个 7.计算4222xx x x x x⎛⎫-÷⎪-+-⎝⎭的结果是( ) A.12x + B.-12x + C.-1 D.18.若关于x 的方程x a cb x d-=- 有解,则必须满足条件 ( ) A.c ≠d B.c ≠-d C.bc ≠-ad C.a ≠b 9. 已知两个分式:244A x =-,11,22B x x=++-其中2x ≠±。
下面有三个结论: (1)A=B (2)A 、B 互为相反数 (3) A 、B 互为倒数。
正确的个数 ( ) A 、0, B 、1, C 、2, D 、310.一件工作,甲独做a 小时完成,乙独做b 小时完成,则甲、乙两人合作完成需要 ( ) A.(11a b +) 小时; B.1ab 小时; C.1a b + 小时; D.aba b + 小时 二、填空题:(每小题3分,共18分) 11.当2x≠时,分式bx ax +-有意义,则b=______________;12. 函数y=2(3)12x x-+--中,自变量x 的取值范围是___________.13. 计算121(1)5(2004)2π-⎛⎫-+-÷- ⎪⎝⎭的结果是_________.14. 已知u=121s s t -- (u ≠0),则t=___________.15. 当m=______时,方程233x m x x =---会产生增根. 16. 用科学记数法表示:12.5毫克=________吨. 三、计算题:17.(1)35(2)482y y y y -÷+--- ( 6分); (2)2244)2)(1(22-÷⎥⎦⎤⎢⎣⎡--+--+a a a a a a a a a ( 6分).学校家18、先将代数式21111x x x x ⎛⎫⎛⎫-÷+ ⎪ ⎪+-⎝⎭⎝⎭化简,再从33x -<<的范围内选取一个合适的整数x 代入求值.(8分);19、a 为何值时,分式1a a21a 222---+的值为零?(8分) 20、若0)4y 1y 3(3x 21x 2=+++--,求代数式1y 321x 23--+的值;( 8分)四、解方程:(6分) 21. (1)11322xx x--=---。
第5章分式 达标测试卷(含答案)
第5章分式 达标测试卷第Ⅰ卷 (选择题)一、单选题(本题有10小题,每小题3分,共30分) 1.若代数式xx -4有意义,则实数x 的取值范围是( )A .x =0B .x =4C .x ≠0D .x ≠4 2. 当x =1时,下列分式没有意义的是( )A.x +1xB.x x -1C.x -1xD.x x +13.要使分式x -2(x -1)(x -2)有意义,x 的取值应满足( )A .x ≠1B .x ≠2C .x ≠1且x ≠2D .x ≠1或x ≠24.能使分式4x +72x -3的值为整数的整数x 有( )A .1个B .2个C .3个D .4个 5.下列从左到右的变形正确的是( )A .(-a -b )(a -b )=a 2-b 2B .-a -21-a =a -2a -1C .2x 2-x -6=(2x +3)(x -2)D .4m 2-6mn +9n 2=(2m -3n )2 6.化简⎝ ⎛⎭⎪⎫a -b 2a ÷a -b a 的结果是( )A .a -bB .a +bC .1a -bD .1a +b7.【2022·丽水】某校购买了一批篮球和足球.已知购买足球的数量是篮球的2倍,购买足球用了5 000元,购买篮球用了4 000元,篮球单价比足球贵30元.根据题意可列方程为5 0002x =4 000x -30,则方程中x 表示( ) A .足球的单价 B .篮球的单价 C .足球的数量 D .篮球的数量 8.若x +1x =2,则x 2x 4+2x 2+1的值是( )A.18B.110C.12D.149.已知关于x 的分式方程x +m x -3-1=1x 无解,则m 的值是( )A .-2B .-3C .-2或-3D .0或310.关于x 的分式方程x -2x -4=m 22x -8有增根,则m 的值为( )A .1B .±1C .2D .±2第Ⅱ卷 (非选择题)二、填空题(本题有6小题,每小题4分,共24分) 11.【2022·湖州】当a =1时,分式a +1a 的值是______. 12.当x =________时,分式x 2-4x +2的值为0.13.已知x -1x +2=1,则x =________.14.若关于x 的方程3x +6x -1=mx +m x 2-x无解,则m =________.15.【2022·台州】如图的解题过程中,第①步出现错误,但最后所求的值是正确的,则图中被污染的x 的值是________.16. 对于两个不相等的实数a ,b ,我们规定符号min {}a ,b 表示a ,b 中的较小的值,如min {}2,4=2.按照这个规定,方程min ⎩⎨⎧⎭⎬⎫11-x ,21-x =4x -1-3的解为________. 三、解答题(本题有8小题,共66分) 17.(6分)化简:(1)()81-a 4÷()a 2+9÷(a -3);(2)2x -64-4x +x 2÷(x +3)·x 2+x -63-x .18.(6分)先化简,再求值:⎝ ⎛⎭⎪⎫3x x -1-x x +1·x 2-1x ,其中x =-2.19.(6分)先化简,再求值:x 2-4x 2+4x +4÷⎝ ⎛⎭⎪⎫2x -4x +2-x +2,其中x 可在-2,0,3三个数中任选一个合适的数.20.(8分)已知关于x 的分式方程mx x 2-4-22-x =3x +2.(1)当m =3时,求方程的根;(2)若这个关于x 的分式方程会产生增根,试求m 的值.21.(8分)根据疫情防控工作需要,某社区组织甲、乙两支医疗队开展疫苗接种工作,甲队比乙队每小时多接种30人,甲队接种2 250人与乙队接种1 800人用时相同,甲队每小时接种多少人?22.(10分)某社区拟建A ,B 两类摊位以搞活“地摊经济”,每个A 类摊位的占地面积比每个B 类摊位的占地面积多2平方米.建A 类,B 类摊位每平方米的费用分别为40元,30元.用60平方米建A 类摊位的个数恰好是用60平方米建B 类摊位个数的35. (1)求每个A ,B 类摊位的占地面积.(2)已知该社区规划用地70平方米建摊位,且刚好全部用完. ①请写出建A ,B 两类摊位的个数的所有方案.②请算出该社区建成A ,B 两类摊位需要投入的最大费用.23.(10分)某校举办“迎亚运”书画展览,现要在长方形展厅中划出3个大小完全一样的小长方形(图中阴影部分)区域摆放作品.设小长方形的长和宽分别为x 米、y 米.(1)如图①,若大长方形的长和宽分别为45米、30米,求小长方形的长和宽.(2)如图②,若大长方形的长和宽分别为a 米、b 米. ①直接写出1个小长方形的周长与大长方形周长之比; ②若作品展览区域(阴影部分)面积占展厅面积的13,试求xy 的值.24.(12分)如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,那么称这个分式为“和谐分式”.如x +1x -1=(x -1)+2x -1=1+2x -1,所以x +1x -1是“和谐分式”.请运用这个知识完成下面各题: (1)已知3x -2x +1=3+mx +1,则m =________;(2)将“和谐分式”4a +12a -1化成一个整式与一个分子为常数的分式的和的形式;(3)当x 为整数时,2x 2+3x -3x -1也为整数,求满足条件的所有x 值的和.答案一、1.D 2.B 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.D 二、11.2 12.2 13.12 14.9或3或-315.5 点拨:依题意得3-x x -4+1=-1,即3-xx -4+2=0,去分母,得3-x +2(x -4)=0, 去括号,得3-x +2x -8=0,解得x =5,经检验,x =5是方程的解, 故答案为5.16.x =3三、17.解:(1)(81-a 4)÷(a 2+9)÷(a -3)=(9+a 2)(9-a 2)a 2+9×1a -3=(9+a 2)(3+a )(3-a )a 2+9×1a -3=-a -3.(2)2x -64-4x +x 2÷(x +3)·x 2+x -63-x =2(x -3)(x -2)2·1x +3·(x -2)(x +3)3-x =22-x. 18.解:原式=3x x -1·x 2-1x -x x +1·x 2-1x=3x x -1·(x +1)(x -1)x -x x +1·(x +1)(x -1)x =3(x +1)-(x -1) =2x +4.当x =-2时,原式=2×(-2)+4=0.19.解:x 2-4x 2+4x +4÷⎝ ⎛⎭⎪⎫2x -4x +2-x +2 =(x +2)(x -2)(x +2)2÷2(x -2)-(x -2)(x +2)x +2=(x +2)(x -2)(x +2)2÷-x (x -2)x +2=-(x +2)(x -2)(x +2)2·x +2x (x -2)=-1x .∵x (x -2)≠0,x +2≠0, ∴x ≠0,±2,∴当x =3时,原式=-13.20.解:(1)把m =3代入方程,得3x x 2-4+2x -2=3x +2,去分母,得3x +2x +4=3x -6, 移项、合并同类项,得2x =-10, 解得x =-5,检验:当x =-5时,(x +2)(x -2)≠0,∴分式方程的根为x =-5. (2)去分母,得mx +2x +4=3x -6,∵这个关于x 的分式方程会产生增根,∴x =2或x =-2, 把x =2代入整式方程,得2m +4+4=0,解得m =-4; 把x =-2代入整式方程, 得-2m =-12,解得m =6. ∴m 的值为-4或6.21.解:设甲队每小时接种x 人,则乙队每小时接种 (x -30) 人.依题意得2 250x =1 800x -30 ,解得 x =150 ,经检验,x =150 是原分式方程的根,答:甲队每小时接种150人.22.解:(1)设每个B 类摊位的占地面积为x 平方米,则每个A 类摊位的占地面积为(x +2)平方米,由题意得60x +2=35×60x, 解得x =3,经检验,x =3是原方程的解,3+2=5(平方米).答:每个A 类摊位的占地面积为5平方米,每个B 类摊位的占地面积为3平方米.(2)设建A 类摊位a 个,B 类摊位b 个.①由题意得,5a +3b =70,∴a =14-35b .∵a ,b 为正整数,∴⎩⎪⎨⎪⎧a =11,b =5或⎩⎪⎨⎪⎧a =8,b =10或⎩⎪⎨⎪⎧a =5,b =15 或⎩⎪⎨⎪⎧a =2,b =20.∴共有4个方案:A 类摊位11个,B 类摊位5个;A 类摊位8个,B 类摊位10个;A 类摊位5个,B 类摊位15个;A 类摊位2个,B 类摊位20个.②该社区建成A ,B 两类摊位需要投入的费用为40×5a +30×3b =200a +90b =200⎝ ⎛⎭⎪⎫14-35b +90b =-30b +2 800. 易知b 越小,费用越大. ∴当b =5时,费用最大,为-30×5+2 800=2 650(元). 答:该社区建成A ,B 两类摊位需要投入的最大费用为2 650元. 23.解:(1)依题意得⎩⎪⎨⎪⎧2x +y =45,x +2y =30, 解得⎩⎪⎨⎪⎧x =20,y =5. ∴小长方形的长和宽分别为20米、5米. (2)①1个小长方形的周长与大长方形周长之比是1∶3. ②由题意得3xy ab =13, ∴3xy (2x +y )(x +2y )=13, ∴(2x +y )(x +2y )=9xy , 化简得()x -y 2=0, ∴x -y =0, ∴x =y ,即x y =1. 24.解:(1)-5(2)4a +12a -1=2(2a -1)+32a -1=2+32a -1.(3)令A =2x 2+3x -3x -1=2x 2+3x -5+2x -1=(x-1)(2x+5)+2x-1=(x-1)(2x+5)x-1+2x-1=2x+5+2x-1.∵当x为整数时,A也为整数,∴2x-1也必为整数.又∵分式要有意义,∴x-1≠0,∴x≠1.∴满足条件的x值为-1,0,2,3,∴满足条件的所有x值的和为-1+0+2+3=4.。
《分式》测试题(含答案)
一、选择题(每小题3分,共24分)1.在式子x y 3,πa ,13+x ,31+x ,aa 2中,分式有( ) A .1个 B .2个 C .3个 D .4个2.分式32+x x 无意义的条件是( ) A .x≠—3 B . x=-3 C .x=0 D .x=33.下列各分式中与分式ba a --的值相等是( ) A .b a a -- B .b a a +- C .a b a - D .—a b a - 4.计算(2-a a —2+a a )·aa 24-的结果是( ) A . 4 B . -4 C .2a D .-2a5.分式方程2114339x x x +=-+-的解是( ) A .x=-2 B .x=2 C . x=±2 D.无解6.把分式(0)xy x y x y+≠+中的x ,y 都扩大3倍,那么分式的值( ) A .扩大为原来的3倍 B .缩小为原来的13C .扩大为原来的9倍D .不变 7.若分式34922+--x x x 的值为0,则x 的值为( ) A .3 B .3或-3 C .-3 D .08.某厂接到加工720件衣服的订单,预计每天做48件,正好按时完成,后因客户要求需提前5 天交货.设每天应多做x 件,则x 应满足的方程为 ( )A .72072054848x -=+ B .72072054848x+=+ C .720720548x -= D .72072054848x -=+ 二、填空题(每小题4分,共32分)9.当x= 时,分式22x x --值为零. 10.计算.2323()a b a b --÷= .11.用科学记数法表示0.002 014= .12.分式222439x x x x --与的最简公分母是____ ______. 13.若方程322x m x x-=--无解,则m =__________________. 14.已知a 1-b 1=21,则b a ab -的值为________________. 15.若R 1=11R +21R (R 1≠R 2),则表示R 1的式子是________________. 16.(2013年泰安)某电子元件厂准备生产4600个电子元件,甲车间独立生产一半后,由于要尽快投入市场,乙车间也加入了该电子元件的生产.若乙车间每天生产的电子元件个数是甲车间的1.3倍,结果用33天完成任务.问:甲车间每天生产电子元件多少个?在这个问题中设甲车间每天生产电子元件x 个,根据题意可得方程为________________.三、解答题(共64分)17.(14分)计算:(1)(2x -3y 2)-2÷(x -2y )3; (2)21+-x x ÷41222-+-x x x +11-x .18.(8分)先化简,再求值:211122x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =.19.(8分)解方程21124x x x -=--.20.(10分)先仔细看(1)题,再解答(2)题.(1)a 为何值时,方程 3x x -= 2 + 3a x -会产生增根? 解:方程两边乘(x-3),得x = 2(x-3)+a①.因为x=3是原方程的增根,•但却是方程①的解,所以将x=3代入①,得3=2×(3-3)+a ,所以a=3.(2)当m 为何值时,方程1y y --2m y y -=1y y-会产生增根?25.(12分)贵港市在旧城改造过程中,需要整修一段全长2400米的道路,为了尽量减少施工对城市交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8小时完成任务,求原计划每小时修路的长度.26.(12分)荷花文化节前夕,我市对观光路工程招标时,接到甲、乙两个工程队的投标书,甲、乙施工一天的工程费用分别为1.5万元和1.1万元,市政局根据甲、乙两队的投标书测算,有三种施工方案.(1)甲队单独做这项工程刚好如期完成.(2)乙队单独做这项工程,要比规定日期多5天.(3)若甲、乙两队合作4天后,余下的工程由乙队单独做,也正好如期完成.在确保如期完成的情况下,你认为哪种方案最节省工程款,通过计算说明理由.第十五章 分式测试题参考答案一、1. C 2. B 3. C 4. B 5. B 6. A 7. C 8. D二、9.-2 10.a 4b 6 11.-2.014×10-3 12.x(x+3)(x-3) 13.114.-2 15.R 1=RR RR -22 16.333.123002300=++x x x 三、17.(1)7124yx . (2)1. 18.原式=11-x .代入x=2,得原式=1. 19.x=-23. 20.解:方程两边乘y (y-1),得y 2-m=(y-1)2.化简,得m=2y -1.因为y=0和y=1都是原方程的的增根,但却是化简后整式方程的解.故将y=0和y=1分别代入m=2y -1,得m=-1或m=1.所以m =±1.21.解:设原计划每小时修路x 米,根据题意,得8%)201(24002400=+-xx . 解得50=x .经检验.x=50是原方程的解,且符合题意.答:原计划每小时修路50米.22.解:设工程期为x 天,则甲队单独完成用x 天,乙队单独完成用(x +5)天. 根据题意,得415x x x +=+. 解得x=20.经检验,x=20是原方程的解,且符合题意.所以在不耽误工期的情况下,有方案(1)和方案(3)两种方案合乎要求.方案(1)需工程款1.5×20=30(万元),方案(3)需工程款1.5×4+1.1×20=28(万元). 故方案(3)最节省工程款且不误期.。
八年级数学上册第1章分式单元综合测试1含解析湘教版
《第1章分式》一、选择题1.下面各式中,x+y,,,﹣4xy,,分式的个数有()A.1个B.2个C.3个D.4个2.已知x≠y,下列各式与相等的是()A.B.C.D.3.要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠4.下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a ﹣1.其中,正确的是()A.①B.①②C.②③④D.①②③④5.若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.06.若把分式中的x和y都扩大3倍,且x+y≠0,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍7.如果分式的值为正整数,则整数x的值的个数是()A.2个B.3个C.4个D.5个8.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.9.若x满足=1,则x应为()A.正数B.非正数C.负数D.非负数10.已知=3,则的值为()A.B.C.D.﹣11.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.412.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.8113.x克盐溶解在a克水中,取这种盐水m克,其中含盐()克.A.B.C.D.二、填空题:14.分式、、的最简公分母是.15.已知,用x的代数式表示y=.16.若5x﹣3y﹣2=0,则105x÷103y=.17.若ab=2,a+b=﹣1,则的值为.18.计算6x﹣2(2x﹣2y﹣1)﹣3=.19.瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.20.使分式方程产生增根,m的值为.21.已知:=+,则A=,B=.22.当x=时,代数式和的值相等.23.用科学记数法表示:0.000000052=.24.计算=.三、解答题25.计算题(1)+(2)﹣(3)(﹣1)2+()﹣4﹣5÷(2005﹣π)0(4)1﹣÷(5)﹣a﹣b.26.解分式方程:(1)(2).27.有一道题:“先化简,再求值:()÷其中,x=﹣3”.小玲做题时把“x=﹣3”错抄成了“x=3",但她的计算结果也是正确的,请你解释这是怎么回事?28.点A、B在数轴上,它们所对应数分别是,且点A、B关于原点对称,求x的值.29.某文化用品商店用2000元购进一批学生书包,面市后发现供不应求,商店又购进第二批同样的书包,所购数量是第一批购进数量的3倍,但单价贵了4元,结果第二批用了6300元.(1)求第一批购进书包的单价是多少元?(2)若商店销售这两批书包时,每个售价都是120元,全部售出后,商店共盈利多少元?30.若,,求的值.湘教新版八年级数学上册《第1章分式》单元测试卷(1)参考答案与试题解析一、选择题1.下面各式中,x+y,,,﹣4xy,,分式的个数有()A.1个B.2个C.3个D.4个【考点】分式的定义.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【解答】解:在,的分母中含有字母,属于分式.在x+y,﹣4xy,的分母中不含有字母,属于整式.故选:B.【点评】此题主要考查了分式定义,关键是掌握分式的分母必须含有字母,而分子可以含字母,也可以不含字母.2.已知x≠y,下列各式与相等的是()A.B.C.D.【考点】分式的基本性质.【分析】根据分式的基本性质可以得到答案.【解答】解:∵x≠y,∴x﹣y≠0,∴在分式中,分子和分母同时乘以x﹣y得到:,∴分式和分式是相等的,∴C选项是正确的,故选:C.【点评】本题主要考查了分式的基本性质,解题的关键是熟练掌握分式的基本性质,此题基础题,比较简单.3.要使分式有意义,则x的取值范围是()A.x=B.x>C.x<D.x≠【考点】分式有意义的条件.【分析】本题主要考查分式有意义的条件:分母不能为0,即3x﹣7≠0,解得x.【解答】解:∵3x﹣7≠0,∴x≠.故选D.【点评】本题考查的是分式有意义的条件:当分母不为0时,分式有意义.4.下列说法:①若a≠0,m,n是任意整数,则a m.a n=a m+n;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn;③若a≠b且ab≠0,则(a+b)0=1;④若a是自然数,则a﹣3.a2=a ﹣1.其中,正确的是()A.①B.①②C.②③④D.①②③④【考点】负整数指数幂;零指数幂.【分析】①、④根据同底数幂作答;②由幂的乘方计算法则解答;③由零指数幂的定义作答.【解答】解:①a m.a n=a m+n,同底数幂的乘法:底数不变,指数相加;正确;②若a是有理数,m,n是整数,且mn>0,则(a m)n=a mn,根据幂的乘方计算法则,正确;③若a≠b且ab≠0,当a=﹣b即a+b=0时,(a+b)0=1不成立,任何非零有理数的零次幂都等于1,错误;④∵a是自然数,∴当a=0时,a﹣3.a2=a﹣1不成立,错误.故选B.【点评】本题主要考查的是同底数幂的乘法、幂的乘方、零指数幂等知识.5.若分式的值为零,则x等于()A.2 B.﹣2 C.±2 D.0【考点】分式的值为零的条件.【分析】分式的值是0的条件是:分子为0,分母不为0.【解答】解:∵x2﹣4=0,∴x=±2,当x=2时,2x﹣4=0,∴x=2不满足条件.当x=﹣2时,2x﹣4≠0,∴当x=﹣2时分式的值是0.故选:B.【点评】分式是0的条件中特别需要注意的是分母不能是0,这是经常考查的知识点.6.若把分式中的x和y都扩大3倍,且x+y≠0,那么分式的值()A.扩大3倍B.不变C.缩小3倍D.缩小6倍【考点】分式的基本性质.【分析】把原式中的x、y分别换成3x、3y进行计算,再与原分式比较即可.【解答】解:把原式中的x、y分别换成3x、3y,那么=×,故选C.【点评】本题考查了分式的基本性质,解题关键是用到了整体代入的思想.7.如果分式的值为正整数,则整数x的值的个数是()A.2个B.3个C.4个D.5个【考点】分式的值.【分析】由于x是整数,所以1+x也是整数,要使为正整数,那么1+x只能取6的正整数约数1,2,3,6,这样就可以求得相应x的值.【解答】解:由题意可知1+x为6的正整数约数,故1+x=1,2,3,6由1+x=1,得x=0;由1+x=2,得x=1;由1+x=3,得x=2;由1+x=6,得x=5.∴x为0,1,2,5,共4个,故选C.【点评】认真审题,抓住关键的字眼,是正确解题的出路.如本题“整数x”中的“整数”,“的值为正整数”中的“正整数”.8.有游客m人,如果每n个人住一个房间,结果还有一个人无房住,这客房的间数为()A.B.C.D.【考点】列代数式(分式).【分析】房间数=住进房间人数÷每个房间能住的人数;一人无房住,那么住进房间的人数为:m﹣1.【解答】解:住进房间的人数为:m﹣1,依题意得,客房的间数为,故选A.【点评】解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.9.若x满足=1,则x应为()A.正数B.非正数C.负数D.非负数【考点】分式的值;绝对值.【分析】根据=1可以得到x=|x|,根据绝对值的定义就可以求解.【解答】解:若x满足=1,则x=|x|,x>0,故选A.【点评】此题是分式方程,在解答时要注意分母不为0.10.已知=3,则的值为()A.B.C.D.﹣【考点】分式的基本性质.【分析】先把分式的分子、分母都除以xy,就可以得到已知条件的形式,再把=3,代入就可以进行计算.【解答】解:根据分式的基本性质,分子分母都除以xy得,==.故选B.【点评】解答本题关键在于利用分式基本性质从所求算式中整理出已知条件的形式,再进行代入计算,此方法中考题中常用,是热点.11.工地调来72人参加挖土和运土,已知3人挖出的土1人恰好能全部运走,怎样调动劳动力才能使挖出的土能及时运走,解决此问题,可设派x人挖土,其它的人运土,列方程:①②72﹣x=③x+3x=72 ④上述所列方程,正确的有()个.A.1 B.2 C.3 D.4【考点】由实际问题抽象出分式方程.【分析】关键描述语是:“3人挖出的土1人恰好能全部运走”.等量关系为:挖土的工作量=运土的工作量,找到一个关系式,看变形有几个即可.【解答】解:设挖土的人的工作量为1.∵3人挖出的土1人恰好能全部运走,∴运土的人工作量为3,∴可列方程为:,即,72﹣x=,故①②④正确,故正确的有3个,故选C.【点评】解决本题的关键是根据工作量得到相应的等量关系,难点是得到挖土的人的工作量和运土的人的工作量之间的关系.12.如果()2÷()2=3,那么a8b4等于()A.6 B.9 C.12 D.81【考点】分式的混合运算.【分析】由于()2÷()2=3,首先利用积的乘方运算法则化简,然后结合所求代数式即可求解.【解答】解:∵()2÷()2=3,∴×=3,∴a4b2=3,∴a8b4=(a4b2)2=9.故选B.【点评】此题主要考查了分式的混合运算,解题时首先把等式利用积的乘方法则化简,然后结合所求代数式的形式即可求解.13.x克盐溶解在a克水中,取这种盐水m克,其中含盐()克.A.B.C.D.【考点】列代数式(分式).【分析】盐=盐水×浓度,而浓度=盐÷(盐+水),根据式子列代数式即可.【解答】解:该盐水的浓度为,故这种盐水m千克,则其中含盐为m×=千克.故选:D.【点评】本题考查了列代数式,解决问题的关键是找到所求的量的等量关系.本题需注意浓度=溶质÷溶液.二、填空题:14.分式、、的最简公分母是6abc.【考点】最简公分母.【分析】根据确定最简公分母的方法:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式确定;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:因为三分式中的常数项系数的最小公倍数是6,a 的最高次幂是1,b的最高次幂是1,c的最高次幂是1,所以三分式的最简公分母是6abc.故答案为:6abc.【点评】本题主要考查了最简公分母的定义:取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.15.已知,用x的代数式表示y=.【考点】等式的性质.【分析】根据等式的基本性质可知:先在等式两边同乘(y﹣1),整理后再把x的系数化为1,即可得答案.【解答】解:根据等式性质2,等式两边同乘(y﹣1),得y+1=x (y﹣1)∴y+1=xy﹣x,∴y(x﹣1)=1+x∴y=.【点评】本题主要考查了等式的基本性质.等式性质:1、等式的两边同时加上或减去同一个数或字母,等式仍成立;2、等式的两边同时乘以或除以同一个不为0数或字母,等式仍成立.16.若5x﹣3y﹣2=0,则105x÷103y=100.【考点】同底数幂的除法.【分析】根据同底数幂的除法法则,可将所求代数式化为:105x ﹣3y,而5x﹣3y的值可由已知的方程求出,然后代数求值即可.【解答】解:∵5x﹣3y﹣2=0,∴5x﹣3y=2,∴105x÷103y=105x﹣3y=102=100.【点评】本题主要考查同底数幂的除法运算,整体代入求解是运算更加简便.17.若ab=2,a+b=﹣1,则的值为.【考点】分式的加减法.【分析】先将分式通分,再将ab=2,a+b=﹣1代入其中即可得出结论.【解答】解:原式===﹣.故答案为﹣.【点评】本题考查了分式的加减运算.解决本题首先应通分,然后整体代值.18.计算6x﹣2(2x﹣2y﹣1)﹣3=x4y3.【考点】单项式乘单项式;幂的乘方与积的乘方;负整数指数幂.【分析】结合单项式乘单项式的运算性质:单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.进行求解即可.【解答】解:原式=6x﹣2x6y3=x4y3.故答案为:x4y3.【点评】本题考查了单项式乘单项式的知识,解答本题的关键在于熟练掌握该知识点的概念和运算性质.19.瑞士中学教师巴尔末成功地从光谱数据,,,中得到巴尔末公式,从而打开了光谱奥妙的大门.请你按这种规律写出第七个数据是.【考点】规律型:数字的变化类.【分析】分子的规律依次是,32,42,52,62,72,82,92…,分母的规律是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,所以第七个数据是.【解答】解:由数据,,,可得规律:分子是,32,42,52,62,72,82,92分母是:1×5,2×6,3×7,4×8,5×9,6×10,7×11…,∴第七个数据是.故答案为:.【点评】主要考查了学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.20.使分式方程产生增根,m的值为±.【考点】分式方程的增根.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母x﹣3=0,所以增根是x=3,把增根代入化为整式方程的方程即可求出m的值.【解答】解:方程两边都乘(x﹣3),得x﹣2(x﹣3)=m2∵原方程有增根,∴最简公分母x﹣3=0,即增根是x=3,把x=3代入整式方程,得m=±.故答案为:±.【点评】增根问题可按如下步骤进行:①根据最简公分母确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.21.已知:=+,则A=1,B=2.【考点】分式的加减法.【分析】已知等式右边两项通分并利用同分母分式的加法法则计算,利用多项式相等的条件即可求出A与B的值.【解答】解:∵==,∴A+B=3,﹣2A﹣B=﹣4,解得:A=1,B=2,故答案为:1;2【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.22.当x=9时,代数式和的值相等.【考点】解分式方程.【分析】根据题意列出方程,求出方程的解即可得到x的值.【解答】解:根据题意得:=,去分母得:2x+3=3x﹣6,解得:x=9,经检验x=9是分式方程的解,故答案为:9【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.23.用科学记数法表示:0.000000052=5。
分式测试题及答案
分式测试题及答案一、选择题1. 请选出下列分数中,最简分数是:A. 3/5B. 4/9C. 5/8D. 6/10答案:A. 3/52. 下列分数中,与1/3相等的是:A. 2/6B. 4/10C. 3/9D. 5/15答案:C. 3/93. 将5/6化为百分数是:A. 83.33%B. 50%C. 66.67%答案:A. 83.33%4. 请将两个分数相加:2/3 + 1/4,得到的结果是:A. 2/7B. 5/12C. 11/12D. 7/12答案:B. 5/125. 将小数0.625化为分数是:A. 5/8B. 3/5C. 2/3D. 1/4答案:A. 5/8二、填空题1. 将2/5写成百分数是______%。
答案:40%2. 将0.75写成分数是______。
3. 将1/2和1/3相加,得到的结果是______。
答案:5/64. 将3/4化为小数,得到的结果是______。
答案:0.755. 将0.3化为分数,得到的结果是______。
答案:3/10三、解答题1. 简化分数4/6至最简形式,并写出化简的步骤。
答案:4/6 = (2×2)/(2×3) = 2/32. 将7/8和5/6相加,并将结果化为最简分数形式。
答案:7/8 + 5/6 = (7×3)/(8×3) + (5×4)/(6×4) = 21/24 + 20/24 = 41/24 = 1 17/243. 将一个分数3/5转化为百分数,并写出转化的步骤。
答案:3/5 = 3/5 × 100% = (3×20)% = 60%4. 将0.625化为最简分数,并写出化简的步骤。
答案:0.625 = 625/1000 = 5/85. 将小数0.4和分数1/2相加,并将结果转化为百分数形式。
答案:0.4 + 1/2 = 2/5 + 1/2 = (2×2)/(5×2) + 5/10 = 4/10 + 5/10 = 9/10 = 90%总结:通过此次分式测试题的练习,我们可以更深入地理解分数的概念和运算法则。
《分式》综合测试题1
《分式》综合测试题一一、选择题:(本大题共有8小题,每小题3分,共24分.每小题只有一个正确选项,请把正确选项的字母代号填在下面的表格中.) 1. 下列各组代数式都不是分式的是( )A .3(1)(2)x x x +-,3x π+B .3x π+,13(x+y )C .753ab x y-,2(3)4xy x +D .-26()2x y x y ++,25()3()a b a b ++2.若分式2362x xx--的值为0,则x 的值为() A.0B.2C.2-D.0或23. 如果把分式2xx y+中的x 和y 都扩大2倍,那么分式的值()A.不变 B.扩大2倍 C.扩大4倍 D.缩小2倍 4.若22237y y ++的值为14,则21461y y +-的值为( ) (A )1 (B )-1 (C )-17(D )155.计算2a b a -+a ba b +-的结果是( ) (A )3a b b a +- (B )3a b a b+- (C )1 (D )-16.已知两个分式:244A x =-,1122B x x =++-,其中2x ≠±,则A 与B 的关系是( )A 、相等B 、互为倒数C 、互为相反数D 、A 大于B 7.已知114a b -=,则2227a ab b a b ab---+的值等于( )(A )6 (B )-6 (C )215 (D ) 27-8. A、B两地相距m 千米,某人从A地到B地,以每小时x 千米的速度步行前往,返回时改乘汽车,每小时比步行多行80千米,结果所用的时间是去时的17,则可列方程为( )A.1807m m x x -=+ B.1807m m x x -=+C.780m m x x =+ D.780m m x x =- 二、填空题:本大题共有9小题,每小题3分,共27分.请把答案填在题中的横线上.9.若代数式(x -2)(x -1)|x |-1 的值为零,则x 的取值应为_____________.10.不改变分式的值,使它的分子、分母的最高次项的系数都是正数,则2311a a a a --=+-__________. 11.如果226()(1)x x A y =+,那么A =_________.12.已知:15a a+=,则4221a a a++=_____________.13.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 .14..对于公式12111f f f =+(f 2≠f ),若已知f ,f 2,则f 1=________.15. 观察下列各等式:1111212=-⨯,1112323=-⨯,1113434=-⨯,…根据你发现的规律,计算:2222122334(1)n n ++++=⨯⨯⨯⨯+… (n 为正整数).16. 有一个分式,三位同学分别说出了它的一些特点,甲:分式的值不可能为0;乙:分式有意义时x 的取值范围是x≠±1;丙:当x=-2时,分式的值为1,•请你写出满足上述全部特点的一个分式___________.17. 如果记y=221x x +=f (x ),并且f (1)表示当x=1时y 的值,即f(1)=22111+=12;f (12)表示当x=12时y 的值,即f (12)=221()12151()2=+,那么f (1)+f (2)+f (12)+f (3)+f (13)+……+f (n )+f (1n)=_______(结果用含n 的代数式表示,n 为正整数).三、解答题:本大题共有3小题,每题12分,共36分.解答时要求写出必要的文字说明、计算过程或推理过程. 18.计算:(1) ⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛----42318521q p q p(2) 2222221m n mn n mn m mn n m n n ⎡⎤-+-⋅⎢⎥-+--⎣⎦19.解分式方程: (1)3215122=-+-xx x (2)1637222-=-++x x x x x20.先化简,再求值:已知12+=x ,求xx x x xx x 112122÷⎪⎭⎫ ⎝⎛+---+的值。
分式测试题答案
分式测试题答案一、计算下列分式的值:1. $\frac{3}{4} + \frac{1}{2} - \frac{5}{8}$解:首先将所有分式的分母找到公共分母,这里为8。
然后将分子相加减,即可得到答案。
$\frac{3}{4} + \frac{1}{2} - \frac{5}{8} = \frac{6}{8} + \frac{4}{8} - \frac{5}{8} = \frac{5}{8}$2. $\frac{2}{3} \times \frac{4}{5} \div \frac{3}{4}$解:将分式转化为乘法,再进行乘法和除法的运算。
$\frac{2}{3} \times \frac{4}{5} \div \frac{3}{4} = \frac{2}{3} \times \frac{4}{5} \times \frac{4}{3} = \frac{32}{45}$3. $\frac{2}{3} - \frac{3}{4} \div \frac{1}{2}$解:将分式转化为乘法,再进行减法和除法的运算。
$\frac{2}{3} - \frac{3}{4} \div \frac{1}{2} = \frac{2}{3} - \frac{3}{4} \times \frac{2}{1} = \frac{2}{3} - \frac{6}{4} = \frac{2}{3} - \frac{3}{2} = -\frac{5}{6}$二、请将下列分式化简:1. $\frac{6x^2y}{12xy^2}$解:将分子和分母的公因数约掉,可得到化简后的分式形式。
$\frac{6x^2y}{12xy^2} = \frac{6}{12} \times \frac{x^2}{x} \times\frac{y}{y^2} = \frac{1}{2}x^{2-1}y^{1-2} = \frac{1}{2}xy^{-1}$2. $\frac{3a^2b^3}{2a^3b^2}$解:同样地,将分子和分母的公因数约掉。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学单元测试——分式(一)
班级_____________姓名_____________
一、选择(每题2分,共12分)
1.在a 3、7b a +、2221y x +、5、11-x 、π
8x 中,分式有( ) A . 1个 B . 2个 C . 3个 D . 4个
2.下列各式从左到右的变形正确的是( )
A .y x y x y x y x 222121+-=+-
B .b a b a b a b a 222.02.0++=++
C .y x x y x x --=-+-11
D .b a b a b a b a +-=-+ 3.有下列运算: ①a b a b a b 422=+;②13114+=+-+x a x a x a ;③1222
222=-+-a
b b b a a .其中正确的是( )A . ①② B . ②③ C . ①③ D . ①②③
4.把分式y
x x +2中的x 和y 都扩大3倍,分式的值( ) A . 扩大3倍 B .缩小3倍 C. 不变 D .以上都不对
5.能使分式121
2+--x x x 的值为零的所有x 的值是( )
A .1=x
B .1-=x
C .1=x 或1-=x
D .2=x 或1=x
6.甲、乙两港分别位于长江的上游、下游,相距s km ,一艘油轮往返其间.若油轮在静水中的速度为a km/h ,水流的速度为b km/h (b <a ),则该油轮往返两港的时间差是( )
A . a s b s -
B . b s a s -
C . b a s b a s +--
D . b
a s
b a s --+ 二、填空(每空2分,共40分) 7.当x ___________时, 分式
32-x x 无意义;当x ___________时, 分式值为0. 8.xy 1、3x y -、xyz
61的最简公分母是______;4922-m 、412932+-m m 的最简公分母是______. 9.分式x
x 3、22n m n m --、2313++a a 、x x 222-中,最简分式是____________________. 10.写出一个含有字母x 的分式,要求:不论x 取任何实数,该分式都有意义____________________ .
11.在下列各题的括号内填出正确的整式:
(1) b a ab b a 2=+ (2) b a b a b a -+=+2)( 12.不改变分式的值,使下列分式中的分子、分母都不含“-”号:
(1)a b 65--=___________ (2)y
x 3-=___________ ( ) ( )
13.不改变分式的值,使下列分式中的分子、分母最高次项的系数都为正数:
(1)21x x -=___________ (2)x
x x --+212
=___________ 14.化简:(1)2252a
a += ; (2)
b a b a b a a +--+2= ; (3) 2322x
y y x y x ∙÷= ; (4) 22112a a a -+- = . 15.(1)当x =_______时,分式33
--x x 的值为0;(2)若31=+x x ,则221x
x +=_______. 16.如果方程3)
1(2=-x a 的解是x =5,则a = . 17.若m 是整数,则当m =______________________时,分式1
2-m 的值是整数. 三、计算(每题8分,共48分) 18.)
3(331---x x x 19. 432
⎪⎭⎫ ⎝⎛-÷⎪⎭⎫ ⎝⎛-∙⎪⎭⎫ ⎝⎛a b ac b ab c
20.x
x x x x x x x x 24912322222--∙++-÷+- 21.222
24421b ab a b a b a b a ++-÷+--
22.(1)先化简,再求值:
)252(423--+÷--a a a a ,其中a =21-;
(2)请先化简:121)11(
2+-÷--a a a a ,再选一个你喜欢的数a 的值代入求值.。