电化学合成11
电化学基础练习题及答案
第11章氧化还原反应电化学基础一、单选题1. 下列电对中,θ值最小的是:DA: Ag+/Ag;B: AgCl/Ag;C: AgBr/Ag;D: AgI/Ag2. θ(Cu2+/Cu+)=,θ(Cu+/Cu)=,则反应2 Cu+Cu2+ + Cu的Kθ为:C A: ×10-7;B: ×1012;C: ×106;D: ×10-133. 已知θ(Cl2/ Cl-)= +,在下列电极反应中标准电极电势为+ 的电极反应是:D A:Cl2+2e- = 2Cl- B: 2 Cl-- 2e- = Cl2C:1/2 Cl2+e-=Cl- D:都是4. 下列都是常见的氧化剂,其中氧化能力与溶液pH 值的大小无关的是:DA: K2Cr2O7 B: PbO2C: O2D: FeCl35. 下列电极反应中,有关离子浓度减小时,电极电势增大的是:BA: Sn4+ + 2e- = Sn2+ B: Cl2+2e- = 2Cl-C: Fe - 2e- = Fe2+ D: 2H+ + 2e- = H26. 为防止配制的SnCl2溶液中Sn2+被完全氧化,最好的方法是:AA: 加入Sn 粒B:. 加Fe 屑C: 通入H2D: 均可二、是非题(判断下列各项叙述是否正确,对的在括号中填“√”,错的填“×”)1. 在氧化还原反应中,如果两个电对的电极电势相差越大,反应就进行得越快。
×(电极电势为热力学数据,不能由此判断反应速率)2.由于θ(Cu+/Cu)= + , θ(I2/ I-)= + , 故Cu+和I2不能发生氧化还原反应。
×(标态下不反应,改变浓度可反应。
)3.氢的电极电势是零。
×(标准电极电势)4.FeCl3,KMnO4和H2O2是常见的氧化剂,当溶液中[H+]增大时,它们的氧化能力都增加。
×(电对电极电势与PH无关的不变化。
)三、填空题1. 根据θ(PbO2/PbSO4) >θ(MnO4-/Mn2+) >θ(Sn4+/Sn2+),可以判断在组成电对的六种物质中,氧化性最强的是PbO2,还原性最强的是Sn2+。
第11讲 电化学基础
第11讲 原电池一、原电池1.能量的转化原电池:将化学能转变为电能的装置。
电能是现代社会应用最广泛、使用最方便、污染最小的一种二次能源,又称电力。
2.工作原理2e --2H ++2e -= H 2Zn —2e -=Zn 2+氧化反应还原反应原理:设计一种装置,使氧化还原反应所释放的能量直接转变为电能,即使氧化反应和还原反应分别在两个不同的区域进行,并使其间电子转移,在一定条件下形成电流。
说明:(1)形成原电池需要有自发的氧化还原反应。
(2)原电池中两极活泼性相差越大,电池电动势就越高。
3.组成条件(1)两个活泼性不同的电极,分别发生氧化和还原反应。
(2)电解质溶液,电解质中阴离子向负极方向移动,阳离子向正极方向移动,阴阳离子定向移动成内电路。
(3)导线将两电极连接,形成闭合回路。
4.几种常见的电池(1)一次电池:碱性锌锰电池构成:负极是锌,正极是MnO 2,电解质是KOH负极:Zn+2OH --2e -=Zn(OH)2;正极:2MnO 2+2H 2O+2e -=2MnOOH+2OH -总反应式:Zn+2MnO 2+2H 2O=2MnOOH+Zn(OH)2特点:比能量较高,储存时间较长,可适用于大电流和连续放电。
(2)二次电池①铅蓄电池放电电极反应:负极:Pb(s)+SO42-(aq)-2e-=PbSO4(s);正极:PbO2(s)+4H+(aq)+SO42-(aq)+2e-=PbSO4(s)+2H2O(l) 总反应式:Pb(s)+PbO2(s)+2H2SO4(aq)=2PbSO4(s)+2H2O(l)充电电极反应:阳极:PbSO4(s)+2H2O(l)-2e-=PbO2(s)+4H+(aq)+SO42-(aq);阴极:PbSO4(s)+2e-=Pb(s)+SO42-(aq)总反应:2PbSO4(s)+2H2O(l)=Pb(s)+PbO2(s)+2H2SO4(aq)②镍一镉碱性蓄电池负极:Cd+2OH--2e-=Cd(OH)2;正极:2NiO(OH)+2H2O+2e-=2Ni(OH)2+2OH-总反应式:Cd +2NiO(OH)+2H2O2Ni(OH)2+ Cd(OH)2(5)锂电池参考练习:1.D某原电池装置如右图所示。
第十一章 电化学基础 习题
第十一章 电化学基础1已知下列电对的A ϕ值:电对 Fe 2+ / Fe H + / H 2 Cu 2+ / Cu I 2 / I - O 2 / H 2O 2 ϕ/ V -0.44 0 0.34 0.54 0.68电对 Fe 3+ / Fe 2+ NO -3/ NO Br 2 / Br - H 2O 2 / H 2Oϕ/ V 0.77 0.96 1.08 1.77回答下列问题,并写出有关离子反应方程式。
(1)为什么FeCl 3溶液能腐蚀铜板?(2)Fe 2+ 离子应保存在酸性介质中,能否给亚铁盐溶液中加一些HNO 3?(3)在Br - 和I - 离子的混合溶液中,只使I - 氧化,应选择氧化剂H 2O 2和Fe 2(SO 4)3中的哪一种?(4) 铁分别与足量稀盐酸和稀硝酸反应,得到的产物有何不同? 2从锰在酸性溶液中的元素电势图MnO -4─── MnO -24 ─── MnO 2 ─── Mn 3+ ─── Mn 2+──── Mn在酸性介质中会发生歧化反应的物质是…………………………………( )(A) MnO -4 (B) MnO -24 (C) MnO 2 (D) Mn 2+3已知 [H +] = 1.0 mol ·dm -3 时,锰的元素电位图 ( ϕ/ V):MnO -4─── MnO -24─── MnO 2 ─── Mn 3+ ─── Mn 2+ ─── Mn (1) 指出哪些物质在酸性溶液中会发生歧化反应; (2) 求 ϕ(MnO 4-/Mn 2+);(3) 写出用电对Mn 2+/Mn 与标准氢电极组成原电池的电池符号及该电池的自发反应的方程式。
4根据下面电势图 (在酸性介质中) :BrO -4─── BrO -3─── HBrO ─── Br 2─── Br - (1) 写出能发生歧化反应的反应方程式;(2) 计算该反应的m r G ∆;(3) 计算该反应在298K 时的平衡常数K 。
第十一章电化学导论答案
11-01.液接电位是怎样产生的?
答: 液接电位产生于具有不同电解质或浓度不同的同 种电解质溶液界面之间,由于离子扩散通过界面的速 率不同,有微小的电位差产生,这种电位差称为液接 电位。
11-02.阴极和阳极,正极和负极是怎样定义的?
答:负极:电子流出的极 阴极:接电源负极 正极:电子流入的极 阳极:接电源正极
-0.793V
11-07. 写出下列电池的半电池反应及电池反应,计算其电动势,该 电池是电解池还是原电池?
Zn|ZnSO4(0.1mol/L)||AgNO3(0.01mol/L)|Ag
解: 右边:Ag e- Ag
E右Βιβλιοθήκη E Ag/Ag
0.059 lg
Ag
0.799 0.059 lg 0.01
Cd CdX24- 0.200mol / L,X- 0.150mol / L SCE
Eθ Cd2+
/
Cd
=
0.403V,ESCE
=
0.244
3V,
计算CdX2-的形成常数。 4
解: Cd2+ =5.1510-10 mol/L
Cd2+ +4X- ƒ
CdX
24
K稳
=
CdX
24
解:
左边:Cd-2e- +2X- =CdX2
E E右 E左
E左 ESCE E=0.244 3 0.893 0.648 7V
E左
E Cd2/Cd
0.059 2
lg
Cd2
=-0.403+
0.059 2
lg
Cd
2
第11章电化学分析法导论
NCE 0.2828V
2020/1/17
21
双液接甘汞电极示意图:
导线 绝缘帽 加液口
饱和KCl溶液 内部电极
多孔物质
2020/1/17
22
外盐桥套管 0.1mol/L KNO3溶液
(2)指示电极 电极电位则随测量溶液和浓度不同而变
化。由电池电动势的大小可以确定待测溶液 的活度(常用浓度代替)大小。
适合于化工生产中的自动控制和在线分析。 4.传统电化学分析:无机离子的分析; 5.测定有机化合物也日益广泛。如药物分析
2020/1/17
4
三、电化学分析法的类别(主要) 1.电位分析法 ①直接电位法:电极电位与溶液中电活性物质
的活度有关。 ②电位滴定:用电位测量装置指示滴定分析过
程中被测组分的浓度变化。
第十一章
11-1 概述
电化学分析法导论 11-2 电化学分析基础
11-3电极的分类
2020/1/17 1
11-1 概述
一、电化学分析 1.定义
应用电化学的基本原理和实验技术,依据物 质的电化学性质来测定物质组成及含量的分 析方法称之为电化学分析或电分析化学。
2020/1/17
2
2.电化学分析法的重要特征 直接通过测定电流、电位、电导、电量
电极反应速度慢,电极上聚集了过多的电 荷(与平衡状态比)。 ★减小电化学极化的方法
只有增加外加电压, 克服反应的活化能,才 能使电解反应得以进行。
2020/1/17
18
二、电动势及电化学参数测量的基本原理
1.电动势的测量
当电池中的电流为零或接近零时,两电极间
的电位差即为电池的电动势E。
EΔ
★为了使U外= E测 ,在外电路上加一大小相等、 方向相反的反向外加电压,并使外电位随两
专题11 电化学-2022年高考化学二轮复习重点专题常考点突破练
2022年高考化学二轮复习重点专题常考点突破练专题十一 电化学题型一 燃料电池1.(2021山东德州)研究微生物燃料电池不仅可以获得高效能源,同时还可对污水、餐厅废弃物等进行科学处理.利用微生物燃料电池原理处理酸性废水的示意图如下,下列说法正确是( )A .工作时,K +由b 极区移向a 极区B .负极反应为:[][]3466Fe(CN)e Fe(CN)---+= C .消耗30.1mol CH COOH ,a 极区质量减少9.6g D .放电过程中,b 极附近溶液的pH 变大 答案:C2.(2021山东济南阶段性检测)某课题组将二氧化锰和生物质置于一个由滤纸制成的折纸通道内,形成电池如图,该电池可将碳酸饮料(pH=2.5)中的葡萄糖作为燃料获得能量。
下列说法正确的是( )A.b 极为负极B.每消耗0.01 mol 葡萄糖,外电路中转移0.02 mol 电子C.可以在实验室中用葡萄糖与浓硫酸加热的方式制备葡萄糖内酯D.葡萄糖与氢气加成后的产物分子中手性碳原子数比葡萄糖分子中的少 答案:B3.(2021山东泰安四模)锌-空气燃料电池是一种低能耗电池,在生产生活中应用广泛,其装置示意图如图所示。
下列说法错误的是( )A.充电时,a 与电源正极相连B.放电过程中,KOH 溶液浓度不变C.充电时,N 极的电极反应式为ZnO+2H ++2e -Zn+H 2OD.放电时,M 极每消耗16 g O 2,理论上N 极质量增加16 g 答案 C4.(2021河南省洛阳市)1.DBFC 燃料电池的结构如图所示,该电池的总反应为42222NaBH 4H O NaBO 6H O ++。
下列关于电池工作时的相关分析不正确的是( )A.电流从Y 极经过用电器流向X 极B.X 极上发生的电极反应为:422BH 8OH 8eBO 6H O ----+-+C.Y 极区溶液的pH 逐渐减小D.外电路转移1 mol 电子,消耗220.50mol H O 答案 C5.(2021贵阳五校联考)镁-空气电池的工作原理如图2所示,电池反应方程式为2Mg +O 2+2H 2O =2Mg(OH)2。
《仪器分析教程》教学课件—第11章 电化学分析
11.2 参比电极与指示电极
11.2.1 参比电极 11.2.2 指示电极
11.2 参比电极与指示电极
电极:将溶液中的浓度或活度信息转变成电信号的一种传感器
指示电极(indicator electrode):指示待测溶液中离子活度变 化的电极。 参比电极(reference electrode):在测量电极电位时用来提供 电位标准的电极
ቤተ መጻሕፍቲ ባይዱ
11.1.2 电化学分析法的特点
(1)灵敏度、准确度高,选择性好 被测物质的最低量可以达到10-12mol/L数量级。
(2)电化学仪器装置较为简单,操作方便 直接得到电信号,易传递,尤其适合于化工生产中的自动
控制和在线分析。 (3)所需试样的量较少 (4)应用广泛
传统电化学分析:无机离子的分析; 测定有机化合物也日益广泛; 有机电化学分析;药物分析;
lg
a(Hg 2Cl 2 ) a2(Hg) a2(Cl
)
E Hg 2Cl/Hg
EO
Hg
2 2
Cl/Hg
0.059 lg
a(Cl )
当电极内溶液的Cl-活度一定,甘
汞电极电位为定值,故可作参比电极。
11:48:03
11.2.1 参比电极
2.甘汞电极
表11.1甘汞电极的电极电位( 25℃)
KCl 浓度 电极电位(V)
0.1mol/L 甘汞电极 0.1 mol / L +0.3365
标准甘汞电极(NCE) 1.0 mol / L +0.2828
饱和甘汞电极(SCE) 饱和溶液 +0.2438
甘汞电极的电极电位随温度变化,故需进行温度校正, 对于饱和甘汞电极(SCE),t ℃时的电极电位为:
第十一章 电化学基础1
Zn 极
Zn —— Zn2+ + 2 e
( 1)
电子留在 Zn 片上,Zn2+ 进入溶液,发生氧化
Cu 极
Cu2+ + 2 e —— Cu
( 2)
通过外电路从 Zn 片上得到电子,使 Cu2+ 还原成 Cu,沉积在 Cu 片上。
Zn —— Zn2+ + 2 e
Cu2+ + 2 e —— Cu
( 1)
价,将从化学式出发算得的化合价定义为 氧化数。 S2O32- 中的 S 元素的氧化数为 2,
S4O62- 中的 S 元素的氧化数为 2.5。
前面的讨论中我们看到,从物质的微观
结构出发得到的化合价只能为整数,但氧化
数却可以为整数也可以为分数。 一般来说元素的最高化合价应等于其所 在族数,但是元素的氧化数却可以高于其所 在族数。
电池中电极电势 大的电极为正极,故 电池的电动势 E 的值为正。
有时计算的结果 E池 为负值,这说明计 算之前对于正负极的设计有特殊要求。
(–)Zn Zn2+(1mol· dm-3) Cu2+(1mol· dm-3)Cu(+)
E池 = + - -
= 0.34 V -(- 0.76 V) = 1.10 V
价为正; 得到电子的原子带负电,这种元素的化合 价为正。
在共价化合物里,元素化合价的数值,就
是这种元素的一个原子与跟其他元素的原子形 成的共用电子对的数目。 化合价的正负由电子对的偏移来决定。
由于电子带有负电荷,电子对偏向哪种元
素的原子,哪种元素就为负价;电子对偏离哪
种元素的原子,哪种元素就为正价。
电化学方法合成聚苯胺
电化学方法合成聚苯胺的研究摘要膜科学技术自50年代以来发展迅速,现已在工业、农业、医学等领域获得广泛应用。
就膜材料而言,有机膜发展最早,因其柔韧性好、成膜性能好、品种多等优点而获得大规模应用。
聚苯胺电致变色膜作为一种导b电聚合物材料,具有易合成、均相、性质均一、能牢固附着在支持物上等优点具有广阔的市场应用前景。
本文利用循环伏安法,采用三电极体系,研究在碳布电极表面合成聚苯胺膜。
本实验考查了苯胺单体浓度、溶液酸度、质子酸类型、线性扫描速率、扫描圈数等对合成聚苯胺膜的影响规律。
实验发现聚苯胺的电化学氧化过程是一个自催化过程。
镀液中苯胺单体浓度越大对成膜越有利,但是受苯胺的溶解度影响,镀液中的硫酸与苯胺的浓度比应大于1 : 1。
另外降低扫描速率,适当增加扫描圈数有利于聚苯胺膜的形成,最佳扫描速率为25mv/s。
聚苯胺的电化学活性明显依赖于质子化的程度,在苯胺与硫酸组成的镀液中,H2SO4浓度越大,膜的氧化还原可逆性越大,聚苯胺的自催化效应越强,质子酸中硫酸对聚苯胺的电化学生成的促进作用最大。
关键词:聚苯胺,循环伏安,影响规律AbstractThe technology of film science has developed rapidly since the 1950s. It is widely used in industry, agriculture, medicine and other fields. The organic film was developed first. It is well applied in many filds because of its flexibility, film-forming properties, and has many kinds of product. The electrochromic display film of polyaniline is one of electronically conducting polymers, it has a broad market prospect because it is easily synthesized, character uniform and can be firmly attached to the substrates. The work studied synthesis of polyaniline film on carbon cloth with three elctrodes by means of cyclic voltammograms.Synthesis of polyaniline films on carbon cloth are related to aniline concentration, solution acidity, bronsted acid type, linear scan rate and scanning numbers etc. It was found that the polyaniline electrochemical oxidation process is a self-catalytic process. It was found the higher the aniline concentration is, the esaier polyaniline synthesize is, because of the solubility of aniline in the water, sulfuric acid and aniline should be more than 1: 1 in concentration. Furthermore it was favorable to synthesize polyaniline films when reduce scan rate and increase the numbers of scanning appropriately, and the best scan rate is 25 mv/s. The activity of polyaniline films was significantly depended on the extent of the proton, in the solution of aniline and sulfuric acid bath, the greater the H2SO4concentration is, the greater the film’s redox reversible is, the stronger the self-catalytic effect is ,and sulfuric acid can promote the speed of synthesis ofpolyaniline on the carbon cloth.Key words: polyaniline,cyclic voltammograms,effect rules目录摘要 (1)Abstract (2)第一章绪论 (6)1.1引言 (6)1.2聚苯胺的结构、颜色和导电性 (7)1.3聚苯胺的应用 (8)1.3.1 在金属防腐上的应用 (8)1.3.2 在电池方面的应用 (9)1.3.3 在导电纤维上的应用 (9)1.3.4 在电磁屏蔽材料方面的应用 (10)1.3.5 在抗静电方面的应用 (10)1.3.6 在其它方面的应用 (11)1.4聚苯胺的合成方法 (11)1.4.1 化学方法 (11)1.4.3 微乳液聚合 (12)1.4.4 电化学方法 (13)1.5循环伏安法 (16)1.6本论文的工作 (18)第二章实验部分 (18)2.1实验装置与仪器 (18)2.2化学试剂 (19)2.3实验步骤 (19)2.3.1 碳纤维电极预处理 (19)2.3.2 溶液配制 (20)2.3.3 聚苯胺膜的电化学制备 (20)第三章结果与讨论 (21)3.1苯胺单体浓度对成膜的影响 (21)3.2循环伏安扫描圈数对成膜的影响 (23)3.3循环伏安扫描速率对成膜的影响 (25)3.4酸度对聚苯胺在电极表面成膜的影响 (26)3.5质子酸类型对成膜的影响 (28)3.6聚苯胺膜在碳布表面形貌观察 (29)第四章结论 (31)参考文献 (32)致谢 (35)第一章绪论1.1 引言材料科学已经成为21世纪的前沿科学,材料科学的发展对许多科学领域的发展都有促进作用。
Chapter11 电化学基础
H 一般为 ,PH3; 在NaH中为- 1。 一般为+1, 中为- 。 中为 离子化合物中, 离子化合物中,氧化数 = 离子电荷数 共价化合物中, 共价化合物中,氧化数 = 形式电荷数 总电荷数=各元素氧化数的代数和 各元素氧化数的代数和。 总电荷数 各元素氧化数的代数和。 例:K2 Cr2O7中, Cr为+6 为 Fe3 O4 中,Fe为+8/3 为 Na2 S2 O3中,S 为+2 Na2 S4 O6中, 平均为2.5 个 二个S为 平均为 (2个S 为0, 二个 为+5)
E = ϕ+ − ϕ−
现在的问题在于,用什么电极作为参比电极, 现在的问题在于,用什么电极作为参比电极,参比电极的电 极电势如何得知。 极电势如何得知。 电化学和热力学上规定, 电化学和热力学上规定,标准氢电极 如图,铂丝连接着涂满铂黑( 如图,铂丝连接着涂满铂黑(一种极 的铂片,作为极板, 细的铂微粒 )的铂片,作为极板,插入到 溶液中, 标准态的 H + (1 mol·dm - 3)溶液中,并 向其中通入标准态的 H2(1.013 × 10 5 Pa) ) 构成标准氢电极。 构成标准氢电极。 离子电极。 氢电极属于气体 — 离子电极。 氢电极作为电池的正极时的半反应为 2 H + + 2 e- —— H2 标准氢电极作为负极时, 标准氢电极作为负极时,可以表示为 Pt | H2(1.013 × 10 5 Pa)| H +(1 mol·dm - 3 ) )
ϕθ
H+ / H2
= 0 V
标准氢电极与标准铜电极组成的原电池, 标准氢电极与标准铜电极组成的原电池,用电池符号表示为 (-) Pt|H2 ( pθ ) |H + (1 mol·dm-3 )‖Cu 2 +( 1 mol·dm-3 )|Cu ( + ) ‖ 测得该电池的电动势 E θ = 0.34 V, , 由公式 E θ = ϕ θ − ϕ θ , 得 ϕ θ + − +
无机化学第11章电化学基础
配平步骤:
(1)写出反应物和产物 (2)标出氧化值变化元素的氧化值,并求出其变化量
(产物中的-反应物中的) (3)根据原则①,确定氧化剂和还原剂化学式前的系数 (4)根据原则②,配平其它元素原子的系数
例:写出高锰酸钾与盐酸作用制取氯气 的反应方程式
(1)KMnO4+HCl→MnCl2+Cl2
例:配平反应MNO4-+SO32-→MNO2+ SO42- (中 性介质)
解: MnO4-→MnO2(还原反应) SO32- →SO42- (氧化反应)
2 MnO4-+2H2O+3e- = MnO2+4OH3 SO32- +H2O-2e- = SO42-+2H+
+
2MnO4-+3SO32-+H2O = 2MnO2+3SO42-+ 2OH-
如:Zn2+/Zn;Cu2+/Cu
例:MG+2HCL=MGCL2+H2
还原剂电对:Mg2+/Mg 氧化剂电对:H+/H2
例:I2+6NaOH=5NaI+NaIO3+3H2O 氧化剂电对:I2/I 还原剂电对:IO3-/I2
书写半反应的规律
格式为: 氧化型+ne-
还原型
半反应必须为配平的离子反应式
的 2H+(aq)+2e-
氧
化 Cu2+(aq)+2e-
性 增
I2(s)+2e-
强 Br2 +2e-
O2(g)+4H++4eCl2(g)+2e-
电化学沉积薄制备技术--11
激光表面熔融
利用比相变硬化更高的激光能量密度, 辐照铸铁和高碳钢的表面,使表面层 熔融,通过自身冷却,在表面形成硬 的渗碳体组织。如图示出了以 3KW 的 CO2 激光用集成反射法辐照 FC25 铸铁 的断面硬度分布。表面 0.7mm 是熔融 凝固层,表面硬度 HV1000 以上,约到
2mm 深度是马氏体相变硬化层。再提
其主要工艺过程包括:
(1) 溶液中的还原剂(如H2O,NO3- )及一些有机分子在阴 极被还原为碱基(OH-) (2) 溶液中的金属离子或络合物与阴极上的碱基(OH-)发 生反应生成薄膜材料或薄膜材料的前驱体。 (3) 后续热处理。
阳极电化学沉积:薄膜材料在阳极得到。
其主要工艺过程包括: (1) 溶液中的低价阳离子在阴极表面被氧化为高价阳离子 (2) 高价阳离子与溶液中的碱基(OH-)反应生成各种功能 膜材料或其前驱体。 (3) 后续热处理。
再采用提高吸收率的涂层。这种方式的主要问题是:基体熔化层深,涂
层的稀释度大。 另一类是粉末注入法,即将涂层材料的粉末直接向激光辐照形
成的熔池中喂送,以实现扩散结合的涂覆。
表面合金化
激光表面合金化是用高能激光束作为热源,加热熔化已涂覆合
金元素的基体材料的表面,对其进行合金元素渗入的表面处理方法。
电化学合成金纳米粒子的机理研究和贵金属纳米粒子的相转移技术
山东大学硕士学位论文Chemis仃yLenc巧中的一篇文章【34】,之前把金属纳米粒子由水相转移至非水相中大都是通过物理的方法进行的[35】.首先,在水相中利用化学还原法合成单分散的银纳米粒子,所得粒子的11EM结果如图1.3所示.有机相选择环己胺,加入适量的油酸钠后和银纳米粒子的水溶胶放在一起剧烈搅拌4小时,然后加入NaCl再搅拌3小时.两相混合在一起,呈现乳液状,静止分层后,银纳米粒子由水相转移至正己胺相,整个过程如图1_4所示。
掌、’’‘,Cm了叮口也F培l-3.El∞t阳nmic阳g憎ph(a)andparticlesi黯distribution(b)of∞IIojd曩lsilVer曲pe婚edinw4ter:d=8.02nm.o篁2.54nm.Fjg.1-4.PhoIog阳phofpha辩t髓nsferofcolIoidaIsilverft田mwatertocyclohe翻nc.(I)Befo他additionof∞diumoIeate,(Ⅱ)Additionofsodjumol∞tewilhstirring,(Ⅲ)standiⅡgfor3hwnhout·odiumchlo啪e’(Ⅳ)Standingfor3hafkrme叠dditionofsodiumchIoride;(I)C”lohexane’(b)ColloidaIdispe幅ionofsiIver妯w训【cb(c)CoIIo堪矗Idispe倦i蛐ofsiIVerin6cycIohenne’(d)Water图1·5给出了相转移后正己胺相中银纳米粒子的分散性。
比较图1.3和1.5可以看出,相转移后银纳米粒子的直径大小没有发生明显变化,单分散性也保持良好.零、koC口3口ekParticled.ameter,nmFigu代l·5.El∞lmnmicmgraph(a)andpaniclesi踺曲t咖utioⅡ(”ofco№idals韶ver缸pe倦edincycIoh“ane.d-7.9Inm,o宣3.18nm.也可以使用正己烷和苯做有机相,相转移发生的情形与使用环己胺相差不大,只是在用苯做有机相时,银纳米粒子转移至有机相后,粒径有所增加。
无机化学11章答案
第十一章 电化学基础11-1 用氧化值法配平下列方程式 (1)KCl KClO 3KClO 443+=(2)CO 30P 3CaF 2CaSiO 18SiO 18C 30F )PO (Ca 44232345+++=++ (3)O 2H NaCl N Cl NH NaNO 2242++=+(4)O H 7SO K )SO (Fe 3)SO (Cr SO H 7FeSO 6O Cr K 242342342424722+++=++ (5)Cs 2CaCl Ca CsCl 22+=+↑11-2 将下列水溶液化学反应的方程式先改写为离子方程式,然后分解为两个半反应式 (1)2222O O H 2O H 2+=O H e H O H 222222=++-+ -+++=e H O O H 22222(2)HClO HCl O H Cl 22+=+ -+++=+Cl H HClO O H Cl 22--=+Cl e Cl 221-+++=+e H HClO O H Cl 2221(3)O H 3KCl 5KClO KOH 6Cl 3232++=+O H 3Cl 5ClO OH 6Cl 3232++=+-----=+Cl 5e 5Cl 225---++=+e 5O H 3ClO OH 6Cl 23221(4)O H MnSO SO Fe SO K SO H FeSO KMnO 2434242424444)(528104+++=++O H 4Mn 2Fe 5H 8Fe 5MnO 222324++=++++++-O H 4Mn e 5H 8MnO 224+=+++-+--+++=e Fe Fe 3222(5)O H 7O 3)SO (Cr SO K SO H 7O H 3O Cr K 22342424222722+++=++O H O Cr H O H O Cr 22322272732143++=++++-O H 7Cr 2e 6H 14O Cr 23272+=+++-+--+++=e O H O H 2222211-3 用半反应法(离子-电子法)配平下列方程式:(1)K 2Cr 2O 7 + H 2S + H 2SO 4 → K 2SO 4 + Cr 2(SO 4)3 + S + H 2OCr 2O 72- + 14H + + 6e - === 2Cr 3+ + 7H 2O ① H 2S === S + 2H + + 2e - ② ①+3×②得:Cr 2O 72- + 3H 2S + 8H + === 2Cr 3+ + 3S + 7H 2OO H 7S 3)SO (Cr SO K SO H 4S H 3O Cr K 234242422722+++=++(2) -24MnO + H 2O 2 → O 2 + Mn 2+(酸性溶液)MnO 42- + 8H + + 4e- === Mn 2+ + 4H 2O ①H 2O 2 === O 2 + 2H =+ 2e - ② ①+2×②得:MnO 42- + 2H 2O 2 + 4H + - === Mn 2+ + 2O 2 + 4H 2O(3) Zn + NO 3– + OH – → NH 3 + Zn(OH)42–---+=++OH NH e O H NO 986323 ①---+=+e 2)OH (Zn OH 4Zn 24②①+4×②得: ---+=+++24323)(4674OH Zn NH O H OH NO Zn(4) Cr(OH)4-+ H 2O 2 → CrO 42---=+OH e O H 2222 ①Cr(OH)4-+ 4OH -=== CrO 42-+ 4H 2O + 3e -②①×3+2×②得: 2Cr(OH)4- + 3H 2O 2 +2OH -=== 2CrO 42-+ 8H 2O(5) Hg + NO 3–+ H + → Hg 22+ + NOO H 2NO e 3H 4NO 23+=++-+-①-++=e 2Hg Hg 222②①×2+3×②得: O H 4NO 2Hg 3H 8NO 2Hg 62223++=++++-11-4 将下列反应设计成原电池,用标准电极电势判断标准态下电池的正极和负极,电子传递的方向,正极和负极的电极反应,电池的电动势,写出电池符号。
11电化学阻抗谱的应用及其解析方法
电化学阻抗谱的应用及其解析方法交流阻抗发式电化学测试技术中一类十分重要的方法,是研究电极过程动力学和表面现象的重要手段。
特别是近年来,由于频率响应分析仪的快速发展,交流阻抗的测试精度越来越高,超低频信号阻抗谱也具有良好的重现性,再加上计算机技术的进步,对阻抗谱解析的自动化程度越来越高,这就使我们能更好的理解电极表面双电层结构,活化钝化膜转换,孔蚀的诱发、发展、终止以及活性物质的吸脱附过程。
1. 阻抗谱中的基本元件交流阻抗谱的解析一般是通过等效电路来进行的,其中基本的元件包括:纯电阻R ,纯电容C ,阻抗值为1/j ωC ,纯电感L ,其阻抗值为j ωL 。
实际测量中,将某一频率为ω的微扰正弦波信号施加到电解池,这是可把双电层看成一个电容,把电极本身、溶液及电极反应所引起的阻力均视为电阻,则等效电路如图1所示。
Element Freedom Value Error Error %Rs Free(+)2000N/A N/ACab Free(+)1E-7N/A N/A Cd Fixed(X)0N/A N/A Zf Fixed(X)0N/A N/ARt Fixed(X)0N/A N/ACd'Fixed(X)0N/A N/AZf'Fixed(X)0N/A N/A Rb Free(+)10000N/A N/A Data File:Circuit Model File:C:\Sai_Demo\ZModels\12861 Dummy Cell.mdlMode:Type of Weighting:Data-Modulus图1. 用大面积惰性电极为辅助电极时电解池的等效电路图中A 、B 分别表示电解池的研究电极和辅助电极两端,Ra 、Rb 分别表示电极材料本身的电阻,Cab 表示研究电极与辅助电极之间的电容,Cd 与Cd ’表示研究电极和辅助电极的双电层电容,Zf 与Zf ’表示研究电极与辅助电极的交流阻抗。
有机电化学合成及其发展方向
有机电化学合成及其发展方向作者刘国梁单位湖南工程学院摘要介绍有机电化学合成的原理研究内容。
有机电化学合成与传统合成的优势,介绍中国有机电化学合成的发展以及有机电化学的新进展。
有机电化学的高效、经济、无污染性。
还有有机电化学合成的若干发展方向。
关键词有机电化学发展方向绿色化学Review on organic electrosynthesis and its Development trendAuthor GUOLINGLIUUnit Hunan institute of engineeringAbstractIn this paper the principle and the research method of organic electroynthesis---one of the most efficient green technology was discussed. The principle of organic electrosynthesis, applications, and the advantages comparing to the tradition organic synthesis were expounded. Introduction to Chinese organic electrosynthesis development and advancement of organic electrochemistry. Organic electrosynthesis of high efficiency, no pollution. There are several development directions of organic electrosynthesis.Key words:organic electrosynthesis developments of research Green Chemistry;引言部分以电化学方法合成有机化合物称为有机电合成,它是把电子作为试剂通过电子得失来实现有机化合物合成的一种新技术,这是一门涉及电化学、有机合成及化学工程等学科的交叉学科。
2019年高考化学试卷解密第11题电化学(考点透视)(含解析)
第11题电化学考点透视一、考点展望:电化学知识是每年必考点,预计2019年高考中会与装置图结合起来,对电化学工作原理、电极反应式、离子与电子的运动方向、电化学原理应用进行考查。
1.(2018课标Ⅰ)最近我国科学家设计了一种CO2+H2S协同转化装置,实现对天然气中CO2和H2S的高效去除。
示意图如图所示,其中电极分别为ZnO@石墨烯(石墨烯包裹的ZnO)和石墨烯,石墨烯电极区发生反应为:①EDTA-Fe2+-e-=EDTA-Fe3+②2EDTA-Fe3++H2S=2H++S+2EDTA-Fe2+该装置工作时,下列叙述错误的是A. 阴极的电极反应:CO2+2H++2e-=CO+H2OB. 协同转化总反应:CO2+H2S=CO+H2O+SC. 石墨烯上的电势比ZnO@石墨烯上的低D. 若采用Fe3+/Fe2+取代EDTA-Fe3+/EDTA-Fe2+,溶液需为酸性【答案】C【解析】A、CO2在ZnO@石墨烯电极上转化为CO,发生得到电子的还原反应,为阴极,电极反应式为CO2+H-=2H++S,因此总++2e-=CO+H2O,A正确;B、根据石墨烯电极上发生的电极反应可知①+②即得到H2S-2e反应式为CO2+H2S=CO+H2O+S,B正确;C、石墨烯电极为阳极,与电源的正极相连,因此石墨烯上的电势比ZnO@石墨烯电极上的高,C错误;D、由于铁离子、亚铁离子均易水解,所以如果采用Fe3+/Fe2+取代EDTA-Fe3+/EDTA-Fe2+,溶液需要酸性,D正确。
2.(2018课标Ⅱ)我国科学家研发了一种室温下“可呼吸”的Na—CO2二次电池。
将NaClO4溶于有机溶剂作为电解液,钠和负载碳纳米管的镍网分别作为电极材料,电池的总反应为:3CO2+4Na2Na2CO3+C。
下列说法错误的是A. 放电时,ClO4-向负极移动B. 充电时释放CO2,放电时吸收CO2C. 放电时,正极反应为:3CO2+4e−=2CO32-+CD. 充电时,正极反应为:Na++e−=Na【答案】D【解析】A. 放电时是原电池,阴离子ClO4-向负极移动,A正确;B. 电池的总反应为3CO2+4Na2Na2CO3+C,因此充电时释放CO2,放电时吸收CO2,B正确;C. 放电时是原电池,正极是二氧化碳得到电子转化为碳,反应为:3CO2+4e−=2CO32-+C,C正确;D. 充电时是电解,正极与电源的正极相连,作阳极,发生失去电子的氧化反应,反应为2CO32-+C-4e−=3CO2,D错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水溶液中金属电沉积实例
影响因素
• 电流密度:低有利于生成较大晶状沉积物,高有 利于生成细小晶粒或粉末。 • 温度:提高温度有利于金属离子向阴极扩散而使 电沉积均匀,但同时加速成核速率沉淀变粗糙。 • 添加剂:少量有机物质(糖、樟脑、明胶等)可 使沉积物晶粒变细,金属表面变光滑。 • 配体:配体配位能力越强,金属离子浓度越低, 沉淀物越致密、光滑。
• 理论上每通过1 F(96500C)电量发生1mol电 子转移。
Nernst方程
• 在任一电解质溶液中浸入同种金属的电极,在金 属和溶液间产生电位差,称为电极电位(E): E = E° + (2.3RT/nF)lga E° 标准电极电位 R 8.3 J/(mol· K),气体常数; F 96500 C/mol,法拉第常数; n 离子的氧化态; a 溶液的活度; • 对于任意氧化还原电对可表示为: E = E° + (2.3RT/nF)lg(a氧化态/a还原态)
非水溶剂电解制备无机化合物
• 电化学法合成无机化合物 Jiang et. al., “Electrochemical Synthesis of LiTiO2 and LiTi2O4 in Molten LiCl”, Chem. Mater. 2004, 16, 43244329. • 电化学法制备有序结构无机化合物 Eagleton et. al., “Electrochemical Synthesis of 3D Ordered Ferromagnetic Nickel Replicas Using Self-Assembled Colloidal Crystal Templates”, Chem. Mater. 2004, 16, 50275032. • 电化学法制备复合氧化物 Amigo et. al., “Electrochemical Synthesis of New Magnetic Mixed Oxides of Sr and Fe: Composition, Magnetic Properties, and microstructure”, Chem. Mater. 2000, 12, 573-579. • 电化学法合成金属氧化物和氢氧化物 • Therese and Kamath, “Electrochemical Synthesis of Metal Oxides and Hydroxides”, Chem. Mater. 2000, 12, 11951204.
影响超电压的因素
• 电流密度 • 电极材料 • 析出形态:固体 小,气体大。
过电位与阴极材料的关系 过电位与电流密度的关系
水溶液中电沉积金属及应用
• 合成对象 市场上难以得到的特殊金属 比市售品更高纯度的金属 具有特殊形状和性能的金属 实验室或废物中回收金属 • 基本方法 用粗金属原料为阳极,在阴极获得纯金属 以金属化合物为原料,以不溶性阳极进行电解提 取
电氧化合成
• 具有强氧化性的物质:O3, OF2等。 • 最高价态化合物:Ag(III), Cu(III), (ClO4)2SO4等。 • 特殊高价元素化合物:过二硫酸,H2O2等。
电还原合成
• 含中间价态非金属元素酸或其盐类:HClO, HClO2,BrO-, IO-, H2S2O4, H4P2O6, H2N2O2 等。 • 特殊低价元素化合物:K3MoCl5, TiCl, GaCl, K2Ni(CN)3, K3OsBr6, K3W2Cl9等。
电化学合成
• • • • • ������ ������ ������ ������ ������ 电化学合成法及其特点 电化学的基本概念和基本定律 水溶液中电沉积金属及应用 熔盐电解和熔盐技术 非水溶剂中无机化合物的电解合成
电化学合成法及其特点
• 电化学合成法的含义:在导电的水溶液、熔融盐和非水溶 剂中,通过电氧化或电还原过程而制备出不同种类与聚集 状态的单质或化合物。包括: ������ 金属、合金、镀层 ������ 最高价态、特殊高价化合物 ������ 中间价态、特殊低价化合物 ������ C, B, Si, P, S, Se等二元或多元金属陶瓷型化合物 ������ 非金属元素间化合物 ������ 混合价态化合物,簇合物,嵌插型化合物,非计量 比氧化物
新型电解法制氨
• 阳极3H2 → 6H+ + 6e• 阴极N2 + 6H+ + 6e- → 2NH3 • 电解池 H2,Pd|SCY|Pd,H2,NH3 ,He • SCY: SrCe0.95Yb0.05O3
电解法制氨的反应器
熔盐电解和熔盐技术
• 离子熔盐:由金属阳离子和无机阴离子组 成的熔融液体。 • 其中已知的阳离子有80种以上,阴离子有 30多种,由于熔盐中的阳离子通常有多种 价态,阴离子可和其他物质相互作用衍生 出络合离子,熔盐的种类远远超过2400种, 工业生产中大多采用二元或多元混合熔盐。
电解液组成
• 一般以金属的硫酸盐、磺酸盐、氯化物为 宜。 • 其选择标准为: 含一定浓度的欲得金属,性质稳定������ 电 导性能收率好的电沉积状态 较少产生有毒、有害气体
水溶液中放电顺序
• 游离的金属阳离子按金属活动性顺序的逆 顺序放电,H+ 在Mn2+之后放电,Mn前金属 离子不放电。 • 简单阴离子按S2->CN->I->Br->Cl->OH-顺序 放电,F-不放电; • 最高氧化态含氧酸根离子一般不放电; • 低氧化态含氧酸根离子易被氧化,按其还 原性顺序先后放电。
熔盐表面张力与温度的关系
熔盐的电化次序(分解电位)
• 熔盐的电极电位是金属的特性函数,取决于金属 相应的原子结构。 • 随温度的升高,熔盐的分解电位减小(图8) 。 • 阴离子性质及配离子的形成对分解电位有影响, 配合物越稳定,分解电位越高。 • 单一熔盐的分解电位可由相应原电池中产生的电 化学过程的自由能的变化而计算确定。 • 实验中可借助I – V曲线用图解法确定熔盐的分解 电位。
常见金属的标准电极电位
基本概念
• 分解电压(E外):电解质开始分解时的外加电压 • 超电压(ΔE不可逆) : 实际分解电压与理论分解电压的差 值,其关系为: E外= E可逆+ ΔE不可逆+ E电阻 E可逆 可逆电解池的电动势; E电阻 电解池内溶液电阻产生的电压降(IR); • 浓差过电位:电极附近电解质的浓度低于本体浓度 • 电阻过电位:因电极表面形成薄膜或其他物质而阻碍电流 的通过 • 活化过电位:由电化学极化引起,在电极上有氢或氧生产 等气体形成时较为显著。
电解析出金属的形态倾向
粉体电解装置
圆筒型阴极旋转式电解槽
电解材料
• 阳极:为待提纯的金属粗品;导线用同种 金属或可将阳极-导线接触部分覆盖,使之 不与电解液接触。 • 阴极:可高效率地回收析出金属的平板状 或圆筒状材料,表面积应比阳极大。 • 隔膜:隔离阴阳两极的物质,必须不被电 解液所侵蚀,有适当的孔隙度、厚度、透 过系数、电阻,ξ电位及机械强度等。
构成熔盐的离子和由熔盐衍生的离子
熔盐的物理化学性质
• 熔点:随阴阳离子的不同而变化,混合熔盐较纯 熔盐的熔点低。 • 密度:与温度成反比ρ = a – b × 10-3 T • 粘度:较小,一般在0.001 ∼ 0.005 Ns/m2之间, 与温度的关系lgη = lgA + C/T • 蒸气压: 具有离子键的熔盐较高,具有共价键的 熔盐较低。 • 凝固点:混合熔盐凝固点下降,下降值与溶质的 质量摩尔浓度成正比。 • 表面张力:随温度上升而下降,随阳离子而不同。
阳极效应
• 熔盐在电解过程中,有时会出现阳极端电压急剧 升高,而电流则强烈下降,并且在电解质与电极 间呈现不良润湿的现象,被称为阳极效应。 • 阳极效应只有当电流密度超过“临界电流密度” 时才可发生,各种熔盐的临界电流密度不同。 • 阳极效应是不可逆过程,临界电流密度和阳极与 电解质的湿润性(接触角)有关,湿润性大(接 触角小)则临界电流密度大
在冶金及能源工业中应用
• 生产金属、合金,提纯金属,如99.999.99%Al • 热还原法生产金属,作为助熔剂 • 熔盐电镀、熔盐钎焊、熔盐脱水、熔盐萃 取等 • 生产金属铀、钚、钍和其它锕系元素 • 可用作蓄电池、熔盐燃料电池、热电池的 电解质等
非水溶剂中无机化合物的电解合成
• 电解质在非水溶剂中的性能不同于水溶液, 因此其电极电位、电极反应及对电解产物 的选择性 • 各具特点,可用于合成一些特定的无机化 合物。 • 常用的非水溶剂有乙腈, DMF, DMSO, NH3, HF,SOCl2,有机离子液等。
电化学法的特点
������ ������ ������ ������ 合成体系清洁,产物纯度高 可制备高氧化态或低还原态化合物 可选择性地制备特定价态化合物 可制备一些特殊的物质或聚集态
参考书目
• Electrochemical Synthesis of Inorganic Compounds – A Bibliography Nagy Zoltan, New York and London: Plenum Press, 1984. • Electrochemical Techniques of Inorganic Chemists Headrige J B., New York: Academic Press, 1969.
润湿与阳极效应
(左) 正常电解面
(右)发生阳极效应
熔盐反应的特性
• 高温时离子熔盐对反应物有超常的溶解能 力 • 离子浓度高、粘度低、扩散快、电导率大, 反应过程中传质、传热、传能好 • 电极界面的交换电流高,浓差及活化过电 位低 • 热稳定性高,耐辐射、耐腐蚀性强
熔盐的应用
• 在无机及材料合成中 ������ 激光晶体,如YAG:Nd3+ ������ 单晶薄膜磁光材料 ������ 玻璃激光材料,如稀土硅酸盐玻璃 ������ 稀土发光材料,如Gd2SiO3:Ce闪烁体 ������ 阴极发射材料和超硬材料 ������ 超低损耗的氟化物玻璃光纤 ������ 非金属元素F2、B和Si ������ 氟化物及非常规价态化合物