midas各种边界条件

合集下载

迈达斯 Midas Civil mds建模4-边界条件

迈达斯 Midas Civil mds建模4-边界条件

MIDAS/Civil不仅为用户提供了一般的约束边界,而且为用户提供了弹性支撑单元、只受压单元和只受拉单元等各种非线性边界单元。

在建立与地基直接接触的结构物的边界条件时(如筏式基础或隧道等),面弹性支撑首先计算出板单元或实体单元的有效接触面积和地基反力系数,然后程序将自动计算出等效的弹性支撑刚度。

在建立桥梁模型时,用弹性连接模拟桥梁支座并给出支撑方向的刚度值,程序将自动计算出各支座的反力。

释放板端约束与释放梁端约束一样可以释放单元的约束条件。

局部坐标轴一般用于输入倾斜的边界,这样可以输出局部坐标系方向的支座反力。

有扩幅段的弯桥的倾斜边界示意图
将箱型钢桥梁的主梁和桥墩用刚性连接单元连接成一体
有紧急出口的隧道护壁模型和自动生成的等效Soil Spring示意图。

midas 路面结构计算

midas 路面结构计算

midas 路面结构计算Midas 路面结构计算引言:路面结构是指由多种材料组成的路面层,用于承载车辆和行人的交通载荷并分散到基础土层。

Midas 路面结构计算是一种基于有限元方法的工程分析软件,可用于设计和评估不同类型的路面结构。

本文将介绍Midas 路面结构计算的原理、应用以及其在路面工程中的重要性。

一、Midas 路面结构计算的原理Midas 路面结构计算基于有限元方法,通过将路面结构分割成小的有限元单元,使用力学原理和数学模型来模拟路面受力和变形的情况。

其原理包括以下几个方面:1.1 材料模型:Midas 路面结构计算提供了多种材料模型,包括弹性模型、线性弹塑性模型和非线性弹塑性模型。

用户可以根据具体情况选择适合的材料模型。

1.2 荷载模型:Midas 路面结构计算考虑了不同类型的荷载,包括轮载荷、静载荷和动载荷。

用户可以根据实际情况输入荷载参数,并考虑不同位置和时间的荷载变化。

1.3 边界条件:Midas 路面结构计算需要输入路面结构的边界条件,包括固定边界和自由边界。

固定边界是指路面结构与周围环境的约束关系,而自由边界是指路面结构与基础土层的接触情况。

二、Midas 路面结构计算的应用Midas 路面结构计算广泛应用于道路、桥梁和机场等交通工程中,可用于以下方面:2.1 路面设计:Midas 路面结构计算可以根据不同的交通载荷和材料特性,设计出合理的路面结构。

通过对路面结构的受力和变形进行分析,可以确定路面结构的厚度和材料的选择,以确保路面的安全性和耐久性。

2.2 路面评估:Midas 路面结构计算可以对现有路面进行评估,分析其受力和变形情况,判断其是否需要修复或重新铺设。

通过对路面结构的评估,可以提前发现潜在的问题,采取相应的维护和修复措施,延长路面的使用寿命。

2.3 路面施工:Midas 路面结构计算可以在施工过程中提供支持,帮助工程师确定适当的施工方法和工艺。

通过模拟路面结构的受力和变形情况,可以预测施工过程中可能出现的问题,并采取相应的措施加以解决。

midas支座模拟

midas支座模拟

五.支座(边界条件)1. 几中常用边界条件a. 桥墩底部固接在模型>边界条件>一般支承中将六个自由度全部选中。

b. 主梁支座只约束竖向: 在模型>边界条件>一般支承中仅选择Dz。

约束竖向和纵向: 在模型>边界条件>一般支承中选择Dz和Dx.约束竖向和横向: 在模型>边界条件>一般支承中选择Dz和Dy.约束竖向、纵向和横向: 在模型>边界条件>一般支承中选择Dz、Dx、Dz.c. 主梁与桥墩的连接一般来说在主梁的建模点和主梁底(也需要建立一个节点)之间用刚性连接连接(使用模型>边界条件>刚性连接功能,主节点可选择为主梁建模点)。

桥墩的顶点与主梁底的连接可用弹性连接连接,弹性连接的刚度可按厂家提供的支座产品说明书上的竖向和水平向刚度。

只约束竖向: 在模型>边界条件>弹性连接中仅输入SDx。

约束竖向和纵向: 在模型>边界条件>弹性连接中仅输入SDx和SDz(或SDz).约束竖向和横向: 在模型>边界条件>弹性连接中仅输入SDx和SDyz(或SDy).约束竖向、纵向和横向: 在模型>边界条件>弹性连接中输入SDz、SDx、SDz.注意: a. 可在显示中选择显示弹性连接坐标轴查看要约束方向的坐标轴。

b. 当用户希望使用单向(只)受压支座时,可在弹性连接中选择“只受压”。

一般来说不推荐用户使用只受压支座, 当用户担心产生负反力时,可先用既能受压又能受拉的弹性连接先分析一次,查看弹性连解是否受拉,如有受拉的情况,通过结果>移动荷载追踪器查出发生负反力时的移动荷载布置,然后按静力荷载加载且把弹性连接修改为只受压后重新分析即可。

c. 释放梁端部约束当梁与其他构件铰接时,可使用边界条件>释放梁端部约束功能释放弯曲约束。

注意: 不能释放一个节点周边所有梁单元在此节点上的弯曲约束,否则产生奇异。

Midas各种边界条件比较

Midas各种边界条件比较

Midas各种边界条件比较Midas的提供的边界条件非常多,而且各有用途,初学Midas的朋友们都想看看到底不同边界条件之间有什么区别,下面在Midas帮助文件选取下来的,只是作一个比较,各种边界条件的具体使用参照MIDAS帮助文件。

1.定义一般弹性支承类型SDx-SDy整体坐标系X轴方向和Y轴方向(或已定义的节点局部坐标系x方向和y方向)的相关弹性支承刚度。

注一般弹性支承通常用于反映桩的支承刚度,结构分析时可以考虑与各个自由度有关的桩支承刚度。

在典型的建筑结构中,分析模型不包括桩基础。

而是假定在基础底面或桩帽处存在弹性边界。

下面的通用刚度给出了桩单元的实际刚度。

对斜桩,用节点局部坐标轴计算斜向的刚度。

2.一般弹性支承分配定义的一般弹性支撑类型,或输入节点通用刚度矩阵(6×6)。

其中包括选定的节点在整体坐标系或节点局部坐标系内各自由度之间相关的刚度,也可以替换或删除先前定义的弹性支承刚度SDxSDySDzSRxSRySRz注在一般弹性支承类型对话框中,上述6个弹性支承刚度值只表示6 x 6阶刚度矩阵中的6个对角线刚度值。

实际分配给节点的刚度值为6 x 6阶刚度。

3.面弹性支承输入平面或实体单元单位支承面上的弹簧刚度形成弹性支承。

并可同时形成弹性连接的单元。

该功能主要用于在基础或地下结构分析中考虑地基的弹性支承条件。

弹性连接长度:弹性连接单元的长度。

该数据对分析结果没有影响,只是为在分析中定义一个内部矢量。

只受拉,只受压:选中选项指定弹性连接为只受拉或只受压单元。

4.弹性连接形成或删除弹性连接。

由用户定义弹性连接及其弹性连接的两个节点。

SDxSDySDzSRxSRySRz。

5.一般连接特性值建立、修改或删除非线性连接的特性值。

一般连接功能应用于建立减隔振装置、只受拉/受压单元、塑性铰、弹性支撑等模型。

一般连接可利用弹簧的特性,赋予线性或非线性的特性。

一般连接的作用类型分为单元类型和内力类型。

迈达斯MidasCivilmds建模4-边界条件

迈达斯MidasCivilmds建模4-边界条件

MIDAS/Civil不仅为用户提供了一般的约束边界,而且为用户提供了弹性支撑单元、只受压单元和只受拉单元等各种非线性边界单元。

在建立与地基直接接触的结构物的边界条件时(如筏式基础或隧道等),面弹性支撑首先计算出板单元或实体单元的有效接触面积和地基反力系数,然后程序将自动计算出等效的弹性支撑刚度。

在建立桥梁模型时,用弹性连接模拟桥梁支座并给出支撑方向的刚度值,程序将自动计算出各支座的反力。

释放板端约束与释放梁端约束一样可以释放单元的约束条件。

局部坐标轴一般用于输入倾斜的边界,这样可以输出局部坐标系方向的支座反力。

有扩幅段的弯桥的倾斜边界示意图将箱型钢桥梁的主梁和桥墩用刚性连接单元连接成一体有紧急出口的隧道护壁模型和自动生成的等效Soil Spring示意图财务管理工作总结[财务管理工作总结]2009年上半年,我们驻厂财会组在公司计财部的正确领导下,在厂各部门的大力配合下,全组人员尽“参与、监督、服务”职能,以实现企业生产经营目标为核心,以成本管理为重点,全面落实预算管理,加强会计基础工作,充分发挥财务管理在企业管理中的核心作用,较好地完成了各项工作任务,财务管理水平有了大幅度的提高,财务管理工作总结。

现将二00九年上半年财务工作开展情况汇报如下:一、主要指标完成情况:1、产量90万吨,实现利润1000万元(按外销口径)2、工序成本降低任务:上半年工序成本累计超支1120万元,(受产量影响)。

二、开展以下几方面工作:1、加强思想政治学习,用学习指导工作2009年是转变之年,财务的工作重心由核算向管理转变,全面参与生产经营决策。

对财会组来说,工作重心从确认、核算、报表向预测、控制、分析等管理职能转变,我们就要不断的加强政治学习,用学习指导工作,因此我们组织全组认真学习“十七大”、学习2009年马总的《财务报告》,在学习实践科学发展观活动中,反思过去,制定了2009年工作目标,使我们工作明确了方向,心里也就有了底,干起活来也就随心应手。

midas查询构件两端边界条件

midas查询构件两端边界条件

midas查询构件两端边界条件1. 什么是midas查询构件?Midas查询构件是一种用于执行数据库查询的工具。

它可以帮助用户快速地查询数据库中的数据,并将结果以可视化的方式呈现出来。

在使用Midas查询构件时,需要设置一些边界条件,以确保查询结果的准确性和完整性。

2. midas查询构件两端边界条件是什么?在使用Midas查询构件时,需要设置两个边界条件,即起始边界和结束边界。

起始边界是指查询结果的开始位置,结束边界是指查询结果的结束位置。

通过设置这两个边界条件,可以确保查询结果的范围不会超出预期范围。

3. 如何设置midas查询构件两端边界条件?设置Midas查询构件的两端边界条件需要按照以下步骤进行:1)打开Midas查询构件,并选择要查询的数据库。

2)在查询条件中设置起始边界和结束边界。

可以通过设置查询结果的起始行和结束行来设置边界条件。

3)保存查询条件并执行查询。

查询结果将根据设置的边界条件进行筛选和呈现。

4. midas查询构件两端边界条件的作用是什么?设置Midas查询构件的两端边界条件可以确保查询结果的准确性和完整性。

如果没有设置边界条件,查询结果可能会包含不必要的数据,或者漏掉一些重要的数据。

通过设置边界条件,可以将查询结果限制在预期范围内,提高查询效率和准确性。

5. midas查询构件两端边界条件的注意事项是什么?在设置Midas查询构件的两端边界条件时,需要注意以下几点:1)边界条件的设置应该合理,不能过于宽松或过于严格。

2)边界条件的设置应该考虑到查询结果的完整性和准确性。

3)边界条件的设置应该与查询条件相匹配,以确保查询结果的一致性。

4)在设置边界条件时,应该注意数据库中数据的变化,及时调整边界条件,以避免数据漏掉或重复。

总之,设置Midas查询构件的两端边界条件是保证查询结果准确性和完整性的重要措施,需要合理设置并及时调整。

midas查询构件两端边界条件

midas查询构件两端边界条件

midas查询构件两端边界条件
Midas查询构件两端边界条件
Midas是一款功能强大的计算机辅助设计软件,用户可以使用它设计出复杂的结构构件。

当 Midas 使用时,用户需要输入构件两端边界条件。

这些条件涉及到构件的宽度、高度以及其他计算参数。

定义边界条件的第一步是确定构件的宽度和高度,以便计算构件的质量和强度。

构件宽度表示构件实际宽度,而高度则表示构件实际高度。

查询构件宽度和高度的方法有多种,可以使用Midas的编辑器查看构件宽度和高度,也可以使用技术手册等其他参考资料查询构件的宽度和高度。

接下来,还需要确定构件的计算参数,包括材料参数、拉伸参数、塑性参数、剪切参数等。

这些参数用于计算构件的材料强度、拉伸应力、屈服试验结果等。

这些参数可以从技术资料或数据库中查询,也可以从实际测试中获得。

最后,还需要设置构件的边界条件,包括构件节点类型,拉伸约束,剪切约束等。

构件节点类型决定了节点的运动约束范围,拉伸约束限定了构件拉伸变形的范围,剪切约束则限定了构件剪切变形的范围。

总之,查询构件两端边界条件主要有以上几点内容:确定构件的宽度和高度,确定构件的计算参数,以及设置构件的边界条件。

- 1 -。

MIDAS入门-支座模拟

MIDAS入门-支座模拟

MIDAS 中支座的模拟弹性连接刚性与刚性连接的区别1、概念解释:1)弹性连接是一种具有6个自由度,类似于梁单元的弹簧单元,弹性连接由两个节点构成,两节点的相对变形由弹性连接的刚度决定,其刚性连接的刚度为模型中最大刚度的100000倍,此时如果模型中人为定义了刚度很大的刚臂单元,则可能会因为弹性连接的刚度过大,导致计算奇异。

2)刚性连接是一种纯粹的边界条件,是节点自由度耦合的一种方式,一个刚性连接是由一个主节点,一个或多个从节点构成,从节点的约束内容与主节点相同,主从节点的相对位移由刚性连接的约束内容决定,如果约束内容只有平动自由度,则主从节点间无相对位移,如果约束内容既有平动自由度也有转动自由度,则主从节点因发生相同的转动位移而导致主从节点有相对的平动位移。

2、弹性连接定义多支座反力:注:如图所示,可以把端横梁定义成弹性连接的刚性,这样端部刚度越大,分配下部的支反力越均匀,如左边显示,三个支座反力均相等;而右边的单梁多支座的定义,计算结果就偏离实际情况,求出的中间支反力最大,这样的结果是错误,建议选用刚性连接的方法来定义单梁多支座。

3、刚性连接定义多支座反力:注:定义多支座反力,尽量选用刚性连接来做。

还有一个问题,用弹性连接的刚性容易出错,因为弹性连接的刚性取的是整个模型中最大刚度的10的5次方倍,如模型中有较大截面时,如承台截面时,在主梁与主塔之间连接,容易造成计算结果奇异;4、建议:1)对于普通模型,用两种方法模拟刚臂均可,对于模型中有大截面或者有大刚度单元时,建议采用刚性连接来处理,防止计算奇异。

2)弹性连接刚性,形象说就是一根“杆”,两者是由一根有形的杆相连接;刚性连接就是两个节点之间有“磁铁” 左右,两者之间无刚度约束,而是自由度耦合的方式。

3)弹性连接在施工过程中可以任意激活钝化,刚性连接在施工过程中只能激活,不能钝化。

4)在在利用midas 做分析的时候,如果模拟满堂支架,建议刚度在10的6次方KN/m ,如果定义支座轴向刚度,大概在106~107次KN/m 左右。

Midas各种边界条件比较

Midas各种边界条件比较

Midas各种边界条件比较Midas的提供的边界条件非常多,而且各有用途,初学Midas的朋友们都想看看到底不同边界条件之间有什么区别,下面在Midas帮助文件选取下来的,只是作一个比较,各种边界条件的具体使用参照MIDAS帮助文件。

1.定义一般弹性支承类型SDx-SDy整体坐标系X轴方向和Y轴方向(或已定义的节点局部坐标系x方向和y方向)的相关弹性支承刚度。

注一般弹性支承通常用于反映桩的支承刚度,结构分析时可以考虑与各个自由度有关的桩支承刚度。

在典型的建筑结构中,分析模型不包括桩基础。

而是假定在基础底面或桩帽处存在弹性边界。

下面的通用刚度给出了桩单元的实际刚度。

对斜桩,用节点局部坐标轴计算斜向的刚度。

2.一般弹性支承分配定义的一般弹性支撑类型,或输入节点通用刚度矩阵(6×6)。

其中包括选定的节点在整体坐标系或节点局部坐标系内各自由度之间相关的刚度,也可以替换或删除先前定义的弹性支承刚度SDxSDySDzSRxSRySRz注在一般弹性支承类型对话框中,上述6个弹性支承刚度值只表示6 x 6阶刚度矩阵中的6个对角线刚度值。

实际分配给节点的刚度值为6 x 6阶刚度。

3.面弹性支承输入平面或实体单元单位支承面上的弹簧刚度形成弹性支承。

并可同时形成弹性连接的单元。

该功能主要用于在基础或地下结构分析中考虑地基的弹性支承条件。

弹性连接长度:弹性连接单元的长度。

该数据对分析结果没有影响,只是为在分析中定义一个内部矢量。

只受拉,只受压:选中选项指定弹性连接为只受拉或只受压单元。

4.弹性连接形成或删除弹性连接。

由用户定义弹性连接及其弹性连接的两个节点。

SDxSDySDzSRxSRySRz。

5.一般连接特性值建立、修改或删除非线性连接的特性值。

一般连接功能应用于建立减隔振装置、只受拉/受压单元、塑性铰、弹性支撑等模型。

一般连接可利用弹簧的特性,赋予线性或非线性的特性。

一般连接的作用类型分为单元类型和内力类型。

midas autoDBS中模型边界条件的确定

midas autoDBS中模型边界条件的确定

midas autoDBS中模型边界条件的确定midas AutoBDS软件支承纵向位置在上部结构>构造信息>基本信息中输入,横向位置在上部结构>构造信息>横梁中输入。

midas AutoBDS软件在预处理时自动确定支座类型、支承约束方向,用户可根据需求在预处理结果>运营阶段>边界条件中调整支承约束方向,本节主要介绍程序自动确定的方法。

1.实际支座类型实际支座类型的选取原则如下:1). 偶数跨:(1)中间墩位置最左侧支座采用固定支座;(2)中间墩其余支座采用顺桥向固定的单向滑动支座;(3)其余墩的最左侧支座采用横桥向固定的单向滑动支座;(4)其余墩的其它支座采用双向滑动支座。

2). 奇数跨:(1)中间跨左侧墩位置最左侧支座采用固定支座;(2)中间跨左侧墩其余支座采用顺桥向固定的单向滑动支座;(3)其余墩的最左侧支座采用横桥向固定的单向滑动支座;(4)其余墩的其它支座采用双向滑动支座。

2. 支承约束方向midas AutoBDS软件的主梁模型、横梁模型均采用3D建模,约束方向均指在各自的坐标系下的约束方向,即主梁模型采用纵向坐标系,横梁模型采用横向坐标系。

主梁支承的约束如下:1). 固定支座:(1) Dx=1(2) Dy=1(3) Dz=1(4) Rx=0(5) Ry=0(6) Rz=02). 顺桥向固定的单向滑动支座:(1) Dx=1(2) Dy=0(3) Dz=1(4) Rx=0(6) Rz=03). 横桥向固定的单向滑动支座:(1) Dx=0(2) Dy=1(3) Dz=1(4) Rx=0(5) Ry=0(6) Rz=04). 双向活动支座:(1) Dx=0(2) Dy=0(3) Dz=1(4) Rx=0(5) Ry=0(6) Rz=0由于横梁模型仅在横向坐标系下X方向布置一排支座,故横梁模型支承约束所有节点的Y轴方向的平动自由度和绕X轴及Z轴旋转的旋转自由度。

midas autoDBS中模型边界条件的确定

midas autoDBS中模型边界条件的确定

midas autoDBS中模型边界条件的确定midas AutoBDS软件支承纵向位置在上部结构>构造信息>基本信息中输入,横向位置在上部结构>构造信息>横梁中输入。

midas AutoBDS软件在预处理时自动确定支座类型、支承约束方向,用户可根据需求在预处理结果>运营阶段>边界条件中调整支承约束方向,本节主要介绍程序自动确定的方法。

1.实际支座类型实际支座类型的选取原则如下:1). 偶数跨:(1)中间墩位置最左侧支座采用固定支座;(2)中间墩其余支座采用顺桥向固定的单向滑动支座;(3)其余墩的最左侧支座采用横桥向固定的单向滑动支座;(4)其余墩的其它支座采用双向滑动支座。

2). 奇数跨:(1)中间跨左侧墩位置最左侧支座采用固定支座;(2)中间跨左侧墩其余支座采用顺桥向固定的单向滑动支座;(3)其余墩的最左侧支座采用横桥向固定的单向滑动支座;(4)其余墩的其它支座采用双向滑动支座。

2. 支承约束方向midas AutoBDS软件的主梁模型、横梁模型均采用3D建模,约束方向均指在各自的坐标系下的约束方向,即主梁模型采用纵向坐标系,横梁模型采用横向坐标系。

主梁支承的约束如下:1). 固定支座:(1) Dx=1(2) Dy=1(3) Dz=1(4) Rx=0(5) Ry=0(6) Rz=02). 顺桥向固定的单向滑动支座:(1) Dx=1(2) Dy=0(3) Dz=1(4) Rx=0(6) Rz=03). 横桥向固定的单向滑动支座:(1) Dx=0(2) Dy=1(3) Dz=1(4) Rx=0(5) Ry=0(6) Rz=04). 双向活动支座:(1) Dx=0(2) Dy=0(3) Dz=1(4) Rx=0(5) Ry=0(6) Rz=0由于横梁模型仅在横向坐标系下X方向布置一排支座,故横梁模型支承约束所有节点的Y轴方向的平动自由度和绕X轴及Z轴旋转的旋转自由度。

midas各种边界条件

midas各种边界条件

Midas各种边界条件比较Midas的提供的边界条件非常多,而且各有用途,初学Midas的朋友们都想看看到底不同边界条件之间有什么区别,下面在Midas帮助文件选取下来的,只是作一个比较,各种边界条件的具体使用参照MIDAS帮助文件。

1.定义一般弹性支承类型SDx-SDy整体坐标系X轴方向和Y轴方向(或已定义的节点局部坐标系x方向和y方向)的相关弹性支承刚度。

注一般弹性支承通常用于反映桩的支承刚度,结构分析时可以考虑与各个自由度有关的桩支承刚度。

在典型的建筑结构中,分析模型不包括桩基础。

而是假定在基础底面或桩帽处存在弹性边界。

下面的通用刚度给出了桩单元的实际刚度。

对斜桩,用节点局部坐标轴计算斜向的刚度。

2.一般弹性支承分配定义的一般弹性支撑类型,或输入节点通用刚度矩阵(6×6)。

其中包括选定的节点在整体坐标系或节点局部坐标系内各自由度之间相关的刚度,也可以替换或删除先前定义的弹性支承刚度SDxSDySDzSRxSRySRz注在一般弹性支承类型对话框中,上述6个弹性支承刚度值只表示6 x 6阶刚度矩阵中的6个对角线刚度值。

实际分配给节点的刚度值为6 x 6阶刚度。

3.面弹性支承输入平面或实体单元单位支承面上的弹簧刚度形成弹性支承。

并可同时形成弹性连接的单元。

该功能主要用于在基础或地下结构分析中考虑地基的弹性支承条件。

弹性连接长度:弹性连接单元的长度。

该数据对分析结果没有影响,只是为在分析中定义一个内部矢量。

只受拉,只受压:选中选项指定弹性连接为只受拉或只受压单元。

4.弹性连接形成或删除弹性连接。

由用户定义弹性连接及其弹性连接的两个节点。

SDxSDySDzSRxSRySRz。

5.一般连接特性值建立、修改或删除非线性连接的特性值。

一般连接功能应用于建立减隔振装置、只受拉/受压单元、塑性铰、弹性支撑等模型。

一般连接可利用弹簧的特性,赋予线性或非线性的特性。

一般连接的作用类型分为单元类型和内力类型。

【精品】迈达斯_midas_civil_mds建模4边界条件

【精品】迈达斯_midas_civil_mds建模4边界条件

MIDAS/Civil不仅为用户提供了一般的约束边界,而且为用户提供了弹性支撑单元、只受压单元和只受拉单元等各种非线性边界单元。

在建立与地基直接接触的结构物的边界条件时(如筏式基础或隧道等),面弹性支撑首先计算出板单元或实体单元的有效接触面积和地基反力系数,然后程序将自动计算出等效的弹性支撑刚度。

在建立桥梁模型时,用弹性连接模拟桥梁支座并给出支撑方向的刚度值,程序将自动计算出各支座的反力。

释放板端约束与释放梁端约束一样可以释放单元的约束条件。

局部坐标轴一般用于输入倾斜的边界,这样可以输出局部坐标系方向的支座反力。

有扩幅段的弯桥的倾斜边界示意图
将箱型钢桥
梁的主梁和桥墩用刚性连接单元连接成一

有紧急出口的隧道护壁模型和自动生成的等效SoilSpring示意图。

边界条件

边界条件

Midas各种边界条件比较Midas的提供的边界条件非常多,而且各有用途,初学Midas的朋友们都想看看到底不同边界条件之间有什么区别,下面在Midas帮助文件选取下来的,只是作一个比较,各种边界条件的具体使用参照MIDAS帮助文件。

1.定义一般弹性支承类型SDx-SDy整体坐标系X轴方向和Y轴方向(或已定义的节点局部坐标系x方向和y方向)的相关弹性支承刚度。

注一般弹性支承通常用于反映桩的支承刚度,结构分析时可以考虑与各个自由度有关的桩支承刚度。

在典型的建筑结构中,分析模型不包括桩基础。

而是假定在基础底面或桩帽处存在弹性边界。

下面的通用刚度给出了桩单元的实际刚度。

对斜桩,用节点局部坐标轴计算斜向的刚度。

2.一般弹性支承分配定义的一般弹性支撑类型,或输入节点通用刚度矩阵(6×6)。

其中包括选定的节点在整体坐标系或节点局部坐标系内各自由度之间相关的刚度,也可以替换或删除先前定义的弹性支承刚度SDxSDySDzSRxSRySRz注:在一般弹性支承类型对话框中,上述6个弹性支承刚度值只表示6 x 6阶刚度矩阵中的6个对角线刚度值。

实际分配给节点的刚度值为6 x 6阶刚度。

3.面弹性支承输入平面或实体单元单位支承面上的弹簧刚度形成弹性支承。

并可同时形成弹性连接的单元。

该功能主要用于在基础或地下结构分析中考虑地基的弹性支承条件。

弹性连接长度:弹性连接单元的长度。

该数据对分析结果没有影响,只是为在分析中定义一个内部矢量。

只受拉,只受压:选中选项指定弹性连接为只受拉或只受压单元。

4.弹性连接形成或删除弹性连接。

由用户定义弹性连接及其弹性连接的两个节点。

SDxSDySDzSRxSRySRz。

5.一般连接特性值建立、修改或删除非线性连接的特性值。

一般连接功能应用于建立减隔振装置、只受拉/受压单元、塑性铰、弹性支撑等模型。

一般连接可利用弹簧的特性,赋予线性或非线性的特性。

一般连接的作用类型分为单元类型和内力类型。

(完整word版)06-midas边界条件建立

(完整word版)06-midas边界条件建立

06-定义边界条件
MIDAS/Civil 里包含多种边界表现形式。

这里介绍的比较常用的一般支撑、节点弹性支撑、面弹性支撑、刚性连接等边界条件的定义方法。

一般支撑是应用最广的边界条件,选择要施加一般支撑的节点,选择约束自由度方向即完成一般支撑的定义。

节点弹性支撑的定义方法同一般支撑,不同的是在定义约束的自由度方向要输入约束刚度。

面弹性支撑不仅可以针对板单元来定义弹性支撑条件,而且可以对梁单元、实体单元来定义面弹性支撑。

这种支撑条件在模拟结构与土体的连接条件时应用比较广。

需要输入的参数地基弹性模量,这个可以在地质勘查报告中查
得。

图1所示为面弹性支撑定义对话框。

对于弹性连接和刚性连接涉及的都是两个节点间的连接情况。

对于弹性连接选择连接的自由度
方向和该方向的刚度参数就可以了,弹性连接的方
向是按照连接的两个节点间的局部坐标系方向来
定义的(如图2)!刚性连接是强制从属节点的某些
自由度从属于主节点(如图3所示)。

图1 面弹性支撑定义
输入基床系数
图2 弹性连接局部坐标系 图3 刚性连接对话框 指定主节
点,与选择
的从属节
点建立刚
性连接。

midas支座的模拟方法

midas支座的模拟方法

MIDAS中支座的模拟弹性连接刚性与刚性连接的区别1、概念解释:1)弹性连接是一种具有6个自由度,类似于梁单元的弹簧单元,弹性连接由两个节点构成,两节点的相对变形由弹性连接的刚度决定,其刚性连接的刚度为模型中最大刚度的100000倍,此时如果模型中人为定义了刚度很大的刚臂单元,则可能会因为弹性连接的刚度过大,导致计算奇异。

2)刚性连接是一种纯粹的边界条件,是节点自由度耦合的一种方式,一个刚性连接是由一个主节点,一个或多个从节点构成,从节点的约束内容与主节点相同,主从节点的相对位移由刚性连接的约束内容决定,如果约束内容只有平动自由度,则主从节点间无相对位移,如果约束内容既有平动自由度也有转动自由度,则主从节点因发生相同的转动位移而导致主从节点有相对的平动位移。

2、弹性连接定义多支座反力:注:如图所示,可以把端横梁定义成弹性连接的刚性,这样端部刚度越大,分配下部的支反力越均匀,如左边显示,三个支座反力均相等;而右边的单梁多支座的定义,计算结果就偏离实际情况,求出的中间支反力最大,这样的结果是错误,建议选用刚性连接的方法来定义单梁多支座。

3、刚性连接定义多支座反力:注:定义多支座反力,尽量选用刚性连接来做。

还有一个问题,用弹性连接的刚性容易出错,因为弹性连接的刚性取的是整个模型中最大刚度的10的5次方倍,如模型中有较大截面时,如承台截面时,在主梁与主塔之间连接,容易造成计算结果奇异;4、建议:1)对于普通模型,用两种方法模拟刚臂均可,对于模型中有大截面或者有大刚度单元时,建议采用刚性连接来处理,防止计算奇异。

2)弹性连接刚性,形象说就是一根“杆”,两者是由一根有形的杆相连接;刚性连接就是两个节点之间有“磁铁”左右,两者之间无刚度约束,而是自由度耦合的方式。

3)弹性连接在施工过程中可以任意激活钝化,刚性连接在施工过程中只能激活,不能钝化。

4)在利用midas做分析的时候,如果模拟满堂支架,建议刚度在10的6次方KN/m,如果定义支座轴向刚度,大概在106~107次KN/m左右。

MIDAS入门-支座模拟

MIDAS入门-支座模拟

MIDAS入门-支座模拟MIDAS中支座的模拟弹性连接刚性与刚性连接的区别1、概念解释:1)弹性连接是一种具有6个自由度,类似于梁单元的弹簧单元,弹性连接由两个节点构成,两节点的相对变形由弹性连接的刚度决定,其刚性连接的刚度为模型中最大刚度的100000倍,此时如果模型中人为定义了刚度很大的刚臂单元,则可能会因为弹性连接的刚度过大,导致计算奇异。

2)刚性连接是一种纯粹的边界条件,是节点自由度耦合的一种方式,一个刚性连接是由一个主节点,一个或多个从节点构成,从节点的约束内容与主节点相同,主从节点的相对位移由刚性连接的约束内容决定,如果约束内容只有平动自由度,则主从节点间无相对位移,如果约束内容既有平动自由度也有转动自由度,则主从节点因发生相同的转动位移而导致主从节点有相对的平动位移。

2、弹性连接定义多支座反力:注:如图所示,可以把端横梁定义成弹性连接的刚性,这样端部刚度越大,分配下部的支反力越均匀,如左边显示,三个支座反力均相等;而右边的单梁多支座的定义,计算结果就偏离实际情况,求出的中间支反力最大,这样的结果是错误,建议选用刚性连接的方法来定义单梁多支座。

3、刚性连接定义多支座反力:注:定义多支座反力,尽量选用刚性连接来做。

还有一个问题,用弹性连接的刚性容易出错,因为弹性连接的刚性取的是整个模型中最大刚度的10的5次方倍,如模型中有较大截面时,如承台截面时,在主梁与主塔之间连接,容易造成计算结果奇异;4、建议:1)对于普通模型,用两种方法模拟刚臂均可,对于模型中有大截面或者有大刚度单元时,建议采用刚性连接来处理,防止计算奇异。

2)弹性连接刚性,形象说就是一根“杆”,两者是由一根有形的杆相连接;刚性连接就是两个节点之间有“磁铁”左右,两者之间无刚度约束,而是自由度耦合的方式。

3)弹性连接在施工过程中可以任意激活钝化,刚性连接在施工过程中只能激活,不能钝化。

4)在在利用midas做分析的时候,如果模拟满堂支架,建议刚度在10的6次方KN/m,如果定义支座轴向刚度,大概在106~107次KN/m左右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Midas各种边界条件比较
Midas的提供的边界条件非常多,而且各有用途,初学Midas的朋友们都想看看到底不同边界条件之间有什么区别,下面在Midas帮助文件选取下来的,只是作一个比较,各种边界条件的具体使用参照MIDAS帮助文件。

1.定义一般弹性支承类型
SDx-SDy
整体坐标系X轴方向和Y轴方向(或已定义的节点局部坐标系x方向和y方向)的相关弹性支承刚度。


一般弹性支承通常用于反映桩的支承刚度,结构分析时可以考虑与各个自由度有关的桩支承刚度。

在典型的建筑结构中,分析模型不包括桩基础。

而是假定在基础底面或桩帽处存在弹性边界。

下面的通用刚度给出了桩单元的实际刚度。

对斜桩,用节点局部坐标轴计算斜向的刚度。

2.一般弹性支承
分配定义的一般弹性支撑类型,或输入节点通用刚度矩阵(6×6)。

其中包括选定的节点在整体坐标系或节点局部坐标系内各自由度之间相关的刚度,也可以替换或删除先前定义的弹性支承刚度
SDxSDySDzSRxSRySRz

在一般弹性支承类型对话框中,上述6个弹性支承刚度值只表示6 x 6阶刚度矩阵中的6个对角线刚度值。

实际分配给节点的刚度值为6 x 6阶刚度。

3.面弹性支承
输入平面或实体单元单位支承面上的弹簧刚度形成弹性支承。

并可同时形成弹性连接的单元。

该功能主要用于在基础或地下结构分析中考虑地基的弹性支承条件。

弹性连接长度:弹性连接单元的长度。

该数据对分析结果没有影响,只是为在分析中定义一个内部矢量。

只受拉,只受压:选中选项指定弹性连接为只受拉或只受压单元。

4.弹性连接
形成或删除弹性连接。

由用户定义弹性连接及其弹性连接的两个节点。

SDxSDySDzSRxSRySRz。

5.一般连接特性值
建立、修改或删除非线性连接的特性值。

一般连接功能应用于建立减隔振装置、只受拉/受压单元、塑性铰、弹性支撑等模型。

一般连接可利用弹簧的特性,赋予线性或非线性的特性。

一般连接的作用类型分为单元类型和内力类型。

单元类型一般连接在进行分析过程中,用更新单元刚度矩阵直接反映单元的非线性。

内力类型的一般连接不更新单元刚度矩阵,而是根据非线性的特性计算出来的内力置换成外部荷载,间接的考虑非线性。

单元类型的一般连接提供的类型有弹簧、线性阻尼器、弹簧和线性阻尼器3种类型的连接单元。

内力类型的一般连接提供的类型有粘弹性消能器(Viscoelastic
Damper)、间隙(Gap)、钩(Hook)、滞后系统(Hysteretic
System)、铅芯橡胶支承隔震装置(Lead
Rubber
Bearing
Isolator)、摩擦摆隔震装置(Friction
Pendulum
System
Isolator)等六种类型的连接单元。

6.一般连接
添加或删除一般连接。

由用户定义一般连接及其一般连接的两个节点。

一般连接特性值:选择非线性连接的特性。

当需要建立或编辑非线性连接的特性值时,可以点击右面的,将弹出非线性连接特性值对话框。

7.释放梁端约束
输入梁两端的梁端释放条件(铰接,滑动,滚动,节点和部分固定),或替换或删除先前输入的梁端释放条件。

8.设定梁端部刚域
定义GCS或梁单元局部坐标系下梁两端的刚域长度或考虑节点偏心。

该功能主要适用于梁单元(梁、柱)间的偏心设定。

当梁单元间倾斜相交,用户要考虑节点刚域效果时,需使用该功能进行设定。

在主菜单中的模型>边界条件>刚域效果只能考虑梁柱直交时的效果。

9.刚性连接
强制某些节点(从属节点)的自由度从属于某节点(主节点)。

包括从属节点的刚度分量在内的从属节点的所有属性(节点荷载或节点质量)均将转换为主节点的等效分量。

10.刚域效果
自动考虑杆系结构中柱构件和梁构件(与柱连接的水平单元)连接节点区的刚域效应,刚域效应反映在梁单元中,平行于整体坐标系Z轴的梁单元将被视为柱构件,整体坐标系X-Y平面内的梁单元将被视为梁构件。

11.有效宽度系数
在计算梁截面应力时,对截面强轴的惯性矩(Iy)的调整系数。

该功能主要使用于预应力箱型梁的剪滞效应(shear lag)分析,即考虑上下板的有效宽度(受压区)后,对截面惯性矩进行相应的调整,最后进行应力计算。

该功能对内力计算没有影响。

相关文档
最新文档