轴对称知识点总结及经典练习电子教案

合集下载

初中数学轴对称图形知识点加习题总结

初中数学轴对称图形知识点加习题总结

知识点1 轴对称图形如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;这时,我们也说这个图形关于这条直线的轴对称。

知识点2 对称轴的性质1.对称轴是一条直线。

2.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。

3.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。

4.图形对称例1下面哪些图形是轴对称图形?画出轴对称图形的对称轴。

例2.推理游戏:下面应该是什么图形?知识点3线段垂直平分线定义及其性质定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

性质1.垂直平分线垂直且平分其所在线段。

2.垂直平分线上任意一点,到线段两端点的距离相等。

逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

3.如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线。

例3.如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=6,则线段PB的长度为〔〕A.3 B.5 C.6 D.8解析:∵直线CD是线段AB的垂直平分线,∴PB=PA,∵PA=6,∴PB=6.答案C.例4如以下图,DE是线段AB的垂直平分线,以下结论一定成立的是〔〕A.ED=CDB.∠DAC=∠BC.∠C>2∠BD.∠B+∠ADE=90°分析:∵DE是线段AB的垂直平分线,∴AD=BD.∴∠B=∠BAD,∠ADE=∠BDE.∴∠B+∠ADE=90°答案D课堂练习11.点A,B关于直线a对称,P是直线a上的任意一点,以下说法不正确的选项是〔〕A.直线AB与直线a垂直B.直线a是点A和点B的对称轴C.线段PA与线段PB相等D.假设PA=PB,则点P是线段AB的中点2.三角形中到三边的距离相等的点是〔〕A.三条边的垂直平分线的交点B.三条高的交点C.三条中线的交点D.三条角平分线的交点3.已知A和B两点在线段EF的中垂线上,且∠EAF=100°,∠EBF=70°,则∠AEB等于( )A、95°B、15°C、95°或15°D、170°或30°4.已知:如图,线段AB垂直平分线段CD则AC=。

初中数学轴对称的几何知识点总结

初中数学轴对称的几何知识点总结

初中数学轴对称的几何知识点总结轴对称是初中数学中一个重要的几何概念,它涉及到点、线、图形等方面的内容。

下面是数学轴对称的几个重要知识点的总结:1.轴对称的定义:轴对称是指一个图形相对于一些轴线对称,即图形的一部分可通过轴线翻折到另一部分,使得两部分完全重合。

轴线称为对称轴,对称轴上的任意一点,在翻折过程中仍停留在轴上。

轴对称的图形呈镜像对称。

2.轴对称的性质:a.轴对称图形中对称轴的选择不唯一,同一个图形可以有多个对称轴。

b.轴对称的图形上的点经过对称轴翻折后所得的点和原来的点相等。

c.轴对称的图形是封闭的,对称轴上的点保持不变。

d.轴对称的图形上的点和它们的对称点关于对称轴对称。

3.对称图形的判断:判断一个图形是否轴对称有以下几种方法:a.通过纸张折叠法,将图形的一部分折到另一部分,看是否重合。

b.通过将图形看作由简单的基本图形组成,判断每个基本图形是否对称,进而判断整个图形是否对称。

c.观察图形在对称轴上的点,通过比较对称点之间的距离、角度等属性,判断图形是否对称。

4.常见轴对称图形:初中数学中常见的轴对称图形包括:a.点的轴对称:点是轴对称的,即任意一点相对于自身对称。

b.线的轴对称:直线在自身的中点处对称。

c.图形的轴对称:正方形、矩形、正五边形、圆等都是轴对称的图形。

5.轴对称图形的性质:a.轴对称图形的对称中心可以在图形内部或外部。

b.轴对称图形的对称轴通常是图形的中垂线或对角线等。

6.轴对称与平移的关系:轴对称是平移的一种特殊情况,当平移的向量等于对称轴上的一个向量时,平移的结果就是轴对称图形。

7.轴对称的应用:轴对称在几何题目中的应用非常广泛。

例如:a.用轴对称的方法来求图形的面积、周长等属性。

b.利用对称轴的性质来证明等式的成立。

c.利用轴对称的性质来解决几何问题,如寻找图形的对称中心等。

通过以上的总结,希望能够帮助你对初中数学轴对称的几何知识点有一个更全面和深入的了解。

轴对称知识点总结

轴对称知识点总结

轴对称知识点总结轴对称是指物体具有在某一平面上的镜像对称性质。

在数学和几何学中,轴对称是一种特殊的对称形式,是对称性的重要表现形式之一。

下面将对轴对称的知识点进行总结。

一、轴对称的概念轴对称是指物体或图形在某一平面上的镜像对称性质。

这个平面被称为轴线或对称轴。

沿着轴线对物体进行镜像变换,使得物体的每一个点与镜像点相关联,二者之间的距离保持不变。

轴对称可以存在于二维图形、立体物体以及其他几何结构中。

二、轴对称的特点1. 图形的每一点都关于轴线对称,对称点在轴线上。

2. 对称图形的延长线与轴线重合,对称图形的每一条直线都是轴线上两个对称点的中垂线或垂直平分线。

3. 对称图形的面积、周长和内角和与其镜像图形相等。

4. 对称图形的对称中心与图形的每一个点距离的平方和最小。

三、轴对称的判定方法1. 观察图形是否有明显的对称形状,例如正方形、圆等。

2. 通过自身对折或平移观察是否可以重合。

3. 镜像变换:通过将图形投影到一个平面上,并观察是否与投影前的图形重合完成。

四、轴对称的应用1. 图案设计:轴对称的图案可以给人以和谐、美感的感受,常用于服装、陶瓷、织物等设计中。

2. 建筑设计:许多建筑物在设计中运用了轴对称的原则,例如古代的宫殿、寺庙等,可以使建筑更加庄重、稳定。

3. 生物学:许多生物体的结构具有轴对称性,例如动物的身体结构,植物的花朵等都存在轴对称现象,这也是生命体的一种基本特征。

4. 数学研究:轴对称是数学中的一个重要概念,广泛应用于几何、代数和图论等领域的研究中。

特别是在图论中,轴对称是许多图形算法的基础。

五、轴对称的相关定理1. 轴对称的性质可以应用于线段、角、多边形、三角形等几何概念的研究中,例如轴对称定理、轴对称三角形定理等。

2. 轴对称可以通过镜像变换来实现,这也与线性变换和矩阵运算有关。

研究轴对称问题可以进一步理解和应用线性代数等数学知识。

六、轴对称与其他对称性质的关系1. 轴对称是平移对称的一种特殊形式。

八年级数学轴对称知识点整理及练习

八年级数学轴对称知识点整理及练习

教学课题 轴对称 教学目的1、会推断哪些是轴对称图形,知道轴对称图形和轴对称的区分2、会用坐标表示轴对称重点难点 用坐标表示轴对称【学问点梳理】 一、学问框架:二、学问概念: 1.根本概念:⑴轴对称图形:假如一个图形沿一条直线折叠,直线两旁的部分可以互相重合,这个图形就 叫做轴对称图形.⑵两个图形成轴对称:把一个图形沿某一条直线折叠,假如它可以及另一个图形重合,那么 就说这两个图形关于这条直线对称. 3、轴对称图形和轴对称的区别与联系轴对称图形轴对称区别联系图形(1)轴对称图形是指( )具有特殊形状的图形,只对( )图形而言;(2)对称轴( )只有一条(1)轴对称是指( )图形的位置关系,必须涉及( )图形;(2)只有( )对称轴.如果把轴对称图形沿对称轴分成两部分,那么这两个图形就关于这条直线成轴对称.如果把两个成轴对称的图形拼在一起看成一个整体,那么它就是一个轴对称图形.BCAC'B'A'AB C 一个一个不一定两个两个一条知识回顾:⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分C BAy x13.点P 关于x 轴对称的点的坐标是〔1,2-〕,那么点P 关于y 轴对称的点的坐标是〔 〕. A .〔1,2〕 B .〔1-,2〕 C .〔1-,2-〕 D .〔1,2-〕 14.点(,2)P a b a b +-及点(2,3)Q --关于x 轴对称,那么a b +=〔 〕A . 13B . 23C . 2D . 2-15. 如图3,△ABC 的顶点分别为)3,0(A ,B(-4,0),)0,2(C ,且△BCD 及△ABC 全等,那么点D 坐标可以是 。

16、在Rt △ABC 中,CD 是斜边AB 上的高,假设∠A =30°,BC =2㎝,那么BD = ㎝,AD = ㎝17.〔此题6分〕如图,点A 、B 、C 的坐标分别为(2,0)-,(22,0),(0,2). 〔1〕求ABC ∆的面积;〔2〕把ABC ∆向左平移2个单位,写出此时三角形三个顶点的坐标.18、,如图,延长ABC △的各边,使得BF AC =,AE CD AB ==,顺次连接 D E F ,,,得到DEF △为等边三角形.〔1〕求证:AEF CDE △≌△;〔2〕求证:ABC △为等边三角形. AB Cxy DCBAABCDEF〔第18题〕。

《轴对称》知识点总结及章节检测解析

《轴对称》知识点总结及章节检测解析

《轴对称》知识点总结及章节检测解析一、知识点总结:1.轴对称的定义:如果一个图形经过其中一条直线折叠后,能够与自身完全重合,则这条直线被称为这个图形的轴对称线,这个图形是轴对称的。

2.旋转对称:如果一个图形能够围绕其中一点旋转一定的角度后,能够与自身完全重合,则这个图形是旋转对称的。

3.轴对称图形的特点:轴对称图形的特点是,对称轴两侧的各点关于对称轴对应,即对称轴上的一点与对应点互为图形的对称点。

4.轴对称的判定方法:判断一个图形是否为轴对称图形,可以按照以下方式进行判定:(1)观察是否能找到一个或多个对称轴;(2)沿对称轴将图形折叠,看是否能够重合。

5.制作轴对称图形:制作一个轴对称图形可按照以下步骤进行:(1)在纸上画出一条轴对称线;(2)沿着对称线将图形的一边折叠;(3)检查折叠后的图形与未折叠的图形是否重合,如重合则完成。

二、章节检测解析:以小学三年级数学教材为例,进行《轴对称》的章节检测解析。

教材章节:第三章图形与设计1.知识点掌握情况:首先,学生需要了解轴对称的概念、特点和判定方法,并能够制作轴对称图形。

2.基础练习题:对于基础的练习题,要求学生绘制给定图形的对称线,并判断是否为轴对称图形。

3.综合应用题:在综合应用题中,要求学生设计自己的轴对称图形,并描述其特点。

4.拓展思考题:为了拓展学生的思维,可以提出一些拓展思考题,如“如何判断一个图形是否为旋转对称图形”、“如何找到一个图形的所有对称轴”等。

总结:通过针对《轴对称》这一章节的检测解析,学生可以对轴对称的知识点进行复习和巩固。

同时,综合应用题和拓展思考题能够提高学生的思维能力和创造力。

轴对称知识点总结

轴对称知识点总结
图1
(2) 对称轴与连结“对应点的线段”垂直。 (3) 对应点到对称轴的距离相等。 (4) 对应点的连线互相平行。 5、 线段的垂直平分线: (1)
定义。经过线段的中点且与线段垂直的直线,叫做线段的垂直平分线。 如图2, ∵CA=CB, 直线m⊥AB于C, ∴直线m是线段AB的垂直平分线。
图2
(2) 性质。线段垂直平分线上的点与线段两端点的距离相等。
重要结论。在Rt△中,30°角所对直角边等于斜边的一半。
如图7, ∵在Rt△ABC中, ∠C=90°,∠A=30° ∴BC=AB 或AB=2BC
图7
坐标轴(或直线)成轴对称的图形,只需根
据作出各顶点的对称点,再顺次连结各对称点。对称点的作法见 11(1)。 9、 对称轴的画法:
等边三角形的三个内角都等于60°。 如图6,在△ABC中
∵AB=AC=BC ∴∠A=∠B=∠C=60°。
图6
(3) 判定。 三条边都相等的三角形是等边三角形。 如图6,在△ABC中
∵AB=AC=BC ∴△ABC是等边三角形 。 三个内角都相等的三角形是等边三角形。 如图6,在△ABC中 ∵∠A=∠B=∠C ∴△ABC是等边三角形 。 有一个内角是60°的等腰三角形是等边三角形。 如图6,在△ABC中 ∵AB=AC(或AB=BC,AC=BC) ∠A=60°(∠B=60°,∠C=60°) ∴△ABC是等边三角形 。 (4)
添加辅助线口诀 几何证明难不难,关键常在辅助线;知中点、作中线,倍长中线把线连. 线段垂直平分线,常向两端来连线.线段和差及倍分,延长截取全等现; 公共角、公共边,隐含条件要挖掘;平移对称加旋转,全等图形多变换. 角平分线取一点,可向两边作垂线; 也可将图对折看,对称之后关系现; 角平分线加平行,等腰三角形来添; 角平分线伴垂直,三线合一试试看。

(完整)初二数学八上第十三章轴对称知识点总结复习和常考题型练习,推荐文档

(完整)初二数学八上第十三章轴对称知识点总结复习和常考题型练习,推荐文档

第十三章轴对称、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形就叫做轴对称图形•⑵两个图形成轴对称:把一个图形沿某一条直线折叠, 如果它能够与另一个图形重合, 那么就说这两个图形关于这条直线对称 •铀对称图形AA\L区別只对f —冲-)ft-fKmr150对裤轴CF 一佥只冇一舉>(“轴对称旳睛(WK 予秤瓚的俭M 工菲.矗麹»JSt :t 鹽个、曲擢: 心)只有1一頭〉对務柄联系却晁把射对材囲宼泊对禅轴 曲卿撷甘"么卿牛曲癣 轶夭于迭条 W 鑽處抽对耕-如杲把.阿十庇抽对秤的国招 拼& — 妊呑虑一* 益林.外 也亡赣足一亍轴对STSJ 搭-(4) 线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直 平分线• (5) 等腰三角形:有两条边相等的三角形叫做等腰三角形 •相等的两条边叫做腰, 另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角(6) 等边三角形:三条边都相等的三角形叫做等边三角形 2.基本性质:⑴对称的性质:① 不管是轴对称图形还是两个图形关于某条直线对称, 对称轴都是任何一对对应点所连线段的垂直平分线.② 对称的图形都全等•③ 如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。

④ 两个图形关于某条直线成轴对称, 如果它们的对应线段或延长线相交, 那么交点在对称轴上。

⑵线段垂直平分线的性质:① 线段垂直平分线上的点与这条线段两个端点的距离相等 ② 与一条线段两个端点距离相等的点在这条线段的垂直平分线上 ⑶关于坐标轴对称的点的坐标性质①点(x, y )关于x 轴对称的点的坐标为(x, -y ).②点(x, y )关于y轴对称的点的坐标为(-x, y ).③点(x, y )关于原点对称的点的坐标为(-x,- y )⑷等腰三角形的性质:①等腰三角形两腰相等•②等腰三角形两底角相等(等边对等角)③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合•④等腰三角形是轴对称图形,对称轴是三线合一(1条).⑸等边三角形的性质:①等边三角形三边都相等•②等边三角形三个内角都相等,都等于60 °③等边三角形每条边上都存在三线合一④等边三角形是轴对称图形,对称轴是三线合一(3条).(6)三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等3.基本判定:⑴等腰三角形的判定:①有两条边相等的三角形是等腰三角形•②如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)•⑵等边三角形的判定:①三条边都相等的三角形是等边三角形•②三个角都相等的三角形是等边三角形•③有一个角是60°的等腰三角形是等边三角形.4.基本方法:⑴做已知直线的垂线:⑵做已知线段的垂直平分线:⑶作对称轴:连接两个对应点,作所连线段的垂直平分线⑷作已知图形关于某直线的对称图形:⑸在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短•常考例题精选1. (2015 •三明中考)下列图形中,不是轴对称图形的是()2. (2015 •日照中考)下面所给的交通标志图中是轴对称图形的是()ABC3. (2015 •杭州中考)下列“表情图”中,属于轴对称图形的是()4. (2015 •凉山州中考)如图,/ 3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证/ 1的度数为()A.30 °B.45 °C.60 °D.755. (2015 •德州中考)如图,动点P从(0,3)出发,沿所示的方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2013次碰到矩形的边时,点P的坐标为()771 ~1 ~2 ~~ ~~6 ~7 d F A.(1,4) B.(5,0) C.(6,4)D.(8,3)6. (2015 •南充中考)如图,△ ABC中, AB=AC Z B=70,则/A的度数是()A.70 ° B.55C.50 °D.407. (2015 •玉溪中考)若等腰三角形的两边长分别为4和8,贝尼的周长为()A.12B.16C.20D.16 或208. (2014 •海门模拟)如图,在边长为1的正方形网格中,将△ ABC向右平移两个单位长度得到△ A B' C',则与点B'关于x轴对称的点的坐标是()A.(0,-1) B.(1,1) C.(2,-1)D.(1,-1)9. (2015 •绵阳中考)如图,AC BD相交于O, AB// DC AB=BC / D=40,/ ACB= 35°,则/ AOD= ______ .10. (2015 •丽水中考)如图,在等腰厶ABC中,AB=AC Z BAC=50,/ BAC的平分线与AB的中垂线交于点O,点C沿EF折叠后与点O重合,则/ CEF的度数1. (2015遵义)观察下列图形,是轴对称图形的是()2. 点P(5,—4)关于y轴的对称点是()A. (5,4)B. (5,—4)C. (4,—5)D. (—5,—4)3. 如图,△ ABC与厶ADC关于AC所在的直线对称,/ BCD= 70° ,/ BA B C D=80°,则/ DAC的度数为()D. 854. 如图,在Rt A ABC 中,/ C= 90° ,/ B = 15° ,DE 垂直平分AB 交BC于点E,BE = 4,则AC长为(),第4题图)A. 2B. 3C. 4 D .以上都不对6. 如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图 所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是8. 如图,D ABC 内一点,CD 平分Z ACB ,BE 丄CD ,垂足为D ,交AC 于点 E ,Z A ABE ,AC = 5,BC = 3,贝U BD 的长为()9.如图,已知S A ABC = 12, AD 平分Z BAC ,且AD 丄BD 于点D ,则S ^ADC的值是( )5. 如图,AB = AC = AD ,若/ BAD = 80则/ BCD =(C. 140 D . 1607. (2015玉林)如图,在厶ABC正确的是( )EC C . 中,AB = AC ,DE // BC ,则下列结论中不 Z ADE = Z C D . DE = *BC,第5题图)(A . 10 B. 8 C . 610. 如图,C为线段AE上一动点(不与点A , E重合),在AE同侧分别作正三角形ABC和正三角形CDE, AD 与BE交于点O, AD与BC交于点P,BE 与CD交于点Q,连接PQ.以下五个结论:①AD = BE;②PQ// AE ;③AP= BQ; ④DE= DP;⑤/ AOB = 60° .其中正确的结论的个数是()A. 2个B. 3个C. 4个D. 5个12. 如图,D, E ABC两边AB , AC的中点,将厶ABC沿线段DE折叠,使点A落在点F处,若/ B = 55° ,则/BDF等于____________ .A「,第12题图)13. ____________________________________________________________ 如图,在3X 3的正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形任意涂黑一个,使整个图案构成一个轴对称图形的方法有________________________ 种.14. 如图,在厶ABC中,AB = AC , AB的垂直平分线交BC于点D ,垂足15. _______ 在厶ABC中,AC = BC,过点A作厶ABC的高AD ,若/ ACD = 30 贝B = __________ .16. ____ 如图,△ ABC中,D, E分别是AC , AB上的点,BD与CE交于点O. 给出下列三个条件:①/ EBO = /DCO;②/ BEO = /CDO:③BE = CD.上述三个条件中,哪两个条件可判定△ ABC是等腰三角形(用序号写出一种情形):.,第16题图)17. _________________________ 如图是由9个等边三角形拼成的六边形,若已知中间的小等边三角形的边长是2,则六边形的周长是 .' ,第17题图)18. __ 如图,已知/AOB = 30° ,OC平分/ AOB,在OA上有一点M,OM =10 cm,现要在OC, OA上分别找点Q,N,使QM + QN最小,则其最小值为.,第18题图)19. 如图,某校准备在校内一块四边形草坪内栽上一棵银杏树,要求银杏树的位置点P到边AB,BC的距离相等,并且点P到点A,D的距离也相等.请用尺规作图作出银杏树的位置点P.不写作法,保留作图痕迹)23.如图,△ ABC,△ ADE是等边三角形,B,求证:(1)CE=AC + DC; (2)Z ECD = 60° . C,D在同一直线上.20. 如图,在平面直角坐标系中,A( —2, 2), B( —3, —2).(1) 若点D与点A关于y轴对称,则点D的坐标为__________ ;(2) 将点B先向右平移5个单位再向上平移1个单位得到点C,则点C的坐标为________ ;(3) 求A,B,C,D组成的四边形ABCD的面积.■I r厂m ! I I_ ■i == = Ji1 l:-一十一4二* t: 1 ER I r21. 如图,在厶ABC 中,AB = AC, D 为BC 为上一点,/ B = 30° ,/ DAB45(1) 求/ DAC的度数;(2)求证:DC = AB.22. (2015潜江)我们把两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AB = CB,AD = CD,角或者对角线有关的一个结论,并证明你的结论.请你写出与筝形ABCD的24. 如图,在等腰Rt A ABC中,/ ACB = 90° , D为BC的中点,DE丄AB , 垂足为E,过点B作BF // AC交DE的延长线于点F,连接CF.(1) 求证:AD丄CF;(2) 连接AF ,试判断△ ACF的形状,并说明理由.25. 如图,已知AE丄FE,垂足为E,且E是DC的中点.(1) 如图①,如果FC丄DC, AD丄DC,垂足分别为C, D,且AD = DC,判断AE是/ FAD的角平分线吗?(不必说明理由)(2) 如图②,如果(1)中的条件“ AD = DC”去掉,其余条件不变,⑴中的结论仍成立吗?请说明理由;(3) 如图③,如果⑴的条件改为“ AD // FC” , (1)中的结论仍成立吗?请说明理由.。

轴对称 小结与复习 教学设计

轴对称 小结与复习  教学设计

小结与复习教学设计教学设计思路本章的内容主要是轴对称和等腰三角形两大部分。

复习时首先让学生举出轴对称或轴对称图形的实例,从而设计问题回顾定义及相关性质,同时利用练习,把知识巩固具体化,让学生在实践中加深理解,最后师生一起归纳、总结出本章知识结构。

教学目标【知识与技能】1.轴对称的有关概念与性质。

2.等腰三角形、等边三角形的有关概念与性质。

3.等腰三角形的识别条件。

【过程与方法】1.通过对本章知识结构的回顾,进一步感受轴对称的概念、性质及其应用,并把握一般轴对称图形于等腰三角形之间的“一般——特殊”“特殊——一般”的关系。

2.通过思考与操作相结合的回顾与反思,深化对轴对称性质的理解,培养举一反三、由浅入深的良好思维习惯。

【情感态度与价值观】提高自主学习与合作交流的能力,增进合作意识。

教具学具准备:多媒体教学重难点:重点:轴对称与等腰三角形的性质及识别条件难点:线段、角、等腰三角形等简单图形的有关知识在解题中的的灵活运用课时安排1课时教学过程一、引入在本章中,我们结合生活中广泛存在的轴对称现象,通过观察、思考、操作和探究等方式,学习了轴对称的有关概念、性质和等腰三角形的有关知识。

这节课我们就来一起复习一下。

二、回顾知识点1.请同学们举出在我们生活有哪些常见的轴对称图形?2.什么是轴对称与轴对称图形,两者之间的区别和联系是什么?练习1:下列图形都是轴对称图形,试作出它们所有的对称轴。

3.轴对称有哪些性质,我们如何画出一个图形关于某条直线对称图形?练习2:(1)把下列图形补成以l为对称轴的轴对称图形。

(2)复习题A组2.3.回忆线段垂直平分线的性质与角平分线的性质分别是什么?练习3:(1)等边三角形、角、线段这三个图形中,对称轴最多的是_________,它共有___________条对称轴;最少的是_____,有________条对称轴。

(2)已知:如图,C、D分别在∠AOB的两边上。

求作,点P,使PC=PD,且点P到∠AOB的两边的距离相等。

中考数学轴对称知识点总结

中考数学轴对称知识点总结

中考数学轴对称知识点总结一、轴对称的基本概念1.定义:平面上有一条直线l,如果平面上的任意一点A关于这条直线l对称的点A'仍在平面上,那么,点A和点A'就是轴对称的。

2.轴对称轴:直线l二、轴对称的性质1.对称性:图形关于对称轴对称2.对称图形的性质:对称图形的性质有对称图形的性质有点的对称性,直线的对称性和图形的对称性(1)对称图形的重要性质之一是:对称图形的对应点关于对称轴的距离相等,即在同一个垂直于对称轴的直线上。

(2)对称图形的关于对称轴对称的图形有相等的面积(3)对称图形的关于对称轴对称的图形有相等的周长(4)对称图形的对称轴上的点是对称图形的特殊点,其特点就是对称点是对称图形的重要性质之一。

(5)对称图形的两点关于对称轴的坐标值成等差数列(6)对称图形的两点关于对称轴的距离等于这两个点的距离与对称轴的距离的差的绝对值。

三、轴对称的作图1.作法一:通过纸折法:将一角落对着另一个角落折叠,如图1所示,然后用笔在折线上贴上点,最后将纸展开,在对称轴处连结这些点,就得到了折线对称的形状。

2.作法二:通过线段在对称轴的投影:将要对称的形状隔绝一个水平的或垂直的对称轴,如图2所示,然后将这个形状通过容器等物体描绘再一对对称轴的一边,然后再将这个形状在对称轴的投影到对称轴另一边,最后形状保持不变。

最终得到了线段的对称形状。

四、轴对称的应用1.轴对称在几何中的应用:轴对称在几何中被广泛应用,比如用轴对称的性质证明图形的对称性、图形的面积和周长、构造图形等。

2.轴对称在日常生活中的应用:轴对称在日常生活中有许多应用,如我们在家里摆设摆件、铺地砖、装饰墙壁等都需要用到轴对称的知识。

五、轴对称的相关知识1.轴对称的判断:如果图形关于一条直线对称,那么这条直线就是对称轴,如图中所示的三角形ABC绕着O轴对称成了三角形A'B'C'。

2.轴对称的问题:轴对称的问题通常是指图形相对于轴线的位置,或者轴线的位置相对于图形的位置。

轴对称课本知识点总结

轴对称课本知识点总结

轴对称课本知识点总结一、轴对称的概念轴对称是指一个图形围绕某条中心轴线旋转180度,旋转后的图形和原图形完全重合。

在二维几何中,轴对称是一种重要的对称形式,常见于各种图形和实物之中。

二、轴对称的性质1. 轴对称图形的两个部分互相对称,互为镜像。

2. 轴对称图形的对称中心为图形的轴心。

3. 轴对称图形每一点的对应点与对称中心的距离相等。

三、轴对称的图形1. 对称图形:直线对称图形是最简单的轴对称图形,常见的有点、线段、正多边形等。

2. 音符:音符是一个常见的轴对称图形,它围绕中心轴线旋转180度后,可以和原音符完全重合。

3. 字母、数字:如字母A、M、H等和数字0、8等都是轴对称图形。

四、轴对称的判断方法1. 观察法:观察图形围绕某一条中心轴线旋转180度后是否和原图形重合。

2. 设坐标法:设定坐标轴,通过图形的对称特点来判断是否轴对称。

3. 折叠法:将图形折叠在对称轴上,判断折叠后两部分是否完全重合。

五、轴对称的应用1. 轴对称图形的设计:在各种设计中,轴对称图形的运用可以使设计更加美观。

2. 轴对称图形的制作:通过手工制作,可以制作各种轴对称图形的手工作品。

3. 轴对称图形的应用:在建筑、工程、美术、工艺等领域都有轴对称图形的应用。

六、轴对称的作用1. 保持图形的对称美:轴对称可以使图形保持一定的对称美。

2. 方便图形的绘制:对称图形通过轴对称可以方便地进行绘制和复制。

七、轴对称的练习1. 描绘轴对称图形:通过规定的对称轴来描绘对称图形。

2. 判断轴对称图形:判断给定图形是否对称,并找出对称轴。

3. 补全轴对称图形:在已知半图形的基础上补全对称图形。

八、轴对称的拓展知识1. 轴对称的组合:两个或多个轴对称图形组合成一个新的轴对称图形。

2. 轴对称的面积计算:轴对称图形的面积计算可以通过对称轴进行分割和计算。

九、轴对称的应用案例1. 建筑设计中的轴对称图形应用:在建筑设计中,轴对称图形的应用可以使建筑更加美观大方。

四年级轴对称的知识点总结

四年级轴对称的知识点总结

四年级轴对称的知识点总结在四年级学习轴对称的时候,主要包括以下内容:认识轴对称、判断轴对称、画出轴对称和轴对称应用四个方面。

下面将针对这四个方面进行详细的总结。

一、认识轴对称在学习轴对称的第一步,学生需要认识轴对称的概念。

轴对称是指将一个图形沿着一条直线对折,对折后的两部分完全重合,就像镜子里的影子一样。

在这个阶段,教师可以通过实物、图片以及具体的例子来帮助学生理解轴对称的概念。

通过观察不同的图形,让学生发现图形的对称特点,并引导学生找出图形的轴对称线。

二、判断轴对称学生在学习了轴对称的概念之后,就需要学会如何判断一个图形是否具有轴对称。

通常来说,判断轴对称的方法有两种:一种是通过观察图形,直接判断是否具有轴对称;另一种是通过折纸法来判断。

对于简单的图形,学生可以通过观察图形的特点来进行判断;对于比较复杂的图形,可以通过折纸法来辅助判断。

通过不断的练习和实践,学生可以逐渐掌握判断轴对称的方法。

三、画出轴对称在学习了如何判断轴对称之后,学生就需要学习如何画出一个图形的轴对称。

通常来说,对于简单的图形,学生可以通过观察图形的特点来画出轴对称;对于复杂的图形,可以通过折纸法来找出轴对称。

学生可以通过实际操作,将图形折叠在轴对称线上,观察是否能够完全重合,从而画出轴对称。

四、轴对称应用在学习了认识轴对称、判断轴对称和画出轴对称之后,学生需要学习如何将轴对称应用到实际问题中。

轴对称在生活中有很多应用,比如我们常见的对称图案、对称花纹等都是轴对称的应用。

学生可以通过观察和发现生活中的轴对称现象,从而将所学的知识应用到实际问题中。

总之,轴对称是一个抽象而又具体的数学概念,学生在学习轴对称的过程中,既需要理解概念,又需要掌握方法,更需要将所学的知识应用到实际问题中。

通过系统的学习,学生可以逐渐掌握轴对称的知识,并且在实际中灵活运用。

希望通过对轴对称知识点的总结,能够帮助学生更好地学习和掌握轴对称知识。

轴对称知识点总结及经典练习电子教案

轴对称知识点总结及经典练习电子教案

轴对称知识点总结及经典练习(3)判定:与线段两端点距离相等的点在线段的 上轴对称知识点总结及练习1轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够 __________;这条直线叫做 ________ 。

互 相重合的点叫 _______ 。

2、 成轴对称:两个图形沿一条直线对折,其中一个图形能够与 ______ 完全重合;这条直线叫做对称轴。

3、 轴对称图形与轴对称的区别与联系:(1)区别:轴对称图形讨论的是“一个图形与一条直线的对称关系”图形与一条直线的对称关系”(2)联系:把轴对称图形中“对称轴两旁的部分看作两个图 形”便是两图成轴对称;把成轴对称的“两个图形看作一个整 体”便是轴对称图形。

4、轴对称的性质:如图(1) 成轴对称的两个图形 _____ 。

(2) 连结“对应点的线段”被对称轴 ________ 。

(3) 对应点到对称轴的距离 __ 。

(4) ( 4)对应点的连线互相 __ 或在同一直线。

m5、线段的垂直平分线: 的直线,叫做线段的垂直平分线。

符号语言:如图A 牛一—— — —• B•••CA=CB ,直线m l AB 于C ,二直线m 是线段AB 的垂直平分线;轴对称讨论的是“两个(1)定义:经过线段的中点且 B'(2)性质:_________ •••直线m垂直平分AB , ••• PA=PB。

(3)判定:与线段两端点距离相等的点在线段的 上符号语言:如图,在△ ABC 中 v AB=AC AD 丄BC(3) 判定方法:定义法:有两条边相等的三角形是等腰三角形。

如图5,在厶ABC 中,v AB=ACABC 是等腰三角形。

判定:有两个角—的三角形是等腰三角形;简称 ______________ 如图5,在厶ABC 中vZ B= / CABC 是等腰三角形。

7、等边三角形:女口图,••• PA=PB ,•••点P 在 6、等腰三角形: (1)定义:有两边 的三角形,叫做等腰三角形。

认识轴对称知识点总结

认识轴对称知识点总结

认识轴对称知识点总结一、轴对称的定义轴对称是指一个几何图形相对于某条轴线对称,即图形的两侧关于轴线对称。

轴对称是一种基本的几何变换,它可以帮助我们理解和研究各种几何图形的性质,解决与几何图形相关的问题。

二、轴对称的性质1. 被轴对称的图形的对称轴上的点不动,对称轴的垂线上的点互为对称点。

2. 被轴对称的图形的对称轴上任意两点的对称点都在对称轴上。

3. 被轴对称的图形上的任意一点,与其对称点关于对称轴的距离相等。

三、轴对称的应用轴对称在几何学中有着广泛的应用。

在平面几何中,我们经常通过轴对称来研究图形的性质、判断图形的对称特征、构造具有对称性的图形等。

在日常生活中,轴对称也有很多实际的应用,比如建筑设计、工艺品制作、装饰设计等。

四、轴对称的判定方法1. 通过观察图形的性质来判断是否具有轴对称性。

2. 通过观察图形的对称性来判断是否具有轴对称性。

3. 通过对称图形的性质和定理来判断是否具有轴对称性。

五、轴对称的性质及定理1. 轴对称的图形的对称轴上的点不动定理:轴对称的图形的对称轴上的点不动,即对称轴上的任意一点都是自身的对称点。

2. 轴对称的图形的对称轴是垂直的定理:如果一个图形具有轴对称性,那么图形的对称轴一定是垂直的。

3. 被轴对称的图形的对称轴上任意两点的对称点都在对称轴上定理:对任意一点A在对称轴上,A的对称点B也在对称轴上。

4. 对称中心位置可以通过对称图形的性质来判断定理:对称中心位置是轴对称的图形的重要性质之一。

5. 被轴对称的图形上的任意一点,与其对称点关于对称轴的距离相等定理:被轴对称的图形上的任意一点,与其对称点关于对称轴的距禿相等。

六、轴对称的图形1. 线段线段是具有轴对称性的图形。

2. 三角形三角形也可以是轴对称的图形。

3. 正方形和矩形正方形和矩形也是轴对称的图形。

4. 圆形圆形也具有轴对称性。

七、轴对称的构造1. 利用尺规作图的方法来构造轴对称的图形。

2. 利用计算机绘图软件来构造轴对称的图形。

中考轴对称知识点总结

中考轴对称知识点总结

中考轴对称知识点总结一、轴对称的概念轴对称是指当平面图形的每一点关于一条直线对称时,这条直线叫做这个平面图形的轴对称轴。

在轴对称变换中,轴对称轴不动,图形上的每一个点关于这条直线对称后,它们的位置互换。

这种对称的变换叫做轴对称变换。

轴对称变换是平行移动和旋转变换的特殊情况。

二、轴对称的基本性质1. 任何点的轴对称图形也是原图形。

2. 轴对称图形和原图形相互关于轴对称。

3. 如果两个图形是轴对称的,那么,这两个图形一定在同一条轴对称轴两侧且关于这条轴对称轴对称。

三、轴对称的判断方法1. 如果一个图形的每一点关于一条直线对称,那么这个图形是关于这条直线轴对称的。

2. 通过图形的结构特点判断轴对称。

如正方形、矩形、正五边形、等腰三角形等图形均是轴对称的。

四、轴对称与轴对称图形的应用1. 轴对称常用来制作寓意深刻、图案美观的卡片、图片、图案等。

2. 在制作圆形物体或者对称形状的设计中,轴对称往往被广泛应用。

五、常见图形关于坐标轴的轴对称性质1. 镜景对称关于x轴、y轴、原点对称的图形。

2. 镜景对称关于直线y=x和y=-x的图形。

六、轴对称图形与轴对称图形的比较轴对称图形和轴对称图形都是对称图形,但两者在某些方面有一些不同。

1. 轴对称图形是相对于一个轴对称的直线对称的,而轴对称图形是相对于一个点对称的。

2. 轴对称图形是指形象把自己经过某一轴线翻折的图形,而轴对称图形是指形象把自己关于某一点翻折的图形。

七、轴对称的相关定理1. 定理1:如果一个图形是轴对称的,那么这个图形关于轴对称轴的任意两个对称点的中点是与直线相交的直线上的点。

2. 定理2:如果平行四边形的对角线互相垂直,那么这个平行四边形是轴对称的。

3. 定理3:如果多边形的每一条对角线相互垂直,那么这个多边形是轴对称的。

八、轴对称的相关定理证明1. 定理1的证明:以折叠模拟(将一张纸对折,使得一侧成为另一侧的镜像)可以证明。

将纸对折以后,对称图形的两个对称点的对称点是折痕上的对称点,而这两个对称点的中点就是这个折痕上的点。

5.2轴对称的性质知识点梳理(教案)

5.2轴对称的性质知识点梳理(教案)
五、教学反思
在上完这节关于轴对称性质的课后,我觉得有几个地方值得我思考和改进。首先,我发现学生们对轴对称的概念理解得还算不错,但是在具体应用到实际问题中时,有些学生还是显得有些吃力。我意识到,可能是我讲解得还不够细致,或者举例不够贴近生活,导致学生们在应用时感到困惑。
其次,关于教学难点,我发现有些学生在判断非标准图形的轴对称性时遇到了困难。这说明我对这个难点的处理还不够到位,可能需要设计更多的练习和案例分析,让学生们通过实际操作来加深理解。
5.2轴对称的性质知识点梳理(教案)
一、教学内容
《5.2轴对称的性质知识点梳理》
1.理解轴对称的概念,掌握轴对称图形的特点;
2.掌握轴对称的性质,包括对称点的性质、对称线段的性质、对称角的性质;
3.学会运用轴对称性质解决实际问题,如求线段、角的轴对称点,判断轴对称图形;
4.了解轴对称在实际生活中的应用,提高几何审美能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解轴对称的基本概念。轴对称是指在平面上存在一条直线,将图形沿此直线折叠后,两边完全重合的几何变换。它是研究平面几何图形性质的重要手段,广泛应用于日常生活和艺术设计中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析轴对称图形的特点和性质,解决实际问题。
二、核心素养目标
1.培养学生的空间观念,通过探究轴对称的性质,提高对图形对称美的感知与欣赏能力;
2.培养学生的逻辑思维与推理能力,学会运用轴对称性质进行严谨的证明和分析;
3.培养学生的几何直观,能通过观察、操作、想象等方式,发现并解决实际问题中的轴对称问题;
4.培养学生的团队协作能力,通过小组讨论、合作探究,共同解决轴对称相关难题,提高沟通交流能力。

人教版数学轴对称知识点总结

人教版数学轴对称知识点总结

人教版数学轴对称知识点总结一、轴对称的概念轴对称是反映物体在某种变换下保持某种性质的一个基本概念。

如果一个物体或图形关于某条直线(称为对称轴)进行翻折,翻折后的图形与原图形完全重合,那么这个物体或图形就称为关于这条直线的轴对称。

二、轴对称的性质1. 轴对称图形的任意一点关于对称轴都有一个对称点,两点连线垂直于对称轴。

2. 轴对称图形的两个特殊点:连接对角顶点的线段的中点就是对称轴。

3. 轴对称图形的两个特殊线段:垂直于对称轴并且平分图形面积的两个线段互相平行。

4. 轴对称图形的两个特殊角:对应角相等,对应边互为反向延长线。

5. 若两个图形关于某条直线对称,则这两个图形全等。

三、轴对称的判断判断一个图形是否具有轴对称性,一般步骤如下:1. 观察图形,看是否存在一条直线,使得图形关于这条直线翻折后与原图形完全重合;2. 如果存在这样的直线,那么这个图形就是轴对称图形;否则,就不是轴对称图形。

四、轴对称的应用轴对称在几何问题中的应用非常广泛,例如:1. 利用轴对称性质可以简化计算和证明过程。

如,求一个复杂多边形的面积时,可以先找出多边形的一条对称轴,将其分割成几个简单的三角形,然后分别求出这些三角形的面积并相加。

2. 利用轴对称性质可以解决一些几何构造问题。

如,已知一个四边形的两条对角线和一个角的大小,要求构造这个四边形。

这时,可以利用轴对称性质先构造出这个四边形的一半,然后再通过翻折得到整个四边形。

3. 利用轴对称性质可以进行图形的变换和设计。

如,可以通过改变图形的对称轴来改变图形的形状和位置,从而实现图形的变换和设计。

五、轴对称的重要性理解和掌握轴对称的概念和性质,对于提高我们的几何思维能力,解决实际问题具有重要的意义。

它不仅能帮助我们更好地理解和把握几何图形的内在规律,而且能培养我们的空间想象能力和逻辑推理能力。

同时,轴对称也是许多其他数学知识的基础,如函数图像的对称性、概率论中的对称性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称知识点总结及经典练习轴对称知识点总结及练习1、轴对称图形:一个图形沿一条直线对折,直线两旁的部分能够 ;这条直线叫做 。

互相重合的点叫 。

2、成轴对称:两个图形沿一条直线对折,其中一个图形能够与 完全重合;这条直线叫做对称轴。

3、轴对称图形与轴对称的区别与联系:(1)区别:轴对称图形讨论的是“一个图形与一条直线的对称关系” ;轴对称讨论的是“两个图形与一条直线的对称关系”。

(2)联系:把轴对称图形中“对称轴两旁的部分看作两个图形”便是两图成轴对称;把成轴对称的“两个图形看作一个整体”便是轴对称图形。

4、轴对称的性质:如图(1)成轴对称的两个图形 。

(2)连结“对应点的线段” 被对称轴 。

(3)对应点到对称轴的距离 。

(4)(4)对应点的连线互相 或在同一直线。

5、线段的垂直平分线:(1)定义:经过线段的中点且 的直线,叫做线段的垂直平分线。

符号语言:如图∵CA=CB ,直线m ⊥AB 于C , ∴直线m 是线段AB 的垂直平分线。

(2)性质: 。

∵直线m 垂直平分AB ,点P 是直线m 上的点。

符号语言:如图∴PA=PB 。

(3)判定:与线段两端点距离相等的点在线段的 上。

mCABD'D C'A'KJ I H m C ABP图3如图,∵PA=PB , ∴点P 在 上 。

6、等腰三角形:(1)定义:有两边 的三角形,叫做等腰三角形。

①相等的两条边叫做 。

第三条边叫做 。

②两腰的夹角叫做 。

③腰与底的夹角叫做 。

说明:底角顶角⨯-=2180ο 顶角顶角底角21-902180︒=-︒= (2)性质:①等腰三角形是轴对称图形,其对称轴是 ,一般有 条。

②等腰三角形的两个底角 ;简称 。

符号语言: 如图,在△ABC 中 ∵AB=AC∴∠B=∠C (等边对等角)。

③三线合一:顶角平分线、 和 相互重合。

符号语言:如图,在△ABC 中 ∵AB=AC AD ⊥BC∴(3)判定方法:①定义法:有两条边相等的三角形是等腰三角形。

如图5,在△ABC 中,∵AB=AC ∴△ABC 是等腰三角形 。

②判定:有两个角 的三角形是等腰三角形;简称 。

如图5,在△ABC 中∵∠B=∠C ∴△ABC 是等腰三角形 。

7、等边三角形:底边底角底角顶角腰腰DCBADCBA(1)定义:三条边都相等的三角形,叫做等边三角形。

(说明:等边三角形就是腰和底相等的等腰三角形,因此,等边三角形是特殊的等腰三角形。

) (2)性质:①等边三角形是轴对称图形,其对称轴是 ,有 条。

②等边三角形的三边 三个内角都等于 。

③三条边上的中线、 及 都互相重合且相交于 点。

(3)判定方法:①定义法:三条边都相等的三角形是等边三角形。

②判定1:三个内角都相等(或两个角是 °)的三角形是等边三角形。

③判定2:有一个内角是60°的 是等边三角形。

如图6,在△ABC 中∵AB=AC (或AB=BC,AC=BC ) ∠A=60°(∠B=60°,∠C=60°) ∴△ABC 是等边三角形 。

(4)重要结论1:直角三角形30°角所对直角边 。

符号语言:如图,∵在Rt △ABC 中,∠C=90°,∠A=30°∴BC=21AB 或AB=2BC (5)重要结论2:在Rt △中,如果一条直角边等于斜边的一半,这条直角边所对的角是ο30。

8、平面直角坐标系中的轴对称: (1)点),(),(b a x b a -横不变,纵反向轴对称关于 (2)点),(),(b a y b a -横反向,纵不变轴对称关于9、画轴对称图形要作出一个图形关于坐标轴(或直线)成轴对称的图形,只需根据作出各顶点的对称点,再顺次连结各对称点。

如课本P67的例1。

ABC10、对称轴的画法:在一个轴对称图形或成轴对称的两个图形中,连结其中一对对应点并作出所得线段的垂直平分线。

如课本P64中复习巩固的1题。

注意: 有的轴对称图形只有一条对称轴,有的不止一条,要画出所有的对称轴。

11、经典作图题1.在直角坐标系中,△ABC的三个顶点的位置如图所示.(1)请画出△ABC关于y轴对称的△A´B´C´(其中A´,B´,C´分别是A,B,C的对应点,不写画法).(2)直接写出A´,B´,C´三点的坐标:A´(),B ´(),C´().2、如图:已知∠AOB和C、D两点,求作一点P,使PC=PD,且P到∠AOB两边的距离相等.3...如图,在....l.上求作一点.....M.,使得...AM..+.BM..最小....12、等腰三角形常见辅助线或数学思想:(1)作“三线”中的“一线”利用“三线合一”性质,如“天府”P64的例3和P71的5题;(.2.)利用“对.....称性”将一些“不平衡”的图形补“平衡”...................如“百胜”.....P40...的.6.题;..(.3.)利用“方程思想”(设未知数)解决求等腰三角形中........................的.角度问题,如“课本”..........P76...的例..1.轴对称检测1、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是()A: B: C: C: D: D:2、点M(1,2)关于x轴对称的点的坐标为()A:(-1,-2) B:(-1,2) C:(1,-2) D:(2,-1)3、下列图形中对称轴最多的是( )A:等腰三角形 B:正方形 C:圆 D:线段AC··DO B4、已知直角三角形中30°角所对的直角边为2㎝,则斜边的长为( )A :2 ㎝B :4 ㎝C :6 ㎝D :8㎝ 5、下列说法正确的是( )A :等腰三角形的高、中线、角平分线互相重合B :顶角相等的两个等腰三角形全等C :等腰三角形的两个底角相等D :等腰三角形一边不可以是另一边的二倍 6、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( )A :11cmB :7.5cmC :11cm 或7.5cmD : 以上都不对7、如图:DE 是∆ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则∆EBC 的周长为( )厘米A :16B :18C :26D :28 8、如图:∠EAF=15°,AB=BC=CD=DE=EF ,则∠DEF 等于( )A :90°B : 75°C :70°D : 60°9、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ()A :75°或15°B :75°C :15°D :75°和30° 10、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( )A :1个B :2个C :3个D :4个11、在数字0、2、4、6、8中是轴对称图形的是 ; 12、等腰三角形一个底角是30°,则它的顶角是__________度;13、等腰三角形的一边长是6,另一边长是3,则周长为________________;14、等腰三角形的一内角等于50°,则其它两个内角各为 ; 15、如图:在Rt △ABC 中,∠C=90°,∠A=30°,AB +BC=12㎝,则㎝;16、如图:从镜子中看到一钟表的时针和分针,此时的实际时刻是________;CEBD Al OCBDA CAFEC BA17、等腰三角形一腰上的高与另一腰上的夹角为30°,则顶角的度数为 ; 18、如图:是屋架设计图的一部分,点D 是斜梁AB 的中点,立柱BC 、DE垂直于横梁AC,AB=8m,∠A=30°,则DE 等于 ;19..、.如图:...某地有两所中学和两条相交叉的公路................(点..M .,.N .表示中学,.....AO ..,.BO ..表示公路).......现计划修建..... 一个饭馆,希望饭馆到两所中学的距离相等,到两条....................... 公路的距离也相等。

你能确定饭馆应该建在什么位置吗?......................... 在所给的图形中画出你的设计方案;................20、如图:在△ABC 中,∠B=90°,AB=BD ,AD=CD ,求∠CAD 的度数。

21、如图:△ABC 和△ADE 是等边三角形,AD 是BC 边上的中线。

求证:BE=BD 。

22、如图:E 在△ABC 的AC 边的延长线上,D 点在AB 边上,DE 交BC 于点F ,DF=EF ,BD=CE 。

求证:△ABC 是等腰三角形。

(过D 作DG ∥AC 交BC 于G )NMOBAB ADCBADCEDCBAFE。

相关文档
最新文档