§1.1-2集合的含义与表示教案
高中数学人教A版必修1《1.1.1集合的含义与表示》教案2
必修一《1.1.1集合的含义与表示》教学案教学目的:要求学生初步理解集合的概念,理解元素与集合间的关系,掌握集合的表示法,知道常用数集及其记法.教学重难点:1、元素与集合间的关系2、集合的表示法教学过程:一、集合的概念实例引入:⑴1~20以内的所有质数;⑵我国从2001~2013的13年内所发射的所有人造卫星;⑶金星汽车厂2013年生产的所有汽车;⑷2014年1月1日之前与我国建立外交关系的所有国家;⑸所有的正方形;⑹2014年9月入学的高一学生全体.结论:一般地,我们把研究对象统称为元素;把一些元素组成的总体叫做集合,也简称集.二、集合元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:一般不考虑元素之间的顺序,但在表示数列之类的特殊集合时,通常按照习惯的由小到大的数轴顺序书写练习:判断下列各组对象能否构成一个集合⑴2,3,4⑵ (2,3),(3,4) ⑶三角形⑷2,4,6,8,…⑸1,2,(1,2),{1,2}⑹我国的小河流⑺方程x2+4=0的所有实数解⑻好心的人⑼著名的数学家⑽方程x2+2x+1=0的解三、集合相等构成两个集合的元素一样,就称这两个集合相等四、集合元素与集合的关系集合元素与集合的关系用“属于”和“不属于”表示:∈(1)如果a是集合A和元素,就说a属于A,记作a A∉(2)如果a不是集合A和元素,就说a不属于A,记作a A五、常用数集及其记法非负整数集(或自然数集),记作N;除0的非负整数集,也称正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.练习:(1)已知集合M={a,b,c}中的三个元素可构成某一三角形的三条边,那么此三角形一定不是( )A直角三角形B锐角三角形C钝角三角形D等腰三角形(2)说出集合{1,2}与集合{x=1,y=2}的异同点?六、集合的表示方式(1)列举法:把集合中的元素一一列举出来,写在大括号内;(2)描述法:用集合所含元素的共同特征表示的方法.(具体方法)例1、用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由1~20以内的所有质数组成.例2、试分别用列举法和描述法表示下列集合:(1)由大于10小于20的的所有整数组成的集合;(2)方程x2-2=2的所有实数根组成的集合.注意:(1)描述法表示集合应注意集合的代表元素(2)只要不引起误解集合的代表元素也可省略七、小结集合的概念、表示;集合元素与集合间的关系;常用数集的记法.。
1.1.1 集合的含义及其表示教案
§1.1.1 集合的含义及其表示一、教学目标(1)通过实例,了解集合的含义,体会元素与集合的理解集合“属于”关系;初步了解属于关系和集合相等的意义(2)能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;(3)熟记有关数集,培养学生认识事物的能力二、教学重点集合的基本概念与表示方法;三、教学难点运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合;四、教学过程1、创设情境,引入新课在小学和初中我们已经接触了一些集合,例如自然数的集合,有理数的集合,不等式x-7<3的解的集合,到一个定点的距离的定长的集合(即圆),到一条线段的两个端点距离相等的点的集合(即这条线段的垂直平分线)……那么集合的含义是什么呢?我们再来看看下面的一些例子:(1)1~20以内的所有质数(2)2010年4月1日之前与我国建立外交关系的所有国家(2)所有的正方形(3)高一<2>班的学生在上数学课(4)方程x2+3x-2=0的所有实数解上面这些例子有什么共同的特征?2、推进新课(1)元素与集合的概念:一般地,我们把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集)。
(2)集合的性质○1确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。
○2互异性:集合中的元素必须是互不相同的(即没有重复现象),相同的元素在集合中只能算作一个。
○3无序性:集合中的元素间是无次序关系的。
(3)集合相等:只要构成两个集合的元素是一样的,我们就称这两个集合是相等的。
练习:1.判断以下元素的全体是否组成集合(1)大于3小于11的偶数。
(2)我国的小河流。
2.说出集合A={a,b,c}和集合B={b, a,c}的关系。
(4)集合与元素的表示:集合通常用大括号或大写的拉丁字母表示,如{1,2,3,4,5}与{高一(2)班的所有学生},又如A、B、C、P、Q……元素通常用小写的拉丁字母表示,如a、b、c、p、q……如果a是集合A的元素,就说a属于A,记作a∈A。
人教版高中数学必修一《集合的含义与表示》教学案
§1.1.1集合的含义与表示一. 教学目标:l.知识与技能(1)通过实例,了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性.互异性.无序性;(4)会用集合语言表示有关数学对象;(5)培养学生抽象概括的能力.2. 过程与方法(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.(2)让学生归纳整理本节所学知识.3. 情感、态度与价值观使学生感受到学习集合的必要性,增强学习的积极性.二. 教学重点.难点重点:集合的含义与表示方法.难点:表示法的恰当选择.三. 教学方法与教学用具1. 教学方法:教师讲解与学生学习相结合,加强自主学习、思考、交流、讨论和概括,更好地完成本节课的教学目标.2. 教学用具:投影仪.四、教学课时:2课时五. 教学过程(一)创设情景,揭示课题1.教师首先提出问题:(1)物以类聚,人以群分;(2)整理东西,上街买菜.2.接着教师指出:那么,集合的含义是什么呢?(二)研究探索,归纳概括1.集合的含义“集合”作为动词,同学们在上体育课时听得最多.常常是上课铃声刚过,体育老师清脆的哨声便响起,同时高喊:高一(×)班的全体同学集合!听到口令,咱们班的全体同学便会从四面八方聚集到体育老师的身边.而那些不是咱们班的学生便会自动走开.这样一来体育老师的一声“集合”(动词)就把“某些指定的对象集在一起”了.利用多媒体设备向学生投影出下面8个实例:(1)1—20以内的所有质数;(2)我国古代的四大发明;(3)所有的安理会常任理事国;(4)所有的正方形;(5) 到一个角的两边距离相等的所有的点;(6) 方程x2-5x+6=0的所有实数根;(7) 不等式x-3>0的所有解;(8) 工大附中2009年9月入学的高一学生的全体.提问:这8个实例的共同特征是什么?概括出8个实例的特征,并给出集合的含义.指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母,,,a b c d…表示.2.集合与元素(1)元素的确定性思考以下问题:判断以下对象的全体是否组成集合,并说明理由:①大于3小于11的偶数;②我国的小河流;③著名的数学老师.如果a是集合A的元素,就说a属于集合A,记作a A∈.如果a不是集合A的元素,就说a不属于集合A,记作a A∉.(2)元素的互异性一个给定集合中的元素是互不相同的,即集合中的元素是不能重复出现的.若a A∈,b A∈,则a≠b.思考:由实数1,2,24,sin30°组成的集合中有多少个元素?3. 集合的相等只要构成两个集合的元素是一样的,我们就称这两个集合相等.集合A,B相等记做A=B.4.常见数集自然数集:N,正整数集:N*或N +;整数集:Z;有理数集:Q;实数集:R.5.集合的表示(1)列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示今后的方法叫做列举法.注:用列举法表示今后时,元素之间是没有固定次序的.例1 用列举法表示下列集合:①能被3整除而且大于4小于15的自然数组成的集合;②方程x2=x的所有实数根组成的集合;③所有大于50且小于100的整数组成的集合;解:①设能被3整除而且大于4小于15的自然数组成的集合为A,则A={5,6,9,12};②设方程x2=x的所有实数根组成的集合为B,则B={0,1};③设所有大于50且小于100的整数组成的集合为C,则C={51,52,53,54,…,99}.(2)描述法:用集合所含元素的共同特征表示集合的方法称为描述法.具体方法是:在花括号内先写上表示这个集合元素的一般符号及取值范围,再画一条竖线,在竖线后面写出这个集合中元素的共同特征.例2用描述法表示下列集合:①所有偶数组成的集合;②方程x2-2x+3=0的解集;③大于3的全体实数组成的集合;④方程组2,21x yx y+=⎧⎨-=-⎩的解集.解:①设所有偶数组成的集合为A,则A={x∈Z|x=2k,k∈Z};②设方程x2-2x+3=0的解集为B,则B={x| x2-2x+3=0};③设大于3的全体实数组成的集合为C,则C={x| x>3};④2, {(,)|}21x yx yx y+=⎧⎨-=-⎩.(三)巩固深化,反馈矫正练习1:(1)用列举法表示集合6{|}1A xx=∈∈+N N;6{|}1A xx=∈∈+N N呢?(2)试选择适当的方法表示下列集合:①小于8的所有奇数;②一次函数y=x+3与y=-2x+6的图像的交点组成的集合;解:(1)A={0,1,2,5};A={6,3,2,1}.(2)① {x | x =2k -1,k <5, k ∈Z };②3,{(,)|}{(1,4)}.26y x x y y x =+⎧=⎨=-+⎩例3已知集合A ={x | x 2+ax +b =0}={2},求实数a ,b 的值.解:集合A ={x | x 2+ax +b =0}是方程x 2+ax +b =0的解集,由{x | x 2+ax +b =0}={2}可知,方程x 2+ax +b =0有两个相等的实数根,所以2420,40,a b a b ++=⎧⎨-=⎩解得:a =-4, b =4. 或(22)4,22 4.a b =-+=-⎧⎨=⨯=⎩练习2: (1)设集合A ={ a +2,(a +1)2, a 2+3a +3},若1∈A ,求实数a 的值.(a =0)(2)设集合A ={1,a ,b },B={a , a 2,a b },若A = B ,求实数a ,b 的值.(a =-1,b =0)(3)已知集合A ={x |y =x 2-1 },B={y |y =x 2-1, x ∈R },C= B={(x ,y)|y =x 2-1, x ∈R }.判断集合A ,B ,C 是否相等.(互不相等)(四)归纳整理,整体认识让学生思考下例问题:1.本节课我们学习过哪些知识内容?2.你认为学习集合有什么意义?3.选择集合的表示法时应注意些什么?(五)承上启下,留下悬念1.课后书面作业:第11页习题1.1A 组第1-4题.2. 元素与集合的关系有多少种?如何表示?集合与集合间的关系又有多少种呢?如何表示?请同学们通过预习教材解决以上问题.。
第二课时1.1.1集合的含义与表示(2)
1.地球上的七大洲这一集合可以表示成什么呢? 2. 12的所有约数可以表示成什么呢? 3.方程x-1=0的解的集合可以表示成什么呢?
1.地球上的七大洲可表示为{亚洲,非 洲,南极洲,北美洲,南美洲,欧 洲,大洋洲}. 2.12的所有约数可表示为{1,2,3, 4,6,12}. 3.方程x-1=0的解集可以表示为{1}.
作业:P12: 4,
作业2:已知集A={x|ax2+2x+1=0,a R}
(1)若1 A ,,求a的值; (2)若集合A中只有一个元素,求实数a 的组成的集合; (3)若集合A中含有两个元素,求实数a 的组成的集合。
习题答案: (1)a=-3 (2)a {1,0} (3)a {a / a< 1,a≠o} (△ > 0,且a≠o)
四:集合的分类 1、有限集:含有有 限个元素的集合 2、无限集:含有无 限个元素的集合
例3、用列举法表下列集合:
(1)A={X/1≤X≤4,X∈N}
(2)B={X∈N/X是15的约数}
6 (3)C={X / 2 X ∈Z,X∈Z }
例4、用描述法表示下列的集 合: 2 Y上的点。 (1)抛物线 X (2)抛物线 X 2 Y上点的横坐 标 2 Y上点的纵坐 (3)抛物线 X 标
5、已知1 {x | x2-ax2=0 },求集合 {x | x2-ax2=0 }中所有元素之和 2 6、已知A={ a-2, 2a+5a, 12 } ,且-3A,求实数a的 值
练习题答案: 1、{x|x2=x}={0,1}) 2 、 {(x,y)|y=kx} 3 、 {x|x2+x-60} , { x|x2且 x3,xR} 4、 {-2,-1,0,1,2 } 5、 (a=1,A= {2,-1 },和为1 ) 3 6、(a=- 2 )
人教A版必修一 第一章 1.1.1集合的含义与表示方法 教案
方程x=x2
③由1到20以内的所有整数组成的集合。
所有正数
所有奇数
x-7<3的解集
y=x中y的取值组成的集合
y=1/x中x的取值组成的集合
一次函数y=x+3与y=-2x+6的图像的交点组成的集合
直角坐标系中,第一象限内所有的点组成的集合(不包括x轴y轴上的点)
对于③可以一一列举,但是20个数都写出来还是有点麻烦的;对于 如果用列举法,会出现省略号,要求读者找规律,才能知道这个集合表示的是正数集,奇数集。而至于 ,用列举法显然不适合。那有没有更好的办法呢?
4.集合的三种表示方法:自然语言,列举法,描述法
我们班所有的学生
我们班所有男生
③我们班所有高个子男生
我们班所有身高超过1米6的超级爱好DOTA游戏的男生。
我们班幸福的人
以上③ 都不是集合,因为它们所研究的对象都是不确定的,高个子?多高算高呢?每个人心中都有不一样的标准。超级爱好,幸福都是模棱两可的。
(三)集合元素的互异性,一个给定的集合中的元素是互不相同的,也就是说,集合中的元素是不重复出现的。(四)通常用大写的英文字母A,B,C……表示集合,用小写的啊,a,b,c……表示集合中的元素。如果a是集合A中的元素,就说a属于集合A,记作a∈A;如果a不是集合A中的元素,就说a不属于集合A,记作aA。
(六)集合的表示方法:列举法,描述法,Venn图
从上面例子,我们已经看到,可以用自然语言描述一个集合。除此之外Байду номын сангаас有什么方法呢?
列举法:把集合的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫做列举法。(强调花括号,元素之间用逗号隔开,无序性,互异性)说明:集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序;集合中同一元素不能重复出现。
集合的含义及表示教案+同步习题
§1.1.1集合的含义与表示教案教学目标:1通过具体的例子了解集合的含义,知道常用数集及其记法;2初步了解集合和元素的关系,3初步掌握集合的两种表示方法、教学重点:集合的概念与其表示教学重点:1、正确理解集合的概念及特征2、集合表示法的恰当选择新课讲解:创设情境,引入新课:生活中我们经常听到以下说法:1.第四中学2018年9月入学的高一全体学生;2.我国从2001~2015年的15年内所发射的所有人造卫星;3.2016年里约热内卢奥运会的所有比赛项目;4.我国古代的四大发明;以上描述有什么共同特征?引入新课。
【知识点1】集合的有关概念⒈定义:一般地,我们把研究对象统称为元素,一些元素组成的总体叫集合,也简称集。2.表示方法:集合通常用大括号{ }或大写的拉丁字母A,B,C…表示而元素用小写的拉丁字母a,b,c…表示。3.关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。.⑶无序性:即集合中的元素无顺序,可以任意排列、调换。构成两个集合的元素完全一样,这两个集合相等。◇同步练习◇⑴判断下列每组对象的全体能否构成集合?①我班16岁以下的学生②接近于2000的数③大于2的所有整数④函数y=x+1图像上的点⑤鲜艳的颜色⑥2018年中考卷中的难题⑵由实数−a,a,a,2a,−55a元素组成的集合中,最多有几个元素?说明为什么?4.常用的数集合及记法:自然数集N;正整数集N*或N+;整数集Z;有理数集Q;实数集R;5.元素与集合的关系:(元素与集合的关系有“属于∈”及“不属于∉”两种)⑴若a是集合A中的元素,则称a属于集合A,记作a∈A;⑵若a不是集合A的元素,则称a不属于集合A,记作a∉A。例如, A ={2,4,8,16},则4∈A ,8∈A ,32∉A . ◇同步练习◇ 用符号,∈∉填空:①2 N ②1.414 Q ③7 R , ④ −1 N⑤12Q ⑥0 N ⑦ −4 Z ⑧ π Q ⑨ 3 R 【知识点2】集合的表示方法1.列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法如:“中国的直辖市”构成的集合,写成{北京,天津,上海,重庆}“maths 中的字母” 构成的集合,写成{m ,a ,t ,h ,s }“方程组20{=+=-y x y x 的解”构成的集合是)}1,1{(…说明:⑴书写时,元素与元素之间用逗号分开;⑵一般不必考虑元素之间的顺序;⑶在表示数列之类的特殊集合时,通常仍按惯用的次序;⑷集合中的元素可以为数,点,代数式等;【例1】用列举法表示下列集合:(1)中国国旗的颜色的集合;(2)单词mathematics 中的字母的集合;(3)自然数中不大于10的质数的集合;(4)同时满足240121x x x +>⎧⎨+≥-⎩的整数解的集合; (5)由||||(,)a b a b R a b+∈所确定的实数集合. ⒉描述法:用集合所含元素的共同特征表示集合的方法,称为描述法。符号形式:{代表元素∣p (代表元素)}方法:⑴在花括号内先写上表示这个集合元素的一般符号⑵再画一条竖线,⑶在竖线后写出这个集合中元素所具有的共同特征。如:不等式12x +<-的解集可以表示为:{-3}x R x ∈<{三角形∣含有30°角的三角形}“中国的直辖市”构成的集合,写成{x ∣x 为中国的直辖市};“抛物线y =x 2+1上的点”构成的集合,写成{ (x ,y )|y =x 2+1};“直线y =x +2上的点”构成的集合,写成{(x ,y )|y =x +2}{(x ,y )|y =x 2+2}表示y =x 2+2上的点构成的集合。 说明:⑴描述法表示集合应注意集合的代表元素,如{(x ,y )|y = x 2+3x +2}与{y |y = x 2+3x +2}是不同的两个集合。 ◇同步练习◇区分以下集合A ={(x ,y )∣y =x 2−1,x ∈R}B ={y ∣y =x 2−1,x ∈R}C ={x ∣y =x 2−1}D ={x ∣x 2−1=0,x ∈R}【例2】用描述法表示下列集合:(1)方程x 2+2x +1=0所有实数解的集合;(2)使2x y x-=有意义的x 的集合; (3)所有被3整除的整数的集合;(4)抛物线y =−x 2+3x −6上所有点的集合;◇同步练习◇㈠分别用列举法和描述法表示下列集合(1)方程x 2−2=0的所有实数根组成的集合 (2)由大于10小于20的所有整数组成的集合⑶方程x 2−5x +6=0的解集 ⑷{15以内的质数};㈢用适当的方法表示下列集合⑴由方程x 2−9=0的所有实数根组成的集合; ⑵不等式453x -<的解集;⑶坐标平面内,第一象限的点的集合; ⑷ 二次函数y =x 2−4的函数值组成的集合;⑸ 函数y =x 2−4的自变量的值组成的集合; ⑹二次函数24y x =-图像上的点组成的集合;⑺一次函数3y x =+与26y x =-+的图像的交点组成的集合;◇基础达标◇1. 下列各组对象不能组成集合的是 ( )A .大于6的所有整数B .充分小的负数全体C .被3除余2的所有整数D .函数y =x 1图象上所有的点 2. 给出下列关系:①12R ∈ ②2Q ∉ ③3N +-∉ ④3Q -∈,其中正确的个数为 ( )A .1B .2C .3D .43. 下列结论中,不正确的是( )A .若a ∈N ,则−a ∉NB .若a ∈Z ,则a 2∈ZC .若a ∈Q ,则|a |∈QD .若a ∈R ,则R a ∈34. 下列集合表示法正确的是( )5. A .{1,2,2,3} B .{全体实数} C .{有理数} D .不等式x 2−5>0的解集为{x 2−5>0}6. 若集合{},,M a b c =中的元素是△ABC 的三边长,则△ABC 一定不是 ( )A .锐角三角形B .直角三角形C .钝角三角形D .等腰三角形7. 把集合{x ∣−3≤x ≤3,x ∈N}用列举法表示,正确的是 ( )A .{3,2,1}B .{3,2,1,0}C .{−2,−1,0,1,2}D .{−3,−2,−1,0,1,2,3}8. 方程组31x y x y +=⎧⎨-=⎩的解组成的集合是 ( )A .{2,1}B .{−1,2}C .(2,1)D .{(2,1)}9. 用符号,∈∉填空:⑴5 {}2*1,x x n n N=+∈, ⑵(1,1)- {}2y y x =, ⑶(1,1)- {}2(,)x y y x = ⑷ 0 }2{2x x x =. 10. 已知集合A ={2a ,a 2−a },则a 的取值范围是 。11. 已知集合{}1,1A m =+,则实数m 满足的条件是 。12. 集合{}32x N x +∈-<用列举法可表示为 。13. 集合{}2210x x x -+=用列举法可表示为 。14. 集合{}220x x x m -+=含有两个元素,则实数m 满足的条件为 。15. 已知集合⎭⎬⎫⎩⎨⎧∈-∈=N x N x A 68|,列举法表示集合A 。16. 若集合}{1,x -与}{2,x x为同一个集合,求实数x 的值;17. 已知x 2是集合{1,0,}x 中的元素,求实数x 的值。
集合的含义与表示教案
§1 集合的含义与表示(1课时)一、教材分析《集合的含义与表示》是在学生系统地学习了初中课程,并对集合有了感性认识的基础上对集合的含义与表示进行学习,在这里只是将集合作为一种语言来学习,为进一步学习数学奠定基础,集合是高中数学中最原始的概念,高中数学的运算结果,大都需要使用集合语言来描述,所以正确使用最基本的集合语言表示有关的数学对象,提高运用数学语言进行交流的能力正确使用集合语言处理高中数学各种数与形的问题,是一项极为重要的基本功。
《集合的含义与表示》教学在《大纲》中用一个课时完成:主要通过实例了解集合的含义,体会元素与集合的“属于”关系;能够选择自然语言、图形语言、集合语言(列举法或者描述法)描述不同的具体问题,提高语言的转换能力,感受集合语言表示数学内容的简洁性和准确性。
二、学情分析通过初中阶段的学习,学生对集合的认识已有了一定的认知结构,主要体现在三个层面:知识层面:学生学习了圆的定义、线段的垂直平分线的概念之后,对于集合已经有了一定的感性认识。
能力层面:学生在初中已经掌握了圆的定义,初步具备了抽象概括的能力。
情感层面:高中生活伊始,学生对数学新内容《集合的含义与表示》学习有相当的兴趣和积极性,但探究问题的能力以及合作交流等方面发展不够均衡。
三、教学方法和手段采用引导-发现式,合作-讨论式教学方式,配合多媒体、投影等辅助教学。
四、教学过程的设计为尽可能地让学生经历知识的形成与发展过程,更好地使不同层次的学生形成自己对集合的含义、表示方法、常用数集,集合分类的理解和掌握,结合本单元教材的特点,教学中采用了“自主探究”教学模式。
五、教学目标及重难点【目标呈现】1、通过举例(与本班有关的或生活中集合实例)让学生观察,能够说出集合,元素的概念,会用符号表示他们之间的关系;2、了解集合中元素的三大特征;内容识记常用的数集及其专用符号;3、阅读课本P44、会用描述法或列举法表示集合;5、能区分有限集、无限集;教学重点:描述法或列举法表示集合教学难点:描述法表示集合六、教学过程:引入问题(I)提出问题问题1:班级有20名男生,16名女生,问班级一共多少人?问题2:某次运动会上,班级有20人参加田赛,16人参加径赛,问一共多少人参加比赛?讨论问题:按小组讨论。
人教A版必修1 数学:1.1.1 集合的含义与表示 学案2
集合的含义与表示【学习目标】一、知识与技能:(1)初步理解集合的含义,知道常用的数集及其记法。
(2)初步了解“属于”关系的意义。
(3)初步了解有限集、无限集、空集的意义。
二、过程与方法:(1)通过实例,初步体会元素与集合的“属于”关系,从观察分析集合的元素入手,正确地理解集合。
(2)观察关于集合的几组实例,并举出各种集合的例子,初步感受集合语言在描述客观现实和数学对象中的意义。
(3)学会借助实例分析,探究数学问题(如集合中元素的确定性、互异性和无序性)。
三、情感、态度与价值观:(1)在学习运用集合语言过程中,增强认识事件的能力,初步培养实事求是,扎实严谨的科学态度。
(2)探索利用直观图示理解抽象概念,体会数形结合的思想。
【学习重难点】1.学习重点:集合的含义与表示方法,用集合语言表达数学对象或数学内容。
2.学习难点:区别元素与集合等概念及其符号表示。
【学习过程】一、集合的概念一般地,把一些__________不同的对象看成一个整体,就说这个__________是由这些对象的全体构成的集合。
1.集合是现代数学中不加定义的基本概念,学习这个概念应注意以下两点:(1)集合是一个“整体”(2)构成集合的对象必须是“确定”的且“不同”的。
“确定”是指构成集合的对象具有非常明确的特征,这个特征不是模棱两可的。
一般地,判定一组对象a1,a2,a3,…,an能否构成集合,就是要看判定的对象a1,a2,a3,…,an是否具有一个确定的特性,如果有,能构成集合;如果没有,就不能构成集合。
“不同”是指构成集合的各个对象互不相同,即相同的对象归入一个集合时,该对象只能出现一次。
例1:下列各组对象中,哪些能组成集合?哪些不能组成集合? (1)参加2010年全国高考的山东考生。
(2)所有数学难题。
(3)数组2,2,4,6.(4)参加2010年广州亚运会的运动员。
(5)全国所有大湖。
2.元素的概念构成集合的每个对象叫做这个集合的元素。
《集合的含义与表示》教学设计
1.1.1《集合的含义与表示》教案【教学目标】1.了解集合、元素的概念,体会集合中元素的三个特征;2. 理解元素与集合的“属于”和“不属于”关系;3. 掌握常用数集及其记法;4.了解集合的表示方法;5.能正确选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.【导入新课】一、实例引入:军训前学校通知:8月20日8点,高一年级在体育馆集合进行军训动员;试问这个通知的对象是全体的高一学生还是个别学生?在这里,集合是我们常用的一个词语,我们感兴趣的是问题中某些特定(是高一而不是高二、高三)对象的总体,而不是个别的对象,为此,我们将学习一个新的概念——集合,即是一些研究对象的总体.二、问题情境引入:我们高一(一)班一共52人,其中班长张三,现有以下问题:⑴ 52人组成的班集体能否组成一个整体?⑵张三和52人所组成的班集体是什么关系?⑶假设李四是相邻班的学生,问他与高一·一班是什么关系?新授课阶段(一)集合的有关概念1.集合理论创始人康托尔称集合为一些确定的、不同的东西的全体,人们能意识到这些东西,并且能判断一个给定的东西是否属于这个总体.2.一般地,我们把研究对象统称为元素(element),一些元素组成的总体叫集合(set),也简称集.3.思考1:判断以下元素的全体是否组成集合,并说明理由:(1)大于3小于11的偶数;(2)我国的小河流;(3)非负奇数;x+=的解;(4)方程210(5)某校20XX级新生;(6)血压很高的人;(7)著名的数学家;(8)平面直角坐标系内所有第三象限的点;(9)全班成绩好的学生.对学生的解答予以讨论、点评,进而讲解下面的问题.4.关于集合的元素的特征(1)确定性:设A是一个给定的集合,x是某一个具体对象,则或者是A的元素,或者不是A的元素,两种情况必有一种且只有一种成立.(2)互异性:一个给定集合中的元素,指属于这个集合的互不相同的个体(对象),因此,同一集合中不应重复出现同一元素.(3)无序性:给定一个集合与集合里面元素的顺序无关.(4)集合相等:构成两个集合的元素完全一样.(二) 元素与集合的关系1. (1)如果a是集合A的元素,就说a属于(belong to)A,记作:a∈A;(2)如果a不是集合A的元素,就说a不属于(not belong to)A,记作:a∉A,例如,我们A表示“1~20以内的所有质数”组成的集合,则有3∈A,4∉A,等等.2.集合与元素的字母表示:集合通常用大写的拉丁字母A,B,C…表示,集合的元素用小写的拉丁字母a,b,c,…表示.3.常用的数集及记法:非负整数集(或自然数集),记作N;正整数集,记作N*或N+;整数集,记作Z;有理数集,记作Q;实数集,记作R.例1 若集合A 为所以大于1 二小于3的实数组成的集合,则下面说法正确的为( )A .0A ∈ B.1A ∉ C.0.2A ∈ D.1A -∈解析:根据元素与集合的关系可得,答案C.答案: C例2用“∈”或“∉”符号填空:(1)8N ; (2)0N ;(3)-3Z ; (4Q ;(5)设A 为所有亚洲国家组成的集合,则中国A ,美国A ,印度A ,英国A. 答案:;;;;,,∈∈∈∉∈∉∉例3 判断下列各句的说法是否正确:(1) 所有在N 中的元素都在N*中 ( )(2) 所有在N 中的元素都在Z 中 ( )(3) 所有不在N*中的数都不在Z 中 ( )(4) 所有不在Q 中的实数都在R 中 ( )(5) 由既在R 中又在N 中的数组成的集合中一定包含数0 ( )(6) 不在N 中的数不能使方程4x =8成立 ( )答案:×,√,×,√,×,√例 4 已知集合P 的元素为21,,33m m m -+, 若3P ∈且-1∉P ,求实数m 的值解:根据3P ∈,得若23,333m m =-+=则m 此时不满足题意;若333,m m -+=解得 此时0m =或3m =(舍),综上 符合条件的0m = .点评:本题综合运用集合的定义和元素与集合的关系解题,注意集合的性质的运用.(三)集合的表示方法我们可以用自然语言和图形语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合(1) 列举法:把集合中的元素一一列举出来,并用花括号“{}”括起来表示集合的方法叫列举法.如:{1,2,3,4,5},{x 2,3x+2,5y 3-x ,x 2+y 2},…说明:1.集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序.2.各个元素之间要用逗号隔开;3.元素不能重复;4.集合中的元素可以数,点,代数式等;5.对于含有较多元素的集合,用列举法表示时,必须把元素间的规律显示清楚后方1,2,3,4,5,.......能用省略号,象自然数集N用列举法表示为{}例5 用列举法表示下列集合:(1)x2-4的一次因式组成的集合. (2){y|y=-x2-2x+3,x∈R,y∈N}.(3)方程x2+6x+9=0的解集. (4){20以内的质数}.(5){(x,y)|x2+y2=1,x∈Z,y∈Z}. (6){大于0小于3的整数}(7){x∈R|x2+5x-14=0}.(8){(x,y)}|x∈N,且1≤x<4,y-2x=0}.(9){(x,y)|x+y=6,x∈N,y∈N}.分析:用列举法表示集合的关键是找出集合中的所有元素,要注意不重不漏,不计次序地用“,”隔开放在大括号内.解:(1)因x2-4=(x-2)(x+2),故符合题意的集合为{x-2,x+2}.(2)y=-x2-2x+3=-(x+1)2+4,即y≤4,又y∈N,∴y=0,1,2,3,4.故{y|y=-x2-2x+3,x∈R,y∈N}={0,1,2,3,4}.(3)由x2+6x+9=0得x1=x2=-3,∴方程x2+6x+9=0的解集为{-3}.(4){20以内的质数}={2,3,5,7,11,13,17,19}.(5)因x∈Z, y∈Z ,则x=-1,0,1时,y=0,1,-1.那么{(x,y)|x2+y2=1,x∈Z ,y∈Z}={(-1,0),(0,1),(0,-1),(1,0)}.(6){大于0小于3的整数}={1,2}.(7)因x2+5x-14=0的解为x1=-7,x2=2,则{x∈R|x2+5x-14=0}={-7,2}.(8)当x∈N且1≤x<4时,x=1,2,3,此时y=2x,即y=2,4,6.那么{(x,y)|x∈N且1≤x<4,y-2x=0}={(1,2),(2,4),(3,6)}.(9){(x,y)|x+y=6,x∈N,y∈N}={(0,6)(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}.(2)描述法:把集合中的元素的公共属性描述出来,写在花括号{}内.具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征.一般格式:{}()x A p x ∈如:{x|x-3>2},{(x,y)|y=x 2+1},{x ︳直角三角形},…;说明:1.课本P 5最后一段话;2.描述法表示集合应注意集合的代表元素,如{(x,y)|y= x 2+3x+2}与 {y|y= x 2+3x+2}是不同的两个集合,只要不引起误解,集合的代表元素也可省略,例如:{x ︳整数},即代表整数集Z.辨析:这里的{ }已包含“所有”的意思,所以不必写{全体整数}.下列写法{实数集},{R}也是错误的.说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法.例6 用描述法表示下列集合:(1)方程2x +y =5的解集. (2)小于10的所有非负整数的集合.(3)方程ax +by =0(ab ≠0)的解. (4)数轴上离开原点的距离大于3的点的集合.(5)平面直角坐标系中第Ⅱ、Ⅲ象限点的集合.(6)方程组⎩⎨⎧x + y =1x -y =1的解的集合. (7){1,3,5,7,…}.(8)x 轴上所有点的集合. (9)非负偶数.(10)能被3整除的整数.分析:用描述法表示集合的关键是找出集合中元素的公共属性,确定代表元素,公共属性可以用文字直接表述,也可用数学关系表示,但要抓住其实质.解:(1){(x ,y )|2x +y =5}.(2)小于10的所有非负整数的集合用描述法表示为{x |0≤x <10,x ∈Z }.(3)方程ax +by =0(ab ≠0)的解用描述法表示为{(x ,y )|ax +by =0(ab ≠0)}.(4)数轴上离开原点的距离大于3的点的集合用描述法表示为{x |x >3}.(5)平面直角坐标系中第Ⅱ、Ⅲ象限点的集合用描述法表示为{(x ,y )|xy <0}.(6)方程组⎩⎨⎧x + y =1x -y =1 的解的集合用描述法表示为{(x ,y )|⎩⎨⎧x + y =1x -y =1}. (7){1,3,5,7,…}用描述法表示为{x |x =2k -1,k ∈N*}.(8)x 轴上所有点的集合用描述法表示为{(x ,y )|x ∈R ,y =0}.(9)非负偶数用描述法表示为{x |x =2k ,k ∈N }.(10)能被3整除的整数用描述法表示为{x |x =3k ,k ∈Z }.(3)文恩图法:集合的表示除了列举法和描述法外,还有恩韦图(文氏图)叙述如下:画一条封闭的曲线,用它的内部来表示一个集合.如图:表示任意一个集合A边界用直线还是曲线,用实线还是虚线都无关紧要,只要封闭并把有关元素和子集统统包含在里边就行,但不能理解成圈内每个点都是集合的元素.................. 例7设集合A ={x |x =2k ,k ∈Z },B ={x |x =2k +1,k ∈Z },C ={x |x =4k +1,k ∈Z },又有a ∈A ,b ∈B ,判断元素a +b 与集合A 、B 和C 的关系.解:因A ={x |x =2k ,k ∈Z },B ={x |x =2k +1,k ∈Z },则集合A 由偶数构成,集合B 由奇数构成.即a 是偶数,b 是奇数 设a =2m ,b =2n +1(m ∈Z ,n ∈Z )则a +b =2(m +n )+1是奇数,那么a +b ∈\A ,a +b ∈B .又C ={x |x =4k +1,k ∈Z }是由部分奇数构成且x =4k +1=2·2k +1.故m +n 是偶数时,a +b ∈C ;m +n 不是偶数时,a +b ∈\C综上a +b ∈\A ,a +b ∈B ,a +b ∈\C.课堂小结1.集合的概念中,“某些指定的对象”,可以是任意的具体确定的事物,例如数、式、点、形、物等.2.集合元素的三个特征:确定性、互异性、无序性,要能熟练运用之.3. 集合的常用表示方法,包括列举法、描述法.作业1.习题1.1,第1- 2题;表示{3,9,27}表示{4,6,10}2.预习集合的表示方法.拓展提升1.用集合符号表示下列集合,并写出集合中的元素:(1)所有绝对值等于8的数的集合A ; (2)所有绝对值小于8的整数的集合B .2.下列各组对象不能形成....集合的是( ) A.大于6的所有整数 B.高中数学的所有难题C.被3除余2的所有整数D.函数y =1x图象上所有的点 3.下列条件能形成集合的是( )A.充分小的负数全体B.爱好飞机的一些人C.某班本学期视力较差的同学D.某校某班某一天所有课程4.集合A 的元素由kx 2-3x +2=0的解构成,其中k ∈R ,若A 中的元素至多有一个,求k 值的范围.5.若x ∈R ,则{3,x ,x 2-2x }中的元素x 应满足什么条件?6.方程 ax 2+5x +c =0的解集是{12 ,13},则a =_______,c =_______.7.集合A 的元素是由x =a +b 2 (a ∈Z,b ∈Z )组成,判断下列元素x 与集合A 之间的关系:0,12-1,13-2.参考答案1. 分析:由集合定义:一组确定对象的全体形成集合,所以能否形成集合,就看所提对象是否确定;其次集合元素的特征也是解决问题依据所在.解:(1)A ={绝对值等于8的数} 其元素为:-8,8(2)B ={绝对值小于8的整数}其元素为:-7,-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6,7.2. 解:综观四个选择支,A 、C 、D 的对象是确定的,惟有B 中的对象不确定,故不能形成集合的是B.3 解:综观该题的四个选择支,A 、B 、C 的对象不确定,惟有D 某校某班某一天所有课程的对象确定,故能形成集合的是D.4. 解:由题A 中元素即方程kx 2-3x +2=0(k ∈R )的根若k =0,则x =23,知A 中有一个元素,符合题设 若k ≠0,则方程为一元二次方程.当Δ=9-8k =0即k =98时,kx 2-3x +2=0有两相等的实数根,此时A 中有一个元素.又当9-8k <0即k >98时,kx 2-3x +2=0无解. 此时A 中无任何元素,即A =∅也符合条件综上所述 k =0或k ≥98评述:解决涉及一元二次方程问题,先看二次项系数是否确定,若不确定,如该题,则须分类讨论.其次至多有一个元素,决定了这样的集合或者含一个元素,或者不含元素,分两种情况.5. 解:集合元素的特征说明{3,x ,x 2-2x }中元素应满足关系式⎩⎪⎨⎪⎧x ≠3x ≠x 2-2x 3≠x 2-2x 即⎩⎪⎨⎪⎧x ≠3x 2≠3x x 2-2x -3≠0 也就是⎩⎪⎨⎪⎧x ≠3x ≠0x ≠-1 即x ≠-1,0,3满足条件.6. 解:方程ax 2+5x +c =0的解集是{12 ,13 },那么12 、13是方程两根 即有⎩⎨⎧12 +13 =-5a 12 ·13 =c a得⎩⎨⎧a =-6c =-1 那么 a =-6,c =-1 7.解:因x =a +b 2 ,a ∈Z ,b ∈Z则当a =b =0时,x =0又12-1= 2 +1=1+ 2 当a =b =1时,x =1+ 2 又13-2= 3 + 2 当a = 3 ,b =1时,a +b 2 = 3 + 2而此时 3 ∈\Z ,故有:13-2∈\A , 故0∈A ,12-1∈A ,13-2∈\A . 8.解:若x 是整数,则有x +x =15,x =152与x 是整数相矛盾,若x 不是整数,则x 必在两个连续整数之间设n <x <n +1则有n +(n +1)=15,2n =14,n =7 即7<x <8 ∴x ∈(7,8)。
1.1.1集合的含义与表示(2)
(问题决解和问题拓展——评价单)
程序(要素)
时间
创设情境
教师行为
期望的学生行为
一、学生自查
二、小组讨论,
解决基础问题
三、综合讲解
5
分
钟
15
分
钟
20
分
钟
创设自主检查情景
创设自主
反思情境
创设问题解决情境
公示答案,让学生自主检测练习情况。
把问题拓展评价单上部分问题划出,让学生小组讨论自主解决。教师巡视指导,解决学生疑难问题。
在组内由学科长组织讨论,解决不了的问题可以在组间交流。学生根据教师创设的情境,围绕工具单上的问题分组展开积极讨论,然后选取小组进行组间展评
三.
拓展训练
15
分钟
创设自主学习情境
[旁白]下面由小组内部派代表展示,时间为15分钟。
1.教师引导学生自我展示学习。
2.对学生展示情况给予及时的评价,对小组难以解决的问题进行引导,并对重点进行拓展延伸。对小组展示不到位的进行补充。
3.引导学生生生质疑,关注某些同学表现,采用激活策略。
1展示时要遵循“展、思、论、评、演、记”六原则。
2.在小组展示时,各小组成员要认真倾听其他小组的观点,积极思考并及时质疑追问。
3.小组合作表演完成。
四.
归纳总结
提升意义
5分钟
创设总结情境
归纳知识收获,让学生谈谈学完此课的情感收获。
每个小组对演讲的特点进行归纳总结。
3.情感态度与价值观:提高学生分析问题和解决问题的能力
重点
难点
重点:集合的两种表示方法。
难点:对描述法的理解。
关键
问题
1.列举法的定义:
集合的含义与表示-高中数学优质课教案
建构 数学 知识
若元素 a 不在集合 A 中,记作 a A . 由此可知集合中元素具有的一个重要的特性:确定 性. 二.常见的数集及记法: 自然数组成的集合简称自然数集,记作 N; 正整数组成的集合简称正整数集,记作 N ; 整数组成的集合简称整数集,记作 Z; 有理数组成的集合简称有理数集,记作 Q; 实数组成的集合简称实数集,记作 R.
用;
列举集合实例: 材料:引用上述一些结论,比如: 1.蓄水量在 700 亿 m3 以上的有:青海湖、纳木 错湖; 2.蓄水量在 100~070 亿 m3 的有:洞庭湖、鄱 阳湖、呼伦湖; 3. 蓄水量在 10~100 亿 m3 的有:博斯腾湖、 太湖、洪泽湖、南四湖. 一.集合的含义和元素的特性: 集合可描述为:指定的某些对象的全体. 3 比如, “蓄水量在 100~700 亿 m 的天然湖的全 体” 就构成一个集合. 其中的每个对象叫做这个集合的元素.在上述集合 中洞庭湖、鄱阳湖、呼伦湖都是这个集合中的元素; 若元素 a 在集合 A 中,记作 a A ;
2
师:描述法(或称为集合的特征 性质描述法)表示集合 A,可以 写为形如 A= {x∈I︱p(x)}的符 号语言,意思就是在集合 I 中, 属于集合 A 的任意一个元素都具 有性质 p(x),而不属于集合 A 的 元素都不具有性质 p(x). 师生共同发现:用什么方法表 示集合,要具体问题具体分析: 1.列举法对于元素较少的集 合可以一目了然,方便快捷,但 元素较多时就不太方便了. 2.对于元素较多的集合或者 根本就不能一一列举的集合用描 述法来表示就显得简洁明了. 师生双边互动 师:指出在给定的集合中,元
巩固 练习
课本 P5 练习 1 集合的常用表示法 2 构成的 比如, “方程 x -5x=0 在实数内的解的全体”
高中数学 1.1.1 集合的含义与表示2教案 新人教a版必修1
1.1.1 集合的含义与表示(第二课时)教学目标:1.掌握集合的两种常用表示方法(列举法和描述法)。
.2.通过实例能使学生选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用。
教学重点:集合的两种常用表示方法(列举法和描述法)教学难点:集合的两种常用表示方法(列举法和描述法)的理解 教学方法:尝试指导法和讨论法教学过程:(I )复习回顾问题1:集合元素的特征有哪些?怎样理解,试举例说明.问题2:集合与元素关系是什么?如何表示?问题3:常用的数集有哪些?如何表示?(II )引入问题问题4:在初中学正数和负数时,是如何表示正数集合和负数集合的? 如表示下列数中的正数 4.8,-3,2,-0.5,1,+73,3.1 方法1:方法2: {4.8,2,31,+73,3.1} 问题5:在初中学习不等式时,如何表示不等式x+3<6的解集?(可表示为:x<3) (III) 讲授新课一、集合的表示方法问题4中,方法1为图示法,方法2为列举法.1. 列举法:把集合中的元素一一列举出来,写在大括号里的方法.说明: (1)书写时,元素与元素之间用逗号分开;(2)一般不必考虑元素之间的顺序;(3)在表示数列之类的特殊集合时,通常仍按惯用的次序;(4)在列出集合中所有元素不方便或不可能时,可以列出该集合的一部分元素,以提供某种规律,其余元素以省略号代替;例1.用列举法表示下列集合:2. 描述法:用集合所含元素的共同特征表示集合的方法(即把集合中元素的公共属性描述出来, 写在大括号里的方法)。
表示形式:A={x ∣p},其中竖线前x 叫做此集合的代表元素;p 叫做元素x 所具有的公共属性;A={x ∣p}表示集合A 是由所有具有性质P 的那些元素x 组成的,即若x 具有性质p ,则x ∈A ;若x ∈A,则x 具有性质p 。
说明: (1)有些集合的代表元素需用两个或两个以上字母表示; (2)应防止集合表示中的一些错误。
1. 1. 1-2集合的含义及其表示
1.1.1 集合的含义及其表示方法<2)教案【教案目标】1、集合和元素的表示法;2、掌握一些常用的数集及其记法3、掌握集合两种表示法:列举法、描述法。
【教案重难点】集合的两种表示法:列举法和描述法。
【教案过程】一、导入新课复习提问:集合元素的特征有哪些?怎样理解,试举例说明,集合与元素关系是什么?如何用数不符号表示?那么给定一个具体的集合,我们如何表示它呢?这就是今天我们学习的内容—集合的表示 (板书课题>我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外还常用列举法和描述法来表示集合二、新课讲授<1)、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法。
例:“中国的直辖市”构成的集合,写成{北京,天津,上海,重庆}由“maths中的字母”构成的集合,写成{m,a,t,h,s}由“book中的字母”构成的集合,写成{b,o,k}注:<1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,100}所有正奇数组成的集合:{1,3,5,7,…} <2) a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。
<3)集合中的元素具有无序性,所以用列举法表示集合时不必考虑元素的顺序。
学生自主完成P4 例题1<2)、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条件写在大括号内表示集合的方法。
格式:{x∈A| P<x)}含义:在集合A中满足条件P<x)的x的集合。
例:不等式的解集可以表示为:或“中国的直辖市”构成的集合,写成{为中国的直辖市};“方程x2+5x-6=0的实数解” {x∈R|x2+5x-6=0}={-6,1}学生自主完成P5例题2三、例题讲解例题1.用列举法表示下列集合:(1>小于5的正奇数组成的集合;(2>能被3整除且大于4小于15的自然数组成的集合;(3>方程x2-9=0的解组成的集合;(4>{15以内的质数};(5>{x|∈Z,x∈Z}.分析:教师指导学生思考列举法的书写格式,并讨论各个集合中的元素,明确各个集合中的元素,写在大括号内即可提示学生注意:(2>中满足条件的数按从小到大排列时,从第二个数起,每个数比前一个数大3;(4>中除去1和本身外没有其他的约数的正整数是质数;(5>中3-x是6的约数,6的约数有±1,±2,±3,±6.解: (1>满足题设条件小于5的正奇数有1,3,故用列举法表示为{1,3};(2>能被3整除且大于4小于15的自然数有6,9,12,故用列举法表示为{6,9,12};(3>方程x2-9=0的解为-3,3,故用列举法表示为{-3,3};(4>15以内的质数有2,3,5,7,11,13,故该集合用列举法表示为{2,3,5,7,11,13}(5>满足的x有3-x=±1,±2,±3,±6.解之,得x=2,4,1,5,0,6,-3,9,故用列举法表示为{2,4,1,5,0,6,-3,9}变式训练1用列举法表示下列集合:(1>x2-4的一次因式组成的集合;(2>{y|y=-x2-2x+3,x∈R,y∈N};(3>方程x2+6x+9=0的解集;(4>{20以内的质数};(5>{(x,y>|x2+y2=1,x∈Z,y∈Z};(6>{大于0小于3的整数};(7>{x∈R|x2+5x-14=0};(8>{(x,y>|x∈N且1≤x<4,y-2x=0};(9>{(x,y>|x+y=6,x∈N,y∈N}.分析:让学生思考用描述法的形式如何表示平面直角坐标系中的点?如何表示数轴上的点?如何表示不等式的解?学生板书,教师在其他学生中间巡视,及时帮助思维遇到障碍的同学.必要时,教师可提示学生:(1>集合中的元素是点,它是坐标平面内的点,集合元素代表符号用有序实数对(x,y>来表示,其特征是满足y=x2;(2>集合中元素是点,而数轴上的点可以用其坐标表示,其坐标是一个实数,集合元素代表符号用x来表示,其特征是对应的实数绝对值大于6;(3>集合中的元素是实数,集合元素代表符号用x来表示,把不等式化为x<a的形式,则这些实数的特征是满足x<a.解:(1>二次函数y=x2上的点(x,y>的坐标满足y=x2,则二次函数y=x2图象上的点组成的集合表示为{(x,y>|y=x2};(2>数轴上离原点的距离大于6的点组成的集合等于绝对值大于6的实数组成的集合,则数轴上离原点的距离大于6的点组成的集合表示为{x∈R||x|>6};(3>不等式x-7<3的解是x<10,则不等式x-7<3的解集表示为{x|x<10}.点评:本题主要考查集合的描述法表示.描述法适用于元素个数是有限个并且较多或无限个的集合.用描述法表示集合时,集合元素的代表符号不能随便设,点集的元素代表符号是(x,y>,数集的元素代表符号常用x.集合中元素的公共特征属性可以用文字直接表述,最好用数学符号表示,必须抓住其实质.变式训练2用描述法表示下列集合:(1>方程2x+y=5的解集;(2>小于10的所有非负整数的集合;(3>方程ax+by=0(ab≠0>的解;(4>数轴上离开原点的距离大于3的点的集合;(5>平面直角坐标系中第Ⅱ、Ⅳ象限点的集合;(6>方程组的解的集合;(7>{1,3,5,7,…};(8>x轴上所有点的集合;(9>非负偶数;(10>能被3整除的整数.答案:(1>、{(x,y>|2x+y=5};(2>、{x|0≤x<10,x∈Z};(3>、{(x,y>|ax+by=0(ab≠0>};(4>、{x||x|>3};(5>、{(x,y>|xy<0};(6>、{(x,y>|};(7>、{x|x=2k-1,k∈N*};(8>、{(x,y>|x∈R,y=0};(9>、{x|x=2k,k∈N};(10>、{x|x=3k,k∈Z}.四、课堂小结1.描述法表示集合应注意集合的代表元素{(x,y>|y= x2+3x+2}与{y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
人教B版高中数学必修一第一章1.1.2集合的概念之集合的含义及表示教案新部编本
精选教课教课设计设计| Excellent teaching plan教师学科教课设计[ 20–20学年度第__学期]任教课科: _____________任教年级: _____________任教老师: _____________xx市实验学校精选教课教课设计设计| Excellent teaching plan1.1.2 会合的观点及其表示(二)教课目:掌握表示会合方法;认识空集的观点及其特别性,浸透抽象、归纳思想。
教课要点:会合的表示方法教课点:正确表示一些会合型:新教课手段:授教课程:一、情境复提:会合元素的特点有哪些?怎理解,例明,会合与元素关系是什么?怎样用数不符号表示?那么定一个详细的会合,我怎样表示它呢?就是今日我学的内容—会合的表示 (板 )我能够用自然言来描绘一个会合,但将我来好多不便,除此以外常用列法和描绘法来表示会合二、新解1、列法:把会合中的元素一一列出来,写在大括号内表示会合的方法。
例 : “中国的直市”组成的会合,写成{ 北京 , 天津 , 上海 , 重 } 由“ maths 中的字母” 组成的会合,写成 {m,a,t,h,s}由“ book 中的字母”组成的会合,写成{b,o,k}注:( 1)有些会合亦可以下表示:从51 到 100 的全部整数成的会合:{51 , 52, 53,⋯, 100} 全部正奇数成的会合:{1 , 3, 5, 7,⋯ }( 2) a 与{a} 不一样: a 表示一个元素,{a} 表示一个会合,会合只有一个元素。
比方:与不一样,∈(3)会合中的元素拥有无序性,因此用列法表示会合不用考元素的序。
例 1( P4)2、描绘法:用确立的条件表示某些象能否属于个会合,并把个条件写在大括号内表示会合的方法。
格式: {x ∈A| P ( x) }含:在会合 A 中足条件P( x)的 x 的会合。
例 : 不等式 x 1 2 的解集能够表示:{ x R | x 12} 或 { x | x3,x R}“中国的直市”组成的会合,写成{ x x中国的直市} ;“ maths 中的字母”组成的会合,写成{ x x maths 中的字母 } ;“平面直角坐系中第二象限的点”{ ( x,y ) | x<0且y>0}“方程 x2+5x-6=0 的数解”{x∈ R| x2+5x-6=0}={-6,1}注:( 1)在不致混杂的状况下,能够省去及左部分。
高一数学集合教案(精选)
高一数学集合教案(精选)第一篇:高一数学教案:集合的表示方法1.1.2集合的表示方法教学目标:掌握集合的表示方法,能选择自然语言、图形语言、集合语言描述不同的问题.教学重点、难点:用列举法、描述法表示一个集合.教学过程:一、复习引入:1.回忆集合的概念2.集合中元素有那些性质?3.空集、有限集和无限集的概念二、讲述新课:集合的表示方法1、大写的字母表示集合2、列举法:把集合中的元素一一列举出来,写在大括号内表示集合的方法.例如,24所有正约数构成的集合可以表示为{1,2,3,4,6,8,12,24}注:(1)大括号不能缺失.(2)有些集合种元素个数较多,元素又呈现出一定的规律,在不至于发生误解的情况下,亦可如下表示:从1到100的所有整数组成的集合:{1,2,3, (100)自然数集n:{1,2,3,4,…,n,…}(3)区分a与{a}:{a}表示一个集合,该集合只有一个元素.a表示这个集合的一个元素.(4)用列举法表示集合时不必考虑元素的前后次序.相同的元素不能出现两次.3、特征性质描述法:在集合i中,属于集合a的任意元素某都具有性质p(某),而不属于集合a的元素都不具有性质p(某),则性质p(某)叫做集合a的一个特征性质,于是集合a可以表示如下:{某∈i|p(某)}例如,不等式某23某2的解集可以表示为:{某r|某23某2}或{某|某23某2},所有直角三角形的集合可以表示为:{某|某是直角三角形}注:(1)在不致混淆的情况下,也可以写成:{直角三角形};{大于104的实数}(2)注意区别:实数集,{实数集}.4、文氏图:用一条封闭的曲线的内部来表示一个集合.例1:集合{(某,y)|y某21}与集合{y|y某21}是同一个集合吗?答:不是.集合{(某,y)|y某21}是点集,集合{y|y某21}={y|y1}是数集。
例2:(教材第7页例1)例3:(教材第7页例2)课堂练习:(1)教材第8页练习a、b(2)习题1-1a:1,小结:本节课学习了集合的表示方法(字母表示、列举法、描述法、文氏图共4种)课后作业:p101,2第二篇:高一数学教案:1.1集合-集合的概念(2).doc课题:1.1集合-集合的概念(2)教学目的:(1)进一步理解集合的有关概念,熟记常用数集的概念及记法(2)使学生初步了解有限集、无限集、空集的意义(3)会运用集合的两种常用表示方法教学重点:集合的表示方法教学难点:运用集合的列举法与描述法,正确表示一些简单的集合授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪教学过程:一、复习引入:上节所学集合的有关概念1、集合的概念(1(22、常用数集及记法(1n,n0,1,2,(2)正整数集:非负整数集内排除0n或n+,n某1,2,3,某1,2,(3z,z0,(4q,q所有整数与分数(5r,r数轴上所有点所对应的数3、元素对于集合的隶属关系(1)属于:如果a是集合a的元素,就说a属于a,记作a∈a(2)不属于:如果a不是集合a的元素,就说a不属于a,记作aa4、集合中元素的特性(1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,(2(3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出)5、(1)集合通常用大写的拉丁字母表示,如a、b、c、p、q元素通常用小写的拉丁字母表示,如a、b、c、p、q(2)“∈”的开口方向,不能把a∈a二、讲解新课:(二)集合的表示方法1例如,由方程某210的所有解组成的集合,可以表示为{-1,1}注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,,100}所有正奇数组成的集合:{1,3,5,7,}(2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条格式:{某∈a|p(某)}含义:在集合a中满足条件p(某)的某例如,不等式某32的解集可以表示为:{某r|某32}或{某|某32所有直角三角形的集合可以表示为:{某|某是直角三角形}注:(1如:{直角三角形};{大于10的实数}(2)错误表示法:{实数集};{全体实数}344、何时用列举法?何时用描述法?⑴有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列{某2,3某2,5y3某,某2y2}⑵有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一如:集合{(某,y)|y某21};集合{1000以内的质数}例集合{(某,y)|y某21}与集合{y|y某21}是同一个集合吗?答:{(某,y)|y某21}是抛物线y某21上所有的点构成的集合,集合{y|y某21}={y|y1}是函数y某21(三)有限集与无限集1、有2、无3、空φ,如:{某r|某210}三、练习题:1、用描述法表示下列集合①{1,4,7,10,13}{某|某3n2,nn且n5}②{-2,-4,-6,-8,-10}{某|某2n,nn且n5}2、用列举法表示下列集合①{某∈n|某是15的约数}{1,3,5,15}②{(某,y)|某∈{1,2},y∈{1,2}}{(1,1),(1,2),(2,1)(2,2)}注:防止把{(1,2)}写成{1,2}或{某=1,y=2}某y282③{(某,y)|}{(,)}33某2y4④{某|某(1)n,nn}{-1,1}⑤{(某,y)|3某2y16,某n,yn}{(0,8)(2,5),(4,2)}}⑥{(某,y)|某,y分别是4的正整数约数{(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)}3、关于某的方程a某+b=0,当a,b满足条件____时,解集是有限集;当a,b满足条件_____4、用描述法表示下列集合:(1){1,5,25,125,625}=;(2){0,±4312,±,±,±,251017四、小结:本节课学习了以下内容:1.集合的有关概念:有限集、无限集、空集.集合的表示方法:列举法、描述法、文氏图五、课后作业:六、板书设计(略)七、课后记:第三篇:高一数学集合与简易逻辑教案11苏教版江苏省白蒲中学2022高一数学集合与简易逻辑教案11苏教版教材:含绝对值不等式的解法目的:从绝对值的意义出发,掌握形如|某|=a的方程和形如|某|>a,|某|<a(a>0)不等式的解法,并了解数形结合、分类讨论的思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§1.1-2集合的含义与表示教案
一. 教学目标:
l.知识与技能
(1)通过实例,了解集合的含义,体会元素与集合的属于关系;
(2)知道常用数集及其专用记号;
(3)了解集合中元素的确定性.互异性.无序性;
(4)会用集合语言表示有关数学对象;
(5)培养学生抽象概括的能力.
2. 过程与方法
(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.
(2)让学生归纳整理本节所学知识.
3. 情感.态度与价值观
使学生感受到学习集合的必要性,增强学习的积极性.
二. 教学重点.难点
重点:集合的含义与表示方法.
难点:表示法的恰当选择.
三. 学法与教学用具
1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.
2. 教学用具:投影仪.
四. 教学思路
(一)创设情景,揭示课题
1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?如男生出来集队,女生调整宿舍等
引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.
2.接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习的内容.
(二)研探新知
1.教师向学生给出下面6个实例,分组讨论:
(1)1—20以内的所有质数;
(2)我国古代的四大发明;
(3)中国的“西南三省”是哪三个?
(4)全世界共四大洋,你知道他们的名称吗?
(5)太阳光是由七种单色光组成,你知道是哪七种吗?
(6)2012级服装二班全体报到的学生的全体
2.教师组织学生分组讨论:这6个实例的共同特征是什么?
3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出6个实例的特征,并给出集合的含义.
一般地,由某些对象的所组成的整体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.
a b c d…
4.教师指出:集合常用大写字母A,B,C,D,…表示,元素常用小写字母,,,
表示.
(三)质疑答辩,排难解惑,发展思维
1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.
2.教师组织引导学生思考以下问题:
判断以下元素的全体是否组成集合,并说明理由:
(1)中国的直辖市;
(2)方程x2-1=0所有解;
(3)大于3的自然数;
(4)著名的科学家;
(5)1/X=0的解
让学生充分发表自己的建解.
3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.
4.教师提出问题,让学生
思考1
(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么,a b与集合A分别有什么关系?由此引导学生得出元素与集合的
关系有两种:属于和不属于.
∈.
如果a是集合A的元素,就说a属于集合A,记作a A
∉.
如果a不是集合A的元素,就说a不属于集合A,记作a A
(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.
让学生说出判断题中每个集合元素的个数,从而得到集合的分类:有限集,无限集,空集
例题1、已知集合A={a-2,2a2+5a,10},且-3∈A,求a
解:a-2=-3或2a2+5a=-3 故a=-1或a=-3/2
当a=-1时,2a2+5a=a-2=-3与集合的互异性矛盾,舍去
当a=-3/2时,满足条件总之,a=-3/2
[说明]由于解题过程中用到了不等价变形,所以要进行检验
5. 常用数集及其记法
非负整数集(或自然数集),记作N
正整数集,记作N*或N+;
整数集,记作Z
有理数集,记作Q
实数集,记作R
练习课本第三页练习题及习题
观察下列对象组成的集合,指出他们的元素
(1)1、4、7、10
(2)小于五的正整数
(3)江苏省的地级市
怎样表示下列集合那?。
列举法
6.我们可以用自然语言来描述一个集合,但这将给我们带来很多不便,除此之外
还常用列举法和描述法来表示集合。
(1)列举法:把集合中的元素一一列举出来,写在大括号内。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},…;
练习.用列举法表示集合
a、由2的所有正因数构成的集合可以表示为:{1,2};
b、由一个星期的所有日期构成的集合可以表示为:
{星期日,星期一,星期二,星期三,星期四,星期四,星期五,星期六}。
c、由方程(x-1)(x-2) (x-3)=0的所有的解构成的解集可以表示成:
{1,2,3}
思考2,写出写出质数组成的集合能用列举法吗?
引入描述法
描述法:把集合中的元素的公共属性描述出来,写在大括号{}内表示集合的方法。
具体方法:在大括号内先写上表示这个集合元素的一般符号及取值(或变化)范
围,再画一条竖线,在竖线后写出这个集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},…;
例2.用描述法表示下列集合
(1)大于6的实数组成的集合;
(2)平面直角坐标系中第一象限点构成的集合;
(3)小于8的正奇数组成的集合;
(4)方程X2+2X+1=0的实数解组成的集合
练习课本第五页练习
思考3:1、{x=1}、{x︱x=1}、{(x、y)︱x=1}分别表示什么意义?
2 、用描述法表示集合{-12,2
3 ,-34,45…}=______
例三,课本第五页
强调:描述法表示集合应注意集合的代表元素
{(x,y)|y= x2+3x+2}与 {y|y= x2+3x+2}不同,只要不引起误解,集合的代表元素也可省略,例如:{整数},即代表整数集Z。
辨析: {全体整数}、{实数集}、{R}这样写可以吗?
这里的{ }已包含“所有”的意思,所以不必写{全体整数}。
下列写法{实数集},{R}也是错误的。
说明:列举法与描述法各有优点,应该根据具体问题确定采用哪种表示法,要注意,一般集合中元素较多或有无限个元素时,不宜采用列举法。
课本第六页习题1、2、3。